JP2991759B2 - 窒化処理鋼の製造方法 - Google Patents
窒化処理鋼の製造方法Info
- Publication number
- JP2991759B2 JP2991759B2 JP2261102A JP26110290A JP2991759B2 JP 2991759 B2 JP2991759 B2 JP 2991759B2 JP 2261102 A JP2261102 A JP 2261102A JP 26110290 A JP26110290 A JP 26110290A JP 2991759 B2 JP2991759 B2 JP 2991759B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- nitriding
- layer
- steel
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005121 nitriding Methods 0.000 title claims description 44
- 229910000831 Steel Inorganic materials 0.000 title claims description 24
- 239000010959 steel Substances 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000005480 shot peening Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 41
- 239000007789 gas Substances 0.000 description 35
- 229910017464 nitrogen compound Inorganic materials 0.000 description 26
- 150000002830 nitrogen compounds Chemical class 0.000 description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 239000000463 material Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 12
- 238000009792 diffusion process Methods 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000002344 surface layer Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000004901 spalling Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005255 carburizing Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000010849 ion bombardment Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005256 carbonitriding Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/36—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
- C23C8/38—Treatment of ferrous surfaces
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Gears, Cams (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は窒化処理鋼の製造方法に関する。
(従来の技術) 自動車のミッションギヤなど鋼製の機構構造部品の疲
労強度、耐ピッチング性等を向上せしめる手段として
は、浸炭焼入れが広く知られている。しかしながら、こ
の浸炭焼入れは被処理品を一旦オーステナイト化する必
要があるから、いわゆる熱処理変形を招き、上記ギヤの
場合は振動騒音の原因となる。
労強度、耐ピッチング性等を向上せしめる手段として
は、浸炭焼入れが広く知られている。しかしながら、こ
の浸炭焼入れは被処理品を一旦オーステナイト化する必
要があるから、いわゆる熱処理変形を招き、上記ギヤの
場合は振動騒音の原因となる。
一方、上述の熱処理変形が少ない表面処理手段として
イオン窒化処理が知られている。しかし、このイオン窒
化処理では、表面に窒素化合物層(Fe4N)が形成され、
その下に窒素の拡散層が形成されるが、上記化合物層は
硬く脆い。従って、ミッションギヤのような使用条件が
厳しいものでは、表面の窒素化合物層(約15μ)が高い
応力下で剥離し異常摩耗を起こしたり、あるいはこの化
合物層にクラックを生じてこれが拡散層に伝播してピッ
チングが発生するという問題がある。また、窒化処理鋼
は浸炭処理鋼に比べて表面硬化層が薄く、この硬化層と
母材との境界付近に塑性変形が起こって内部クラックが
発生し、スポーリングを生ずるという問題がある。
イオン窒化処理が知られている。しかし、このイオン窒
化処理では、表面に窒素化合物層(Fe4N)が形成され、
その下に窒素の拡散層が形成されるが、上記化合物層は
硬く脆い。従って、ミッションギヤのような使用条件が
厳しいものでは、表面の窒素化合物層(約15μ)が高い
応力下で剥離し異常摩耗を起こしたり、あるいはこの化
合物層にクラックを生じてこれが拡散層に伝播してピッ
チングが発生するという問題がある。また、窒化処理鋼
は浸炭処理鋼に比べて表面硬化層が薄く、この硬化層と
母材との境界付近に塑性変形が起こって内部クラックが
発生し、スポーリングを生ずるという問題がある。
これに対して、特公昭61−31184号公報には、軟窒化
処理(浸炭窒化処理)に関し、被処理品に熱間加工を行
なった後、制御冷却により金属組織を調整した後、窒化
処理を行なうという方法が開示されている。この方法に
よれば、表面硬化深さを大きくすることができ、上記耐
ピッチング性等の向上の点では有効になる。
処理(浸炭窒化処理)に関し、被処理品に熱間加工を行
なった後、制御冷却により金属組織を調整した後、窒化
処理を行なうという方法が開示されている。この方法に
よれば、表面硬化深さを大きくすることができ、上記耐
ピッチング性等の向上の点では有効になる。
しかし、上記軟窒化処理の場合、被処理品の前処理が
面倒なものになる。また、単に窒化処理時間を長くする
という方法により、表面硬化層を深くすることも考えら
れるが、生産性の点では不利になる。
面倒なものになる。また、単に窒化処理時間を長くする
という方法により、表面硬化層を深くすることも考えら
れるが、生産性の点では不利になる。
(発明が解決しようとする課題) 本発明の課題は、上述のイオン窒化処理を用いた窒化
処理鋼の製造方法を提供することにあり、特に、窒化処
理時間を必要以上に長くすることなく、且つ全体の処理
工程を複雑にすることなく、耐ピッチング性ないしは耐
スポーリング性を向上できるようにすることにある。
処理鋼の製造方法を提供することにあり、特に、窒化処
理時間を必要以上に長くすることなく、且つ全体の処理
工程を複雑にすることなく、耐ピッチング性ないしは耐
スポーリング性を向上できるようにすることにある。
(課題を解決するための手段及びその作用) 本発明は、このような課題に対して、被処理品を特定
のCr−Mo−V鋼としイオン窒化処理雰囲気を構成するN2
ガスとH2ガスとの混合比を調整することにより、上述の
硬くて脆い窒素化合物層の生成を抑制し、拡散層を主体
とした硬化層を得ようとするものである。
のCr−Mo−V鋼としイオン窒化処理雰囲気を構成するN2
ガスとH2ガスとの混合比を調整することにより、上述の
硬くて脆い窒素化合物層の生成を抑制し、拡散層を主体
とした硬化層を得ようとするものである。
−第1の手段− 具体的には、N2ガスとH2ガスとArガスとが混合された
窒化雰囲気において、グロー放電を発生させ、N2ガスを
イオン化させて鋼製の被処理品に窒化処理を行なうよう
にした窒化処理鋼の製造方法において、 上記被処理品は、Crを0.50〜1.30重量%、Moを0.05〜
0.50重量%、Vを0.05〜0.20重量%含み、 上記窒化雰囲気は、N2ガスとH2ガスとの混合比が1:2
〜40であることを特徴とするものである。
窒化雰囲気において、グロー放電を発生させ、N2ガスを
イオン化させて鋼製の被処理品に窒化処理を行なうよう
にした窒化処理鋼の製造方法において、 上記被処理品は、Crを0.50〜1.30重量%、Moを0.05〜
0.50重量%、Vを0.05〜0.20重量%含み、 上記窒化雰囲気は、N2ガスとH2ガスとの混合比が1:2
〜40であることを特徴とするものである。
−第2の手段− また、被処理品が歯車の場合、窒化雰囲気をArガスの
添加によりグロー放電のグローの幅が1〜3mmになるよ
うに調整することは上記課題解決の有効な手段である。
添加によりグロー放電のグローの幅が1〜3mmになるよ
うに調整することは上記課題解決の有効な手段である。
−第3の手段− イオン窒化処理後に被処理品にショットピーニングを
施すことは上記課題解決のさらに有効な手段となる。
施すことは上記課題解決のさらに有効な手段となる。
−第1の手段の作用− 上記窒化処理鋼の製造方法においては、N2ガスとH2ガ
スとの混合比を1:2〜40としたことにより、窒素化合物
の生成を抑制して窒化拡散層を主体とする表面硬化層を
得ることができる。
スとの混合比を1:2〜40としたことにより、窒素化合物
の生成を抑制して窒化拡散層を主体とする表面硬化層を
得ることができる。
N2ガスは、窒化処理に不可欠の元素であり、鋼中への
拡散によりFeに固溶して表面硬化層を形成する。一方、
H2ガスは、イオン衝撃によって被処理品を加熱するとと
もに、被処理品表面の清浄作用を呈し、且つN原子との
結合によりNH3を生成することにより、窒素化合物の生
成を抑制しながら、N原子の鋼中への拡散固溶を促進す
る。
拡散によりFeに固溶して表面硬化層を形成する。一方、
H2ガスは、イオン衝撃によって被処理品を加熱するとと
もに、被処理品表面の清浄作用を呈し、且つN原子との
結合によりNH3を生成することにより、窒素化合物の生
成を抑制しながら、N原子の鋼中への拡散固溶を促進す
る。
すなわち、窒素化合物は上記N原子とイオン衝撃によ
り飛び出したFe原子とによって生じたFeNが被処理品表
面に蒸着して生ずるが、本発明の場合、上述の如くH2ガ
スが多量であることから、N原子はH原子との反応によ
りNH3を生成することにより、Fe原子との反応が抑制さ
れるものであり、そして、上記生成したNH3が被処理品
表面で分解してN原子が鋼中に拡散していくものであ
る。
り飛び出したFe原子とによって生じたFeNが被処理品表
面に蒸着して生ずるが、本発明の場合、上述の如くH2ガ
スが多量であることから、N原子はH原子との反応によ
りNH3を生成することにより、Fe原子との反応が抑制さ
れるものであり、そして、上記生成したNH3が被処理品
表面で分解してN原子が鋼中に拡散していくものであ
る。
この場合、N2ガスとH2ガスとの混合比は、N2ガスを1
とした場合、H2ガスが2よりも小(N2/H2の比率が1/2よ
りも大)になると、上述の窒素化合物が生成し易くなり
好ましくない。つまり、窒素が鋼中に十分に拡散固溶す
ることなく、短時間に5μmを越える厚さの窒素化合物
層が生成され、所望の耐ピッチング性を得ることが難し
くなる。一方、上記混合比に関し、H2ガスが40よりも大
(N2/H2の比率が1/40よりも小)になると、所望の表面
硬化層を得るための窒化処理時間が長くなり好ましくな
い。
とした場合、H2ガスが2よりも小(N2/H2の比率が1/2よ
りも大)になると、上述の窒素化合物が生成し易くなり
好ましくない。つまり、窒素が鋼中に十分に拡散固溶す
ることなく、短時間に5μmを越える厚さの窒素化合物
層が生成され、所望の耐ピッチング性を得ることが難し
くなる。一方、上記混合比に関し、H2ガスが40よりも大
(N2/H2の比率が1/40よりも小)になると、所望の表面
硬化層を得るための窒化処理時間が長くなり好ましくな
い。
−被処理品について− 被処理品(窒化用鋼)の好ましい添加元素及びその添
加量(重量%)は以下の通りである。
加量(重量%)は以下の通りである。
Cr:0.50〜1.30% Crは焼入れ性向上元素であるとともに、窒素の拡散を
促進する元素である。この効果を得るには0.50%以上を
添加することが好ましい。1.30%を越えると焼入れ性過
大となる。
促進する元素である。この効果を得るには0.50%以上を
添加することが好ましい。1.30%を越えると焼入れ性過
大となる。
Mo;0.05〜0.50% Moは熱間鍛造後の冷却工程で焼入れ性を向上させる重
要な元素である。この効果を得るには0.05%以上を添加
することが好ましい。0.50%を越えると効果が飽和する
とともに、加工性が損なわれる。
要な元素である。この効果を得るには0.05%以上を添加
することが好ましい。0.50%を越えると効果が飽和する
とともに、加工性が損なわれる。
V:0.05〜0.20% Vは鋼中の炭素及び窒素と化合して炭窒化物を生成
し、基地硬さを向上せしめるとともに、窒化時に窒化物
を生成して有効硬化深さを深くする。この効果を得るに
は0.05%以上を添加することが好ましい。0.20%を越え
ると、靭性及び加工性が低下する。
し、基地硬さを向上せしめるとともに、窒化時に窒化物
を生成して有効硬化深さを深くする。この効果を得るに
は0.05%以上を添加することが好ましい。0.20%を越え
ると、靭性及び加工性が低下する。
−第2の手段の作用− しかして、上述の如く、N2/H2のガス比を小さくした
場合、グロー放電の安定化が図れるが、グローの幅が広
くなるため、歯車の歯底という狭い箇所にはグロー放電
が侵入し難くなる。
場合、グロー放電の安定化が図れるが、グローの幅が広
くなるため、歯車の歯底という狭い箇所にはグロー放電
が侵入し難くなる。
これに対して、希釈ガスとしてのArガスによる窒化雰
囲気の調整は、上記グローの幅の制御に有効であり、こ
のArガスの添加によりグローの幅を1〜3mmに調整する
と、上記歯底にもクロー放電を侵入せしめて、所望の表
面硬化層を得ることができる。この場合、上記グローの
幅を3mm以下とするのは、一般に多く使用される歯車
は、歯数5〜50のとき、モジュールが1〜3であり、そ
の歯底の溝幅が3mm程度もしくはそれ以下になるためで
ある。また、グローの幅を1mm未満にすることは、難し
いとともに、窒化不良を招く結果となる。
囲気の調整は、上記グローの幅の制御に有効であり、こ
のArガスの添加によりグローの幅を1〜3mmに調整する
と、上記歯底にもクロー放電を侵入せしめて、所望の表
面硬化層を得ることができる。この場合、上記グローの
幅を3mm以下とするのは、一般に多く使用される歯車
は、歯数5〜50のとき、モジュールが1〜3であり、そ
の歯底の溝幅が3mm程度もしくはそれ以下になるためで
ある。また、グローの幅を1mm未満にすることは、難し
いとともに、窒化不良を招く結果となる。
−第3の手段の作用− また、上記イオン窒化処理後にショットピーニング処
理を施すことは、疲労強度及び耐ピッチング性の向上に
有効である。すなわち、上述のイオン窒化処理では、窒
素化合物の生成を抑制して窒素拡散層を主体とする表面
硬化層を形成するから、被処理品表面に割れを生ずるこ
となくショットピーニングを施すことができるものであ
る。
理を施すことは、疲労強度及び耐ピッチング性の向上に
有効である。すなわち、上述のイオン窒化処理では、窒
素化合物の生成を抑制して窒素拡散層を主体とする表面
硬化層を形成するから、被処理品表面に割れを生ずるこ
となくショットピーニングを施すことができるものであ
る。
−ショットピーニング条件について− ショット粒径:0.02〜0.8mm 0.02mmよりも小さくなると、表面に有効な圧縮残留応
力を与えることができず、また、0.8mmを越えると、圧
縮残留応力を与えることはできるが、被処理品表面のダ
メージが大きくなり好ましくない。
力を与えることができず、また、0.8mmを越えると、圧
縮残留応力を与えることはできるが、被処理品表面のダ
メージが大きくなり好ましくない。
ショット材質:スチール,ガラス,アルミナ等 ショット速度:50〜120m/秒 50m/秒未満では加工力が不足し、120m/秒を越えるシ
ョット速度では加工力過大で基地を傷めるため好ましく
ない。
ョット速度では加工力過大で基地を傷めるため好ましく
ない。
(発明の効果) −第1の手段の効果− 被処理品を、Crを0.50〜1.30重量%、Moを0.05〜0.50
重量%、Vを0.05〜0.20重量%含む鋼製とし、N2ガスと
H2ガスとの混合比を1:2〜40としたことにより、被処理
品の熱処理性、加工性及び靭性を向上させながら、窒素
化合物の生成を抑制して窒素拡散層を主体とする表面硬
化層を得ることができ、窒化処理時間を必要以上に長く
することなく、耐ピッチング性ないしは耐スポーリング
性を向上せしめることができる。
重量%、Vを0.05〜0.20重量%含む鋼製とし、N2ガスと
H2ガスとの混合比を1:2〜40としたことにより、被処理
品の熱処理性、加工性及び靭性を向上させながら、窒素
化合物の生成を抑制して窒素拡散層を主体とする表面硬
化層を得ることができ、窒化処理時間を必要以上に長く
することなく、耐ピッチング性ないしは耐スポーリング
性を向上せしめることができる。
−第2の手段の効果− Arガスの添加によりグローの幅が1〜3mmにになるよ
う窒化雰囲気を調整するから、N2/H2ガス比が小さいに
も拘らず、歯車の歯底という細部にまでグロー放電を侵
入せしめて、この歯車の耐ピッチング性ないしは耐スポ
ーリング性を向上せしめることができる。
う窒化雰囲気を調整するから、N2/H2ガス比が小さいに
も拘らず、歯車の歯底という細部にまでグロー放電を侵
入せしめて、この歯車の耐ピッチング性ないしは耐スポ
ーリング性を向上せしめることができる。
−第3の手段の効果− 上述の窒素化合物の生成を抑制して窒素拡散層を主体
とする表面硬化層を形成するイオン窒化処理後にショッ
トピーニング処理を施すから、被処理品表面に割れを生
ずることなく疲労強度及び耐ピッチング性をさらに向上
せしめることができる。
とする表面硬化層を形成するイオン窒化処理後にショッ
トピーニング処理を施すから、被処理品表面に割れを生
ずることなく疲労強度及び耐ピッチング性をさらに向上
せしめることができる。
(実施例) 以下、本発明の実施例を図面に基づいて説明する。
−テスト1(窒素化合物層について)− 表1に示す組成を主成分とする材質A(Cr−Mo−V
鋼)の被処理品つき、前処理として熱間鍛造後に900℃
に加熱して焼準処理を施し、15×15×10(mm)の複数の
直方体状テストピースを加工作成した。そして、これら
各テストピースに対して、各種のガス混合比(N2:H2:A
r)でイオン窒化処理を施し、窒素化合物層の厚さ(μ
m)を測定した。窒化処理条件は次の通りであり、結果
は表2に示されている。
鋼)の被処理品つき、前処理として熱間鍛造後に900℃
に加熱して焼準処理を施し、15×15×10(mm)の複数の
直方体状テストピースを加工作成した。そして、これら
各テストピースに対して、各種のガス混合比(N2:H2:A
r)でイオン窒化処理を施し、窒素化合物層の厚さ(μ
m)を測定した。窒化処理条件は次の通りであり、結果
は表2に示されている。
<窒化処理条件> 窒化温度 570℃,保持時間 12Hr 真空度 4Torr 上記結果から、N2/H2のガス比が大きくなるにつれて
窒素化合物層の厚さが厚くなっているが、実施例の場
合、N2:H2=1:2でも4μmであって、比較例によりも格
段に薄く、上述のN2/H2のガス比を小さくすることが窒
素化合物の抑制に効を奏していることがわかる。なお、
窒素化合物層の厚さについては、第7図にガス混合比と
の関係で一部示されている。すなわち、同図において、
A,C,D,Fが各々実施例1,2,3,5に対応し、Gが比較例1に
対応する。
窒素化合物層の厚さが厚くなっているが、実施例の場
合、N2:H2=1:2でも4μmであって、比較例によりも格
段に薄く、上述のN2/H2のガス比を小さくすることが窒
素化合物の抑制に効を奏していることがわかる。なお、
窒素化合物層の厚さについては、第7図にガス混合比と
の関係で一部示されている。すなわち、同図において、
A,C,D,Fが各々実施例1,2,3,5に対応し、Gが比較例1に
対応する。
上記実施例1と比較例1につき、その表層部の金属組
織(断面)をそれぞれ第1図と第2図に示す(倍率は40
0倍)。また、第3図にこの両例の表層部の硬さ分布を
示す。第2図(比較例1)において、最表面部に層状に
表われている部分が窒素化合物層であるが、第1図の実
施例1の場合、この窒素化合物層は形成されていない。
また、第3図に示されているように、実施例1と比較例
1とでは、その硬さ分布にほとんど差がなく、実施例1
の場合、窒素化合物層が形成されていないもにも拘ら
ず、十分な表面硬さが得られていることがわかる。
織(断面)をそれぞれ第1図と第2図に示す(倍率は40
0倍)。また、第3図にこの両例の表層部の硬さ分布を
示す。第2図(比較例1)において、最表面部に層状に
表われている部分が窒素化合物層であるが、第1図の実
施例1の場合、この窒素化合物層は形成されていない。
また、第3図に示されているように、実施例1と比較例
1とでは、その硬さ分布にほとんど差がなく、実施例1
の場合、窒素化合物層が形成されていないもにも拘ら
ず、十分な表面硬さが得られていることがわかる。
しかして、歯数30、モジュール1.75の歯車につき、上
記テスト1と実施例1と同じ条件において、窒化処理を
施したところ、その歯底においても第3図に示すものと
実質的に同じ硬さ分布が得られた。
記テスト1と実施例1と同じ条件において、窒化処理を
施したところ、その歯底においても第3図に示すものと
実質的に同じ硬さ分布が得られた。
−テスト2(材質の影響について)− 上記表1に示す材質Aと第3表に示す組成を主成分と
する材質B(SCM435)とにつき、テスト1と同様の前処
理により同様のテストピースを作成して、表4に示す窒
化雰囲気でテスト1と同じ条件の窒化処理を施し、各々
の表層部の硬さ分布を調べた。結果は第4図に示す。
する材質B(SCM435)とにつき、テスト1と同様の前処
理により同様のテストピースを作成して、表4に示す窒
化雰囲気でテスト1と同じ条件の窒化処理を施し、各々
の表層部の硬さ分布を調べた。結果は第4図に示す。
第4図からわかるように、材質Aを使用した実施例6
と比較例2とは硬さ分布にほとんど差が見られず、材質
Aについては硬さ分布にガスの混合比の影響があまり出
ていない。
と比較例2とは硬さ分布にほとんど差が見られず、材質
Aについては硬さ分布にガスの混合比の影響があまり出
ていない。
これに対して、材質Bを使用した実施例7と材質Aを
使用した実施例6とを比較した場合、窒化処理条件はガ
ス混合比を含めて同じであっても、材質Bを使用した実
施例7は表面硬化層が薄く且つ最表面部の硬さも低くな
っている。さらに、同じ材質Bを使用した実施例7と比
較例3とを比較した場合、実施例7の方が表面硬化層が
薄く且つ最表面部の硬さも低くなっている。
使用した実施例6とを比較した場合、窒化処理条件はガ
ス混合比を含めて同じであっても、材質Bを使用した実
施例7は表面硬化層が薄く且つ最表面部の硬さも低くな
っている。さらに、同じ材質Bを使用した実施例7と比
較例3とを比較した場合、実施例7の方が表面硬化層が
薄く且つ最表面部の硬さも低くなっている。
以上の結果は、上記材質Aの場合、窒化特性が優れて
いるためN2量の低下の影響を受け難く、本発明の実施に
適していることを意味する。
いるためN2量の低下の影響を受け難く、本発明の実施に
適していることを意味する。
−テスト3(ショットピーニング及びローラピッチング
について− 表1の材質Aにつき、テスト1と同じ前処理を行なっ
た後、第5図に示すピッチング用試験片1を作成した。
この場合、試験片中央部2がテスト面である。この中央
部2は直径D=26mm、長さL=28、両側部3,3は直径d
=22mm、長さl=51mmである。そして、各試験片につ
き、表5に示す条件で窒化処理を施し、表6に示す条件
でショットピーニングを行なった。
について− 表1の材質Aにつき、テスト1と同じ前処理を行なっ
た後、第5図に示すピッチング用試験片1を作成した。
この場合、試験片中央部2がテスト面である。この中央
部2は直径D=26mm、長さL=28、両側部3,3は直径d
=22mm、長さl=51mmである。そして、各試験片につ
き、表5に示す条件で窒化処理を施し、表6に示す条件
でショットピーニングを行なった。
しかして、上記ショットピーニング後に、走査型電子
顕微鏡により試験片表面を観察したところ、比較例5の
ガス軟窒化処理品には、第6図に示すように化合物層の
剥離が認められた(倍率は100倍)。
顕微鏡により試験片表面を観察したところ、比較例5の
ガス軟窒化処理品には、第6図に示すように化合物層の
剥離が認められた(倍率は100倍)。
そこで、上記比較例5を除く他の試験片につき、ショ
ットピーニングを行なったものと行わないものとをロー
ラピッチング試験に供した。このローラピッチング試験
は、面圧308kgf/mm2、すべり率60%を主条件とした。各
試験片の窒素化合物層の厚さは第7図に示され、また、
ピッチング発生寿命(トータル回転数)が第8図に示さ
れている。なお、第8図に記載のA〜Gは第7図のA〜
Gと同じ試験片であることを示す。
ットピーニングを行なったものと行わないものとをロー
ラピッチング試験に供した。このローラピッチング試験
は、面圧308kgf/mm2、すべり率60%を主条件とした。各
試験片の窒素化合物層の厚さは第7図に示され、また、
ピッチング発生寿命(トータル回転数)が第8図に示さ
れている。なお、第8図に記載のA〜Gは第7図のA〜
Gと同じ試験片であることを示す。
すなわち、ピッチング発生寿命は、ショットピーニン
グなしの場合、比較例4は1.9×106であるのに対し、実
施例8,9,10,11は7.8×106以上の長寿命を示した。ま
た、ショットピーニング有りの場合、各実施例はショッ
トピーニングなしの場合によりさらに耐ピッチング性の
向上が認められた。
グなしの場合、比較例4は1.9×106であるのに対し、実
施例8,9,10,11は7.8×106以上の長寿命を示した。ま
た、ショットピーニング有りの場合、各実施例はショッ
トピーニングなしの場合によりさらに耐ピッチング性の
向上が認められた。
これに対し、比較例4ではピッチング発生寿命が長く
なるものと短くなるものがあったが、これは窒素化合物
層の割れが原因と考えられ、厚い窒素化合物層を有する
ものにはショットピーニングは好ましくないと言える。
第9図に走査型電子顕微鏡による比較例4の試験片表面
の観察結果を示す(倍率は100倍)。これによると、窒
素化合物を起点にピッチングが部分的に発生しているこ
とがわかる。これはピッチング試験中に脆弱な窒素化合
物に亀裂が発生し、この亀裂が窒素拡散層に伝播したこ
とによるものであり、このことから、ピッチング発生寿
命が実施例に比べて短くなっていると認められる。
なるものと短くなるものがあったが、これは窒素化合物
層の割れが原因と考えられ、厚い窒素化合物層を有する
ものにはショットピーニングは好ましくないと言える。
第9図に走査型電子顕微鏡による比較例4の試験片表面
の観察結果を示す(倍率は100倍)。これによると、窒
素化合物を起点にピッチングが部分的に発生しているこ
とがわかる。これはピッチング試験中に脆弱な窒素化合
物に亀裂が発生し、この亀裂が窒素拡散層に伝播したこ
とによるものであり、このことから、ピッチング発生寿
命が実施例に比べて短くなっていると認められる。
以上のことから、実施例の場合、窒素化合物層が無い
か若しくは非常に薄いことで耐ピッチング性が向上して
いると言うことがてきる。
か若しくは非常に薄いことで耐ピッチング性が向上して
いると言うことがてきる。
第1図は実施例1の表層部断面の金属組織を示す顕微鏡
写真、第2図は比較例1の表層部断面の金属組織を示す
顕微鏡写真、第3図は実施例1と比較例1との表層部の
硬さ分布を示す特性図、第4図は材質の異なる被処理品
についての表層部の硬さ分布を示す特性図、第5図はピ
ッチング用試験片を示す正面図、第6図は走査型電子顕
微鏡による比較例5の表面の金属組織を示す写真、第7
図はガス混合比と窒素化合物層の厚さとの関係を示す特
性図、第8図は窒素化合物層の厚さとピッチング発生寿
命との関係を示す特性図、第9図は走査型電子顕微鏡に
よる比較例4の表面の金属組織を示す写真である。
写真、第2図は比較例1の表層部断面の金属組織を示す
顕微鏡写真、第3図は実施例1と比較例1との表層部の
硬さ分布を示す特性図、第4図は材質の異なる被処理品
についての表層部の硬さ分布を示す特性図、第5図はピ
ッチング用試験片を示す正面図、第6図は走査型電子顕
微鏡による比較例5の表面の金属組織を示す写真、第7
図はガス混合比と窒素化合物層の厚さとの関係を示す特
性図、第8図は窒素化合物層の厚さとピッチング発生寿
命との関係を示す特性図、第9図は走査型電子顕微鏡に
よる比較例4の表面の金属組織を示す写真である。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 三輪 能久 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (56)参考文献 特開 昭55−115965(JP,A) 特開 昭59−35672(JP,A) 特開 昭53−104534(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 8/38
Claims (3)
- 【請求項1】N2ガスとH2ガスとArガスとが混合された窒
化雰囲気において、グロー放電を発生させ、N2ガスをイ
オン化させて鋼製の被処理品に窒化処理を行なうように
した窒化処理鋼の製造方法において、 上記被処理品は、Crを0.50〜1.30重量%、Moを0.05〜0.
50重量%、Vを0.05〜0.20重量%含み、 上記窒化雰囲気は、N2ガスとH2ガスとの混合比が1:2〜4
0であることを特徴とする窒化処理鋼の製造方法。 - 【請求項2】被処理品は歯車であり、窒化雰囲気をArガ
スの添加によりグロー放電のグローの幅が1〜3mmにな
るように調整する請求項(1)に記載の窒化処理鋼の製
造方法。 - 【請求項3】イオン窒化処理後、被処理品にショットピ
ーニングを施す請求項(1)または(2)に記載の窒化
処理鋼の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2261102A JP2991759B2 (ja) | 1990-09-28 | 1990-09-28 | 窒化処理鋼の製造方法 |
US07/770,011 US5240514A (en) | 1990-09-28 | 1991-09-30 | Method of ion nitriding steel workpieces |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2261102A JP2991759B2 (ja) | 1990-09-28 | 1990-09-28 | 窒化処理鋼の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04141573A JPH04141573A (ja) | 1992-05-15 |
JP2991759B2 true JP2991759B2 (ja) | 1999-12-20 |
Family
ID=17357112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2261102A Expired - Fee Related JP2991759B2 (ja) | 1990-09-28 | 1990-09-28 | 窒化処理鋼の製造方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US5240514A (ja) |
JP (1) | JP2991759B2 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5536549A (en) * | 1993-08-02 | 1996-07-16 | Tulip Memory Systems, Inc. | Austenitic stainless steel substrate for magnetic-recording media |
US5830540A (en) * | 1994-09-15 | 1998-11-03 | Eltron Research, Inc. | Method and apparatus for reactive plasma surfacing |
GB9614303D0 (en) * | 1996-07-08 | 1996-09-04 | Nsk Rhp Europe Technology Co Ltd | Surface treatment of bearing steels |
DE10032313A1 (de) * | 2000-07-04 | 2002-01-17 | Bosch Gmbh Robert | Schraubenfedern aus legiertem Stahl und Verfahren zum Herstellen solcher Schraubenfedern |
SE525325C2 (sv) * | 2003-05-16 | 2005-02-01 | Sandvik Ab | Skärande verktyg för metallbearbetning samt metod vid tillverkning av skärande verktyg |
CA2592420A1 (en) * | 2004-12-23 | 2006-07-06 | United Technologies Corporation | Composition and process for enhanced properties of ferrous components |
CN100387748C (zh) * | 2005-06-14 | 2008-05-14 | 重庆大学 | 钢的空气/碳氢有机气体离子氮、碳、氧共渗工艺 |
CN100365156C (zh) * | 2005-06-14 | 2008-01-30 | 重庆大学 | 钢的空气/汽油离子多元共渗工艺 |
DE102007028321A1 (de) * | 2007-06-15 | 2008-12-18 | Alstom Technology Ltd. | Verfahren zur Oberflächenbehandlung von Cr-Stählen |
US8699655B2 (en) * | 2011-03-10 | 2014-04-15 | Westinghouse Electric Company, Llc | Method of improving wear and corrosion resistance of rod control cluster assemblies |
CN115652250B (zh) * | 2022-10-10 | 2023-06-20 | 广东工业大学 | 一种高效高质量渗氮处理方法及其应用 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH342980A (de) * | 1950-11-09 | 1959-12-15 | Berghaus Elektrophysik Anst | Verfahren zur Diffusionsbehandlung von Rohren aus Eisen und Stahl oder deren Legierungen |
JPS5458637A (en) * | 1977-10-20 | 1979-05-11 | Kawasaki Heavy Ind Ltd | Ion nitriding method |
JPS5950750B2 (ja) * | 1978-07-07 | 1984-12-10 | 株式会社日立製作所 | 耐摩耗性のすぐれた摺動部材 |
JPS5514839A (en) * | 1978-07-14 | 1980-02-01 | Kawasaki Heavy Ind Ltd | Treating method for ion nitriding |
JPS5538967A (en) * | 1978-09-14 | 1980-03-18 | Hitachi Ltd | Iron base material excellent in wear resistance and manufacture thereof |
JPS6022062B2 (ja) * | 1978-09-20 | 1985-05-30 | 株式会社日立製作所 | 耐摩耗性の優れた鉄系部材およびその製造法 |
US4394234A (en) * | 1979-02-02 | 1983-07-19 | Hitachi, Ltd. | Method of processing electrically conductive material by glow discharge |
JPS6017065A (ja) * | 1983-07-06 | 1985-01-28 | Seikosha Co Ltd | スパツタリングによる鉄鋼への窒化チタン膜形成方法 |
JPS6131184A (ja) * | 1984-07-24 | 1986-02-13 | 高砂電器産業株式会社 | スロツトマシン |
JPS61142074A (ja) * | 1984-12-12 | 1986-06-28 | Tohoku Metal Ind Ltd | 砥石装置 |
US4969378A (en) * | 1989-10-13 | 1990-11-13 | Reed Tool Company | Case hardened roller cutter for a rotary drill bit and method of making |
-
1990
- 1990-09-28 JP JP2261102A patent/JP2991759B2/ja not_active Expired - Fee Related
-
1991
- 1991-09-30 US US07/770,011 patent/US5240514A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04141573A (ja) | 1992-05-15 |
US5240514A (en) | 1993-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2991759B2 (ja) | 窒化処理鋼の製造方法 | |
JP2019218633A (ja) | 軟窒化用鋼および部品 | |
JP3961390B2 (ja) | 耐摩耗性にすぐれた表面炭窒化ステンレス鋼部品およびその製造方法 | |
JP2005090680A (ja) | 転がり軸受部品およびその製造方法 | |
EP3299487A1 (en) | Method for surface hardening a cold deformed article comprising low temperature annealing | |
KR101892531B1 (ko) | 철계 금속의 질화방법 | |
JP2018141218A (ja) | 部品およびその製造方法 | |
JP4752635B2 (ja) | 軟窒化部品の製造方法 | |
JP2010222648A (ja) | 炭素鋼材料の製造方法および炭素鋼材料 | |
JP2005054989A (ja) | サイレントチェーン用焼結スプロケットおよびその製造方法 | |
JP2773092B2 (ja) | 表面被覆鋼製品 | |
JP2010222649A (ja) | 炭素鋼材料の製造方法および炭素鋼材料 | |
JP6721141B1 (ja) | 軟窒化用鋼および軟窒化部品並びにこれらの製造方法 | |
JP2839481B2 (ja) | 熱処理鋼部品及びその製造方法 | |
JPH0853711A (ja) | 表面硬化処理方法 | |
JP2018141217A (ja) | 部品およびその製造方法 | |
JP2885061B2 (ja) | 疲労特性に優れた窒化鋼部材の製造方法 | |
CN114427073A (zh) | 钢部件的氮化处理方法 | |
JP4832790B2 (ja) | 鋼部材の表面処理方法並びに鋼部材 | |
JP2020117789A (ja) | 自動車変速機用リングギアおよびその製造方法 | |
JP7306580B2 (ja) | 鋼および鋼部品 | |
US7622009B2 (en) | Steel material | |
JP7310723B2 (ja) | 鋼部品およびその製造方法 | |
JPH07109005B2 (ja) | 熱処理鋼部品の製造方法 | |
JPH08165557A (ja) | 耐ピッチング性軟窒化歯車の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081015 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081015 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091015 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |