JP2815695B2 - 高炭素鋼線の流動層パテンティング処理方法 - Google Patents

高炭素鋼線の流動層パテンティング処理方法

Info

Publication number
JP2815695B2
JP2815695B2 JP29185790A JP29185790A JP2815695B2 JP 2815695 B2 JP2815695 B2 JP 2815695B2 JP 29185790 A JP29185790 A JP 29185790A JP 29185790 A JP29185790 A JP 29185790A JP 2815695 B2 JP2815695 B2 JP 2815695B2
Authority
JP
Japan
Prior art keywords
fluidized bed
temperature
patenting
steel wire
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29185790A
Other languages
English (en)
Other versions
JPH04168230A (ja
Inventor
正司 佐々木
均 田代
洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29185790A priority Critical patent/JP2815695B2/ja
Publication of JPH04168230A publication Critical patent/JPH04168230A/ja
Application granted granted Critical
Publication of JP2815695B2 publication Critical patent/JP2815695B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は線径3mm以下の高炭素鋼線の流動層パテンテ
ィング処理方法に関するものである。
[従来の技術] 線材のパテンティング処理の一つの方法に流動層パテ
ンティング方式であり、線径5.5mm程度の線材のパテン
ティングに適用されていることは既知である。この流動
層パテンティング方式は鉛パテンティングの公害問題、
すなわち鉛廃棄物処理問題、鉛蒸気の健康に及ぼす問題
などから鉛パテンティング方式の代替手段として利用拡
大の傾向にあるようである。
しかし、流動層パテンティングは鉛パテンティングに
比べ冷却能力が劣るため、鉛パテンティング並みの処理
特性を得るためには処理方法に種々の工夫が必要であ
る。例えば、特公昭46−5932号公報では熱間圧延後の線
材を冷媒を利用して温度制御した流動層内に直接導入す
ることにより熱処理を行っている。また特公昭46−6691
号公報では圧延後の熱間線材をそのまま流動層内に落下
させ、底部に到達するまでの間にパーライト変態を完了
させる調整冷却を行っている。これらの技術は温度800
℃以上の熱間圧延線材を直接パーライト変態領域での流
動層冷却するための方法であり、そのために流動層温度
を100〜300℃程度とする必要があり、TTT曲線の鼻温度
よりも200℃以上低く保たなければならなかった。
従ってこのような物理的現象が要因となって、5.5mm
よりも細い線径3mm以下の鋼線の流動層パテンティング
処理、特に伸線工程の熱処理において鉛パテンティング
の代替として適用し、鉛パテンティング相当の強度を確
保できた例は見あたらない。つまり、線径3mm以下の鋼
線は線径5.5mm線材に対し体積換算で1/6以下に相当しそ
の分冷却が迅速に進むために、従来技術の流動層温度で
は鋼線のTTT曲線の鼻温度よりも低すぎるために異常組
織が発生してしまい、またたとえ流動層在炉時間を短く
とり異常組織の発生を防いでも、その後空冷では鉛パテ
ンティング並みの微細組織にならず高強度、高延性のも
のは得られない。これらの技術は線径5.5mm程度の線材
へは適用できるが、冷速が大きい線径3mm以下の鋼線へ
は適用できないことによる。
[発明が解決しようとする課題] 本発明はこのような従来技術の問題点を解決するため
になされたもので、鉛パテンティング並みの強度が得ら
れる、高炭素鋼線の流動層パテンティング処理方法を提
供しようとするものである。具体的には、次に列挙する
技術的課題を達成しようとするものである。
線径3mm以下の鋼線へ流動層パテンティング処理を適
用したときの異常組織の発生防止。
線径3mm以下の鋼線に流動層パテンティング処理を適
用したときの鉛パテンティング並みの強度確保。
[課題を解決するための手段] 本発明は上記の技術的課題を達成するため、線径3mm
以下の高炭素鋼線を流動層パテンティング処理するにあ
たり、加熱炉でオーステナイト化した直後、加熱炉と流
動層炉の接合部に堆積した流動層用砂の温度を50〜200
℃に保ち、かつ接合部で1〜5秒保持した後、鋼線のTT
T曲線の鼻温度より0〜20℃低く温度を保った流動層炉
内で変態完了させることを特徴とする高炭素鋼線の流動
層パテンティング処理方法を要旨とする。
以下、本発明の限定理由を説明する。
被パテンティング鋼線の線径を3mm以下の高炭素鋼線
と限定する理由 線径が3mmより太くなると冷速が小さくなり、本発明
の流動層パテンティング処理方法では鉛パテンティング
並みの微細組織が得られなくなるため、線径3mm以下に
限定した。
加熱炉と流動層炉の接合部に堆積した流動層用砂の温
度を50〜200℃に保ち、接合部で1〜5秒保持する限定
理由 堆積した流動層用砂の温度が50℃以下であると、流動
層に入る前に鋼線が過冷却され表層にベイナイトなどの
異常組織が発生しやすく、また200℃以上では流動層に
入る前の鋼線の冷却が十分でなく鉛パテンティング並み
の微細組織が得られないため、堆積した流動層用砂の温
度を50〜200℃と限定した。
また、接合部での保持時間は1秒以下では鋼線の冷却
が十分でないため鉛パテンティング並みの微細組織が得
られず、5秒以上では表層部が過冷となり異常組織の発
生がおきるために1〜5秒と限定した。
さらにこれら二つの事項、すなわち堆積した流動層用
砂の温度を50〜200℃に設定することと接合部での保持
時間を1〜5秒とすることは夫々独立では本目的は達成
できず、必ず両条件を同時に満足しなければならない。
両条件の一方のみ満足しただけでは、やはり上記同様に
鉛パテンティング並みの微細組織が得られないことによ
る。
流動層温度を鋼線のTTT曲線の鼻温度よりも0〜20℃
低く保つとした限定理由 流動層温度をTTT曲線の鼻温度より0℃以上とすると
変態発熱の影響でTTT曲線の鼻温度よりも実温度が高く
なり鉛パテンティング並みの微細組織が得られなくな
り、さらに20℃以下にすると逆に温度が低すぎて異常組
織が発生しやすい領域になるため、流動層温度は鋼線の
TTT曲線の鼻温度よりも0〜20℃低く保つことと限定し
た。
以下、本発明を第1〜3図に示す一実施例に基づき説
明する。
第1図は本発明に関わる流動層パテンティング装置の
一部切り欠き正面図で、1はアンコイラー、2は加熱
炉、3は加熱炉2と流動層炉との接合部、4は流動層
炉、5は巻き取りボビン、6は処理鋼線、7は流動層炉
4内の流動層砂、8は接合部3内に堆積した流動層用
砂、9は水冷管、10は冷却水で、処理鋼線7はアンコイ
ラー1から巻き取りボビン5で巻き取る過程で接合部3
内に堆積した流動層用砂8と流動層砂7との接触により
所望のパテンティングを行う。
本発明はこの状態で特に第2図に一部切り欠き拡大図
に示すとおり、接合部3に設けた水冷管9に冷却水10を
供給して接合部に堆積した流動層用砂8の温度を調節
し、第3図に示す冷却曲線に基づき、線径3mm以下の高
炭素鋼線の流動層パテンティング処理を可能とした。
すなわち本発明は、第1図の加熱炉2においてオース
テナイト化後の鋼線の中心温度は一般に800〜1000℃に
なっているため、これを一般的な炭素鋼の変態温度500
〜600℃に保持している流動層炉4内に導入した場合、
鉛パテンティングに比べ流動層パテンティングの冷却能
力が低いため、第3図に示す鉛パテンティング並みの急
冷領域13に入らない。つまり、上記温度範囲内の流動層
に中心温度800〜1000℃の鋼線を直接導入する前になん
らかの温度低下工程が必要である。
そのため本発明では、第1、2図に示す加熱炉と流動
層炉間の接合部3に堆積した50〜200℃の流動層用砂8
内にて1〜5秒間鋼線6を保持させることにより急冷を
行った。加熱した鋼線が接合部に堆積した流動層用砂を
通過するに従い流動層用砂温度の上昇がおこるが、200
℃を越えると急冷効果が弱くなるため流動層用砂の温度
は第2図で示した水冷管9などによる冷却方法により、
200℃以下に抑えなければならない。さらに堆積した流
動層用砂の温度が50℃以下では鋼線の表層に異常組織が
発生するために50℃以上とした。
さらに本発明では、流動層温度を鋼線のTTT曲線の鼻
温度より0〜20℃低く保つことを特徴とするが、これは
変態発熱の影響を考慮したものであり流動層温度をTTT
曲線の鼻温度より0℃以上とすると変態発熱の影響でTT
T曲線の鼻温度よりも実温度が高くなり微細パーライト
組織が得られなくなり、さらに20℃以下にすると逆に温
度が低すぎて異常組織が発生しやすい領域になるため、
このように限定した。
実施例により本発明の効果を示す。
[実施例] 線径3mm以下のSWRS82A鋼線を用い、第1図に示すよう
に直径が500mmのアンコイラー1から各処理速度で送り
出し、加熱炉2、接合部3、流動層炉4を通過させてパ
テンティング処理した後直径500mmの巻き取りボビンに
て巻き取りながら本発明の流動層パテンティング処理を
行った。
使用した装置は、加熱炉長さ5m、接合部長さ0.3m、流
動層炉長さ2.5mであり、線速は無段変速にて調節できる
ものである。また、接合部内には流動層用砂が鋼線の通
過領域を覆うだけ十分に堆積しており、水冷管に冷却水
を通すことにより温度調節を行った。加熱炉はArガス雰
囲気で温度を950℃一定とし、流動層用砂および流動砂
は100meshのジルコンサンドを用い、流動層の温度調整
はプロパンガスとエアー吹き込みにより±3℃に抑え
た。また使用したサンプルのTTT曲線の鼻温度は550℃で
ある。
第1表に各種試験条件とその結果を、本発明例と比較
例を合わせて示す。
比較例1では、線径が3mmを越えるため冷速が小さく
鉛パテンティング並みの微細組織が得られないため、鉛
パテンティング並みの特性が得られなかった。
比較例2では、堆積した流動層用砂の温度が200℃以
上であるために、やはり鉛パテンティング並みの微細組
織が得られなかった。
比較例3では堆積した流動層用砂の温度が50℃より低
いために過冷による表層ベイナイトなどの異常組織が発
生したために鉛パテンティング並みの特性が得られなか
った。
比較例4では、接合部保持時間が5秒以上のため、過
冷による表層ベイナイトなどの異常組織が発生したため
に鉛パテンティング並みの特性が得られなかった。
比較例5では、接合部保持時間が1秒以下のために急
冷効果が弱く、鉛パテンティング並みの微細組織が得ら
れないため鉛パテンティング並みの特性が得られなかっ
た。
比較例6では、流動層温度が鋼線のTTT曲線の鼻温度5
50℃よりも高いために変態発熱の影響で実温度が550℃
よりも高くなり、鉛パテンティング並みの微細組織が得
られないため鉛パテンティング並みの特性が得られなか
った。
比較例7では、流動層温度が鋼線のTTT曲線の鼻温度5
50℃よりも20℃以上低いためにベイナイト組織が発生
し、鉛パテンティング並みの特性が得られなかった。
これに対し、本発明の実施例はいずれも鉛パテンティ
ング並みの特性を示しており、鉛パテンティング並みの
特性が得られる有力な高炭素鋼線の流動層パテンティン
グ処理方法であることがわかる。
[発明の効果] 本発明は以上のとおり実施できるので、既述の技術的
課題を達成する顕著な効果がある。換言すると、本発明
により細い線径においても流動層パテンティング処理が
可能となり、鉛パテンティング処理が公害上問題になっ
ている昨今、その工業的メリットは大きい。
【図面の簡単な説明】
第1図は流動層パテンティング装置正面図、第2図は接
合部を拡大した図である。また第3図はSWRS82A鋼に本
発明の流動層パテンティング処理方法を適用したときの
温度覆歴曲線とSWRS82A鋼のTTT曲線図を重ねて比較した
ものである。 1……アンコイラー、2……加熱炉、3……接合部、4
……流動層炉、5……巻き取りボビン、6……処理鋼
線、7……流動層砂、8……堆積した流動層用砂、9…
…水冷管、10……冷却水、11……流動層温度を鋼線のTT
T曲線の鼻温度より20℃低く保持したときの温度覆歴曲
線、12……流動層温度を鋼線のTTT曲線の鼻温度で保持
したときの温度覆歴曲線、13……鉛パテンティング処理
範囲
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−37013(JP,A) 特開 昭61−276938(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21D 9/52 C21D 9/64 C21D 1/74 C21D 9/567 C21D 1/53 F27B 15/00

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】3mm以下の高炭素鋼線を流動層パテンティ
    ング処理するにあたり、加熱炉でオーステナイト化した
    直後、加熱炉と流動層炉の接合部に堆積した流動層用砂
    温度を50〜200℃に保ち、かつ接合部で1〜5秒保持し
    た後、鋼線のTTT曲線の鼻温度より0〜20℃低く温度を
    保った流動層炉内で変態完了させることを特徴とする高
    炭素鋼線の流動層パテンティング処理方法。
JP29185790A 1990-10-31 1990-10-31 高炭素鋼線の流動層パテンティング処理方法 Expired - Lifetime JP2815695B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29185790A JP2815695B2 (ja) 1990-10-31 1990-10-31 高炭素鋼線の流動層パテンティング処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29185790A JP2815695B2 (ja) 1990-10-31 1990-10-31 高炭素鋼線の流動層パテンティング処理方法

Publications (2)

Publication Number Publication Date
JPH04168230A JPH04168230A (ja) 1992-06-16
JP2815695B2 true JP2815695B2 (ja) 1998-10-27

Family

ID=17774322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29185790A Expired - Lifetime JP2815695B2 (ja) 1990-10-31 1990-10-31 高炭素鋼線の流動層パテンティング処理方法

Country Status (1)

Country Link
JP (1) JP2815695B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2310544B1 (en) * 2008-07-11 2018-10-17 Aktiebolaget SKF A method for manufacturing a bearing component

Also Published As

Publication number Publication date
JPH04168230A (ja) 1992-06-16

Similar Documents

Publication Publication Date Title
JP2815695B2 (ja) 高炭素鋼線の流動層パテンティング処理方法
JPWO2016027467A1 (ja) 熱処理レールの製造方法および製造装置
JP2017066435A (ja) 高強度鋼線の製造方法
EP0582180A1 (en) Heat treatment process for wire rods
JP2544867B2 (ja) 過共析鋼線材の製造方法
JP2768152B2 (ja) 高強度,高延性を有する熱間圧延炭素鋼線材の製造方法
JPH0578754A (ja) Crを含有する高炭素鋼線の流動層パテンテイング処理 方法
JP5313599B2 (ja) 鋼線材の熱処理方法
JP2564535B2 (ja) 熱間圧延鋼線材の直接球状化処理方法
JPS54143716A (en) Manufacture of directly heat treated wire rod
JPS5830938B2 (ja) 高加工度冷間引抜き用高炭素鋼線材の連続熱処理方法
KR100544644B1 (ko) 고강도 고탄소강 선재의 제조방법
JP3864492B2 (ja) 鋼材の球状化焼きなまし方法
KR100347575B1 (ko) 마르텐사이트발생을억제하기위한고탄소선재의단계냉각법
JPS6343445B2 (ja)
JP2761046B2 (ja) 伸線性に優れたSi―Cr系ばね用線材の製造方法
JPH06100934A (ja) 伸線用高炭素鋼線素材の製造方法
JP2742967B2 (ja) ベイナイト線材の製造法
SU449099A1 (ru) Способ термической обработки стальных прокатных изделий
JPS62139817A (ja) 迅速球状化処理が可能な鋼線材の製造方法
JP2001192771A (ja) 細径熱間圧延線材
JPS59136423A (ja) 球状化組織を有する棒鋼と線材の製造方法
SU943300A1 (ru) Способ обработки заготовок из углеродистой и легированной стали
JPH0160532B2 (ja)
JPH04362140A (ja) 線材の直接焼入れ方法