JP3559209B2 - 記憶装置 - Google Patents
記憶装置 Download PDFInfo
- Publication number
- JP3559209B2 JP3559209B2 JP30824499A JP30824499A JP3559209B2 JP 3559209 B2 JP3559209 B2 JP 3559209B2 JP 30824499 A JP30824499 A JP 30824499A JP 30824499 A JP30824499 A JP 30824499A JP 3559209 B2 JP3559209 B2 JP 3559209B2
- Authority
- JP
- Japan
- Prior art keywords
- learning
- medium
- time
- unit
- rotation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000006870 function Effects 0.000 claims description 131
- 210000004027 cell Anatomy 0.000 claims description 44
- 238000004364 calculation method Methods 0.000 claims description 29
- 238000001514 detection method Methods 0.000 claims description 29
- 230000000737 periodic effect Effects 0.000 claims description 21
- 238000004422 calculation algorithm Methods 0.000 claims description 15
- 238000005070 sampling Methods 0.000 claims description 13
- 210000000352 storage cell Anatomy 0.000 claims description 10
- 238000006073 displacement reaction Methods 0.000 claims description 9
- 238000003780 insertion Methods 0.000 claims description 2
- 230000037431 insertion Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 description 36
- 230000003287 optical effect Effects 0.000 description 30
- 238000010586 diagram Methods 0.000 description 29
- 230000008569 process Effects 0.000 description 27
- 230000014509 gene expression Effects 0.000 description 19
- 238000012545 processing Methods 0.000 description 17
- 230000007246 mechanism Effects 0.000 description 16
- 230000001360 synchronised effect Effects 0.000 description 8
- 230000010354 integration Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/09—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B7/095—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B21/00—Head arrangements not specific to the method of recording or reproducing
- G11B21/02—Driving or moving of heads
- G11B21/10—Track finding or aligning by moving the head ; Provisions for maintaining alignment of the head relative to the track during transducing operation, i.e. track following
- G11B21/106—Track finding or aligning by moving the head ; Provisions for maintaining alignment of the head relative to the track during transducing operation, i.e. track following on disks
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/48—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
- G11B5/58—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B5/596—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
- G11B5/59627—Aligning for runout, eccentricity or offset compensation
Landscapes
- Feedback Control In General (AREA)
- Optical Recording Or Reproduction (AREA)
- Moving Of The Head To Find And Align With The Track (AREA)
Description
【発明の属する技術分野】
本発明は、トラックセンタに対するヘッドの位置ずれ量を零とするようにキャリッジの移動位置をフィードバック制御する記憶装置に関し、特に、媒体偏心等の周期性外乱の位置ずれを抑圧するための制御信号を学習制御により求めてフィードフォーワード制御する記憶装置に関する。
【0002】
【従来技術】
従来の光ディスク装置では、光ビームの媒体トラックに対する追従性能を高めるために、固定配置されたガイドレールに対し滑り軸受部で支持されたキャリッジを移動するシーク制御用(粗制御用又はコアース制御用ともいう)のキャリッジアクチュエータと、キャリッジ上に搭載された対物レンズの駆動で光ビームをトラックを横切る方向に移動させるトラッキング制御用(精制御又はファイン制御用ともいう)のトラックアクチュエータで構成されるダブル駆動型のヘッド機構が採用されている。
【0003】
しかし、最近では装置のコストダウンのために、トラックアクチュエータを廃止してキャリッジアクチュエータのみとしたシングル駆動型のヘッド機構も広く普及している。また、シングル駆動型のヘッド機構では、ボールベアリングを削除し、部品点数の低減とコントダウンを図っている。
【0004】
【発明が解決しようとする課題】
しかしながら、ヘッド機構をキャリッジアクチュエータのみのシングル駆動型とし、更にキャリッジの滑り軸受けからボールベアリングを除去した場合、トラッキングエラー信号に基づいた光ビームのトラックセンタに対する位置決め制御が、キャリッジ軸受部のもつ固体摩擦の影響を強く受けるようになる。
【0005】
図24は、シングル駆動型のキャリッジにおける固体摩擦の特性である。ここで移動速度V及び摩擦力Fは、キャリッジの移動方向に応じてプラス、マイナスの値をもつ。いまキャリッジの移動速度Vがマイナスからプラスに変化する場合を考える。キャリッジがマイナスの値をもつ移動速度Vで移動中は、移動速度に関わらず略一定の動摩擦力F1が発生している。キャリッジのガイドレールに対する移動速度Vが零となり、次に反対方向に移動を始める際には、静止摩擦力−F2を越える駆動力が必要となり、動き始めると、略一定の動摩擦力−F1となる。
【0006】
このようなキャリッジの移動速度の反転時には、摩擦力のステップ的な力の変化が制御系に外乱として働き、この外乱を十分補償するためには、一般に帯域の広いフィードバック制御系が必要になる。
【0007】
キャリッジの移動速度の反転は、例えば媒体の偏心によるトラックの周期的な位置ずれを補償するトラック追従制御で生ずる。即ち、媒体偏心に追従するようにキャリッジを制御すると、キャリッジのガイドレールに対する動きは偏心周期に同期した往復運動となる。このため媒体の1回転に対して少なくとも2回、キャリッジの移動速度が反転し、その都度、摩擦力のステップ的な力の変化による外乱を受けることになる。
【0008】
図24は、シングル駆動型のヘッド機構に対し、フィードバック制御系によりオントラック制御を行った場合の回転周期(時間)に対するトラッキングエラー信号TESのシミュレーション結果である。このシミュレーションでは、トラックピッチを1.1μm、ディスク回転数を3600rpm、摩擦係数μを0.3としている。また実際のヘッド機構の15kHz程度に主共振をもつ高次共振を考慮し、フィードバック制御系の帯域は1.5kHzとしている。
【0009】
図25の波形200は偏心波形のピーク・ピーク偏心量が50μm、波形202は偏心波形のピーク・ピーク偏心量が20μm、波形204は偏心波形のピーク・ピーク偏心量が10μmの場合である。
【0010】
この波形200,202,204のいずれについても、ヘッド機構のシングル駆動に起因したフィードバック制御系の低域誤差圧縮性能の悪化と制御帯域の低下によって、偏心外乱を十分に抑圧できていない。またキャリッジを偏心に追従させた際の移動速度が零となる時点で生じる摩擦外乱のステップ変化の影響を受けて、ピーク状の大きな追従誤差206−1,206−2,206−3,206−4を生じている。
【0011】
ここでキャリッジの移動に伴う固体摩擦Ffricは、静止摩擦を省略して簡単に表すと、次式でモデル化される。
【0012】
【数3】
【0013】
このモデルから明らかなように、キャリッジのガイドレールに対する速度χドットの反転時に、固体摩擦Ffricの符号がステップ的に例えばマイナスからプラスに急変するところに、フィードバック制御による補償が困難な原因がある。
【0014】
このようなステップ状の摩擦外乱を補償する方法としては、一般にフィードバック制御系の帯域を上げる方法が考えられるが、15kHz付近での高次共振の存在により限界がある。更にまた、トラック追従制御をキャリッジ駆動のみとし、レンズアクチュエータによる駆動を省略したことにより、位置決めするための制御帯域を十分に高めることは困難である。
【0015】
本発明は、フィードバック制御系と学習制御系を組み合わせることにより、媒体偏心に起因したステップ状に摩擦外乱を確実に補償して追従誤差を小さくする記憶装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
図1は本発明の原理説明図である。
【0017】
まず本発明の記憶装置は、図1(A)のように、例えば光学的記憶装置を例にとると、光ビームの照射位置を媒体の任意のトラック位置に移動させるキャリッジ88を備えたヘッドと、光ビームの照射に応じて媒体から導出される光に基づいて媒体上のトラックの所定位置を基準とした位置ずれ量に応じた位置信号(トラッキングエラー信号)TESを検出して出力する位置信号検出部(トラッキングエラー検出部)78、位置信号TESを入力し、位置ずれ量を零とするようにヘッドのキャリッジ88を移動するための制御信号(制御電流)IFBを演算するフィードバック演算部80、及びフィードバック演算部80の制御信号IFBに基づき光ビームの照射位置をトラックに追従させるようにヘッドのキャリッジ88を駆動する駆動部(VCM)86を備える。
【0018】
このような記憶装置につき本発明は、周期性外乱に対する位置ずれ量を零とするための媒体回転1周分の未知の関数を、近似推定した近似関数として学習アルゴリズムにより獲得して記憶する学習制御部82を設けたことを特徴とする。
【0019】
より具体的には、学習制御部82は、媒体回転周期に同期した媒体偏心等の周期性外乱に対する位置ずれ量を零とするための媒体回転1周分の未知の関数を、媒体回転1周分の時間をN分割した各区間の短冊の高さCiで近似推定した近似関数として学習アルゴリズムにより獲得して記憶する。
【0020】
この学習制御部によれば、低い学習ゲインによって、学習結果の収束には多少時間がかかったとしても、最終的に得られる学習結果には、キャリッジ移動方向の反転に伴う帯域の高いステップ的な摩擦外乱の補償信号をも含ませることができる。この学習制御信号をフィードフォーワード制御信号としてフィードバック系統に加えることで、ステップ的な摩擦外乱をほとんど除去でき、シングル駆動のキャリッジとしたことで、高次共振の存在により限界があり、制御帯域が低くとも、媒体の偏心に対する追従誤差を大幅に低減し、オントラック制御の精度を向上できる。
【0021】
本発明の学習制御部82は、図1(A)のように、フィードバック演算部80と駆動部86との間に設けられ、媒体回転1周分の時間をTL とした場合、媒体1回転の開始時間t=0から終了時間t=TL で繰り返す図1(B)の未知の駆動電流関数Irepeat(t)(ただし、0≦t<TL 、TL は媒体1回転に要する時間)を、媒体回転1周分の時間TL をN分割した区間番号i=0〜(N−1)をもつ各区間の短冊Ci(ただし、iは区間番号で、0≦i≦(N−1))で近似推定した近似関数I^repeat(t)(ただし、0≦t<TL 、TL は媒体1回転に要する時間)として学習アルゴリズにより獲得して記憶する。
【0022】
ここで近似関数は
【0023】
【数4】
【0024】
で表現されるが、明細書中においては「I^repeat」として表現している。これは近似関数「TES^repeat」も同じである。
【0025】
このようにフィードバック演算部80と駆動部86との間に学習制御部82を設けた場合には、フィードバック制御系の駆動電流の学習であることからノイズの少ない学習結果が得られる。また学習後のシーク制御やキックバック時等に直接、学習結果をフィードフォーワード電流として利用でき、学習結果の変換を必要としない分、制御が簡単で確実になる。
【0026】
図1(A)の学習制御部82は、メモリ、サンプル部、近似関数演算部及びフィードフォーワード制御部を備える。メモリは、近似関数I^repeat (t)の各区間の短冊の高さCiを格納する複数の記憶セルを備える。サンプル部は、フィードバック演算部から出力される制御信号IFBをサンプリングする。
【0027】
近似関数演算部は、サンプル部でサンプリングした制御信号IFB、所定の学習ゲインKlearn に基づき、メモリの各記憶セルに格納した近似関数I^repeat(t) の各区間の短冊の高さCiを、
【0028】
【数5】
【0029】
但し、iは時間tで決定される区間の番号で、0≦i≦(N−1)となり、例えばi=floor(t/T),T=TL /N
の学習則により求めて更新する。
【0030】
フィードフォーワード出力部(FF出力部)は、媒体回転の分割周期Tに同期してメモリの記憶セルに格納した近似関数I^repeat(t) の各区間の短冊の高さCiを学習制御信号として読み出し、フィードバック演算部からの制御信号IFBに加算して駆動部86に駆動信号IVCM を供給する。
【0031】
更に詳細には、サンプル部は、分割周期T以下の所定周期Tsampleで制御信号IFBをサンプリングし、近似関数演算部は、サンプル部でサンプリングした制御信号IFB、所定の学習ゲインKlearn に基づき、メモリの各記憶セルに格納した近似関数I^repeat(t) の各区間の短冊の高さCiを、
【0032】
【数6】
【0033】
但し、iは時間tで決定される区間の番号で、0≦i≦(N−1)とな
り、例えばi=floor(t/T)
により求めて更新する。ただし、Cilastは更新前のCi値を表し、Cinewは更新後のCi値を表す。この式では、例えばi=floor(t/T)によるiの算出結果によって、現在時刻tにおいて更新すべきCiを選択し、その1サンプル(Tsample時間前)のCi値(Cilast)に対して、IFB(t) を入力とする微分演算を施して、現在時刻tにおけるCi値の更新結果(Cinew)を求める。i=floor(t/T)によって算出されたi以外のインデックス番号を持つ短冊の高さCiに対しては、その更新を行なわない(つまり、この場合Cinew =Cilast)。以上の処理をまとめると次のようになる。
【0034】
【数7】
【0035】
更に、フィードフォーワード出力部は、サンプル周期Tsampleに同期してメモリの記憶セルに格納した近似関数I^repeat(t) の各区間の短冊の高さCiを媒体回転に同期して読み出し、フィードバック演算部からの制御信号IFBに加算して駆動部86に駆動信号IVCM を供給する。
【0036】
フィードフォーワード出力部は、メモリの各記憶セルに記憶した近似関数I^repeat(t) の、所定の時間Δtleadだけ進んだ時刻に対する値を読み出して出力する。学習制御部は、その時点の学習結果をフィードフォーワード出力しながら学習を繰り返す。この場合、フィードバック制御系に位相遅れ等の時間遅れがあり、これを補償しないと制御が不安定となる。そこで、その時点での最新の学習結果I^repeat(t) に関し、現在時刻より所定時間Δtleadだけ進んだ時刻に対応する値を読み出して出力することで、制御系が安定した状態で学習を行うことができる。
【0037】
本発明の別の形態にあっては、図1(C)のように、学習制御部104は、位置信号検出部76とフィードバック演算部80との間に設けられ、媒体回転1周分の時間をTL とした場合、媒体1回転の開始時間t=0から終了時間t=TL で繰り返す未知の位置関数TESrepeat(t)(ただし、0≦t<TL 、TL は媒体1回転に要する時間)を、媒体回転1周分の時間TL をN分割した区間番号iをもつ各区間の短冊の高さCi(ただし、iは区間番号で、0≦i<(N−1))で近似推定した近似関数TES^repeat(t)(ただし、0≦t<TL 、TL は媒体1回転に要する時間)として学習アルゴリズムにより獲得して記憶する。
【0038】
学習制御部104は、メモリ、サンプル部、近似関数演算部及びフィードフォーワード制御部を備える。メモリは、近似関数TES^repeat(t) の各区間の短冊の高さCi を格納する複数の記憶セルを備える。サンプル部は、位置信号検出部から出力される位置信号TESをサンプリングする。
【0039】
近似関数演算部は、サンプル部でサンプリングした位置信号TES、所定の学習ゲインKlearn に基づき、メモリの各記憶セルに格納した前記近似関数TES^repeat(t)の各区間の短冊の高さCiを、
【0040】
【数8】
【0041】
但し、iは時間tで決定される区間の番号で、0≦i≦(N−1)となり、例えばi=floor(t/T),T=TL /N
により求めて更新する。
【0042】
フィードフォーワード出力部は、媒体回転の分割周期Tに同期して記憶セルに記憶した近似関数TES^repeat(t)の各区間の短冊の高さCiを媒体回転に同期して読み出し、位置信号検出部からの位置信号TESに加算してフィードバック演算部にフィードバック信号TESFBとして入力する。
【0043】
更に詳細に説明すると、サンプル部は、分割周期T以下の所定周期Tsampleで位置信号TESをサンプリングする。近似関数演算部は、サンプル部でサンプリングした位置信号TES、所定の学習ゲインKlearn に基づきメモリの各記憶セルに格納した近似関数TES^repeat(t)の各区間の短冊の高さCiを、
【0044】
【数9】
【0045】
但し、iは時間tで決定される区間の番号で、0≦i≦(N−1)となり、例えばi=floor(t/T)
により求めて更新する。ただし、Cilastは更新前のCi値を表わし、Cinew は更新後のCi値を表わす。この式では、例えば、i=floor(t/T)によるiの算出結果によって、現在時刻tにおいて更新すべきCiを選択し、その1サンプル前(Tsample時間前)のCi値(Cilast)に対して、TES(t)を入力とする微分演算を施して、現在時刻tにおけるCi値の更新結果(Cinew )を求める。i=floor(t/T)によって算出されたi以外のインデックス番号を持つ短冊の高さCiに対しては、その更新を行なわない(つまり、この場合Cinew =Cilast)。以上の処置の結果をまとめると次のようになる。
【0046】
【数10】
【0047】
更に、フィードフォーワード出力部は、サンプル周期Tsampleに同期して記憶セルに記憶した近似関数TES^repeat(t)の各区間の短冊の高さCiを媒体回転に同期して読み出し、位置信号検出部からの位置信号TESに加算してフィードバック演算部にフィードバック信号TESFBとして入力する。
【0048】
この図1(C)の場合にも、フイードフォーワード出力部は、メモリの各記憶セルに記憶した近似関数TES^repeatを、所定の時間Δtleadだけ進んだ時刻に対する値を読み出して出力する。
【0049】
学習制御部82,100は、学習後に、学習アルゴリズムにより獲得した近似関数I^repeat(t) 又はTES^repeat(t) を、媒体回転に同期して出力してフィードフォーワード制御する。
【0050】
学習制御部82,100は、装置に対する媒体の挿入直後のタイミングで特定の時間だけ学習アルゴリズムによる近似関数の獲得動作を行い、学習後のトラッキング制御時に、獲得した近似関数を、媒体回転に同期して出力して周期性外乱を除去するフィードフォーワード制御を行う。
【0051】
また学習制御部は、学習後のトラックジャンプ時及びシーク制御時に、獲得した近似関数を、媒体回転に同期して出力して周期性外乱を除去するフィードフォーワード制御を行う。
【0052】
記憶装置は、ディスク半径方向の特定の位置、例えばディスク中周付近で学習して近似関数を得る場合、他の半径方向位置にシークして移動して、トラック制御を行う場合において、獲得された近似関数では誤差を生じ、近似が不十分な場合がある。例えば、ディスクのトラックの真円度が内周と外周で異なっていたり、スピンドル回転に伴う周期外乱の位相や振幅の内外周での差が無視できなかったり、シングル駆動型の構造をもつピックアップを使用する場合、内周と外周で摩擦の大きさが異なる場合がある。
【0053】
そこで、本発明の学習制御部82は、ディスクの半径方向位置に対応して、複数の箇所で近似関数の獲得動作を行い、フィードフォワード時においては、その時にオントラックしているトラックアドレスに応じて近似関数を選択し(例えば、一番近いトラックアドレスで学習獲得された近似関数を選択する)、フィードフォワードすることによって、オントラックするトラックアドレスによらず、高精度なトラック制御が実現できる。
【0054】
また、このように複数箇所で近似関数の獲得動作をする場合、近似関数の基本的な波形はほとんど差がなく、それぞれの近似関数の差は微妙な差となるため、他の箇所での近似関数データがある場合に、今回の箇所での近似関数獲得動作における近似関数データの初期値(それぞれの短冊に相当するセルの値の初期値)をゼロから開始するのではなく、他の箇所での近似関数データを初期値として開始することにより、学習時間の短縮がはかれる。
【0055】
光学的記憶装置の場合、ヘッドは、例えば媒体のトラックを横切る方向に移動自在なキャリッジ上に対物レンズをフォーカス制御自在に搭載し、キャリッジの移動により光ビームをトラックに追従させるトラッキング制御と光ビームを任意のトラック位置に移動するシーク制御の両方を行うシングル駆動型の構造を備える。
【0056】
【発明の実施の形態】
図2は本発明の記憶装置であり、光ディスクドライブを例にとっている。本発明の光ディスクドライブは、コントロールユニット10とエンクロージャ11で構成される。
【0057】
コントロールユニット10には光ディスクドライブの全体的な制御を行うMPU12、上位装置との間でコマンド及びデータのやり取りを行うインタフェース17、光ディスク媒体に対するデータのリード・ライトに必要な処理を行う光ディスクコントローラ(ODC)14、DSP16、及びバッファメモリ18が設けられる。
【0058】
バッファメモリ18は、MPU12、光ディスクコントローラ14、及び上位インタフェース17で共用される。光ディスクコントローラ14には、フォーマッタとECCユニットが設けられる。ライトアクセス時には、フォーマッタがNRZライトデータを媒体のセクタ単位に分割して記録フォーマットを生成し、ECCユニットがセクタライトデータ単位にECCコードを生成して付加し、必要ならばCRCコードを生成して付加する。
【0059】
更に、ECCエンコードの済んだセクタデータを例えば1−7RLL符号に変換する。リードアクセス時には、セクタリードデータを1−7RLL逆変換し、次にECCユニットでCRCチェックした後にエラー検出訂正し、更にフォーマッタでセクタ単位のNRZデータを連結してNRZリードデータのストリームとして上位装置に転送させる。
【0060】
光ディスクコントローラ14に対してはライトLSI20が設けられ、ライトLSI20にはライト変調ユニットとレーザダイオード制御ユニットが設けられる。レーザダイオードユニット30はレーザダイオードとモニタ用ディテクタを備える。ライトLSI20は、ライトデータをPPM記録またはPWM記録(マーク記録またはエッジ記録ともいう)でのデータ形式に変換する。
【0061】
レーザダイオードユニット30を使用して記録再生を行う光ディスク、即ち書替え可能なMOカートリッジ媒体として、128MB、230MB、540MB、640MB、1.3GB等かを使用することができる。このうち128MBのMOカートリッジ媒体については、媒体上のマークの有無に対応してデータを記録するピットポジション記録(PPM記録)を採用している。また媒体の記録フォーマットはゾーンCAVであり、ユーザ領域のゾーン数は128MB媒体が1ゾーンである。また、高密度記録となる230MB、540MB、640MB及び1.3GBのMOカートリッジ媒体については、マークのエッジ即ち前縁と後縁をデータに対応させるパルス幅記録(PWM記録)を採用している。
【0062】
ここで、640MB媒体と540MB媒体の記憶容量の差はセクタ容量の違いによるもので、セクタ容量が2048バイトのとき640MBとなり、一方、512バイトのときは540MBとなる。また媒体の記録フォーマットはゾーンCAVであり、ユーザ領域のゾーン数は、230MB媒体が10ゾーン、540MB媒体及び1.3GB媒体が18ゾーン、640MB媒体が11ゾーンである。
【0063】
このように本発明の光ディスクドライブは、128MB、230MB、540MB、640MB、1.3GB、更にダイレクト・オーバライト対応の230MB、540MB、640MB等の各記憶容量のMOカートリッジに対応可能である。
【0064】
したがって光ディスクドライブにMOカートリッジをローディングした際には、まず媒体のID部をリードし、そのピット間隔からMPU12において媒体の種別を認識し、種別結果を光ディスクコントローラ14に通知する。
【0065】
光ディスクコントローラ14に対するリード系統としては、リードLSI24が設けられ、リードLSI24はリード復調ユニットと周波数シンセサイザが内蔵される。リードLSI24に対しては、エンクロージャ11に設けたID/MO用ディテクタ32によるレーザダイオードからのビームの戻り光の受光信号が、ヘッドアンプ34を介してID信号及びMO信号として入力されている。
【0066】
リードLSI24には、AGC回路、フィルタ、セクタマーク検出回路等の回路機能が設けられ、入力したID信号及びMO信号よりリードクロックとリードデータを作成し、PPMデータまたはPWMデータを元のNRZデータに復調している。またゾーンCAVを採用していることから、MPU12からリードLSI24に内蔵した周波数シンセサイザに対しゾーン対応のクロック周波数を発生させるための分周比の設定制御が行われている。
【0067】
周波数シンセサイザはプログラマブル分周器を備えたPLL回路であり、媒体のゾーン位置に応じて予め定めた固有の周波数をもつ基準クロックをリードクロックとして発生する。即ちプログラマブル分周器は、プログラマブル分周器を備えたPLL回路で構成され、MPU12がゾーン番号に応じてセットした分周比(m/n)に従った周波数foの基準クロックを、次式に従って発生する。
【0068】
fo=(m/n)・fi
ここで、分周比(m/n)の分母の分周値nは128MB、230MB、540MBまたは640MB媒体の種別に応じた固有の値である。また分子の分周値mは媒体のゾーン位置に応じて変化する値であり、各媒体につきゾーン番号に対応した値のテーブル情報として予め準備されている。
【0069】
リードLSI24で復調されたリードデータは光ディクスコントローラ14のリード系に与えられ、1−7RLLの逆変換後にECCユニットのデコード機能によってCRCチェックとECC処理を受けてNRZセクタデータが復元される。
【0070】
続いてフォーマッタでNRZセクタデータを繋げたNRZリードデータのストリームに変換し、バッファメモリ18を経由して上位インタフェース17により上位装置に転送される。MPU12に対しては、DSP16を経由してエンクロージャ11側に設けた温度センサ36の検出信号が与えられている。MPU12は、温度センサ36で検出した装置内ユニットの環境温度に基づき、レーザダイオードユニット30におけるリード、ライト、イレーズの各発光パワーを最適値に制御する。
【0071】
MPU12は、DSP16を経由してドライバ38によりエンクロージャ11側に設けたスピンドルモータ40を制御する。MOカートリッジの記録フォーマットはゾーンCAVであることから、スピンドルモータ40を例えば3000rpmの一定速度で回転させる。
【0072】
またMPU12は、DSP16を経由してドライバ42を介してエンクロージャ11側に設けた電磁石を用いた磁場印加ユニット44を制御する。磁場印加ユニット44は装置内にローディングされたMOカートリッジのビーム照射側と反対側に配置されており、記録時、消去時等に媒体に外部磁界を供給する。
【0073】
DSP16は、媒体に対しレーザダイオード30からのビームの位置決めを行うためのサーボ機能を備え、目的トラックにシークしてオントラックするためのシーク制御(粗制御:コアース制御)及びトラッキング制御(精制御:ファイン制御)を行う。
【0074】
このシーク制御及びトラッキング制御は、MPU12による上位コマンドに対するライトアクセスまたはリードアクセスに並行して同時に実行することができる。
【0075】
DSP16のサーボ機能を実現するため、エンクロージャ12側の光学ユニットに媒体からのビーム戻り光を受光するFES用ディテクタ45を設け、FES検出回路(フォーカスエラー信号検出回路)46が、FES用ディテクタ45の受光出力からフォーカスエラー信号を作成してDSP16に入力している。
【0076】
またエンクロージャ11側の光学ユニットに媒体からのビーム戻り光を受光する6分割又は9分割といった多分割受光部をもつTES用ディテクタ47を設け、TES検出回路(トラッキングエラー信号検出回路)48がTES用ディテクタ47の受光出力からトラッキングエラー信号を作成し、DSP16に入力している。
【0077】
この実施例においてトラックキングエラー信号は、プッシュプル法(ファーフィールド法ともいう)により生成される。トラッキングエラー信号はTZC検出回路(トラックゼロクロス検出回路)50に入力され、トラックゼロクロスパルスを作成してDSP16に入力している。更にDSP16は、媒体上のビームスポットの位置を制御するため、ドライバ55,58を介してフォーカスアクチュエータ52及びVCM54を制御している。
【0078】
ここで光ディスクドライブにおけるエンクロージャ11の概略は図3のようになる。ハウジング60内にはスピンドルモータ40が設けられ、スピンドルモータ40の回転軸のハブに対しインレットドア62側よりMOカートリッジ64を挿入することで、内部のMO媒体66がスピンドルモータ40の回転軸のハブに装着されるローディングが行われる。
【0079】
ヘッド機構は、キヤリッジ68、対物レンズ70、固定光学系72及びミラー74で構成される。ローディングされたMOカートリッジ64のMO媒体66の下側には、VCM54により媒体のトラックを横切る方向に移動自在なキャリッジ68が設けられている。
【0080】
キャリッジ68上には対物レンズ70が搭載され、固定光学系72に設けているレーザダイオードからのビームを立上げミラー74を介して入射し、MO媒体66の媒体面にビームスポットを結像している。対物レンズ70は図2のエンクロージャ11に示したフォーカスアクチュエータ52により光軸方向に移動制御される。またVCM54によるキャリッジ68のリニア駆動で媒体のトラックを横切る半径方向に光ビームを移動することができる。
【0081】
キャリッジ68は、固定配置された2本のガイドレールに滑り軸受けで支持され、粗制御(コアース)として知られた光ビームを任意のトラック位置に移動させるシーク制御と、シークしたトラック位置で光ビームをトラックセンタに追従させる精制御(ファイン制御)として知られたトラッキング制御を同時に行う。
【0082】
このようなシングル駆動型のヘッド機構としては例えば特開平9−312026号、特開平9−54960号等のものを使用できる。
【0083】
図4は本発明の記憶装置におけるヘッド機構のフィードバック制御系の第1実施形態である。この第1実施形態にあっては、フィードバック制御部とキャリッジ駆動部との間に学習制御部を設けたことを特徴とする。
【0084】
図4において、ヘッド機構のフィードバック制御系は、トラッキングエラー検出部78、フィードバック制御部80、学習制御部82、加算器84、キャリッジ駆動部86、キャリッジ88で構成される。トラッキングエラー検出装置78は、図4に示すように、媒体の偏心によって振れるトラック位置と光ビームの位置との差であるところのトラッキングエラーを、光学的に検出し出力する。
【0085】
このトラッキングエラー検出部78の入力には媒体の偏心による偏心外乱が加算点76から加わる。フィードバック制御部80は、トラッキングエラー信号TESを零として光ビームのトラックセンタに対するずれ量をなくすように、キャリッジ駆動部86によりキャリッジ88を移動する。
【0086】
フィードバック制御部80は、例えばPID演算により制御信号IFBを出力し、この制御信号IFBは図2に示したVCM54を用いたキャリッジ駆動部86に対するフィードバック電流指令値となる。
【0087】
学習制御部82は、フィードバック制御部80から出力されたフィードバック電流指令値としての制御信号IFBを入力し、媒体の偏心回転に伴う周期性の摩擦外乱および偏心外乱などの追従誤差を抑圧するための未知の駆動電流関数Irepeatの近似関数である学習制御信号I^repeatを学習則により獲得し、学習が終了すると、学習結果として得られた学習制御信号I^repeatを媒体回転に同期して出力する。
【0088】
この学習制御信号I^repeatは、加算器84でフィードバック制御部80からの制御信号IFBにフィードフォワード制御信号として加算して駆動信号IVCM となる。駆動信号IVCM はキャリッジ駆動部86を通じてキャリッジ88を駆動する。キャリッジ88には、媒体の偏心回転に伴うキャリッジ88の往復運動による移動速度の反転に伴い、図23のような移動速度ゼロの時点で方向が略ステップ的に変化する瞬間に大きな摩擦外乱が力外乱90として周期的に加わっている。
【0089】
図5は、図4の学習制御部82の機能ブロック図である。図5において、学習制御部82は、制御部92、サンプル処理部94、近似関数演算部96、リングバッファメモリ98、及びフィードフォワード出力部(以下「FF出力部」という)100を備える。
【0090】
制御部92にはクロック信号E1と媒体の1回転に同期して得られるインデックス信号E2が入力している。制御部92は学習制御部82の動作モードとして(1)学習モード
(2)学習結果出力モード
を設定する。
【0091】
学習モードは、媒体を挿入した後のロード処理の際に実行され、学習則に従って周期性の近似関数となる学習制御信号I^repeatを学習する。学習結果出力モードでは、学習則は動作せずに、学習結果として得られた学習制御信号I^repeatを媒体回転に同期して出力し、フィードバック制御系に対しフィードフォワード出力として加える。
【0092】
このため制御部92は、学習モードにあってはサンプル処理部94、近似関数演算部96、リングバッファメモリ98及びFF出力部100を動作し、学習終了後の学習結果出力モードにあってはリングバッファメモリ98とFF出力部100を動作する。
【0093】
ここで図5の学習制御部82に設けた近似関数演算部96による本発明で採用する学習アルゴリズムを説明する。
【0094】
図4のフィードバック制御系において、媒体回転に同期してキャリッジ88を駆動する駆動電流IVCMの大部分は媒体回転に同期した周期の繰返し信号であると見做せ、例えば図6に示すような電流パターンとして捉えることができる。この図6のように、周期的に繰り返す電流パターンを未知な駆動電流関数Irepeat(t)として捉え、図6のように媒体1回転の周期TLをN分割した短冊の高さで近似表現することを考える。ここでN分割した短冊1個当りの時間幅Tは
T=TL/N .
となる。
【0095】
図6の電流パターンをN分割したそれぞれの短冊の高さをCi (但しi=0,1,・・・N−1)とすると、近似関数I^repeatは次式のようになる。
【0096】
I^repeat(t)=Ci (2)
但し、i=floor(t/T)
T=TL /N
0≦t<TL
ここで(2)式のfloor( )関数は、( )内の引数よりも小さいかあるいは等しい最大の整数値を示す。例えば( )内の引数が(0〜0.9)であった場合には、floor(0〜0.9)=0となる。また( )内の引数が(1.0〜1.9)であった場合には、floor(1.0〜1.9)=1となる。時刻tは媒体1回転ごとの決まった時点で得られるインデックス信号によりリセットされ、従ってt=0〜TL の値をもつ。
【0097】
前記(2)式の近似関数I^repeatのそれぞれの短冊の高さCiは、短冊に対応する時間幅内のフィードバック電流指令値である制御信号IFBを積分することにより、次式に従って学習が進行される。
【0098】
【数11】
【0099】
但し、i=floor(t/T)
ここで(3)式のKlearn は学習ゲインであり、正の定数である。(3)式に示すように、tの値に応じて、iを決定し、つまり学習対象とする短冊Ciを選択し、その時の制御信号の値IFB(t) を入力とした積分演算を行う。この(3)式に従った学習則によれば、学習則の入力であるIFBが略ゼロになるまで、各短冊の高さが積分されていくので、学習収束後は、短冊C0〜CN−1で表わされる近似関数I^repeat(t) は、未知の駆動電流関数であるIrepeat(t) を近似した関数になる。
【0100】
そして、(3)式に従った学習結果
I^repeat(t)=Ci
但し、i=floor(t/T)
T=TL /N
0≦t<TL
は学習結果出力モードにおいてフィードフォワード出力となって、キャリッジ88を駆動するキャリッジ駆動部86の駆動電流IVCM に直接入れ込まれるため、フィードバック制御系からみると周期性をもつ繰返し外乱が消滅したように見える。
【0101】
このような本発明の学習による周期性外乱の補償方法は、学習結果を得るための収束に多少時間が掛かったとしても、即ち学習のための学習ゲインKlearn がローゲインであっても、最終的に得られる学習制御信号は、周波数帯域の高い信号、厳密には周期性をもつ繰返し外乱に対する周波数帯域の高い補償信号を含ませることができる。
【0102】
(3)式の学習則に従って求められた各短冊ごとの高さCi は、リングバッファメモリ98の該当するメモリセルに格納されている。
【0103】
図7は図5の学習制御部82に設けたリングバッファメモリ98のメモリ構成である。リングバッファメモリ98は、媒体1回転の周期TL の分割数Nに対応してN個のメモリセル106−0〜106−(N−1)を有する。ディスク回転に同期して(3)式により算出される各短冊の高さCi の値は、メモリセル106−0〜106−(N−1)のセルアドレスiにmem[i]として格納される。
【0104】
即ち図7のリングバッファメモリ98のメモリセル106−0〜106−(N−1)の位置に対応して示す時間tは、媒体の1回転ごとに得られるインデックス信号でリセットされる時間であり、インデックス信号が得られた回転開始位置の時間をt=0とし、媒体1回転ごとにこの時点を起点として検出される。
【0105】
ここで図5のサンプル処理部94による入力信号IFBのサンプリング周期Tsampleに対し、図6に示した短冊の時間幅Tは長くとられる。サンプル時刻tにおいて、リングバッファメモリ98のどのメモリセルを対象に(3)式の学習演算を適用するかは、次式のアドレスiの算出で決められる。
i=floor(t/T) (4)
ここでTは図6の短冊の時間幅であり、T=TL /Nである。例えば媒体回転数を4500rpmとすると、回転周波数は75Hzであり、1回転の周期TL はTL =13.3msecであり、1周期TL を例えばN=128分割したとする。この場合、短冊1個当たりの時間幅Tは
T=TL /N=104.2μsec
となる。
【0106】
したがって、学習制御部82に対するフィードバック制御部80からの制御信号IFBのサンプリング周波数を55kHz、即ちサンプリング周期Tsample=18.18μsecとすると、短冊1個の時間幅Tの中で約5回、制御信号IFBのサンプリングが行われることになる。即ち、媒体1回転当り、各短冊は約5回ずつ、(3)式の学習演算を行うことになる。
【0107】
(3)式の学習則を実際にDSPにインプリメントする際の学習演算は次式で与えられる。
mem[i]= mem[i]+Klearn ・Tsample・IFB(t) (5)
但し、i=floor(t/T)
この(5)式から明らかなように、図7のメモリセル106−0〜106−(N−1)に格納する演算結果は、学習ゲインKlearn を積分ゲインとして制御信号IFBを入力とする積分演算である。即ち、各サンプルタイミングごとに算出された
{Klearn ×Tsample×IFB(t)}を対応するアドレスiのメモリセルに前回記憶している学習結果mem[i]を読み出し、加算した後に記憶する処理となる。
【0108】
各短冊の高さCiについて、(5)式の演算を説明すると以下のようになる。つまり、学習前は初期値(普通はゼロ)が、mem[i]に設定されている。学習開始後、ディスク回転の毎周の特定の時間の間、つまりi=floor(t/T)が満たされている間、その短冊の高さCiが選択され、その時刻におけるIFB(t) を入力として、mem[i]を対象とした(5)式の積分演算が行われる。
【0109】
それ以外の時間には、他の短冊が選択されて、同様の処理が行われる。他の短冊が選択されている間は、mem[i]の値の更新は行なわれない。ディスクが1回転して、再び短冊の高さCiが選択されたときには、mem[i]が既に格納されている前の回転までの積分結果を初期値として、(5)式の積分演算がさらに行われていく。
【0110】
学習モードにあっては、(5)式に従った近似関数演算部96の演算結果のリングバッファメモリ98の対応するメモリセルでの積分処理と同時に、FF出力部100が同じく対応するリングバッファメモリ98のメモリセルの演算結果を読み出し、図4の加算器84により加算してフィードバック制御系に加えるフィードフォワード制御を行っている。
【0111】
図5の近似関数演算部96は、学習モードにあってはインデックス信号E2が得られたときの時間t=0から次にインデックス信号E2が得られるまでのT=0からT=TL までの時間経過について、(4)式によりセルアドレスiを算出し、リングバッファメモリ98に対するアドレス制御信号の出力で近似関数演算部96による演算結果Ciの格納、及びFF出力部100に対するそのときの学習結果の読出出力を行っている。
【0112】
図5の学習制御部82は、媒体のロード処理における学習モードに従った学習処理が終了すると、学習結果出力モードに移行する。学習結果出力モードにあっては、制御部92はリングバッファメモリ98とFF出力部100を動作し、媒体1回転ごとに得られるインデックス信号E2に同期して、例えば学習モードにおけるサンプリング周期Tsampleと同じ読出周期で最後の学習結果としての学習制御信号I^repeatを読み出し、FF出力部100より図4の加算器84に出力し、そのときフィードバック制御部80より得られている制御信号IFBに加算し、キャリッジ駆動部86に駆動電流IVCM を流してキャリッジ88を媒体偏心に伴う周期的な摩擦外乱を抑圧するようにフィードフォワード制御を行う。
【0113】
ここで学習モードにおける学習処理の安定性を保証するためには、FF出力部100でリングバッファメモリ98に格納したそのときの学習結果をフィードバック制御系に出力する際に、制御対象の位相遅れ等の時間遅れを考慮し、時間的に進んだ学習結果をフィードフォワード出力する必要がある。
【0114】
この時間的に進んだ学習結果のフィードフォワード出力のために、いわゆる位相進みフィルタ等を使用する必要はなく、学習制御部82にあっては図6に示したように、時間tに対応してフィードフォワード出力となる電流パターンを管理しているため、制御対象の位相遅れを考慮した進み時間に対応してメモリセルを選択して、そのときの学習結果を出力すればよい。
【0115】
即ち、インデックス信号が得られる媒体1回転開始時点からの経過時間をtとすると、学習結果を記憶するメモリセルは(4)式で選択していたが、FF出力部100によるフィードフォワード出力用にメモリセルの選択は、進み時間をΔtleadとすると次式で算出される。
【0116】
【数12】
【0117】
(6)式の第1式に示すように、基本的には、時刻tに進み時間Δtleadを足した時間に基づいて、メモリセル番号iを決定する。ただし、tが(TL −Δtlead)を上回る場合、すなわち、(TL −Δtlead)≦t<TL の場合には、(6)式の第2式に示すような計算にしたがってメモリセル番号iを算出する。つまり、tが(TL −Δtlead)を上回る瞬間から、リングバッファの先頭に戻って読み出すことになる。
【0118】
このように学習結果のフィードフォワード出力について進み補償を行うことにより、進み補償を行っていない場合の応答波形が振動的になってしまうことを防止し、安定した学習結果を得ることができる。
【0119】
図8は、図4の学習制御部82を備えた本発明の記憶装置における位置決め制御のフローチャートである。まずステップS1で装置に媒体をロードすると、ステップS2で所定の媒体ロードシーケンスに従った媒体ロード処理が実行される。この媒体ロード処理において、新たに本発明で設けた学習制御部82によるステップS3の学習モードによる処理が実行される。
【0120】
この学習モードによる学習処理の終了は
(1)学習回数
(2)学習時間
(3)トラッキングエラー信号TESの評価
等で学習終束が判断される。例えば、学習の終了判定を時間設定で行う場合、学習開始後のディスクの回転回数をカウントし、規定回数で終了とする。
【0121】
ステップS4で学習終了がチェックされると、ステップS5に進み、学習結果出力モードの処理に移行する。この学習結果出力モードにあっては、ステップS3で獲得された学習結果を固定値としてフィードバック制御系にフィードフォワード出力することになる。
【0122】
このため、ステップS6以降のシーク制御及びトラッキング制御にあっては、学習結果に基づくフィードフォワード出力によって、媒体の回転に同期した偏心外乱、特に媒体偏心に対応したキャリッジの往復移動に伴う移動速度ゼロのタイミングで起きるピーク的な摩擦外乱が効果的に抑圧され、フィードバック制御系から見ると、周期外乱のない安定した制御環境が得られている。
【0123】
このため、ステップS5の学習結果出力モード以降の処理にあっては、ステップS6でシーク制御があれば、ステップS7に進み、キャリッジを目標トラックに向けて速度制御して位置決めするシーク処理いわゆる粗制御(コアース制御)を行い、このシーク制御によってステップS8で目標トラックにオントラックすると、ステップS9で目標トラックセンタに光ビームを追従させるトラッキング制御を行う。
【0124】
このステップS5の学習結果出力モードの処理に対応したステップS6〜S9のシーク制御またはオントラック制御は、ステップS10で媒体排出が判別されるまで繰り返され、媒体排出があると再びステップS1に戻り、次の媒体ロードをもってステップS3の学習モードによる学習処理を改めて行うことになる。またステップS11で終了指示があれば一連の処理を終了する。
【0125】
ここで学習制御部82によるステップS4の学習モードによる処理は、近似関数の獲得動作時において、ディスク半径方向位置の複数箇所で、それぞれの箇所に対する近似関数の獲得動作を行う。このとき学習制御部82は、複数箇所での近似関数獲得動作に、既に別の箇所で獲得された近似関数が存在する場合、既に存在している近似関数データを初期値として学習アルゴリズムを適用する。
【0126】
また学習制御部82は、学習後のフィードフォワード時となるステップS5の学習結果出力モードの処理にあっては、その時の半径方向位置に応じて使用する近似関数を選択し、フィードフォワードする。
【0127】
例えば、ディスクの内周から外周までの間に15000本のトラックがある例を考える。まず、中周付近となる7500本目付近で近似関数獲得動作を行う。次に、内周付近での近似関数獲得のために、2500本目付近にシーク移動し、2500本目付近で、別に用意されている内周用の近似関数獲得のためのメモリセルを使用して、近似関数獲得動作を行う。
【0128】
次に、外周付近の近似関数獲得のために12500本目付近にシーク移動し、12500本目付近で、別に用意されている外周用の近似関数獲得のためのメモリセルを使用して、近似関数獲得動作を行う。ディスク回転100回で、学習が終わるとすると、例えば、7500本目で行う学習は、7500本目から7600本目の間で行われる。
【0129】
その後に行われる内周での学習においては、その近似関数は中周で獲得された関数とほぼ等しいものと考えられるので、近似関数の初期値(メモリセルの各値の初期値)をゼロから開始するのではなく、中周での学習結果を、内周のメモリセルにコピーし、それを初期値として学習を開始することにより、学習の短縮ができ、例えば、ディスク回転50回で終了することができる。外周での学習も、同様に学習時間の短縮が可能になる。
【0130】
以上を例えば、媒体ロード時に行う。内周用、中周用、外周用の3つの近似関数が用意される。以後の稼動状態においては、1から5000本目までのトラックに移動して、リード・ライト動作をする場合には、2500本目付近で獲得された近似関数をフィードフォワードする。
【0131】
また5001本目から10000本目までのトラックに移動して、リード・ライト動作をする場合には、7500本目付近で獲得された近似関数をフィードフォワードする。更に10001本目から15000本目までのトラックに移動して、リード・ライト動作する場合には、12500本目付近で獲得された近似関数をフィードフォワードする。
【0132】
以上により、例えば、中周付近1個所で得られた近似関数を、内周から外周までの全域で用いる場合に比べて、ディスクのトラックの真円度が内周と外周で異なっていたり、スピンドル回転に伴う周期外乱の位相や振幅の内外周での差が無視できなかったり、シングル駆動型の構造を持つピックアップを使用する場合、内周と外周で摩擦の大きさが異なる場合があっても、より高精度なトラック追従動作が行える。
【0133】
図9は図5の学習制御部82における学習モードの際の学習処理のフローチャートである。この学習処理にあっては、まずステップS1で、媒体1回転ごとに得られるインデックスの有無をチェックしており、インデックスが得られるとステップS2に進み、現在時刻tをt=0にリセットし、ステップS3でサンプルタイミングか否かチェックする。
【0134】
サンプルタイミングであれば、ステップS4で制御信号としての電流指示値IFBをサンプリングし、ステップS5でそのときの時刻tから(4)式に基づきメモリセルのアドレスiを計算し、ステップS6でセルアドレスiの格納値mem[i]を読み出す。
【0135】
続いてステップS7で(5)式に従って新たな格納値mem[i]を算出し、ステップS8でメモリのセルに新たに演算した格納値を記憶して更新する。続いてステップS9で、(6)式で算出したセルアドレス即ち制御時間Δtlead分だけ前のセルアドレスの格納値を読み出してフィードバック制御系にフィードフォワード出力を行う。このようなステップS1〜S9の処理を、ステップS10で学習終了条件例えば予め設定した学習時間に達するまで繰り返す。
【0136】
図10は、図5の学習制御部82の学習結果出力モードにおけるフィードフォワード出力処理のフローチャートである。このフィードフォワード出力処理にあっては、ステップS1で媒体1回転ごとに得られるインデックスの有無をチェックしており、インデックスが得られると、ステップS2で現在時刻tをt=0にリセットし、ステップS3で出力タイミングか否かチェックする。
【0137】
この出力タイミングは、例えば図9の学習モードの際のサンプリング周期Tsampleと同じ出力周期で決まるタイミングとする。ステップS3で出力タイミングが判別されると、ステップS4で(6)式により現在時刻tに進み時間Δtleadを加算した時間に基づくメモリセルのアドレスiの計算を行い、ステップS5でセルアドレスの格納値を読み出してフィードバック制御系にフィードフォワード出力を行う。そしてステップS6で媒体排出があるか、あるいはステップS7で装置の終了指示があれば、フィードフォワード出力を終了する。
【0138】
図11は、図4の第1実施形態における学習制御部82による学習開始から学習終了までのトラッキングエラー信号TES、フィードバック制御信号IFB、学習制御信号I^repeat及びキャリッジ駆動信号IVCM の波形説明図であり、横軸は時間を秒で現わしている。
【0139】
ここで図11(A)がトラッキングエラー信号TES、図11(B)がフィードバック制御信号IFB、図11(C)が学習制御信号I^repeat、更に図11(D)がキャリッジ駆動信号IVCM である。
【0140】
この図11において、時刻t0から学習処理が開始されている。時刻t0の学習開始直後にあっては、図11(A)のトラッキングエラー信号TESは媒体偏心に伴うキャリッジの移動速度ゼロで生ずるピーク的な摩擦外乱と偏心による大きな位置ずれを表わしている。このトラッキングエラー信号TESは、学習の進行に伴い徐々に減衰して、摩擦外乱及び位置ずれが最終的に抑圧されている。
【0141】
尚、学習開始時刻t0直後の最初の1回転では、学習結果を書込む記憶セルに対し学習結果を読み出す記憶セルに対し所定時間Δtleadだけ早いセルから読出しているため、学習制御信号I^repeatは学習前の初期値ゼロとなっている。
【0142】
時刻t0からの学習処理は、図11(B)のフィードバック制御信号IFBに含まれる外乱成分を、図11(C)のように学習結果として出力する学習制御信号I^repeatに、段階的に移し込んでいく処理となる。そして学習終了側の時刻0.2〜0.25secに至ると、学習開始時に図11(B)のフィードバック制御信号IFBに含まれていた外乱成分は、ほとんど図11(C)のフィードフォワード出力となる学習制御信号I^ repeatに移し込まれてしまい、その結果、図11(A)のトラッキングエラー信号TESに外乱は見られなくなる。
【0143】
図12は、図11の時刻0.01〜0.05sec となる学習開始部分を時間軸で拡大して表わしている。図12にあっては、時刻t0から学習を開始しており、この時点では図12(A)のトラッキングエラー信号TESにはトラックセンタに対する媒体の大きな偏心によるトラッキングエラーとキャリッジの移動速度ゼロでのピーク的な摩擦外乱によるトラッキングエラーを生じている。
【0144】
図13は、図11の時刻0.1〜0.14sec の波形を時間軸で拡大して表わした学習途中の波形である。この図13(A)〜(D)の学習途中の波形にあっては、図12の学習開始時と比較すると、学習結果としての図13(C)の学習制御信号I^repeatに、図13(B)のフィードバック制御信号IFBの外乱成分が大部分移し込まれ、その結果、図13(A)のトラッキングエラー信号TESの摩擦外乱によるピーク的な位置ずれは抑圧され、全体としての偏心による位置ずれも抑圧されている。
【0145】
図14(A)〜(D)は、図12の時刻0.2〜0.25secとなる学習終了付近について時間軸で拡大した波形図である。この学習終了時の波形にあっては、外乱成分はほぼ完全に図14(C)の学習制御信号I^repeatに移し込まれ、フィードバック制御系のフィードバック信号となる図14(A)のトラッキングエラー信号TESの外乱はほとんど無視できる程度に抑圧されている。
【0146】
図15は、図5の学習制御部82のFF出力部100においてフィードバック制御系の遅れ時間を補償するための進み時間Δtleadによる補償を行わなかった場合の学習処理における各部の波形であり、図16に図15の時刻0.2〜0.25の学習終了付近の波形を時間軸で拡大して示している。ここではトラッキングエラー信号TES、学習制御信号I^repeat及びキャリッジ駆動信号IVCM の波形を示し、フィードバック制御信号IFBは省略している。
【0147】
尚、進み時間Δtleadによる補償を行わない場合は、学習結果を書込む記憶セルと学習結果を読み出す記憶セルが同じになり、そのため、時刻t0 の最初から学習制御信号I^repeatの出力が得られている。
【0148】
この図15,図16の波形から明らかなように、フィードフォワード出力の際にフィードバック制御系の遅れ時間を補償するための進み時間Δtleadだけ読出タイミングを早める処理を行わなかった場合には、フィードバック制御系の遅れ時間による影響を受けて応答波形が振動的になる。
【0149】
その結果、図16の学習終了時点の図16(C)の学習結果として出力される学習制御信号I^repeatにも遅れによる振動成分が学習結果として移し込まれてしまい、十分な外乱成分の抑圧効果が期待できないことが明らかである。これに対し、図5のFF出力部100でフィードバック制御系の遅れ時間に対応した進み時間の設定による学習結果の出力によって、図11〜図14に示したような良好な学習結果が得られる。
【0150】
また図4の学習制御部82をフィードバック制御部80とキャリッジ駆動部86との間に設けた場合には、フィードバック制御部80から出力されるキャリッジ駆動部86に対するフィードバック電流そのものを学習対象としているため、ノイズの少ない波形が学習でき、また学習結果がフィードバック電流そのものであることから、シーク制御、オントラック制御、キックバック制御等の際に、直接フィードバック制御系にフィードフォワード電流として出力して利用できる利点がある。
【0151】
図17は、本発明の記憶装置のヘッドの位置決め制御の第2実施形態であり、この第2実施形態にあっては学習制御部をトラッキングエラー検出部とフィードバック制御部との間に設けたことを特徴とする。
【0152】
図17において、フィードバック制御系は、トラッキングエラー検出部78、フィードバック制御部80、キャリッジ駆動部86、キャリッジ88で構成され、トラッキングエラー検出装置78は、図4に示すように、媒体の偏心によって振れるトラック位置と光ビームの位置との差であるところのトラッキングエラーを、光学的に検出し出力する。またキャリッジ88には偏心外乱に伴うキャリッジの往復運動における移動速度ゼロのタイミングで反転する摩擦外乱等の力外乱90が加わる。
【0153】
このようなフィードバック制御系について、この第2実施形態にあっては、トラッキングエラー検出部78とフィードバック制御部80の間に学習制御部104を設け、トラッキングエラー検出部78からのトラッキングエラー信号TESを学習制御部104に入力して学習処理し、学習結果として得られた学習トラッキングエラー信号TES^repeatを加算点106でトラッキングエラー検出部78からのトラッキングエラー信号TESに加え、フィードバック信号TESFBとしてフィードバック制御部80に入力している。
【0154】
図18は、図17の学習制御部104の機能ブロック図であり、トラッキングエラー信号TESを学習し、学習制御信号として学習トラッキングエラー信号TES^repeatを出力する以外の基本的な構成は、図5の第1実施形態と同じである。
【0155】
即ち学習制御部104は、制御部92、サンプル処理部94、近似関数演算部96、リングバッファメモリ98、FF出力部100で構成され、制御部92にはリングバッファメモリ98のセル位置を指定するセルアドレス演算部が設けられている。この図18の学習制御部104による学習アルゴリズムは、図6に示した第1実施形態における周期性のフィードバック電流の代わりに、トラッキングエラー信号TESを対象に1周期ごとの時間関数を定義し、同様にN分割した各短冊の高さCiとして近似関数TES^repeat(t)を求めている。
【0156】
このため第2実施形態にあっては、媒体1回転の周期TL をN分割した短冊の高さで近似する近似関数は次式のようになる。
TES^repeat(t)=Ci (7)
但し、i=floor(t/T)
T=TL /N
0≦t<TL
また短冊の高さCiは次式で算出される。
【0157】
【数13】
【0158】
但し、i=floor(t/T)
T=TL /N
0≦t<TL
実際の装置では短冊の時間間隔Tの間に複数回のサンプリングを行っており、サンプリング周期をTsampleとすると、図18のリングバッファメモリ98のメモリセルに対する記憶値は次式で演算される。
mem[i]= mem[i]+Klearn ・Tsample・TES(t) (9)
但し、i=floor(t/T)
T=TL /N
0≦t<TL
学習結果をリングバッファメモリ98の対応するメモリセルに記憶するためのアドレス演算は、第1実施例の場合と同様に(4)式に従う。またFF出力部100による演算結果の出力時のセルアドレスは、第1実施形態と同様、フィードバック制御系の遅れ時間を考慮した制御時間Δtleadによる(6)式に従う。
【0159】
図19は、図17,図18のトラッキングエラー信号TESを学習する第2実施形態における学習モードでの各部の信号波形であり、図19(A)がトラッキングエラー信号TES、図19(B)が学習結果として出力される学習トラッキングエラー信号TES^repeat、図19(C)がフィードバック制御部80の入力となるフィードバック信号TESFB、図19(D)がキャリッジ駆動電流IVCM である。
【0160】
この図19(A)〜(D)にあっても、時刻t0で学習を開始しており、学習開始直後にあっては、図19(A)のトラッキングエラー信号TESに偏心外乱及びキャリッジ移動速度0に伴うピーク的な摩擦外乱によるトラッキングエラーが含まれているが、学習の進行に伴い、図19(B)の学習トラッキングエラー信号TES^repeatに外乱成分が移し込まれ、トラッキングエラー信号TESの外乱成分は学習終了で十分に抑圧されている。
【0161】
図20(A)〜(D)は、図19の時刻0.01〜0.05secとなる学習開始付近の波形を時間軸で拡大して表わしている。即ち時刻t0で学習を開始しており、学習開始直後にあっては図21(A)のトラッキングエラー信号TESに偏心外乱及びキャリッジ移動速度0タイミングで生ずるピーク的な摩擦外乱が含まれている。
【0162】
また、図18のFF出力部100でリングバッファメモリ98から学習結果を読み出す際に、フィードバック制御系の遅れ補償を行う進み時間Δtleadのセットによる進み補償を行っている。
【0163】
図21は図19の時刻0.1〜0.14secの学習途中の各部の波形を時間軸で拡大している。更に図22は図19の時刻0.2〜0.25secとなる学習終了付近の各部の波形を時間軸で拡大している。この学習終了付近の波形にあっては、図22(A)のトラッキングエラー信号TESに含まれる外乱成分は、そのほとんど全てが図22(B)の学習結果としての学習トラッキングエラー検出信号TES^repeat に移し込まれ、この結果、フィードバック制御系には媒体偏心による外乱が存在しない制御環境が作り出される。
【0164】
図23(A)は、未知関数の近似法の原理を示す。また図23(B)に本発明による制御系の構成原理図を示し、加算点76、フィードバック制御部80、学習制御部82、加算点84およびシングル駆動型トラッキング機構110を備える。
【0165】
図23(A)中の太線で示しているのは、ディスク回転に同期した周期性外乱を抑圧できる、未知のVCM駆動電流信号Irepeat(t) である。この図中、および以下の式(10)〜(12)中で使用する時刻tは、ディスク回転に同期した時刻を示し、それぞれのディスク回転周期中のある特定の時刻にゼロにリセットされる。つまり、TL をディスク回転周期とすると、0≦t<TL となる。
【0166】
さて、未知数関数Irepeat(t) の近似関数I^repeat(t) を、N個の短冊関数の高さの組を使って表現することを考える。
I^repeat(t) =Ci (10)
ただし、i=floor(t/T)であり、Tはそれぞれの短冊関数の時間幅を示す(つまりT=TL/Nであり、iは0≦i≦N−1の整数となる)。ここでfloor(x)は、xより小さいかあるいはxに等しい、xにもっとも近い整数を返す関数である。
【0167】
各短冊関数の高さCi は、フィードバック制御部80の出力IFB(t) を学習入力として使い、次の(11)のような単純な学習則によって、リアルタイムに更新される。
【0168】
【数14】
【0169】
ただし、kは学習ゲインである。この学習則は、IFB(t) がゼロになる方向に、各短冊関数の高さを変更する働きをもつ。
【0170】
学習制御部82は、同時に、フィードフォワード信号IFF(t) を以下のように出力する。
【0171】
【数15】
【0172】
ただし、Δtleadは、学習の収束を安定化させるための進み時間である。
【0173】
以上の発明の原理は、短冊関数の定義をより明確に表現した次のような表現でもよい。
【0174】
図23(A)は、未知関数の近似法の原理を示す。また図23(B)に本発明による制御系の構成原理図を示し、加算点76、フィードバック制御部80、学習制御部82、加算点84およびシングル駆動型トラッキング機構110を備える。図23(A)中の太線で示しているのは、ディスク回転に同期した周期性外乱を抑圧できる、未知のVCM駆動電流信号Irepeat(t) である。
【0175】
この図中、および以下の式(13)〜(16)中で使用する時刻tは、ディスク回転に同期した時刻を示し、それぞれのディスク回転周期中のある特定の時刻にゼロにリセットされる。つまりTL をディスクの回転周期とすると、0≦t<TL となる。
【0176】
さて、未知関数Irepeat(t) の近似関数I^repeat(t) を、次式のようにN個の短冊関数の総和を使って表現することを考える。
【0177】
【数16】
【0178】
ただし、Πi(t) は、(14)式で示す短冊関数である。
【0179】
【数17】
【0180】
ここで、Tはそれぞれの短冊関数Π i(t) が1となる範囲の時間幅を示す(つまり、T=TL/Nであり、iは0≦i≦N−1の整数である。)。
【0181】
各短冊関数の高さCi は、フィードバック制御部80の出力IFB(t) を学習入力として使い、次の(15)式のような単純な学習則によって、リアルタイムに更新される。
【0182】
【数18】
【0183】
ただし、kは学習ゲインである。この学習則は、IFB(t) がゼロになる方向に、各短冊関数の高さを変更する働きをもつ。
【0184】
学習制御部82は、同時に、フィードフォワード信号IFF(t) 以下のように出力する。
【0185】
【数19】
【0186】
ただし、Δtleadは、学習の収束を安定化させるための進み時間である。
【0187】
以上、2つの説明は、数式表現の違いであって、実質的(工学的な)な意味内容は等価である。例えば(13)(14)式は、(10)式をより明確に表現したものであり、(15)式は(11)式と等価な学習速を示している。
【0188】
尚、上記の実施形態は光学的記憶装置を例にとるものであったが、磁気的記憶装置や他の適宜の記憶方式の装置を含む。また本発明は上記の実施形態に限定されず、その目的と利点を損なわない適宜の変形を含む。また本発明は上記の実施形態の数値による限定は受けない。
【0189】
【発明の効果】
以上説明してきたように本発明によれば、位置決め精度の粗いシーク制御と位置決め精度の高いトラッキング制御の両方を同じキャリッジの移動で行うヘッド機構のフィードバック制御系につき、フィードバック制御信号又はトラッキングエラー信号の学習制御によって外乱成分を抑圧する学習制御信号を獲得し、フィードバック制御系の帯域を広げることなく、学習制御によって得られた学習結果のフィードバック制御系に対するフィードフォワード出力によって、偏心位置ずれ及びピーク的な摩擦外乱による位置ずれなどを効果的に抑圧することができ、シーク制御及びトラッキング制御におけるフィードバック制御系の制御精度と応答性を大幅に向上することができる。
【図面の簡単な説明】
【図1】本発明の原理説明図
【図2】本発明が適用される光ディスクドライブのブロック図
【図3】図2の光ディスクドライブの内部構造の説明図
【図4】フィードバック制御部と駆動部との間に学習制御部を設けた本発明の第1実施形態のブロック図
【図5】図4の学習制御部の機能ブロック図
【図6】図4の学習制御部による周期的な制御入力に対する逐次学習の説明図
【図7】図5のメモリの説明図
【図8】図4の第1実施形態の制御処理のフローチャート
【図9】図8の学習制御部のフローチャート
【図10】図8のフィードフォワード出力処理のフローチャート
【図11】図5の第1実施形態による学習開始から終了までのトラッキングエラー信号、フィードバック制御信号、学習制御信号及び駆動信号の波形図
【図12】図11の学習開始部分を時間軸で拡大した波形図
【図13】図11の学習途中部分を時間軸で拡大した波形図
【図14】図11の学習終了部分を時間軸で拡大した波形図
【図15】図5の第1実施形態で進み補償を行わなかった場合の学習開始から終了までのトラッキングエラー信号、学習制御信号及び駆動信号の波形図
【図16】図15の学習終了部分を時間軸で拡大した波形図
【図17】トラッキングエラー検出部とフィードバック制御部との間に学習制御部を設けた本発明の第2実施形態のブロック図
【図18】図17の学習制御部の機能ブロック図
【図19】図17の第2実施形態による学習開始から終了までのトラッキングエラー信号、トラッキングエラー学習信号、トラッキングエラー信号とトラッキングエラー学習信号の和信号、学習制御信号及び駆動信号の波形図
【図20】図19の学習開始部分を時間軸で拡大した波形図
【図21】図19の学習途中部分を時間軸で拡大した波形図
【図22】図19の学習終了部分を時間軸で拡大した波形図
【図23】未知関数の近似法の原理と本発明による制御系統の構成原理の説明図
【図24】シングル駆動型のヘッド機構における移動速度に対する固定摩擦の特性図
【図25】固定摩擦による周期性外乱を受けた時のフィードバック制御系による偏心追従誤差の説明図
【符号の説明】
10:コントロールボード
11:エンクロージャ
12:MPU
14:光ディスクコントローラ
16:DSP
18:バッファメモリ
20:ライトLSI回路
24:リードLSI回路
30:レーザダイオードユニット
32:ID/MO用ディテクタ
40:スピンドルモータ
44:磁場印加部
45:FES用ディテクタ
46:FES検出回路
47:TES用ディテクタ
48:TES検出回路
50:TZC検出回路
52:フォーカスアクチュエータ
54:VCM(ボイスコイルモータ)
64:MOカートリッジ
66:MO媒体
68:キャリッジ
70:対物レンズ
72:固定光学系
76:トラッキングエラー検出部(位置信号検出部)
78,84,105:加算部
80:フィードバック演算部
82,104:学習制御部
86:駆動部(VCM)
88:キャリッジ
90:力外乱
92:制御部
94:サンプル処理部
96:近似関数演算部
98:メモリ
100:フィードフォワード出力部(FF出力部)
106−1〜106−N:メモリセル
110:シングル駆動型トラッキング機構
Claims (9)
- 媒体の任意のトラック位置に移動するヘッドと、
媒体上のトラックの所定位置を基準とした前記ヘッドの位置決めされた位置の位置ずれ量に応じた位置信号を検出して出力する位置信号検出部と、
前記位置信号を入力し、前記位置ずれ量を零に抑圧するように前記ヘッドを移動する制御信号を演算するフィードバック演算部と、
前記フィードバック演算部の制御信号に基づき前記トラックに追従させるように前記ヘッドを駆動する駆動部と、
を備えた記憶装置に於いて、
周期性外乱に対する位置ずれ量を零とするための媒体回転1周分の未知の関数を、近似推定した近似関数として学習アルゴリズムにより獲得して記憶する学習制御部を設け、
該学習制御部は、前記フィードバック演算部と駆動部との間に設けられ、媒体回転1周分の時間をTL とした場合、媒体1回転の開始時間t=0から終了時間t=TL で繰り返す未知の駆動電流関数I^repeat(t)(ただし、0≦t<TL 、TL は媒体1回転に要する時間)を、媒体回転1周分の時間TL をN分割した区間番号i=0〜(N−1)をもつ各区間(ただし、各区間の時間幅Tは、T=TL /N)の短冊の高さCi(ただし、iは区間番号で、0≦i≦(N−1))で近似推定した近似関数I^repeat(t)(ただし、0≦t<TL 、TL は媒体1回転に要する時間)とし、
前記近似関数I^ repeat (t)の各区間の短冊の高さCiを格納する複数の記憶セルを備えたメモリと、
前記フィードバック演算部から出力される制御信号I FB を前記分割周期Tより短い所定周期T sample で制御信号I FB をサンプリングするサンプル部と、
前記サンプル部でサンプリングした制御信号I FB 、所定の学習ゲインK learn に基づき、前記メモリの各記憶セルに格納した前記近似関数I^ repeat (t)の各区間の短冊の高さCiを、
により求めて更新する近似関数演算部と、
前記媒体回転の分割周期Tに同期して前記記憶セルに記憶した前記近似関数I^ repeat (t)の各区間の短冊の高さCiを学習制御信号として読み出し、前記フィードバック演算部からの制御信号I FB に加算して前記駆動部に駆動信号I VCM を供給するフィードフォーワード出力部と、
を備え、
前記メモリ、サンプル部、近似関数演算部及びフィードフォーワード出力部を前記媒体回転に同期して制御することを特徴とする記憶装置。 - 請求項1記載の記憶装置に於いて、前記フィードフォーワード出力部は、前記メモリの各記憶セルに記憶した近似関数I^repeat(t) の、所定の時間Δtleadだけ進んだ時刻に対する値を読み出して出力することを特徴とする記憶装置。
- 請求項1記載の記憶装置に於いて、前記学習制御部は、前記位置信号検出部とフィードバック演算部との間に設けられ、媒体回転1周分の時間をTL とした場合、媒体1回転の開始時間t=0から終了時間t=TL で繰り返す未知の位置関数TESrepeat(t)(ただし、0≦t<TL 、TL は媒体1回転に要する時間)を、媒体回転1周分の時間TL をN分割した区間番号i=0〜(N−1)をもつ各区間の短冊の高さCi(ただし、iは区間番号で、0≦i≦(N−1))で近似推定した近似関数TES^repeat(t)(ただし、0≦t<TL 、TL は媒体1回転に要する時間)として学習アルゴリズムにより獲得して記憶することを特徴とする記憶装置。
- 請求項1記載の記憶装置に於いて、前記学習制御部は、特定のタイミングで特定の時間だけ前記学習アルゴリズムによる前記近似関数の獲得動作を行い、学習後は、獲得した前記近似関数を、媒体回転に同期して出力して、フィードフォワード制御することを特徴とする記憶装置。
- 請求項4記載の記憶装置に於いて、前記学習制御部は、装置に対する前記媒体の挿入直後のタイミングで特定の時間だけ前記学習アルゴリズムによる前記近似関数の獲得動作を行い、学習後のトラッキング制御時に、獲得した前記近似関数を、媒体回転に同期して出力して周期性外乱を除去するフィードフォーワード制御を行うことを特徴とする記憶装置。
- 請求項5記載の記憶装置に於いて、前記学習制御部は、学習後のトラックジャンプ時及びシーク制御時に、獲得した前記近似関数を、媒体回転に同期して出力して周期性外乱を除去するフィードフォーワード制御を行うことを特徴とする記憶装置。
- 請求項4又は6記載の記憶装置に於いて、前記学習制御部は、前記近似関数の獲得動作時において、ディスク半径方向位置の複数箇所で、それぞれの箇所に対する近似関数の獲得動作を行い、前記学習後のフィードフォワード時においては、その時の半径方向位置に応じて、使用する近似関数を選択し、フィードフォワードすることを特徴とする記憶装置。
- 請求項7記載の記憶装置に於いて、前記学習制御部は、複数箇所での近似関数獲得動作に関し、既に別の箇所で獲得された近似関数が存在する場合、既に存在している近似関数データを初期値として学習アルゴリズムを適用することを特徴とする記憶装置。
- 請求項1記載の記憶装置に於いて、前記ヘッドは、媒体のトラックを横切る方向に移動自在なキャリッジ上に対物レンズをフォーカス制御自在に搭載し、前記キャリッジの移動により光ビームをトラックに追従させるトラッキング制御と光ビームを任意のトラック位置に移動するシーク制御の両方を行うシングル駆動型の構造を備えたことを特徴とする記憶装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30824499A JP3559209B2 (ja) | 1998-12-24 | 1999-10-29 | 記憶装置 |
EP99123659A EP1014366A3 (en) | 1998-12-24 | 1999-11-29 | Storage apparatus |
US09/454,627 US6628579B2 (en) | 1998-12-24 | 1999-12-06 | Storage apparatus |
CN99126773.7A CN1128441C (zh) | 1998-12-24 | 1999-12-16 | 存储设备 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36632698 | 1998-12-24 | ||
JP10-366326 | 1999-03-19 | ||
JP7504399 | 1999-03-19 | ||
JP11-75043 | 1999-03-19 | ||
JP30824499A JP3559209B2 (ja) | 1998-12-24 | 1999-10-29 | 記憶装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000339729A JP2000339729A (ja) | 2000-12-08 |
JP3559209B2 true JP3559209B2 (ja) | 2004-08-25 |
Family
ID=27301689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30824499A Expired - Fee Related JP3559209B2 (ja) | 1998-12-24 | 1999-10-29 | 記憶装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US6628579B2 (ja) |
EP (1) | EP1014366A3 (ja) |
JP (1) | JP3559209B2 (ja) |
CN (1) | CN1128441C (ja) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2805610B1 (fr) * | 2000-02-28 | 2002-04-19 | Schneider Electric Ind Sa | Detecteur pour controle de rotation |
JP4265874B2 (ja) | 2000-07-10 | 2009-05-20 | 富士通株式会社 | デイスク装置及びトラック追従制御方法 |
US20040037193A1 (en) * | 2000-07-12 | 2004-02-26 | Palle Andersen | Method for improved reading of a digital data disc |
KR100677097B1 (ko) | 2000-08-26 | 2007-02-05 | 삼성전자주식회사 | 광 기록/재생 장치에서 학습 제어를 이용한 외란 보상장치 및 방법과, 그를 이용한 광 기록 매체 드라이브 서보시스템 |
JP3795738B2 (ja) * | 2000-09-29 | 2006-07-12 | 富士通株式会社 | 記録媒体の回転制御方法及び記憶装置 |
JP3762629B2 (ja) | 2000-09-29 | 2006-04-05 | 富士通株式会社 | トラックジャンプ方法及び記憶装置 |
KR100393061B1 (ko) | 2000-12-29 | 2003-07-31 | 삼성전자주식회사 | 디스크 드라이브 시스템의 액튜에이터 주파수 응답 특성을이용한 편심 보정 장치 |
JP2002245738A (ja) * | 2001-02-15 | 2002-08-30 | Fujitsu Ltd | ディスク装置及び外乱補償方法 |
JP2002358678A (ja) * | 2001-05-31 | 2002-12-13 | Fujitsu Ltd | トラックサーボ制御方法、トラックサーボ制御装置及び光記憶装置 |
KR100408288B1 (ko) | 2001-06-20 | 2003-12-03 | 삼성전자주식회사 | 편심 보상을 위한 디스크 드라이브 서보 시스템 및 외란보상 방법 |
JPWO2003009290A1 (ja) | 2001-07-17 | 2004-11-11 | 富士通株式会社 | ヘッド追従制御方法、ヘッド追従制御装置及びそれを使用した記憶装置 |
JP4160284B2 (ja) | 2001-09-12 | 2008-10-01 | 松下電器産業株式会社 | 光デイスク装置及びフォーカス制御方法 |
TW563116B (en) * | 2002-03-29 | 2003-11-21 | Via Tech Inc | Tracking correction method and device for CD drive |
JP4206354B2 (ja) | 2004-03-30 | 2009-01-07 | 富士通株式会社 | 光ディスク装置 |
DE102005020491A1 (de) * | 2005-04-29 | 2006-11-09 | Deutsche Thomson-Brandt Gmbh | Verfahren und Anordnung zum Kompensieren von Regelabweichungen in einem Regelkreis mit zyklischen Regelwertveränderungen |
JP2007066451A (ja) * | 2005-08-31 | 2007-03-15 | Fujitsu Ltd | 光ディスク装置 |
JP4959351B2 (ja) | 2007-01-23 | 2012-06-20 | 富士通株式会社 | ホログラム記録装置およびホログラム記録方法 |
JPWO2009154003A1 (ja) * | 2008-06-20 | 2011-11-24 | パナソニック株式会社 | 焦点位置制御装置及びそれを備えた光ディスク装置並びに焦点位置制御方法 |
US9298176B2 (en) * | 2012-01-17 | 2016-03-29 | Fisher-Rosemount Systems, Inc. | Compensating for setpoint changes in a non-periodically updated controller |
US10423127B2 (en) | 2012-01-17 | 2019-09-24 | Fisher-Rosemount Systems, Inc. | Velocity based control in a non-periodically updated controller |
US11199824B2 (en) | 2012-01-17 | 2021-12-14 | Fisher-Rosemount Systems, Inc. | Reducing controller updates in a control loop |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5960740A (ja) | 1982-09-29 | 1984-04-06 | Toshiba Corp | 光デイスク装置 |
US4616276A (en) * | 1985-07-16 | 1986-10-07 | International Business Machines Corporation | Disk file servo control system with fast reduction of repeatable head position error |
US4866688A (en) * | 1985-12-20 | 1989-09-12 | Hitachi, Ltd. | Composite tracking servo system for optical disc apparatus with track offset correction |
JPS62183040A (ja) | 1986-02-07 | 1987-08-11 | Hitachi Ltd | 情報記録デイスクのトラツキングサ−ボ装置 |
US5065263A (en) * | 1988-05-20 | 1991-11-12 | Matsushita Electric Industrial Co., Ltd. | Track following transducer position control system for a disk storage drive system |
JPH02108286A (ja) | 1988-10-17 | 1990-04-20 | Matsushita Electric Ind Co Ltd | トラック追従制御装置 |
US5072318A (en) * | 1990-02-13 | 1991-12-10 | International Business Machines Corporation | Disk file with adaptive cancellation of nonrepeatable disk runout |
AU8739091A (en) * | 1990-09-18 | 1992-04-15 | Thomas James Frederick | Digital servo control system for use in disk drives |
US5268834A (en) | 1991-06-24 | 1993-12-07 | Massachusetts Institute Of Technology | Stable adaptive neural network controller |
JPH0714195A (ja) * | 1993-06-29 | 1995-01-17 | Hitachi Ltd | 光ディスク装置のトラックフォローイング装置 |
JPH0877589A (ja) | 1994-09-05 | 1996-03-22 | Mitsubishi Electric Corp | 光ディスク装置 |
US5608586A (en) * | 1994-10-21 | 1997-03-04 | International Business Machines Corporation | Robust servo for disk-shift compensation in rotating storage system |
US5898286A (en) * | 1997-01-13 | 1999-04-27 | International Business Machines Corporation | Digital servo control system for a data recording disk file with improved saturation modelling |
JP3730372B2 (ja) * | 1997-08-05 | 2006-01-05 | 富士通株式会社 | 光学的記憶装置 |
-
1999
- 1999-10-29 JP JP30824499A patent/JP3559209B2/ja not_active Expired - Fee Related
- 1999-11-29 EP EP99123659A patent/EP1014366A3/en not_active Withdrawn
- 1999-12-06 US US09/454,627 patent/US6628579B2/en not_active Expired - Fee Related
- 1999-12-16 CN CN99126773.7A patent/CN1128441C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US6628579B2 (en) | 2003-09-30 |
US20030072226A1 (en) | 2003-04-17 |
CN1128441C (zh) | 2003-11-19 |
EP1014366A3 (en) | 2001-01-03 |
CN1258066A (zh) | 2000-06-28 |
JP2000339729A (ja) | 2000-12-08 |
EP1014366A2 (en) | 2000-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3559209B2 (ja) | 記憶装置 | |
JP3552158B2 (ja) | 記憶装置 | |
JP3730372B2 (ja) | 光学的記憶装置 | |
JPH08255448A (ja) | ディスク記録再生装置及びそのセルフサーボライト方法 | |
JPH11328696A (ja) | 光学的記憶装置 | |
JP4160284B2 (ja) | 光デイスク装置及びフォーカス制御方法 | |
JP4265874B2 (ja) | デイスク装置及びトラック追従制御方法 | |
JP2785290B2 (ja) | 光ディスクのシーク及びトラッキング装置 | |
JP3490622B2 (ja) | トラッキング制御方法及び記憶装置 | |
US6381204B1 (en) | Power save mode control method and storage unit | |
JP2006139855A (ja) | 磁気ディスク装置 | |
JPH11265513A (ja) | 光学的記憶装置 | |
EP1193704A2 (en) | Rotation control method for recording medium and storage apparatus | |
JP3762629B2 (ja) | トラックジャンプ方法及び記憶装置 | |
JP2002358678A (ja) | トラックサーボ制御方法、トラックサーボ制御装置及び光記憶装置 | |
US6628581B1 (en) | Servo control method and servo controller of a storage device, and its storage device | |
US20050041542A1 (en) | Optical display device | |
JP2636833B2 (ja) | 光ディスク装置 | |
JP3832746B2 (ja) | 光学的記憶装置 | |
JP2740255B2 (ja) | 光ディスク駆動装置 | |
JP4153498B2 (ja) | 光学的記憶装置 | |
JPH05109101A (ja) | 光デイスク装置の偏心補正回路 | |
JP2009146491A (ja) | 光ディスク装置 | |
JP2005116042A (ja) | 回転速度設定方法、プログラム及び記録媒体、並びに光ディスク装置 | |
JP3699263B2 (ja) | トラッキング制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20031202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040325 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040427 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040520 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080528 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090528 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090528 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100528 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100528 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110528 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120528 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130528 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140528 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |