JP2024075611A - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP2024075611A
JP2024075611A JP2024033925A JP2024033925A JP2024075611A JP 2024075611 A JP2024075611 A JP 2024075611A JP 2024033925 A JP2024033925 A JP 2024033925A JP 2024033925 A JP2024033925 A JP 2024033925A JP 2024075611 A JP2024075611 A JP 2024075611A
Authority
JP
Japan
Prior art keywords
wiring
transistor
conductive layer
layer
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024033925A
Other languages
English (en)
Other versions
JP2024075611A5 (ja
Inventor
舜平 山崎
Shunpei Yamazaki
肇 木村
Hajime Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2024075611A publication Critical patent/JP2024075611A/ja
Publication of JP2024075611A5 publication Critical patent/JP2024075611A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • G02F1/13685Top gates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/465Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/4763Deposition of non-insulating, e.g. conductive -, resistive -, layers on insulating layers; After-treatment of these layers
    • H01L21/47635After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • H01L27/1244Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits for preventing breakage, peeling or short circuiting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0417Special arrangements specific to the use of low carrier mobility technology
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0297Special arrangements with multiplexing or demultiplexing of display data in the drivers for data electrodes, in a pre-processing circuitry delivering display data to said drivers or in the matrix panel, e.g. multiplexing plural data signals to one D/A converter or demultiplexing the D/A converter output to multiple columns
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Vehicle Body Suspensions (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

Figure 2024075611000001
【課題】大型化および低価格に適した表示装置およびその作製方法を提供する。
【解決手段】表示部はm行n列(mおよびnは、それぞれ2以上の整数)に配置された複数の画素を有し、複数の画素のそれぞれは、トランジスタと、表示素子と、を有し、i行目に配置された複数の画素は、i本目(iは1以上m以下の整数)のゲート線と電気的に接続され、表示装置は1列あたりg本のソース線を有し、j列目(jは1以上n以下の整数)に配置されたg本のソース線、およびj+1列目(jは1以上n以下の整数)に配
置されたg本のソース線のうち、同じ極性の信号を供給するソース線がg本隣接して設けられていることを特徴とする表示装置である。
【選択図】図24

Description

本発明の一態様は、表示装置に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明
の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、
電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、またはそれらの製造方
法、を一例として挙げることができる。
なお、本明細書等において、半導体装置とは、半導体特性を利用することで機能しうる装
置全般を指す。トランジスタ、半導体回路、演算装置、記憶装置等は半導体装置の一態様
である。また、撮像装置、電気光学装置、発電装置(薄膜太陽電池、有機薄膜太陽電池等
を含む)、および電子機器は半導体装置を有している場合がある。
近年、高解像度の表示装置が求められている。例えば家庭用のテレビジョン装置(テレビ
、またはテレビジョン受信機ともいう)では、解像度がフルハイビジョン(画素数192
0×1080)であるものが主流となっているが、4K(画素数3840×2160)や
、8K(画素数7680×4320)のように、高解像度な表示装置の開発が進められて
いる。
また、表示装置の一つに、液晶表示装置が知られている。透過型の液晶表示装置は、液晶
の光学変調作用を利用してバックライトからの光の透過量を制御することでコントラスト
を表現し、画像表示を行うものである。
また、電界効果トランジスタの一種として、絶縁表面を有する基板上に形成された半導体
膜を用いてチャネル形成領域が形成される薄膜トランジスタが知られている。特許文献1
には、薄膜トランジスタのチャネル形成領域に用いられる半導体膜に、非晶質シリコンを
用いる技術が開示されている。例えば液晶表示装置の場合、薄膜トランジスタは各画素の
スイッチングトランジスタとして用いられる。
特開2001-053283号公報
テレビジョン装置やモニタ装置等の表示装置の場合、解像度が高いほど、または画面サイ
ズが大きいほど、当該表示装置が有するトランジスタ等の負荷の増大が顕著となる。これ
により、特にトランジスタの電界効果移動度が低い場合は、高い駆動周波数で動作させる
ことが難しくなる場合がある。
本発明の一態様は、高解像度な表示装置およびその作製方法を提供することを課題の一と
する。または、大型化に適した表示装置およびその作製方法を実現することを課題の一と
する。または、低価格の表示装置およびその作製方法を提供することを課題の一とする。
または、信頼性の高い表示装置およびその作製方法を提供することを課題の一とする。ま
たは、金属酸化物等を用いた表示装置およびその作製方法を提供することを課題の一とす
る。または、新規な表示装置およびその作製方法を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一
態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題
は、明細書、図面、請求項等の記載から抽出することが可能である。
本発明の一態様は、複数のゲート線と、複数のソース線と、表示部と、を有する表示装置
であって、表示部は、m行n列(mおよびnは、それぞれ2以上の整数)に配置された複
数の画素を有し、複数の画素のそれぞれは、トランジスタと、表示素子と、を有し、i行
目に配置された複数の画素は、i本目(iは1以上m以下の整数)のゲート線と電気的に
接続され、表示装置は、1列あたりg本のソース線を有し、j列目(jは1以上n以下の
整数)に配置されたg本のソース線、およびj+1列目(jは1以上n以下の整数)に配
置されたg本のソース線のうち、同じ極性の信号を供給するソース線がg本隣接して設け
られていることを特徴とする表示装置である。なお、gは3以上が好ましい。
上記において、隣接して設けられたg本のソース線のうち、少なくとも一はj列目の複数
の画素の一部と電気的に接続され、少なくとも他の一はj+1列目の複数の画素の一部と
電気的に接続される。また、1フレーム期間中、隣接して設けられたg本のソース線に同
じ極性の信号が供給される。また、複数のゲート線は、f本毎に、f本同時に信号が供給
される。なお、fは3以上が好ましい。
上記表示装置は、ドット反転駆動で動作することが好ましい。
トランジスタの半導体層は、非晶質シリコンを含んでもよいし、金属酸化物を含んでもよ
い。
本発明の一態様によれば、大型化に適した表示装置およびその作製方法を提供できる。ま
たは、高解像度な表示装置およびその作製方法を提供できる。または、低価格の表示装置
およびその作製方法を提供できる。または、信頼性の高い表示装置およびその作製方法を
提供できる。または、金属酸化物等を用いた表示装置およびその作製方法を提供できる。
または、新規な表示装置およびその作製方法を提供できる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一
態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は
、明細書、図面、請求項等の記載から抽出することが可能である。
表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の構成例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の構成例を説明する図。 表示部の構成例を説明する図。 表示部の構成例を説明する図。 表示部の構成例を説明する図。 表示部の構成例を説明する図。 表示部の構成例を説明する図。 表示部の構成例を説明する図。 表示部の構成例を説明する図。 表示部の構成例を説明する図。 表示部の構成例を説明する図。 駆動回路の構成例を説明する図。 駆動回路の構成例を説明する図。 デマルチプレクサと表示部の接続例を説明する図。 デマルチプレクサと表示部の接続例を説明する図。 デマルチプレクサと表示部の接続例を説明する図。 デマルチプレクサと表示部の接続例を説明する図。 記憶回路の一例を説明する図。 トランジスタの構成例を説明する図。 トランジスタの構成例を説明する図。 トランジスタの構成例を説明する図。 トランジスタの構成例を説明する図。 トランジスタの構成例を説明する図。 トランジスタの構成例を説明する図。 表示パネルの構成例を説明する図。 レーザ照射方法およびレーザ結晶化装置を説明する図。 レーザ照射方法を説明する図。 電子機器の構成例を説明する図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定さ
れず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変
更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形
態の記載内容に限定して解釈されるものではない。
なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には
同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様
の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
なお、本明細書で説明する各図において、各構成の大きさ、層の厚さ、または領域は、明
瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない
なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるた
めに付すものであり、数的に限定するものではない。
トランジスタは半導体素子の一種であり、電流や電圧の増幅や、導通または非導通を制御
するスイッチング動作等を実現することができる。本明細書におけるトランジスタは、I
GFET(Insulated Gate Field Effect Transis
tor)や薄膜トランジスタ(TFT:Thin Film Transistor)を
含む。
また、「ソース」や「ドレイン」の機能は、異なる極性のトランジスタを採用する場合や
、回路動作において電流の方向が変化する場合等には入れ替わることがある。このため、
本明細書においては、「ソース」や「ドレイン」の用語は、入れ替えて用いることができ
るものとする。
また、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するもの
」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの
」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。
例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジスタ
等のスイッチング素子、抵抗素子、コイル、容量素子、その他の各種機能を有する素子等
が含まれる。
本明細書等において、表示装置の一態様である表示パネルは表示面に画像等を表示(出力
)する機能を有するものである。したがって表示パネルは出力装置の一態様である。
また、本明細書等では、表示パネルの基板に、例えばFPC(Flexible Pri
nted Circuit)もしくはTCP(Tape Carrier Packag
e)等のコネクターが取り付けられたもの、または基板にCOG(Chip On Gl
ass)方式等によりICが実装されたものを、表示パネルモジュール、表示モジュール
、または単に表示パネル等と呼ぶ場合がある。
また、本明細書等において、タッチセンサは指やスタイラス等の被検知体が触れる、押圧
する、または近づくこと等を検出する機能を有するものである。またその位置情報を検知
する機能を有していてもよい。したがってタッチセンサは入力装置の一態様である。例え
ばタッチセンサは1以上のセンサ素子を有する構成とすることができる。
また、本明細書等では、タッチセンサを有する基板を、タッチセンサパネル、または単に
タッチセンサ等と呼ぶ場合がある。また、本明細書等では、タッチセンサパネルの基板に
、例えばFPCもしくはTCP等のコネクターが取り付けられたもの、または基板にCO
G方式等によりICが実装されたものを、タッチセンサパネルモジュール、タッチセンサ
モジュール、センサモジュール、または単にタッチセンサ等と呼ぶ場合がある。
なお、本明細書等において、表示装置の一態様であるタッチパネルは表示面に画像等を表
示(出力)する機能と、表示面に指やスタイラス等の被検知体が触れる、押圧する、また
は近づくこと等を検出するタッチセンサとしての機能と、を有する。したがってタッチパ
ネルは入出力装置の一態様である。
タッチパネルは、例えばタッチセンサ付き表示パネル(または表示装置)、タッチセンサ
機能つき表示パネル(または表示装置)とも呼ぶことができる。
タッチパネルは、表示パネルとタッチセンサパネルとを有する構成とすることもできる。
または、表示パネルの内部または表面にタッチセンサとしての機能を有する構成とするこ
ともできる。
また、本明細書等では、タッチパネルの基板に、例えばもしくはTCP等のコネクターが
取り付けられたもの、または基板にCOG方式等によりICが実装されたものを、タッチ
パネルモジュール、表示モジュール、または単にタッチパネル等と呼ぶ場合がある。
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置について説明する。
本発明の一態様は、複数の画素がマトリクス状に設けられた表示部を有する表示装置であ
る。表示部には、選択信号が供給される複数の配線(ゲート線、または走査線ともいう)
と、画素に書き込む信号(ビデオ信号等ともいう)が供給される複数の配線(ソース線、
信号線、データ線等ともいう)が設けられる。
複数のゲート線は行方向(「第1の方向」ともいう。)に沿って延在し、複数のソース線
は列方向(「第2の方向」ともいう。)に沿って延在する。表示部17において、複数の
ゲート線の少なくとも一つと、複数のソース線の少なくとも一つは、互いに重なる領域を
有する。
1つの画素は、少なくとも1つのトランジスタと、1つの表示素子と、を有する。表示素
子は画素電極としての機能を有する導電層を有し、当該導電層は、トランジスタのソース
またはドレインの一方と電気的に接続する。また、トランジスタは、ゲートがゲート線と
電気的に接続し、ソースまたはドレインの他方がソース線と電気的に接続する。
ここで、隣接する2本以上のゲート線には、同じ選択信号が供給されることが好ましい。
すなわち、これらゲート線の選択期間が同一となることが好ましい。特に3本のゲート線
を一組とすると、駆動回路の構成を簡略化できるため好ましい。
2本のゲート線に同じ選択信号が供給される場合、列方向に隣接する2つの画素が同時に
選択される。そのため、これら2つの画素には、それぞれ異なるソース線を接続する構成
とする。すなわち、列ごとに2本のソース線が設けられた構成とする。
列ごとに2本のソース線を設けた構成とすることで、一水平期間を従来よりも長くするこ
とができる。例えば2本のゲート線に同じ選択信号が供給される場合では、一水平期間の
長さを2倍にすることができる。また、3本のゲート線に同じ選択信号が供給される場合
では、一水平期間の長さを3倍にすることができる。さらに、1本のソース線と電気的に
接続する画素11の数が低減されるため、ソースドライバの出力負荷を低減することがで
きる。
これにより、解像度が4Kや8K等といった極めて高解像度の表示装置であっても、電界
効果移動度の低いトランジスタを用いて動作させることが可能となる。もちろん、8Kを
超える解像度(例えば、10K、12Kまたは16K等)の表示装置であっても、本発明
の一態様を用いることで、動作させることが可能となる。また、本発明の一態様は、画面
サイズが対角50インチ以上、対角60インチ以上、または対角70インチ以上の大型の
表示装置を実現し易くなる。
列ごとに4本のソース線を設ける構成とする場合、画素の左側に2本のソース線を設け、
画素の右側に2本のソース線を設けることができる。つまり、画素の左外側、左内側、右
内側、右外側にそれぞれソース線を設けることができる。当該構成では、画素の左外側の
ソース線と電気的に接続されるトランジスタのソースが、画素の左内側のソース線と交差
する。また、当該構成では、画素の右外側のソース線と電気的に接続されるトランジスタ
のソースが、画素の右内側のソース線と交差する。本発明の一態様では、画素電極と同一
の工程で形成することができる導電層と、トランジスタのゲートと同一の工程で形成する
ことができる導電層と、を用いて、画素の左外側のソース線と電気的に接続されるトラン
ジスタのソースと、画素の左内側のソース線と、を短絡しない構成とする。また、本発明
の一態様では、画素電極と同一の工程で形成することができる導電層と、トランジスタの
ゲートと同一の工程で形成することができる導電層と、を用いて、画素の右外側のソース
線と電気的に接続されるトランジスタのソースと、画素の右内側のソース線と、を短絡し
ない構成とする。これにより、列ごとに4本のソース線を設けた構成とした場合であって
も、列ごとに1本または2本のソース線を設けた構成とした場合と同様の工程数、具体的
にはフォトリソグラフィ工程の工程数を増やすことなく4本のソース線を設けることがで
きる。つまり、フォトマスクの数を増やすことなく4本のソース線を設けることができる
。これにより、表示装置の作製コストの増加を抑制することができる。
以下では、表示装置のより具体的な例について、図面を参照して説明する。
<表示装置の構成例>
図1(A)に、本発明の一態様の表示装置10のブロック図を示している。表示装置10
は、表示部17と、ゲートドライバ12aと、ゲートドライバ12bと、ソースドライバ
13aと、ソースドライバ13bと、を有する。表示部17には、複数の画素11がm行
n列のマトリクス状に設けられる。mおよびnは、それぞれ2以上の整数である。なお、
本明細書等において、i行j列目の画素11を画素11(i,j)と記載する。iは2以
上m以下の整数である。jは2以上n以下の整数である。なお、ゲートドライバおよびソ
ースドライバの一方または双方を「駆動回路」という場合がある。
図1(A)では、ゲートドライバ12aと、ゲートドライバ12bと、が表示部17を挟
んで対向する位置に設けられる例を示している。ゲートドライバ12aおよびゲートドラ
イバ12bには、複数の配線GLが接続される。本明細書等では、k本目の配線GL
を配線GL(k)と示す。kは1以上の整数である。
図1(A)では、配線GL(k)は、2本の配線GL(配線GL(i)、配線GL(i
+1))と電気的に接続されている。したがって、これら2本の配線GLには同じ選択信
号が与えられる。なお、配線GLおよび配線GLは、ゲート線としての機能を有する。
本明細書等では、i本目の配線GLを配線GL(i)と示す。
ゲートドライバ12aおよびゲートドライバ12bは、同一の配線GLに同一の選択信
号を供給する機能を有する。これにより、表示装置10がゲートドライバを1個だけ有す
る場合より、配線GLの充放電時間を短くすることができる。これにより、解像度が4
Kや8K等といった極めて高解像度の表示装置であっても、電界効果移動度の低いトラン
ジスタを用いて動作させることが可能となる。また、画面サイズが対角50インチ以上、
対角60インチ以上、または対角70インチ以上の大型の表示装置を実現し易くなる。
図1(A)では、ソースドライバ13aとソースドライバ13bが表示部17を挟んで設
けられる例を示している。ソースドライバ13aおよびソースドライバ13bには、2×
n本の配線SLが接続される。図1(A)では、配線SLは1つの画素列に対して2本設
けられている。また、1つの画素列に対してg本(gは2以上の整数)の配線SLを設け
る場合、ソースドライバ13aおよびソースドライバ13bには、g×n本の配線SLが
接続される。
図1(A)では、j列目の画素列に対応する2本の配線SLを配線SL(j)、配線S
(j)と示している。異なる配線SLには、それぞれ異なる信号を供給することがで
きる。例えば、配線SL(j)、および配線SL(j)には、それぞれ異なる信号を
供給することができる。なお、配線SLは、ソース線としての機能を有する。
ソースドライバ13aおよびソースドライバ13bは、同一の配線SLに同一の信号を供
給する機能を有する。これにより、表示装置10がソースドライバを1個だけ有する場合
より、配線SLの充放電時間を短くすることができる。これにより、解像度が4Kや8K
等といった極めて高解像度の表示装置であっても、電界効果移動度の低いトランジスタを
用いて動作させることが可能となる。また、画面サイズが対角50インチ以上、対角60
インチ以上、または対角70インチ以上の大型の表示装置を実現し易くなる。
図1(A)では、ゲートドライバとソースドライバをそれぞれ2つずつ配置した例を示し
たが、ゲートドライバとソースドライバの一方または両方を1つだけ配置する構成として
もよい。
1つの画素11は1つの色に対応する画素である。したがって、複数の画素が呈する光の
混色を利用してカラー表示を行う場合には、画素11を副画素とも呼ぶことができる。
また、赤色光を制御する画素11、緑色光を制御する画素11、および青色光を制御する
画素11をまとめて1つの画素として機能させ、それぞれの画素11の発光量(発光輝度
)を制御することで、フルカラー表示を実現することができる。よって、当該3つの画素
11はそれぞれが副画素として機能する。すなわち、3つの副画素は、それぞれが赤色光
、緑色光、または青色光の、光量などを制御する。なお、3つの副画素それぞれが制御す
る光の色は、赤(R)、緑(G)、青(B)の組み合わせに限らず、シアン(C)、マゼ
ンタ(M)、黄(Y)であってもよい。
また、4つの副画素をまとめて1つの画素として機能させてもよい。例えば、赤色光、緑
色光、青色光をそれぞれ制御する3つの副画素に、白色光を制御する副画素を加えてもよ
い。白色光を制御する副画素を加えることで、表示領域の輝度を高めることができる。ま
た、赤色光、緑色光、青色光をそれぞれ制御する3つの副画素に、黄色光を制御する副画
素を加えてもよい。また、シアン色光、マゼンタ色光、黄色光をそれぞれ制御する3つの
副画素に、白色光を制御する副画素を加えてもよい。
1つの画素として機能させる副画素の数を増やし、赤、緑、青、シアン、マゼンタ、およ
び黄などの光を制御する副画素を適宜組み合わせて用いることにより、中間調の再現性を
高めることができる。よって、表示品位を高めることができる。
また、画素を1920×1080のマトリクス状に配置すると、いわゆるフルハイビジョ
ン(「2K解像度」、「2K1K」、または「2K」などとも言われる。)の解像度でフ
ルカラー表示可能な表示装置10を実現することができる。また、例えば、画素を384
0×2160のマトリクス状に配置すると、いわゆるウルトラハイビジョン(「4K解像
度」、「4K2K」、または「4K」などとも言われる。)の解像度でフルカラー表示可
能な表示装置10を実現することができる。また、例えば、画素を7680×4320の
マトリクス状に配置すると、いわゆるスーパーハイビジョン(「8K解像度」、「8K4
K」、または「8K」などとも言われる。)の解像度でフルカラー表示可能な表示装置1
0を実現することができる。画素を増やすことで、16Kや32Kの解像度でフルカラー
表示可能な表示装置10を実現することも可能である。
また、列方向に配置する複数の画素は、それぞれ同じ色を呈する画素であることが好まし
い。表示素子として液晶素子を用いる場合には、列方向に配置する画素には、液晶素子と
重ねて同じ色の光を透過する着色層を設けることが好ましい。
ここで、電界効果移動度の低いトランジスタを適用する際、表示装置の表示部を複数の表
示領域に分割して駆動する方法が挙げられる。しかし上記方法の場合、駆動回路の特性ば
らつき等により、分割された表示領域の境界部が視認されてしまい、視認性が低下してし
まう場合がある。また、入力される画像データをあらかじめ分割するための画像処理等が
必要となり、高速かつ大規模な画像処理装置が必要になる。
一方、本発明の一態様の表示装置は、電界効果移動度が比較的低いトランジスタを用いた
場合であっても、表示を複数の表示領域に分割することなく駆動することが可能となる。
また、図1(B)に示すように、配線GLを設けずに、ゲートドライバ12aおよびゲ
ートドライバ12b、と配線GLと、を接続してもよい。
表示装置10には、保護回路を設けてもよい。図2は、図1(A)に示す構成の表示装置
10に、保護回路18a、保護回路18b、保護回路19a、および保護回路19bを設
けた場合のブロック図を示す。配線GLは、保護回路18aまたは保護回路18bと電
気的に接続されている。保護回路19aおよび保護回路19bは、配線SL(配線SL
、配線SL)と電気的に接続されている。
保護回路18aは、ゲートドライバ12a側に設けることができ、保護回路18bは、ゲ
ートドライバ12b側に設けることができる。つまり、保護回路18aと、保護回路18
bは、表示部17を挟んで対向する位置に設けることができる。また、保護回路19aは
、ソースドライバ13a側に設けることができ、保護回路19bは、ソースドライバ13
b側に設けることができる。つまり、保護回路19aと、保護回路19bは、表示部17
を挟んで対向する位置に設けることができる。
表示装置10に保護回路を設けることにより、ノイズ、サージまたは静電気放電等から画
素11を保護することができる。これにより、表示装置10の信頼性を高めることができ
る。
図1(A)では、1つの画素列あたりソース線を2本設ける例を示したが、本発明の一態
様はこれに限らない。図3に、1つの画素列あたりソース線を3本(配線SL、配線S
、配線SL)設ける構成を示す。図3に示す表示装置10において、配線GL
k)は、3本の配線GL(配線GL(i)、配線GL(i+1)、配線GL(i+2))
と電気的に接続され、これら3本の配線には同じ選択信号が与えられる。
図4に、1つの画素列あたりソース線を4本(配線SL、配線SL、配線SL、配
線SL)設ける構成を示す。図4に示す表示装置10において、配線GL(k)は、
4本の配線GL(配線GL(i)、配線GL(i+1)、配線GL(i+2)、配線GL
(i+3))と電気的に接続され、これら4本の配線には同じ選択信号が与えられる。な
お、本発明の一態様において、1つの画素列あたりソース線を5本以上設けてもよいこと
は言うまでもない。
図5では、ソースドライバ13aとソースドライバ13bを、それぞれ1つの画素列あた
り1個ずつ配置した例を示している。つまり、画素列と同数のソースドライバ13aが、
矩形の表示部17の一辺に沿って設けられ、ソースドライバ13aと表示部17を挟んで
対向した位置に、画素列と同数のソースドライバ13bが設けられる。図5では、ゲート
ドライバ12aとゲートドライバ12bを、それぞれ1本の配線GLあたり1個ずつ配
置した例を示している。図5は、1つの画素列あたりソース線を4本設ける表示装置10
において、画素行を4で割った数のゲートドライバ12aを矩形の表示部17の一辺に沿
って設け、ゲートドライバ12aと表示部17を挟んで対向した位置に、画素行を4で割
った数のゲートドライバ12bを設ける例を示している。図5に示す構成とすることでゲ
ートドライバの負荷を軽減し、大型の表示装置であっても配線抵抗に起因した電位降下に
伴う表示ムラを軽減することができる。
表示装置10には、基準電圧生成回路を設けることができる。基準電圧生成回路は、ソー
スドライバが供給する信号の基準電圧を生成する機能を有する。基準電圧生成回路として
、例えばガンマリファレンス生成回路とすることができる。
図6は、図5に示す構成の表示装置10に、ソースドライバ13aに基準電圧を供給する
機能を有する基準電圧生成回路16aと、ソースドライバ13bに基準電圧を供給する機
能を有する基準電圧生成回路16bと、が設けられた場合を示している。表示装置10を
図6に示す構成とすることにより、各ソースドライバ13aから生成される信号の電圧の
精度、および各ソースドライバ13bから生成される信号の電圧の精度を高めることがで
きる。
図7は、図5に示す構成の表示装置10に、ソースドライバ13aおよびソースドライバ
13bに基準電圧を供給する機能を有する基準電圧生成回路16を設ける例を示している
。表示装置10を図7に示す構成とした場合であっても、各ソースドライバ13aから生
成される信号の電圧の精度、および各ソースドライバ13bから生成される信号の電圧の
精度を高めることができる。
表示装置の画面サイズの大型化ならびに高精細化は、配線抵抗の増大および寄生容量の増
大を生じやすい。配線抵抗の増大は、配線終端への信号伝達の遅れ、信号波形のなまりな
どを引き起こし、結果として、表示ムラや階調不良などの表示品位の低下、消費電力の増
加などが生じてしまう。また、配線に生じる寄生容量の増大も、表示品位の低下、消費電
力の増加などの一因となる。
配線抵抗および寄生容量を低減するため、配線SLを配線SLaと配線SLbのように半
分にわけてもよい(図8(A)参照。)。図8(A)に示すブロック図では、表示部17
のうち、配線SLaを含む領域を表示部17_1と示し、配線SLbを含む領域を表示部
17_2と示している。
また、配線SLaはソースドライバ13aと電気的に接続され、配線SLbはソースドラ
イバ13bと電気的に接続される。ソースドライバ13aは、配線SLaへ信号を供給し
、ソースドライバ13bは、配線SLbへ信号を供給する。
配線SLを半分に分けることで、配線抵抗と寄生容量をそれぞれ1/2とすることができ
る。よって、信号の遅延やなまりに与える影響を1/4に低減することができる。よって
、表示装置の表示品位を高めることができる。また、ソースドライバへの負荷を軽減する
ことができるため、表示装置の消費電力を低減することができる。
さらに、配線GLを配線GLaと配線GLbのように半分にわけてもよい(図8B)参照
。)。図8(B)に示すブロック図では、表示部17のうち、配線SLaおよび配線GL
aを含む領域を表示部17_1と示し、配線SLbおよび配線GLaを含む領域を表示部
17_2と示し、配線SLaおよび配線GLbを含む領域を表示部17_3と示し、配線
SLbおよび配線GLbを含む領域を表示部17_4と示している。
また、配線GLaはゲートドライバ12aと電気的に接続され、配線GLbはゲートドラ
イバ12bと電気的に接続される。ゲートドライバ12aは、配線GLaへ信号を供給し
、ゲートドライバ12bは、配線GLbへ信号を供給する。
また、図8(A)および図8(B)に示したように表示部17を分割すると、境界部分が
分割縞として観察者に認識される場合がある。そこで、図9(A)に示すように、配線S
Lと接続するソースドライバ13aとソースドライバ13bを、1列おき、または複数列
おきに変えてもよい。例えば、奇数列の画素11と電気的に接続する配線SLはソースド
ライバ13aと電気的に接続し、偶数列の画素11と電気的に接続する配線SLはソース
ドライバ13bと電気的に接続させればよい。
図9(A)に示す構成とすることで、分割縞を無くし、かつ、配線終端への信号伝達の遅
れ、信号波形のなまりなどに起因する表示品位の低下を軽減することができる。
さらに、図9(B)に示すように、配線GLと接続するゲートドライバ12aとゲートド
ライバ12bを、1行おき、または複数行おきに変えてもよい。例えば、奇数行の画素1
1と電気的に接続する配線GLはゲートドライバ12aと電気的に接続し、偶数行の画素
11と電気的に接続する配線GLはゲートドライバ12bと電気的に接続させればよい。
〔画素の平面構成例〕
以下では、図5に示す表示装置10の表示部17に配置される画素の平面構成例について
説明する。
図10には、列方向に配置する4つの画素である画素11(i,j)、画素11(i+1
,j)、画素11(i+2,j)、および画素11(i+3,j)を含む回路図を示して
いる。
1つの画素11は、トランジスタ30と、液晶素子20と、容量素子60と、を有する。
配線S1乃至配線S4は、それぞれソース線に対応し、配線G1乃至配線G4は、それぞ
れゲート線に対応する。例えば、図10に示す場合では、配線S1は配線SL(j)に
対応し、配線S2は配線SL(j)に対応し、配線S3は配線SL(j)に対応し、
配線S4は配線SL(j)に対応する。また、図10に示す場合では、配線G1は配線
GL(i)に対応し、配線G2は配線GL(i+1)に対応し、配線G3は配線GL(i
+2)に対応し、配線G4は配線GL(i+3)に対応する。また、配線CSは容量素子
60の一方の電極と電気的に接続され、所定の電位が与えられる。
画素11(i,j)が有するトランジスタ30のソースまたはドレインの一方には、配線
S1が電気的に接続され、画素11(i,j)が有するトランジスタ30のゲートには、
配線G1が電気的に接続される。画素11(i+1,j)が有するトランジスタ30のソ
ースまたはドレインの一方には、配線S3が電気的に接続され、画素11(i+1,j)
が有するトランジスタ30のゲートには、配線G2が電気的に接続される。画素11(i
+2,j)が有するトランジスタ30のソースまたはドレインの一方には、配線S2が電
気的に接続され、画素11(i+2,j)が有するトランジスタ30のゲートには、配線
G3が電気的に接続される。画素11(i+3,j)が有するトランジスタ30のソース
またはドレインの一方には、配線S4が電気的に接続され、画素11(i+3,j)が有
するトランジスタ30のゲートには、配線G4が電気的に接続される。
また、トランジスタ30のソースまたはドレインの他方は、容量素子60の一方の電極、
および液晶素子20の一方の電極(画素電極)と電気的に接続される。容量素子60の他
方の電極には、共通電位が供給される。
トランジスタ30は、オン状態とオフ状態とを切り替えることにより、ソース線から供給
された信号の画素11への書き込みを制御する機能を有する。具体的には、トランジスタ
30をオン状態とすることにより、ソース線から供給された信号に対応する電荷を、当該
トランジスタ30と電気的に接続された容量素子60に書き込むことができる。また、ト
ランジスタ30をオフ状態とすることにより、容量素子60に書き込まれた電荷を保持す
ることができる。
図11(A)には、画素11(i+2,j)および画素11(i+3,j)のレイアウト
例を示している。
図11(A)等において、同一のレイヤーに設けられた構成要素には、同一のハッチング
を付している。なお、以降の図でも、同一のレイヤーに設けられた構成要素には、同一の
ハッチングを付す場合がある。
図11(A)に示すように、行方向(横方向)に配線G3、配線G4、および配線CSが
延在し、列方向(縦方向)に配線S1乃至配線S4が延在している。
画素11(i+2,j)の構成例について説明する。画素11(i+2,j)が有するト
ランジスタ30において、配線G3上に半導体層32が設けられ、配線G3の一部がゲー
トとしての機能を有する。また、配線S2の一部がソースまたはドレインの一方としての
機能を有する。半導体層32は、配線S2と配線S3の間に位置する領域を有する。
また、トランジスタ30のソースまたはドレインの他方、および容量素子60の一方の電
極としての機能を有する導電層33aが、半導体層32と電気的に接続されるように設け
られる。また、画素電極としての機能を有する導電層21が設けられ、開口部38におい
て導電層33aと導電層21が電気的に接続されている。
画素11(i+3,j)の構成例について説明する。画素11(i+3,j)が有するト
ランジスタ30において、配線G4上に半導体層32が設けられ、配線G4の一部がゲー
トとしての機能を有する。半導体層32は、配線S2と配線S3の間に位置する領域を有
する。
また、トランジスタ30のソースまたはドレインの一方としての機能を有する導電層51
が、半導体層32と電気的に接続されるように設けられる。導電層51は、導電層21と
同一のレイヤーに形成される導電層52と、開口部71において電気的に接続されている
。導電層52は、配線G4と同一のレイヤーに形成される導電層53と、開口部72にお
いて電気的に接続されている。導電層53は、導電層21と同一のレイヤーに形成される
導電層54と、開口部73において電気的に接続されている。導電層54は、配線S4と
、開口部74において電気的に接続されている。
つまり、画素11(i+3,j)において、トランジスタ30のソースまたはドレインの
一方としての機能を有する導電層51は、導電層52、導電層53、および導電層54を
介して配線S4と電気的に接続されている。画素11(i+3,j)を図11(A)に示
す構成とする場合、導電層51、配線S3、および配線S4は同一のレイヤーに設けられ
、導電層53は配線S3と重なる領域を有するが、トランジスタ30のソースまたはドレ
インの一方が配線S3と短絡することを抑制することができる。また、導電層52および
導電層54は、画素電極としての機能を有する導電層21と同一の工程で形成することが
でき、導電層53は、配線G4と同一の工程で形成することができる。これにより、列ご
とに4本のソース線を設けた構成とした場合であっても、列ごとに1本または2本のソー
ス線を設けた構成とした場合と同様の工程数、具体的にはフォトリソグラフィ工程の工程
数を増やすことなく4本のソース線を設けることができる。つまり、フォトマスクの数を
増やすことなく4本のソース線を設けることができる。これにより、表示装置の作製コス
トの増加を抑制することができる。
図11(B)には、画素11(i,j)および画素11(i+1,j)のレイアウトの例
を示している。図11(B)に示すように、配線G1および配線G2が行方向に延在して
いる。
画素11(i,j)において、トランジスタ30のソースまたはドレインの一方としての
機能を有する導電層51は、導電層52、導電層53、および導電層54を介して配線S
1と電気的に接続されている。それ以外の点は、画素11(i,j)の構成と画素11(
i+3,j)の構成は同様である。
画素11(i+1,j)において、配線S3の一部が、トランジスタ30のソースまたは
ドレインの一方としての機能を有する。それ以外の点は、画素11(i+1,j)の構成
と画素11(i+2,j)の構成は同様である。
以上が画素の平面構成例についての説明である。
〔画素の断面構成例〕
以下では、図5に示す表示装置10の表示部17に配置される画素の断面構成の一例につ
いて説明する。
[断面構成例1]
図12に、図11(A)中の切断線A1-A2に対応する断面の一例を示す。ここでは、
表示素子として透過型の液晶素子20を適用した場合の例を示している。図12において
、基板15側が表示面側となる。
表示装置10は、基板14と基板15との間に液晶22が挟持された構成を有している。
液晶素子20は、基板14側に設けられた導電層21と、基板15側に設けられた導電層
23と、これらに挟持された液晶22と、を有する。また、液晶22と導電層21との間
に配向膜24aが設けられ、液晶22と導電層23との間に配向膜24bが設けられてい
る。
導電層21は、画素電極としての機能を有する。また導電層23は、共通電極等としての
機能を有する。また導電層21と導電層23は、いずれも可視光を透過する機能を有する
。したがって、液晶素子20は、透過型の液晶素子である。
基板15の基板14側の面には、着色層41と、遮光層42が設けられている。着色層4
1と遮光層42を覆って絶縁層26が設けられ、絶縁層26を覆って導電層23が設けら
れている。また着色層41は、導電層21と重なる領域に設けられている。遮光層42は
、トランジスタ30および開口部38等を覆って設けられている。
基板14よりも外側には偏光板39aが配置され、基板15よりも外側には偏光板39b
が配置されている。さらに、偏光板39aよりも外側に、バックライトユニット90が設
けられている。図12に示す表示装置10は、基板15側が表示面側となる。
基板14上にトランジスタ30、容量素子60等が設けられている。トランジスタ30は
、画素11の選択トランジスタとしての機能を有する。トランジスタ30は、開口部38
において液晶素子20と電気的に接続されている。
図12に示すトランジスタ30は、いわゆるボトムゲート型チャネルエッチ構造のトラン
ジスタである。トランジスタ30は、ゲートとしての機能を有する導電層31と、ゲート
絶縁層としての機能を有する絶縁層34と、半導体層32と、ソースおよびドレインとし
ての機能を有する一対の導電層33aおよび導電層33bと、を有する。半導体層32の
、導電層31と重畳する部分は、チャネル形成領域としての機能を有する。
なお、導電層31は、図11(A)における配線G3の一部に対応し、導電層33bは、
配線S3の一部に対応する。また、後述する導電層31a、導電層33cはそれぞれ、配
線CSの一部、配線S4の一部に対応する。
半導体層32に用いることができる材料については、追って説明する。例えば、半導体層
32に金属酸化物を含む半導体を用いる、つまり、トランジスタ30を後述するOSトラ
ンジスタとすることで、前述のように、ソース線から供給された信号に対応する電荷を、
容量素子60に長期間保持することができる。これにより、容量素子60への電荷の書き
込みの頻度、つまりリフレッシュ動作の頻度を減らすことができ、表示装置10の消費電
力を低減することができる。
容量素子60は、導電層31aと、絶縁層34と、導電層33aにより構成されている。
また、導電層31上には、絶縁層34を介して導電層33cが設けられている。
また、トランジスタ30等を覆って、絶縁層82と絶縁層81が積層して設けられている
。画素電極としての機能を有する導電層21は絶縁層81上に設けられている。また、絶
縁層81および絶縁層82に設けられた開口部38において、導電層21と導電層33a
が電気的に接続されている。絶縁層81は、平坦化層としての機能を有することが好まし
い。また絶縁層82は、トランジスタ30等へ不純物等が拡散することを抑制する保護膜
としての機能を有することが好ましい。例えば、絶縁層82に無機絶縁材料を用い、絶縁
層81に有機絶縁材料を用いることができる。
本明細書等において、絶縁層82および絶縁層81をまとめて1つの絶縁層とする場合が
ある。
[断面構成例2]
図13に、図11(A)中の切断線B1-B2に対応する断面の一例を示す。図13に示
すトランジスタ30は、ゲートとしての機能を有する導電層31と、ゲート絶縁層として
の機能を有する絶縁層34と、半導体層32と、ソースおよびドレインとしての機能を有
する一対の導電層33aおよび導電層51と、を有する。半導体層32の、導電層31と
重畳する部分は、チャネル形成領域としての機能を有する。
なお、導電層31は、図11(A)における配線G4の一部に対応する。また、図12に
示す場合と同様に、導電層31a、導電層33b、導電層33cはそれぞれ、配線CSの
一部、配線S3の一部、および配線S4の一部に対応する。また、導電層33bは、絶縁
層34を介して導電層53と重なる領域を有するように設けられている。
また、前述のように、絶縁層81および絶縁層82に設けられた開口部71において、導
電層51と導電層52が電気的に接続されている。絶縁層81、絶縁層82、および絶縁
層34に設けられた開口部72において、導電層52と導電層53が電気的に接続されて
いる。絶縁層81、絶縁層82、および絶縁層34に設けられた開口部73において、導
電層53と導電層54が電気的に接続されている。絶縁層81および絶縁層82に設けら
れた開口部74において、導電層54と導電層33cが電気的に接続されている。つまり
、前述のように、導電層52、導電層53、および導電層54を介して、トランジスタ3
0のソースまたはドレインの一方としての機能を有する導電層51と、配線S4の一部に
対応する導電層33cと、が電気的に接続されている。また、開口部72と開口部73は
、導電層33bを挟んで形成されている。以上により、トランジスタ30のソースまたは
ドレインの一方としての機能を有する導電層51が、配線S3の一部に対応する導電層3
3bと短絡することが抑制されている。なお、図13に示すように、導電層52および導
電層54は、導電層21と同一のレイヤーに形成されており、導電層53は、導電層31
および導電層31aと同一のレイヤーに形成されている。
なお、同一のレイヤーに形成された構成要素は、同一の材料を有することができる。つま
り、例えば導電層21、導電層52、および導電層54は、それぞれ同一の材料を有する
ことができる。また、例えば導電層31、導電層31a、および導電層53は、それぞれ
同一の材料を有することができる。
[断面構成例3]
図14に、図13に示す構成の変形例を示す。図14では、着色層41を基板14側に設
けた場合の例を示している。これにより、基板15側の構成を簡略化することができる。
なお、着色層41を平坦化膜として用いる場合には、絶縁層81を設けない構成としても
よい。これにより、表示装置10の作製工程数を低減することができ、表示装置10の作
製コストを低減することができる。
[断面構成例4]
図15に、図14に示す構成の変形例を示す。図15では、導電層52、導電層53、導
電層54、開口部72、および開口部73を省略した場合の例を示している。この場合、
導電層51と導電層33cは、導電層21と同一のレイヤーに形成された導電層55を介
して電気的に接続されている。具体的には、開口部71において導電層51と導電層55
が電気的に接続され、開口部74において導電層33cと導電層55が電気的に接続され
ている。図15に示す構成であっても、導電層51と導電層33bが短絡することを抑制
することができる。
[断面構成例5]
図16に、図15に示す構成の変形例を示す。図16では、導電層55に換えて導電層5
5aを設けている。導電層55aは、導電層31および導電層31aと同一のレイヤーで
形成されている。導電層51と導電層55aは、絶縁層34に設けられた開口部71にお
いて電気的に接続されている。また、導電層33cと導電層55aは、絶縁層34に設け
られた開口部74において電気的に接続されている。
[断面構成例6]
図17および図18に、トランジスタ30としてトップゲート型のトランジスタを用いた
場合の構成例を示す。図17は、図11(A)に相当する平面図である。図18は、図1
7中の切断線C1-C2に対応する断面の一例である。また、図18に示す断面は、図1
5に示す断面に相当する。
図18において、トランジスタ30は、基板14の上に設けられている。また、図18に
示すトランジスタ30が有する半導体層32は基板14上に設けられている。半導体層3
2は、ソース領域32s、ドレイン領域32d、およびチャネル形成領域32cを有する
。また、半導体層32のチャネル形成領域32c上に絶縁層34を介して導電層31が設
けられている。チャネル形成領域32cと導電層31は、絶縁層34を介して互いに重な
る領域を有する。導電層31はゲートとして機能できる。絶縁層34は、ゲート絶縁層と
して機能できる。
図18に示す断面構成では、絶縁層82上に導電層33a、導電層51、導電層33b、
および導電層33cが設けられている。導電層51はトランジスタ30のソースまたはド
レインの一方として機能し、導電層33aはトランジスタ30のソースまたはドレインの
他方、および容量素子60の一方の電極としての機能を有する。図18に示す断面構成で
は、導電層31aと導電層33aが絶縁層82を介して互いに重なる領域が容量素子60
として機能する。
絶縁層81の一部に開口部38が設けられている。開口部38において、導電層33aと
導電層21が電気的に接続されている。また、絶縁層82の一部に開口部72と開口部7
4が設けられている。開口部72において、導電層53と導電層51が電気的に接続され
ている。開口部74において、導電層53と導電層33cが電気的に接続されている。導
電層51と導電層33cは、導電層53を介して電気的に接続される。
以上が画素の断面構成例についての説明である。
〔各構成要素について〕
以下では、上記に示す各構成要素について説明する。
[基板]
表示パネルが有する基板には、平坦面を有する材料を用いることができる。表示素子から
の光を取り出す基板には、該光を透過する材料を用いる。例えば、ガラス、石英、セラミ
ック、サファイヤ、有機樹脂等の材料を用いることができる。
厚さの薄い基板を用いることで、表示パネルの軽量化、薄型化を図ることができる。さら
に、可撓性を有する程度の厚さの基板を用いることで、可撓性を有する表示パネルを実現
できる。または、可撓性を有する程度に薄いガラス等を基板に用いることもできる。また
は、ガラスと樹脂材料とが接着層により貼り合わされた複合材料を用いてもよい。
[トランジスタ]
トランジスタは、ゲートとしての機能を有する導電層と、半導体層と、ソースとしての機
能を有する導電層と、ドレインとしての機能を有する導電層と、ゲート絶縁層としての機
能を有する絶縁層と、を有する。
なお、本発明の一態様の表示装置が有するトランジスタの構造は特に限定されない。例え
ば、プレーナ型のトランジスタとしてもよいし、スタガ型のトランジスタとしてもよいし
、逆スタガ型のトランジスタとしてもよい。また、トップゲート型またはボトムゲート型
のいずれのトランジスタ構造としてもよい。または、チャネルの上下にゲートが設けられ
ていてもよい。
[半導体層]
トランジスタに用いる半導体層の結晶性は特に限定されず、非晶質半導体、結晶性を有す
る半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する
半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性
の劣化を抑制できるため好ましい。
トランジスタに用いる半導体材料として、例えば、第14族の元素(シリコン、ゲルマニ
ウム等)、または炭化シリコン、ガリウム砒素、金属酸化物、窒化物半導体などの化合物
半導体や、有機半導体などを用いることができる。
例えば、トランジスタに用いる半導体材料として、非晶質シリコン(アモルファスシリコ
ン)を用いることができる。特に、非晶質シリコンは、量産性に優れ、大きな面積の基板
に設けることも容易である。なお、一般に、トランジスタに用いる非晶質シリコンは水素
を多く含む。このため、水素を多く含む非晶質シリコンを「水素化アモルファスシリコン
」または「a-Si:H」と言う場合がある。また、アモルファスシリコンは、多結晶シ
リコンよりも低温で形成できるため、作製工程中の最高温度を下げることができる。よっ
て、基板、導電層、および絶縁層などに、耐熱性の低い材料を用いることができる。
また、トランジスタに用いる半導体材料として、微結晶シリコン、多結晶シリコン、単結
晶シリコンなどの結晶性を有するシリコンを用いることもできる。特に、多結晶シリコン
は、単結晶シリコンに比べて低温で形成でき、且つアモルファスシリコンに比べて高い電
界効果移動度と高い信頼性を備える。
また、トランジスタに用いる半導体材料として、金属酸化物の一種である酸化物半導体を
用いることができる。代表的には、インジウムを含む酸化物半導体などを用いることがで
きる。酸化物半導体は、アモルファスシリコンよりも高い電界効果移動度と高い信頼性が
実現できる。また、酸化物半導体は量産性に優れ、大きな面積の基板に設けることも容易
である。
また、金属酸化物の一種である酸化物半導体はシリコンよりもバンドギャップが広く、キ
ャリア密度が低いため、トランジスタの半導体層に用いることが好ましい。トランジスタ
の半導体層に酸化物半導体を用いると、トランジスタのオフ状態におけるソースとドレイ
ンの間に流れる電流を低減できるため好ましい。
金属酸化物の一種である酸化物半導体は、エネルギーギャップが2eV以上であることが
好ましく、2.5eV以上であることがより好ましく、3eV以上であることがさらに好
ましい。このように、エネルギーギャップの広い酸化物半導体を用いることで、トランジ
スタのオフ電流を低減することができる。チャネルが形成される半導体層に金属酸化物の
一種である酸化物半導体を用いたトランジスタを「OSトランジスタ」ともいう。
OSトランジスタは、その低いオフ電流により、トランジスタと直列に接続された容量に
蓄積した電荷を長期間に亘って保持することが可能である。このようなトランジスタを画
素に適用することで、各表示部に表示した画像の階調を維持しつつ、駆動回路を停止する
ことも可能となる。その結果、極めて消費電力の低減された表示装置を実現できる。
金属酸化物の一種である酸化物半導体は、例えば少なくともインジウム、亜鉛およびM(
アルミニウム、チタン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタ
ン、セリウム、スズ、ネオジムまたはハフニウム等の金属)を含むIn-M-Zn系酸化
物で表記される材料を含むことが好ましい。また、該半導体層を用いたトランジスタの電
気特性のばらつきを減らすため、それらと共に、スタビライザーを含むことが好ましい。
スタビライザーとしては、上記Mで記載の金属を含め、例えば、ガリウム、スズ、ハフニ
ウム、アルミニウム、またはジルコニウム等がある。また、他のスタビライザーとしては
、ランタノイドである、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユ
ウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツ
リウム、イッテルビウム、ルテチウム等がある。
半導体層を構成する金属酸化物として、例えば、In-Ga-Zn系酸化物、In-Al
-Zn系酸化物、In-Sn-Zn系酸化物、In-Hf-Zn系酸化物、In-La-
Zn系酸化物、In-Ce-Zn系酸化物、In-Pr-Zn系酸化物、In-Nd-Z
n系酸化物、In-Sm-Zn系酸化物、In-Eu-Zn系酸化物、In-Gd-Zn
系酸化物、In-Tb-Zn系酸化物、In-Dy-Zn系酸化物、In-Ho-Zn系
酸化物、In-Er-Zn系酸化物、In-Tm-Zn系酸化物、In-Yb-Zn系酸
化物、In-Lu-Zn系酸化物、In-Sn-Ga-Zn系酸化物、In-Hf-Ga
-Zn系酸化物、In-Al-Ga-Zn系酸化物、In-Sn-Al-Zn系酸化物、
In-Sn-Hf-Zn系酸化物、In-Hf-Al-Zn系酸化物を用いることができ
る。
なお、ここで、例えばIn-Ga-Zn系酸化物とは、InとGaとZnを主成分として
有する酸化物という意味であり、InとGaとZnの原子数比は問わない。例えば、In
:Ga:Zn=1:1:1としてもよいし、In:Ga:Zn=2:2:1としてもよい
し、In:Ga:Zn=3:1:2としてもよいし、In:Ga:Zn=4:2:3とし
てもよいし、In:Ga:Zn=5:1:6としてもよいし、これらの組成の近傍として
もよい。また、InとGaとZn以外の金属元素が入っていてもよい。
また、半導体層と導電層は、上記酸化物のうち同一の金属元素を有していてもよい。半導
体層と導電層を同一の金属元素とすることで、製造コストを低減させることができる。例
えば、同一の金属組成の金属酸化物ターゲットを用いることで、製造コストを低減させる
ことができる。また半導体層と導電層を加工する際のエッチングガスまたはエッチング液
を共通して用いることができる。ただし、半導体層と導電層は、同一の金属元素を有して
いても、組成が異なる場合がある。例えば、トランジスタおよび容量素子の作製工程中に
、膜中の金属元素が脱離し、異なる金属組成となる場合がある。
半導体層を構成する金属酸化物がIn-M-Zn酸化物の場合、In-M-Zn酸化物を
成膜するために用いるスパッタリングターゲットの金属元素の原子数比は、In≧Mを満
たすことが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として
、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=3
:1:2、In:M:Zn=4:2:4.1、In:M:Zn=2:1:3、In:M:
Zn=3:1:2、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:
M:Zn=5:1:8、In:M:Zn=6:1:6、In:M:Zn=5:2:5等が
好ましい。なお、成膜される半導体層の原子数比はそれぞれ、誤差として上記のスパッタ
リングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。
半導体層を構成する金属酸化物は、後述するCAC-OSまたはCAC-metal o
xideであることが好ましい。これにより、トランジスタの電界効果移動度を高めるこ
とができる。
半導体層には、キャリア密度の低い金属酸化物を用いることが好ましい。例えば、半導体
層は、キャリア密度が1×1017/cm以下、好ましくは1×1015/cm以下
、さらに好ましくは1×1013/cm以下、より好ましくは1×1011/cm
下、さらに好ましくは1×1010/cm未満であり、1×10-9/cm以上のキ
ャリア密度の金属酸化物を用いることができる。このような半導体層は、不純物濃度が低
く、欠陥準位密度が低いため、安定な特性を有する。なお、半導体層が金属酸化物である
場合、不純物として、例えば水または水素等が挙げられる。
本明細書等において、不純物濃度が低く、欠陥準位密度が低い金属酸化物を、高純度真性
な金属酸化物、または実質的に高純度真性な金属酸化物と呼ぶ場合がある。
高純度真性または実質的に高純度真性な金属酸化物は、キャリア発生源が少ないため、キ
ャリア密度を低くすることができる。したがって、該金属酸化物を有するトランジスタは
、しきい値電圧がマイナスとなる電気特性(ノーマリーオンともいう)になることが少な
い。また、高純度真性または実質的に高純度真性である金属酸化物は、欠陥準位密度が低
いため、トラップ準位密度も低くなる場合がある。また、高純度真性または実質的に高純
度真性である金属酸化物は、オフ電流が著しく小さく、チャネル幅が1×10μmでチ
ャネル長Lが10μmの素子であっても、ソースとドレイン間の電圧(ドレイン電圧)が
1Vから10Vの範囲において、オフ電流が、半導体パラメータアナライザの測定限界以
下、すなわち1×10-13A以下という特性を得ることができる。
なお、本発明の一態様に適用可能な半導体層は上記に限られず、必要とするトランジスタ
の半導体特性および電気特性(電界効果移動度、しきい値電圧等)に応じて適切な組成の
ものを用いればよい。また、必要とするトランジスタの半導体特性を得るために、半導体
層のキャリア密度や不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間距離、密
度等を適切なものとすることが好ましい。
半導体層を構成する金属酸化物において、第14族元素の一つであるシリコンや炭素が含
まれると、半導体層において酸素欠損が増加し、n型化してしまう場合がある。このため
、半導体層におけるシリコンや炭素の濃度(二次イオン質量分析法により得られる濃度)
を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm
以下とすることが好ましい。
また、アルカリ金属およびアルカリ土類金属は、金属酸化物と結合するとキャリアを生成
する場合があり、トランジスタのオフ電流が増大してしまうことがある。このため半導体
層における二次イオン質量分析法により得られるアルカリ金属またはアルカリ土類金属の
濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/c
以下にすることが好ましい。
また、半導体層は、例えば非単結晶構造でもよい。非単結晶構造は、例えば、多結晶構造
、微結晶構造、または非晶質構造を含む。非単結晶構造において、非晶質構造は最も欠陥
準位密度が高い。
非晶質構造の金属酸化物は、例えば、原子配列が無秩序であり、結晶成分を有さない。ま
たは、非晶質構造の酸化物膜は、例えば、完全な非晶質構造であり、結晶部を有さない。
なお、半導体層が、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、単結晶構
造の領域のうち、二種以上を有する混合膜であってもよい。混合膜は、例えば上述した領
域のうち、いずれか二種以上の領域を含む単層構造、または積層構造を有する場合がある
[導電層]
トランジスタのゲート、ソースおよびドレインのほか、表示装置を構成する各種配線およ
び電極等の導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、
ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタング
ステン等の金属、またはこれを主成分とする合金等が挙げられる。またこれらの材料を含
む膜を単層で、または積層構造として用いることができる。例えば、シリコンを含むアル
ミニウム膜の単層構造、チタン膜上にアルミニウム膜を積層する二層構造、タングステン
膜上にアルミニウム膜を積層する二層構造、銅-マグネシウム-アルミニウム合金膜上に
銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅
膜を積層する二層構造、チタン膜または窒化チタン膜と、その上に重ねてアルミニウム膜
または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、
モリブデン膜または窒化モリブデン膜と、その上に重ねてアルミニウム膜または銅膜を積
層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある
。なお、酸化インジウム、酸化錫または酸化亜鉛等の酸化物を用いてもよい。また、マン
ガンを含む銅を用いると、エッチングによる形状の制御性が高まるため好ましい。
また、トランジスタのゲート、ソースおよびドレインのほか、表示装置を構成する各種配
線および電極等の導電層に用いることのできる、透光性を有する導電性材料としては、酸
化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加
した酸化亜鉛等の導電性酸化物またはグラフェンを用いることができる。または、金、銀
、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、
銅、パラジウム、またはチタン等の金属材料や、該金属材料を含む合金材料を用いること
ができる。または、該金属材料の窒化物(例えば、窒化チタン)等を用いてもよい。なお
、金属材料、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度
に薄くすればよい。また、上記材料の積層膜を導電層として用いることができる。例えば
、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜等を用いると、導電性を高め
ることができるため好ましい。これらは、表示装置を構成する各種配線および電極等の導
電層や、表示素子が有する導電層(画素電極や共通電極としての機能を有する導電層)に
も用いることができる。
[絶縁層]
各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル、エポキシ等の樹脂
、シロキサン結合を有する樹脂の他、酸化シリコン、酸化窒化シリコン、窒化酸化シリコ
ン、窒化シリコン、酸化アルミニウム等の無機絶縁材料を用いることもできる。
透水性の低い絶縁膜としては、窒化シリコン膜、窒化酸化シリコン膜等の窒素と珪素を含
む膜や、窒化アルミニウム膜等の窒素とアルミニウムを含む膜等が挙げられる。また、酸
化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜等を用いてもよい。
また、半導体層が金属酸化物を含む場合、当該半導体層と接する領域を有する絶縁層は、
化学量論的組成よりも過剰に酸素を含有する領域(過剰酸素領域)を有することが好まし
い。例えば、半導体層32と接する領域を有する絶縁層34および絶縁層82は、過剰酸
素領域を有することが好ましい。これにより、絶縁層から半導体層に酸素を供給すること
ができる。半導体層32が金属酸化物を含む場合、当該金属酸化物中に酸素欠損が形成さ
れると、当該酸素欠損に水素等の不純物が入ることにより、キャリアである電子が生成さ
れる場合がある。これにより、トランジスタの電気特性が劣化する場合がある。半導体層
と接する領域を有する絶縁層が過剰酸素領域を有する場合、絶縁層から半導体層へ酸素を
供給することができ、酸素欠損を補填することができる。これにより、トランジスタの電
気特性の劣化を抑制することができる。なお、絶縁層に過剰酸素領域を設けるには、例え
ば、酸素雰囲気下で絶縁層を形成すればよい。または、成膜後の絶縁層を酸素雰囲気下で
熱処理すればよい。
[表示素子]
本発明の一態様の表示装置は、様々な形態を用いること、または様々な表示素子を有する
ことが出来る。表示素子は、例えば、LED(白色LED、赤色LED、緑色LED、青
色LEDなど)などを含むEL(エレクトロルミネッセンス)素子(有機物および無機物
を含むEL素子、有機EL素子、無機EL素子)、トランジスタ(電流に応じて発光する
トランジスタ)、プラズマディスプレイパネル(PDP)、電子放出素子、液晶素子、電
気泳動素子、グレーティングライトバルブ(GLV)やデジタルマイクロミラーデバイス
(DMD)、DMS(デジタル・マイクロ・シャッター)素子、MIRASOL(登録商
標)ディスプレイ、IMOD(インターフェロメトリック・モジュレーション)素子、圧
電セラミックディスプレイなどのMEMS(マイクロ・エレクトロ・メカニカル・システ
ム)を用いた表示素子、エレクトロウェッティング素子などが挙げられる。これらの他に
も、電気的または磁気的作用により、コントラスト、輝度、反射率、透過率などが変化す
る表示媒体を有していても良い。また、表示素子として量子ドットを用いてもよい。
EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子
を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)また
はSED方式平面型ディスプレイ(SED:Surface-conduction E
lectron-emitter Display)などがある。液晶素子を用いた表示
装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディス
プレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)
などがある。電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。
量子ドットを用いた表示装置の一例としては、量子ドットディスプレイなどがある。
なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現する場合には、画素電
極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、
画素電極の一部、または、全部が、アルミニウム、銀、などを有するようにすればよい。
さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である
。これにより、さらに、消費電力を低減することができる。
[液晶素子]
液晶素子としては、例えば垂直配向(VA:Vertical Alignment)モ
ードが適用された液晶素子を用いることができる。垂直配向モードとしては、MVA(M
ulti-Domain Vertical Alignment)モード、PVA(P
atterned Vertical Alignment)モード、ASV(Adva
nced Super View)モード等を用いることができる。
また、液晶素子には、様々なモードが適用された液晶素子を用いることができる。例えば
VAモードのほかに、TN(Twisted Nematic)モード、IPS(In-
Plane-Switching)モード、VA-IPSモード、FFS(Fringe
Field Switching)モード、ASM(Axially Symmetr
ic aligned Micro-cell)モード、OCB(Optically
Compensated Birefringence)モード、FLC(Ferroe
lectric Liquid Crystal)モード、AFLC(AntiFerr
oelectric Liquid Crystal)モード、ECB(Electri
cally Controlled Birefringence)モード、ゲストホス
トモード等が適用された液晶素子を用いることができる。
なお、液晶素子は、液晶の光学的変調作用によって光の透過または非透過を制御する素子
である。なお、液晶の光学的変調作用は、液晶にかかる電界(横方向の電界、縦方向の電
界または斜め方向の電界を含む)によって制御される。なお、液晶素子に用いる液晶とし
ては、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶(PDLC:
Polymer Dispersed Liquid Crystal)、高分子ネット
ワーク型液晶(PNLC:Polymer Network Liquid Cryst
al)、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料は、
条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック
相、等方相等を示す。
また、液晶材料としては、ポジ型の液晶、またはネガ型の液晶のいずれを用いてもよく、
適用するモードや設計に応じて最適な液晶材料を用いればよい。
また、液晶の配向を制御するため、配向膜を設けることができる。なお、横電界方式を採
用する場合、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の
一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移
する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲
を改善するために数重量%以上のカイラル剤を混合させた液晶組成物を液晶層に用いる。
ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が短く、光学的等方性
である。また、ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、配向処理が不要
であり、視野角依存性が小さい。また配向膜を設けなくてもよいのでラビング処理も不要
となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製
工程中の液晶表示装置の不良や破損を軽減することができる。
なお、液晶素子にゲスト-ホストモードで動作する液晶材料を用いることにより、光拡散
層や偏光板などの機能性部材を省略することができる。よって、表示装置の生産性を高め
ることができる。また、偏光板などの機能性部材を設けないことにより、液晶素子の反射
輝度を高めることができる。よって、表示装置の視認性を高めることができる。
また、円偏光板を用いる反射型の液晶表示装置のオン状態とオフ状態の切り替え(明状態
と暗状態の切り替え)は、液晶分子の長軸を基板と略垂直な方向にそろえるか、基板と略
水平な方向にそろえるか、によって行なわれる。一般に、IPSモードなどの横電界方式
で動作する液晶素子は、オン状態およびオフ状態ともに液晶分子の長軸が基板と略水平な
方向にそろうため、反射型の液晶表示装置に用いることが難しい。
VA-IPSモードで動作する液晶素子は、横電界方式で動作し、かつ、オン状態とオフ
状態の切り替えを、液晶分子の長軸を基板と略垂直な方向にそろえるか、基板と略水平な
方向にそろえるか、によって行なわれる。このため、反射型の液晶表示装置に横電界方式
で動作する液晶素子を用いる場合は、VA-IPSモードで動作する液晶素子を用いるこ
とが好ましい。
本発明の一態様では、特に透過型の液晶素子を好適に用いることができる。
透過型または半透過型の液晶素子を用いる場合、一対の基板を挟むように、2つの偏光板
を設ける。また偏光板よりも外側に、バックライトを設ける。バックライトとしては、直
下型のバックライトであってもよいし、エッジライト型のバックライトであってもよい。
LED(Light Emitting Diode)を有する直下型のバックライトを
用いると、ローカルディミングが容易となり、コントラストを高めることができるため好
ましい。また、エッジライト型のバックライトを用いると、バックライトを含めたモジュ
ールの厚さを低減できるため好ましい。
なお、エッジライト型のバックライトをオフ状態とすることで、シースルー表示を行うこ
とができる。
[着色層]
着色層に用いることのできる材料としては、金属材料、樹脂材料、顔料または染料が含ま
れた樹脂材料等が挙げられる。
[遮光層]
遮光層として用いることのできる材料としては、カーボンブラック、チタンブラック、金
属、金属酸化物、複数の金属酸化物の固溶体を含む複合酸化物等が挙げられる。遮光層は
、樹脂材料を含む膜であってもよいし、金属等の無機材料の薄膜であってもよい。また、
遮光層に、着色層の材料を含む膜の積層膜を用いることもできる。例えば、ある色の光を
透過する着色層に用いる材料を含む膜と、他の色の光を透過する着色層に用いる材料を含
む膜との積層構造を用いることができる。着色層と遮光層の材料を共通化することで、装
置を共通化できるほか工程を簡略化できるため好ましい。
以上が各構成要素についての説明である。
〔画素等の作製方法の一例〕
以下では、図13に示す構成の、画素11(i+3,j)等の作製方法例について説明す
る。
表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、それぞれ、スパッタリング
法、化学気相堆積(CVD:Chemical Vapor Deposition)法
、真空蒸着法、パルスレーザー堆積(PLD:Pulse Laser Deposit
ion)法、原子層成膜(ALD:Atomic Layer Deposition)
法等を用いて形成することができる。CVD法の例として、プラズマ化学気相堆積(PE
CVD)法および熱CVD法等が挙げられる。熱CVD法の例として、有機金属化学気相
堆積(MOCVD:Metal Organic CVD)法が挙げられる。
表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、それぞれ、スピンコート、
ディップ、スプレー塗布、インクジェット印刷、ディスペンス、スクリーン印刷、オフセ
ット印刷、ドクターナイフ、スリットコート、ロールコート、カーテンコート、ナイフコ
ート等の方法により形成することができる。
表示装置を構成する薄膜は、リソグラフィ法等を用いて加工することができる。または、
遮蔽マスクを用いた成膜方法により、島状の薄膜を形成してもよい。または、ナノインプ
リント法、サンドブラスト法、もしくはリフトオフ法等により薄膜を加工してもよい。
フォトリソグラフィ法を用いて加工する場合、露光に用いる光としては、例えばi線(波
長365nm)、g線(波長436nm)、h線(波長405nm)、およびこれらを混
合させた光が挙げられる。そのほか、紫外線、KrFレーザ光、またはArFレーザ光等
を用いることもできる。また、液浸露光技術により露光を行ってもよい。露光に用いる光
としては、極端紫外光(EUV:Extreme Ultra-violet)およびX
線等が挙げられる。また、露光に用いる光に換えて、電子ビームを用いることもできる。
極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ま
しい。なお、電子ビーム等のビームを走査することにより露光を行う場合には、フォトマ
スクは不要である。
薄膜のエッチングには、ドライエッチング法、ウエットエッチング法、サンドブラスト法
等を用いることができる。
表示装置10の作製の際は、まず、基板14上に導電層を成膜する。次に、フォトリソグ
ラフィ法等によりパターニングを行い、エッチング法等により当該導電層を加工すること
により、導電層31、導電層31a、および導電層53を形成する(図19(A))。前
述のように、導電層31は配線G3の一部に対応し、導電層31aは配線CSの一部に対
応する。
次に、絶縁層34を形成する。前述の通り、絶縁層34は、表示装置10に設けられたト
ランジスタのゲート絶縁層としての機能を有する。
その後、絶縁層34上に半導体層を成膜する。半導体層として例えば金属酸化物を用いる
場合、スパッタリング法により成膜することができる。半導体層として例えばIn-Ga
-Zn系酸化物を用いる場合、In-Ga-Zn系酸化物をターゲットに用いたスパッタ
リング法により成膜することができる。
その後、フォトリソグラフィ法等によりパターニングを行い、成膜した半導体層をエッチ
ング法等により加工することにより、半導体層32を形成する(図19(B))。
次に、絶縁層34上および半導体層32上に導電層を成膜する。その後、フォトリソグラ
フィ法等によりパターニングを行い、エッチング法等により当該導電層を加工することに
より、導電層51、導電層33a、導電層33b、および導電層33cを形成する(図1
9(C))。前述のように、導電層51はトランジスタ30のソースまたはドレインの一
方として機能し、導電層33aはトランジスタ30のソースまたはドレインの他方、およ
び容量素子60の一方の電極としての機能を有する。また、導電層33bは配線S3の一
部に対応し、導電層33cは配線S4の一部に対応する。また、導電層33bは、導電層
53と重なる領域を有するように形成される。
次に、絶縁層82を成膜し、その後、絶縁層81を成膜する。絶縁層81の成膜後、化学
機械研磨(CMP:Chemical Mechanical Polishment)
法等により、絶縁層81に対して平坦化処理を行う。
次に、フォトリソグラフィ法等によりパターニングを行う。その後、エッチング法等によ
り絶縁層81および絶縁層82を加工することにより、導電層51に達する開口部71、
導電層33aに達する開口部38、および導電層33cに達する開口部74を形成する。
また、エッチング法等により絶縁層81、絶縁層82、および絶縁層34を加工すること
により、導電層53に達する開口部72および開口部73を、導電層33bを挟むように
形成する(図20(A))。以上により、開口部38、および開口部71乃至開口部74
が形成される。
次に、絶縁層81上、開口部38、および開口部71乃至開口部74に導電層を成膜する
。その後、フォトリソグラフィ法等によりパターニングを行い、エッチング法等により当
該導電層を加工することにより、導電層21、導電層52、および導電層54を形成する
(図20(B))。導電層21は、開口部38をにおいて導電層33aと電気的に接続さ
れる。導電層52は、開口部71において導電層51と電気的に接続され、開口部72に
おいて導電層53と電気的に接続される。導電層54は、開口部73において導電層53
と電気的に接続され、開口部74において導電層33cと電気的に接続される。前述のよ
うに、導電層21は、表示装置10に設けられた液晶素子の画素電極としての機能を有す
る。また、トランジスタ30のソースまたはドレインの一方としての機能を有する導電層
51は、配線S4の一部に対応する導電層33cと、導電層52、導電層53、および導
電層54を介して電気的に接続されている。
次に、配向膜24aを形成する(図21(A))。その後、基板15上に、遮光層42、
着色層41、絶縁層26、導電層23、および配向膜24bを形成する(図21(B))
。着色層41は、フォトリソグラフィ法、印刷法、またはインクジェット法を用いて形成
することができる。例えばインクジェット法を用いることにより、室温で製造、低真空度
で製造、または大型基板上に作製することができる。これにより、解像度が4Kや8K等
といった極めて高解像度の表示装置であっても、着色層41を形成することができる。ま
た、画面サイズが対角50インチ以上、対角60インチ以上、または対角70インチ以上
の大型の表示装置にも着色層41を形成することができる。また、レジストマスクを用い
なくても着色層41を形成することができるため、表示装置10の作製工程数を低減する
ことができ、作製コストを低減することができる。
次に、図21(A)に示す基板14と、図21(B)に示す基板15との間に、接着層(
図示せず)を用いて液晶22を封止する。その後、偏光板39a、偏光板39b、および
バックライトユニット90を形成する。以上により、図13に示す構成の表示装置10を
作製することができる。
ここで、表示装置を作製する際、作製工程におけるフォトリソグラフィ工程が少ないほど
、すなわちフォトマスクのマスク枚数が少ないほど、作製コストを低くすることができる
例えば、図19および図20に示す工程(基板14側の工程)のうち、導電層31等の形
成工程(図19((A))、半導体層32の形成工程(図19(B))、導電層33a等
の形成工程(図19(C))、開口部38等の形成工程(図20(A))、および導電層
21等の形成工程(図20(B))の、計5つのフォトリソグラフィ工程を経ることで作
製できる。すなわち、5枚のフォトマスクにより、バックプレーン基板を作製することが
できる。
表示装置を、1つの画素列あたりソース線を1本または2本設ける構成とする場合、図1
3に示す構成の画素11を設けなくてもよく、例えばすべての画素11の構成を図12に
示す構成とすることができる。この場合であっても、バックプレーン基板を作製する際に
は、計5つのフォトリソグラフィ工程を経る必要がある。つまり、フォトマスクは5枚必
要となる。以上より、1つの画素列あたりソース線を4本設ける構成とする場合であって
も、1つの画素列あたりソース線を1本または2本設ける場合と同様の枚数のフォトマス
クで表示装置を作製することができる。これにより、1つの画素列あたりソース線を4本
設ける構成の表示装置の作製コストが、1つの画素列あたりソース線を1本または2本設
ける構成の表示装置の作製コストより増加することを抑制することができる。
以上が画素等の作製方法の一例についての説明である。
[導電層の形状について]
ゲート線やソース線等の配線に用いることのできる導電膜は、金属や合金等の低抵抗な材
料を用いると、配線抵抗を低減することができるため好ましい。また、大画面の表示装置
とする場合には、配線の幅を大きくすることも有効である。しかしながら、このような導
電膜は可視光を透過しないため、透過型の液晶表示装置においては、配線自体の幅が大き
くなることや、配線数の増加に伴い、開口率の低下を招く場合がある。
そこで、導電膜の端部の形状を工夫することで、バックライトユニットからの光を効率的
に取り出すことができる。
図22(A)には、ソース線等を構成する導電層33とその近傍の断面図を示している。
導電層33は、その端部が逆テーパ形状を有している。導電層33は、例えば導電層33
a、導電層33b、導電層33cとすることができる。また、導電層33は、例えば導電
層51とすることができる。
ここで、テーパ角とは薄膜の端部における、その底面(被形成面と接する面)と、その側
面とがなす角度を言う。テーパ角は、0度より大きく、180度未満である。また、テー
パ角が90度よりも小さい場合を順テーパ、90度よりも大きい場合を逆テーパと呼ぶ。
図22(A)に示すように、導電層33が逆テーパ形状を有することで、バックライトユ
ニットから入射される光50の一部は、導電層33の側面で反射し、液晶22に到達する
。その結果、導電層33の側面が垂直である場合、および順テーパ形状である場合に比べ
て、光取り出し効率を高めることができる。
ここで、導電層33のテーパ角は、90度より大きく135度未満、好ましくは91度以
上120度以下、より好ましくは95度以上110度以下とすることが好ましい。
また、図22(B)では、ゲート線等を構成する導電層31が、逆テーパ形状を有する場
合の例を示している。導電層33に加えて導電層31も逆テーパ形状とすることで、より
効果的に光取り出し効率を高めることができる。
以上が配線の形状についての説明である。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み
合わせて実施することができる。
(実施の形態2)
本実施の形態では、表示部17における配線SLと画素11の接続関係について説明する
。一例として、表示素子として液晶素子を用いる場合について説明する。図23乃至図2
5、および図27乃至図29は、それぞれ表示部17の一部を示すブロック図である。ま
た、図23乃至図25、および図27乃至図29は、画素11に供給される信号の極性を
「+」と「-」の記号で示している。
<駆動方式について>
一般に、液晶素子は、直流電圧を印加し続けると劣化しやすくなる傾向がある。このため
、表示素子として液晶素子を用いた表示装置では、1フレーム毎に液晶素子に印加する信
号の極性を反転させる駆動方式(「フレーム反転駆動」ともいう。)が用いられる。例え
ば、奇数フレームでは全ての画素に正極性の信号を供給し、偶数フレームでは全ての画素
に負極性の信号を供給する。なお、極性の反転は1フレーム毎に限らず、用いる液晶素子
によって、特定のフレーム数毎に行なってもよい。
また、全ての画素に同じ極性の電位を供給するフレーム反転駆動では、画像表示時にフリ
ッカ、クロストークなどの現象が生じ易く、表示装置の表示品位が低下する場合がある。
このような現象を抑えるために、ソースライン反転駆動、ゲートライン反転駆動、および
ドット反転駆動などの駆動方式が考案されている。
〔ソースライン反転駆動〕
ソースライン反転駆動(「列反転駆動」、「カラム反転駆動」などともいう。)とは、特
定のフレーム数毎かつ特定本数の信号線(ソース線)毎に、画素に供給する信号の極性を
反転させる駆動方法である。
〔ゲートライン反転駆動〕
ゲートライン反転駆動(「行反転駆動」、「ロウ反転駆動」などともいう。)とは、特定
のフレーム数毎かつ特定本数の走査線(ゲート線)毎に、画素に供給する信号の極性を反
転させる駆動方法である。
〔ドット反転駆動〕
ドット反転駆動(「行反転駆動」、「ロウ反転駆動」などともいう。)とは、特定のフレ
ーム数毎かつ、行方向および列方向に隣り合う画素に供給する信号の極性を反転させる駆
動方法である。ドット反転駆動における信号極性の反転は、特定画素数毎に行なうことが
できる。例えば、1画素毎に供給する信号の極性を反転させてもよいし、複数画素毎に供
給する信号の極性を反転させてもよい。
ドット反転駆動は、ソースライン反転駆動およびゲートライン反転駆動よりもフリッカ、
クロストークなどの現象を抑える効果が高い。よって、液晶表示装置の駆動方式としてド
ット反転駆動を用いることが多い。
<配線SLと画素11の接続関係>
次に、表示部17における配線SLと画素11の接続関係について説明する。まず、1画
素ごとにドット反転駆動を行なう場合の接続関係について説明する。
〔ドット反転駆動を行なう場合の接続関係〕
[1列あたりのソース線が2本の表示部]
図23(A)および図23(B)は、1列あたり2本のソース線を設けた表示部17の一
部を示している。図23(A)において、j列の画素11とj+1列の画素11の間に、
配線SL(j)と配線SL(j)が設けられている。
また、図23(A)では、画素11(i,j)と画素11(i+2,j)が配線SL
j)と電気的に接続され、画素11(i+1,j)と画素11(i+3,j)が配線SL
(j)と電気的に接続されている。
すなわち、図23(A)において、j列のi+2x行目(xは0以上の整数)に設けられ
た画素11は、配線SL(j)と電気的に接続されている。また、j列のi+2x+1
行目に設けられた画素11は、配線SL(j)と電気的に接続されている。
図23(A)に示す接続でドット反転駆動を行なう場合は、隣り合う配線SL(j)と
配線SL(j)に異なる極性の信号を供給する必要がある。配線SL(j)と配線S
(j)の間には寄生容量Cstが生じているため、配線SL(j)と配線SL
j)の間の電位差が大きいと、ソースドライバの負荷が大きくなり、消費電力が増加し易
い。
そこで、図23(B)に示すように配線SLと画素11を配置することが好ましい。図2
3(B)では、j列の画素11が、配線SL(j)と配線SL(j)の間に設けられ
ている。また、図23(B)では、j列の画素11とj+1列の画素11の間に、配線S
(j)と配線SL(j+1)が設けられている。
なお、j列のi+2x行目に設けられた画素11は、配線SL(j)と電気的に接続さ
れている。また、j列のi+2x+1行目に設けられた画素11は、配線SL(j)と
電気的に接続されている。
図23(B)に示す接続でドット反転駆動を行なう場合は、隣接する配線SL(j)と
配線SL(j+1)に同じ極性の信号が供給される。同様に、隣接する配線SL(j
+1)と配線SL(j+2)に同じ極性の信号が供給される。隣接する配線SLに供給
される信号の極性を同じにすることで、両配線間の電位差を小さくすることができる。よ
って、信号書き換え時のソースドライバの負荷が軽減され、消費電力を低減することがで
きる。
[1列あたりのソース線が3本の表示部]
図24および図25は、1列あたり3本のソース線を設けた表示部17の一部を示してい
る。図24および図25では、j列の画素11が、配線SL(j)と配線SL(j)
の間に設けられている。配線SL(j)は、配線SL(j)に隣接して設けられてい
る。
また、図24では、画素11(i,j)が配線SL(j)と電気的に接続され、画素1
1(i+1,j)、および画素11(i+5,j)が配線SL(j)と電気的に接続さ
れ、画素11(i+2,j)、および画素11(i+4,j)が配線SL(j)と電気
的に接続され、画素11(i+3,j)が配線SL(j+1)と電気的に接続されてい
る。
すなわち、図24において、j列のi+6x行目(xは0以上の整数)に設けられた画素
11は、配線SL(j)と電気的に接続されている。また、j列のi+6x+1行目に
設けられた画素11とj列のi+6x+5行目に設けられた画素11は、配線SL(j
)と電気的に接続されている。また、j列のi+6x+2行目に設けられた画素11とj
列のi+6x+4行目に設けられた画素11は、配線SL(j)と電気的に接続されて
いる。また、j列のi+6x+3行目に設けられた画素11は、配線SL(j+1)と
電気的に接続されている。
また、図25に示すように配線SLと画素11を接続してもよい。図25では、画素11
(i,j)と画素11(i+4,j)が配線SL(j)と電気的に接続され、画素11
(i+1,j)、および画素11(i+3,j)が配線SL(j)と電気的に接続され
、画素11(i+2,j)が配線SL(j)と電気的に接続され、画素11(i+5,
j)が配線SL(j+1)と電気的に接続されている。
すなわち、図25において、j列のi+6x行目(xは0以上の整数)に設けられた画素
11とj列のi+6x+4行目に設けられた画素11は、配線SL(j)と電気的に接
続されている。また、j列のi+6x+1行目に設けられた画素11とj列のi+6x+
3行目に設けられた画素11は、配線SL(j)と電気的に接続されている。また、j
列のi+6x+2行目に設けられた画素11は、配線SL(j)と電気的に接続されて
いる。また、j列のi+6x+5行目に設けられた画素11は、配線SL(j+1)と
電気的に接続されている。
図24および図25では、j列の画素11とj+1列の画素11の間に、配線SL(j
)、配線SL(j+1)、および配線SL(j+1)が設けられている。また、配線
SL(j)、配線SL(j+1)、および配線SL(j+1)のそれぞれの間に寄
生容量Cstが生じる。
特に、配線SL(j)と配線SL(j+1)に挟まれた配線SL(j+1)には、
配線SL(j)間に生じる寄生容量Cstと、配線SL(j+1)間に生じる寄生容
量Cstが加わるため、ソースドライバの負荷が多くなりやすい。よって、配線SL
j)、配線SL(j+1)、および配線SL(j+1)には、同じ極性の信号が供給
されることが好ましい。
このように、本発明の一態様は、1列あたりのソース線が3本以上である場合に特に有効
である。言い換えると、1つの画素列に対してg本の配線GLを設ける場合、gは3以上
が好ましい。同様に、配線GLがf本の配線GLと電気的に接続する場合、fは3以上
が好ましい。
図24および図25に示す接続でドット反転駆動を行なう場合は、配線SL(j)、配
線SL(j+1)、および配線SL(j+1)に同じ極性の信号が供給される。同様
に、配線SL(j+1)、配線SL(j+2)、および配線SL(j+2)に同じ
極性の信号が供給される。隣接する配線SLの極性を同じにすることで、両配線間の電位
差を小さくすることができる。よって、信号書き換え時のソースドライバの負荷が軽減さ
れ、消費電力を低減することができる。
[駆動波形]
図26に、図24に示した表示部17でドット反転駆動を行なうための駆動波形の一例を
示す。ある1つのフレーム期間中、配線SL(j)および配線SL(j)には正極性
の信号が供給され、配線SL(j)には負極性の信号が供給される。
また、当該フレーム期間中、全ての配線GLに、順次パルス状の選択信号が供給される
。例えば、配線GL(k)に選択信号が供給されると、3つの配線GL(配線GL(i
)、配線GL(i+1)、配線GL(i+2))に同時に選択信号が供給される。そして
、配線GL(i)が接続された画素に、配線SL(j)を介して正極性の信号が供給さ
れる。また、配線GL(i+1)が接続された画素に、配線SL(j)を介して負極性
の信号が供給される。また、配線GL(i+2)が接続された画素に、配線SL(j)
を介して正極性の信号が供給される。
全ての配線GLを順次選択して、すべての画素11に信号を供給することができる。次
のフレーム期間では、配線SL(j)および配線SL(j)には負極性の信号が供給
され、配線SL(j)には正極性の信号が供給される。このようにして、1フレーム毎
かつ、行方向および列方向に隣り合う画素に異なる極性の信号を供給することができる。
例えば、ドット反転駆動において、配線SLに供給する信号の極性を一行毎に反転させる
方式では、配線SLに供給する電圧振幅が大きくなるため、ソースドライバへの負荷が大
きくなり消費電力が増加する。本発明の一態様の表示装置では、ドット反転駆動において
も、1つのフレーム期間中、配線SLに同じ極性の信号を供給することができる。よって
、配線SLに供給する電圧振幅を小さくすることができ、信号書き換え時のソースドライ
バへの負荷を軽減し、消費電力を低減することができる。
また、図24に示した構成であれば、1度の行選択で3行分の画素11に信号を供給する
ことができる。よって、1行当たりの選択期間を長くすることができる。本発明の一態様
によれば、画素11への信号の書き込みを確実に行なうことができるため、表示装置の表
示品位を高めることができる。
[1列あたりのソース線が4本の表示部]
図27および図28は、1列あたり4本のソース線を設けた表示部17の一部を示してい
る。図27および図28では、j列の画素11が、配線SL(j)および配線SL
j)と、配線SL(j)および配線SL(j)と、の間に設けられている。
また、図27では、画素11(i,j)と画素11(i+4,j)が配線SL(j)と
電気的に接続され、画素11(i+1,j)、画素11(i+5,j)が配線SL(j
)と電気的に接続され、画素11(i+2,j)と画素11(i+6,j)が配線SL
(j)と電気的に接続され、画素11(i+3,j)と画素11(i+7,j)が配線S
(j)と電気的に接続されている。
すなわち、図27において、j列のi+4x行目(xは0以上の整数)に設けられた画素
11は、配線SL(j)と電気的に接続されている。また、j列のi+4x+1行目に
設けられた画素11は、配線SL(j)と電気的に接続されている。また、j列のi+
4x+2行目に設けられた画素11は、配線SL(j)と電気的に接続されている。ま
た、j列のi+4x+3行目に設けられた画素11は、配線SL(j)と電気的に接続
されている。
また、図28では、画素11(i,j)と画素11(i+4,j)が配線SL(j)と
電気的に接続され、画素11(i+1,j)、画素11(i+5,j)が配線SL(j
)と電気的に接続され、画素11(i+2,j)と画素11(i+6,j)が配線SL
(j)と電気的に接続され、画素11(i+3,j)と画素11(i+7,j)が配線S
(j)と電気的に接続されている。
図27および図28では、j列の画素11とj+1列の画素11の間に、配線SL(j
)、配線SL(j)、配線SL(j+1)、および配線SL(j+1)が設けられ
ている。また、配線SL(j)、配線SL(j)、配線SL(j+1)、および配
線SL(j+1)のそれぞれの間に寄生容量Cstが生じる。
図27および図28に示す接続でドット反転駆動を行なう場合は、配線SL(j)、配
線SL(j)、配線SL(j+1)、および配線SL(j+1)に同じ極性の信号
が供給される。同様に、配線SL(j+1)、配線SL(j+1)、配線SL(j
+2)、および配線SL(j+2)に同じ極性の信号が供給される。隣接する配線SL
の極性を同じにすることで、両配線間の電位差を小さくすることができる。よって、信号
書き換え時のソースドライバの負荷が軽減され、消費電力を低減することができる。
[1列あたりのソース線が5本の表示部]
図29は、1列あたり5本のソース線を設けた表示部17の一部を示している。図29で
は、j列の画素11が、配線SL(j)、配線SL(j)、および配線SL(j)
と、配線SL(j)および配線SL(j)と、の間に設けられている。
また、図29では、画素11(i,j)が配線SL(j)と電気的に接続され、画素1
1(i+1,j)、画素11(i+5,j)が配線SL(j)と電気的に接続され、画
素11(i+2,j)と画素11(i+6,j)が配線SL(j)と電気的に接続され
、画素11(i+3,j)と画素11(i+7,j)が配線SL(j)と電気的に接続
され、画素11(i+4,j)、および画素11(i+8,j)が配線SL(j)と電
気的に接続され、画素11(i+9,j)が配線SL(j+1)と電気的に接続されて
いる。
すなわち、図29において、j列のi+10x行目(xは0以上の整数)に設けられた画
素11は、配線SL(j)と電気的に接続されている。また、j列のi+10x+1行
目に設けられた画素11とj列のi+10x+5行目に設けられた画素11は、配線SL
(j)と電気的に接続されている。
また、j列のi+6x+2行目に設けられた画素11とj列のi+6x+6行目に設けら
れた画素11は、配線SL(j)と電気的に接続されている。また、j列のi+6x+
3行目に設けられた画素11とj列のi+6x+7行目に設けられた画素11は、配線S
(j)と電気的に接続されている。また、j列のi+6x+4行目に設けられた画素
11とj列のi+6x+8行目に設けられた画素11は、配線SL(j)と電気的に接
続されている。また、j列のi+6x+9行目に設けられた画素11は、配線SL(j
+1)と電気的に接続されている。
図29では、j列の画素11とj+1列の画素11の間に、配線SL(j)、配線SL
(j)、配線SL(j+1)、配線SL(j+1)、および配線SL(j+1)
が設けられている。
図29に示す接続でドット反転駆動を行なう場合は、配線SL(j)、配線SL(j
)、配線SL(j+1)、配線SL(j+1)、および配線SL(j+1)に同じ
極性の信号が供給される。同様に、配線SL(j+1)、配線SL(j+1)、配線
SL(j+2)、配線SL(j+2)、および配線SL(j+2)に同じ極性の信
号が供給される。隣接する配線SLの極性を同じにすることで、両配線間の電位差を小さ
くすることができる。よって、信号書き換え時のソースドライバの負荷が軽減され、消費
電力を低減することができる。
[1列あたりのソース線が6本の表示部]
図30は、1列あたり6本のソース線を設けた表示部17の一部を示している。図30で
は、j列の画素11が、配線SL(j)、配線SL(j)、および配線SL(j)
と、配線SL(j)、配線SL(j)、および配線SL(j)と、の間に設けられ
ている。
また、図30では、画素11(i,j)と画素11(i+6,j)が配線SL(j)と
電気的に接続され、画素11(i+1,j)、画素11(i+7,j)が配線SL(j
)と電気的に接続され、画素11(i+2,j)と画素11(i+8,j)が配線SL
(j)と電気的に接続され、画素11(i+3,j)と画素11(i+9,j)が配線S
(j)と電気的に接続され、画素11(i+4,j)と画素11(i+10,j)が
配線SL(j)と電気的に接続され、画素11(i+5,j)と画素11(i+11,
j)が配線SL(j)と電気的に接続されている。
すなわち、図30において、j列のi+6x行目(xは0以上の整数)に設けられた画素
11は、配線SL(j)と電気的に接続されている。また、j列のi+6x+1行目に
設けられた画素11は、配線SL(j)と電気的に接続されている。また、j列のi+
6x+2行目に設けられた画素11は、配線SL(j)と電気的に接続されている。ま
た、j列のi+6x+3行目に設けられた画素11は、配線SL(j)と電気的に接続
されている。また、j列のi+6x+4行目に設けられた画素11は、配線SL(j)
と電気的に接続されている。また、j列のi+6x+5行目に設けられた画素11は、配
線SL(j)と電気的に接続されている。
図30では、j列の画素11とj+1列の画素11の間に、配線SL(j)、配線SL
(j)、配線SL(j)、配線SL(j+1)、配線SL(j+1)、および配
線SL(j+1)が設けられている。
図30に示す接続でドット反転駆動を行なう場合は、配線SL(j)、配線SL(j
)、配線SL(j)、配線SL(j+1)、配線SL(j+1)、および配線SL
(j+1)に同じ極性の信号が供給される。同様に、配線SL(j+1)、配線SL
(j+1)、配線SL(j+1)、配線SL(j+2)、配線SL(j+2)、
および配線SL(j+2)に同じ極性の信号が供給される。隣接する配線SLの極性を
同じにすることで、両配線間の電位差を小さくすることができる。よって、信号書き換え
時のソースドライバの負荷が軽減され、消費電力を低減することができる。
〔ソースライン反転駆動を行なう場合の接続関係〕
[1列あたりのソース線が2本の表示部]
図31(A)は、1列あたり2本のソース線を設けた表示部17の一部を示している。図
31(A)において、j列の画素11とj+1列の画素11の間に、配線SL(j)と
配線SL(j)が設けられている。
また、図31(A)では、画素11(i,j)と画素11(i+2,j)が配線SL
j)と電気的に接続され、画素11(i+1,j)と画素11(i+3,j)が配線SL
(j)と電気的に接続されている。
すなわち、図31(A)において、j列のi+2x行目(xは0以上の整数)に設けられ
た画素11は、配線SL(j)と電気的に接続されている。また、j列のi+2x+1
行目に設けられた画素11は、配線SL(j)と電気的に接続されている。
図31(A)に示す接続でソースライン反転駆動を行なう場合は、隣接する配線SL
j)と配線SL(j)に同じ極性の信号が供給される。同様に、隣接する配線SL
j+1)と配線SL(j+1)に同じ極性の信号が供給される。隣接する配線SLの極
性を同じにすることで、両配線間の電位差を小さくすることができる。よって、信号書き
換え時のソースドライバの負荷が軽減され、消費電力を低減することができる。
〔ゲートライン反転駆動を行なう場合の接続関係〕
[1列あたりのソース線が2本の表示部]
図31(B)は、1列あたり2本のソース線を設けた表示部17の一部を示している。図
31(B)では、j列の画素11が、配線SL(j)と配線SL(j)の間に設けら
れている。また、図31(B)では、j列の画素11とj+1列の画素11の間に、配線
SL(j)と配線SL(j+1)が設けられている。
図31(B)において、j列のi+2x行目に設けられた画素11は、配線SL(j)
と電気的に接続されている。また、j列のi+2x+1行目に設けられた画素11は、配
線SL(j)と電気的に接続されている。また、j+1列のi+2x行目に設けられた
画素11は、配線SL(j+1)と電気的に接続されている。また、j+1列のi+2
x+1行目に設けられた画素11は、配線SL(j+1)と電気的に接続されている。
図31(B)に示す接続でゲートライン反転駆動を行なう場合は、隣接する配線SL
j)と配線SL(j+1)に同じ極性の信号が供給される。同様に、隣接する配線SL
(j+1)と配線SL(j+2)に同じ極性の信号が供給される。隣接する配線SL
の極性を同じにすることで、両配線間の電位差を小さくすることができる。よって、信号
書き換え時のソースドライバの負荷が軽減され、消費電力を低減することができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み
合わせて実施することができる。
(実施の形態3)
本実施の形態では、ゲートドライバ12aとソースドライバ13aの構成例について説明
する。
〔ゲートドライバの構成例〕
図32(A)にゲートドライバ12aの構成例を示す。ゲートドライバ12aは、シフト
レジスタ511、およびバッファアンプ514を有する。ゲートドライバ12aは複数の
配線GL(または複数の配線GL)と電気的に接続される。
シフトレジスタ511には、スタートパルスSP、クロック信号CLKなどが入力される
。シフトレジスタ511は、クロック信号CLKと同期して、選択信号が供給される配線
GLを選択する機能を有する。選択信号は、バッファアンプ514で増幅されて配線GL
に供給される。バッファアンプ514は、電流供給能力を高める機能(電力を増幅する機
能)を有する。この他に、選択信号の電圧振幅を大きくするために、電源電圧を切り換え
るレベルシフタを有していてもよい。なお、ゲートドライバ12bもゲートドライバ12
aと同様の構成とすることができる。
〔ソースドライバの構成例〕
図32(B)にソースドライバ13aの構成例を示す。ソースドライバ13aは、シフト
レジスタ521、ラッチ522、DAコンバータ523、およびバッファアンプ524を
有する。ソースドライバ13aは複数の配線SLと電気的に接続される。
シフトレジスタ521には、スタートパルスSP、クロック信号CLKなどが供給される
。ラッチ522にはデジタル方式の映像情報Videoが供給される。ラッチ522は、
映像情報Videoを保持する機能を有する。DAコンバータ523は、ラッチ522に
保持されている映像情報Videoを用いてアナログ方式の映像信号(ビデオ信号)を生
成する機能を有する。なお、DAコンバータ523においてビデオ信号を生成する際に、
ガンマ補正などを行なってもよい。
シフトレジスタ521は、クロック信号CLKと同期して、ビデオ信号が供給される配線
SLを選択する機能を有する。ビデオ信号は、バッファアンプ524を介して配線SLに
供給される。バッファアンプ524は、電流供給能力を高める機能を有する。この他に、
ビデオ信号の電圧振幅を大きくするために、電源電圧を切り換えるレベルシフタを有して
いてもよい。なお、ソースドライバ13bもソースドライバ13aと同様の構成とするこ
とができる。
また、図33(A)に示すように、バッファアンプ524と配線SLの間にデマルチプレ
クサ525を設けてもよい。デマルチプレクサ525は、入力された信号を制御信号DM
Xcに応じて複数の出力のいずれかに供給する機能を有する。
デマルチプレクサ525を設けることで、ソースドライバ13aに入力される信号線の数
を減らすことができる。よって、表示装置の接続端子数が低減され、表示装置の信頼性を
高めることができる。
また、図33(B)に示すように、DAコンバータ523とバッファアンプ524の間に
デマルチプレクサ525とアナログラッチ526を設けてもよい。図33(B)に示す構
成では、デマルチプレクサ525から供給されたビデオ信号をアナログラッチ526に保
持する。その後、当該ビデオ信号を、バッファアンプ524で増幅して配線SLに出力す
る。アナログラッチ526を設けることで、バッファアンプ524の出力を安定させるこ
とができる。よって、意図しない配線SLの電位変動を防ぎ、表示装置の表示品位を高め
ることができる。
図34乃至図36に、図33(A)に示したソースドライバ13aのデマルチプレクサ5
25と表示部17の接続例を示す。デマルチプレクサ525は複数のデマルチプレクサ5
35を含む。よって、デマルチプレクサ525を「デマルチプレクサ群」と言う事ができ
る。図34乃至図36では、p番目(pは1以上の整数)のデマルチプレクサ535をデ
マルチプレクサ535(p)と示している。
図34および図35では、1列あたり2本のソース線を有する表示部17と、1入力2出
力のデマルチプレクサ535を含むデマルチプレクサ525の接続例を示している。
図34では、デマルチプレクサ535(p)の出力端子の一方を配線SL(j)と電気
的に接続し、他方を配線SL(j)と電気的に接続する例を示している。同様に、デマ
ルチプレクサ535(p+1)の出力端子の一方は配線SL(j+1)と電気的に接続
され、他方は配線SL(j+1)と電気的に接続される。
図35では、デマルチプレクサ535(p)の出力端子の一方を配線SL(j-1)と
電気的に接続し、他方を配線SL(j)と電気的に接続する例を示している。同様に、
デマルチプレクサ535(p+1)の出力端子の一方は配線SL(j)と電気的に接続
され、他方は配線SL(j+1)と電気的に接続される。
上記実施の形態で説明したように、隣接する配線SLの極性を同じにすることで、信号書
き換え時のソースドライバの負荷が軽減され、消費電力を低減することができる。よって
、図33(A)に示したソースドライバ13aを表示部17と接続する場合は、図35に
示す接続方法を用いることが好ましい。
図36では、1列あたり3本のソース線を有する表示部17と、1入力3出力のデマルチ
プレクサ535を含むデマルチプレクサ525の接続例を示している。
図36では、デマルチプレクサ535(p)の出力端子のうち、1番目の出力端子を配線
SL(j-1)と電気的に接続し、2番目の出力端子を配線SL(j)と電気的に接
続し、3番目の出力端子を配線SL(j)と電気的に接続する例を示している。同様に
、デマルチプレクサ535(p+1)の出力端子のうち、1番目の出力端子は配線SL
(j)と電気的に接続され、2番目の出力端子は配線SL(j+1)と電気的に接続さ
れ、3番目の出力端子は配線SL(j+1)と電気的に接続される。
図37では、1列あたり4本のソース線を有する表示部17と、1入力4出力のデマルチ
プレクサ535を含むデマルチプレクサ525の接続例を示している。
図37では、デマルチプレクサ535(p)の出力端子のうち、1番目の出力端子を配線
SL(j-1)と電気的に接続し、2番目の出力端子を配線SL(j-1)と電気的
に接続し、3番目の出力端子を配線SL(j)と電気的に接続し、4番目の出力端子を
配線SL(j)と電気的に接続する例を示している。同様に、デマルチプレクサ535
(p+1)の出力端子のうち、1番目の出力端子は配線SL(j)と電気的に接続され
、2番目の出力端子は配線SL(j)と電気的に接続され、3番目の出力端子は配線S
(j+1)と電気的に接続され、4番目の出力端子は配線SL(j+1)と電気的
に接続される。
〔アナログラッチ〕
ここで、アナログラッチ526に用いることができる半導体回路の一例を説明しておく。
図38(A)に示す半導体回路は、トランジスタ262のソースまたはドレインの一方を
、トランジスタ263のゲートおよび容量素子258の一方の電極に接続した記憶回路2
51aの構成例を示している。また、図38(B)に示す回路は、トランジスタ262の
ソースまたはドレインの一方を、容量素子258の一方の電極に接続した記憶回路261
aの構成例を示している。
アナログラッチ526は、複数のラッチ回路を含む。記憶回路251aおよび記憶回路2
61aは、当該ラッチ回路として用いることができる。
記憶回路251aおよび記憶回路261aは、端子254およびトランジスタ262を介
して入力された電荷を、ノード257に保持することができる。ノード257には任意の
電位(電荷量)を保持することができる。
記憶回路251aはトランジスタ263を有する。図38(A)ではトランジスタ263
としてpチャネル型のトランジスタを示しているが、nチャネル型のトランジスタを用い
てもよい。また、トランジスタ263としてOSトランジスタを用いてもよい。
記憶回路251aおよび記憶回路261aとも、アナログ信号を保持することができる。
図38(A)に示す記憶回路251aおよび図38(B)に示す記憶回路261aについ
て、詳細に説明する。
記憶回路251aは、第1の半導体を用いたトランジスタ263と第2の半導体を用いた
トランジスタ262、および容量素子258を有している。
トランジスタ262は、OSトランジスタを用いることが好ましい。トランジスタ262
にオフ電流が小さいトランジスタを用いることにより、ノード257に保持された電荷量
の変動を抑えることができる。よって、より正確に情報を記憶することができる。
図38(A)において、端子252がトランジスタ263のソースまたはドレインの一方
と電気的に接続され、端子253がトランジスタ263のソースまたはドレインの他方と
電気的に接続される。また、配線255はトランジスタ262のゲートと電気的に接続さ
れ、トランジスタ262のソースまたはドレインの一方は、ノード257と電気的に接続
され、トランジスタ262のソースまたはドレインの他方は、端子254と電気的に接続
されている。そして、トランジスタ263のゲート、および容量素子258の電極の一方
は、ノード257と電気的に接続されている。また、配線256が容量素子258の電極
の他方と電気的に接続されている。
記憶回路251aでは、端子254が入力端子として機能し、端子253が出力端子とし
て機能する。記憶回路261aでは、端子254が入出力端子として機能する。
記憶回路251aおよび記憶回路261aは、ノード257に与えられた電荷を保持可能
という特性を有することで、以下に示すように、情報の書き込み、保持、読み出しが可能
である。
〔書き込み動作および保持動作〕
記憶回路251aおよび記憶回路261aの、情報の書き込み動作および保持動作につい
て説明する。まず、配線255の電位を、トランジスタ262がオン状態となる電位にす
る。これにより、端子254の電位がノード257に与えられる。即ち、ノード257に
所定の電荷が与えられる(書き込み)。ここでは、任意の電位に相当する電荷が与えられ
るものとする。その後、配線255の電位を、トランジスタ262がオフ状態となる電位
とすることで、ノード257に電荷が保持される(保持動作)。
また、記憶回路251aにおいて、トランジスタ263にpチャネル型のトランジスタを
用いる場合、任意の電位はトランジスタ263のしきい値電圧よりも高い電位とする。ま
た、トランジスタ263にnチャネル型のトランジスタを用いる場合、任意の電位はトラ
ンジスタ263のしきい値電圧よりも低い電位とする。すなわち、任意の電位は、どちら
もトランジスタ263がオフ状態となる電位である。
図38(B)に示す記憶回路261aは、トランジスタ263を有さない点が記憶回路2
51aと異なる。また、容量素子258の他方の電極が、配線264と電気的に接続され
る。配線264の電位は固定電位であればどのような電位でもよい。例えば、配線264
をGNDとすればよい。記憶回路261aも、記憶回路251aと同様の動作により情報
の書き込みが可能である。
〔記憶回路251aの読み出し動作〕
記憶回路251aに保持された情報の読み出し動作について説明する。端子252に所定
の電位(定電位)を与えた状態で、配線256に読み出し電位Vを与えると、ノード2
57に保持されている電位を読み出すことができる。すなわち、端子252に供給する電
位と読み出し電位Vを適切に設定することで、ノード257に保持されている電位と同
等の電位を端子253に出力することができる。
〔記憶回路261aの読み出し動作〕
記憶回路261aの、情報の読み出し動作について説明する。配線255にトランジスタ
262がオン状態になる電位が与えられると、端子254とノード257とが導通し、端
子254にノード257に保持されている電位が供給される。この時、容量素子258の
容量値は大きいほど好ましい。容量素子258の容量値が大きいほど、書き込まれた電位
を端子254に正確に供給することができる。
また、記憶回路251aおよび記憶回路261aは、情報の書き込みに高い電圧が不要で
あるため、素子の劣化が起こりにくい。例えば、従来の不揮発性メモリのように、フロー
ティングゲートへの電子の注入や、フローティングゲートからの電子の引き抜きを行わな
いため、絶縁体の劣化といった問題が全く生じない。即ち、本発明の一態様に係る記憶素
子は、従来の不揮発性メモリで問題となっている書き換え可能回数に制限はなく、信頼性
が飛躍的に向上した記憶素子である。さらに、トランジスタの導通状態、非導通状態によ
って、情報の書き込みが行われるため、高速な動作が可能となる。
また、トランジスタ262にバックゲートを有するトランジスタを用いてもよい。当該バ
ックゲートに供給する電位を制御することで、トランジスタ262のしきい値電圧を任意
に変化させることができる。図38(C)に示す記憶回路251bは、トランジスタ26
2にバックゲートを有するトランジスタを用いる点が記憶回路251aと異なる。図38
(D)に示す記憶回路261bは、トランジスタ262にバックゲートを有するトランジ
スタを用いる点が記憶回路261aと異なる。
また、記憶回路251bおよび記憶回路261bは、トランジスタ262のバックゲート
が配線259と電気的に接続されている。配線259に供給する電位を制御することで、
トランジスタ262のしきい値電圧を任意に変化させることができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み
合わせて実施することができる。
(実施の形態4)
本実施の形態では、上記実施の形態に示した表示装置等に用いることができるトランジス
タの一例について、図面を用いて説明する。
図39(A)に示すトランジスタは、半導体層32と不純物半導体層35の間に、半導体
層37を有する。
半導体層37は、半導体層32と同様の半導体膜により形成されていてもよい。半導体層
37は、不純物半導体層35のエッチングの際に、半導体層32がエッチングにより消失
することを防ぐためのエッチングストッパーとして機能させることができる。なお、図3
9(A)において、半導体層37が左右に分離している例を示しているが、半導体層37
の一部が半導体層32のチャネル形成領域を覆っていてもよい。
また、半導体層37は、不純物半導体層35よりも低濃度の不純物が含まれていてもよい
。これにより、半導体層37をLDD(Lightly Doped Drain)領域
として機能させることができ、トランジスタを駆動させたときのホットキャリア効果を抑
制することができる。
図39(B)に示すトランジスタは、半導体層32のチャネル形成領域上に、絶縁層84
が設けられている。絶縁層84は、導電層33aおよび導電層33bのエッチングの際の
エッチングストッパーとして機能する。
図39(C)に示すトランジスタは、半導体層32に代えて、半導体層32pを有する。
半導体層32pは、結晶性の高い半導体膜を含む。例えば半導体層32pは、多結晶半導
体または単結晶半導体を含む。これにより、電界効果移動度の高いトランジスタとするこ
とができる。
図39(D)に示すトランジスタは、半導体層32のチャネル形成領域に半導体層32p
を有する。例えば図39(D)に示すトランジスタは、半導体層32となる半導体膜に対
してレーザ光などを照射することにより、局所的に結晶化することにより形成することが
できる。これにより、電界効果移動度の高いトランジスタを実現できる。
図39(E)に示すトランジスタは、図39(A)で示したトランジスタの半導体層32
のチャネル形成領域に、結晶性の半導体層32pを有する。
図39(F)に示すトランジスタは、図39(B)で示したトランジスタの半導体層32
のチャネル形成領域に、結晶性の半導体層32pを有する。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み
合わせて実施することができる。
(実施の形態5)
本実施の形態では、上記実施の形態に示した表示装置等に用いることができるトランジス
タの一例について、図面を用いて説明する。特に、OSトランジスタに用いることが好ま
しいトランジスタ構造の一例について説明する。
<トランジスタの構成例>
〔構成例1〕
まず、トランジスタの構造の一例として、トランジスタ200aについて、図40(A)
(B)、(C)を用いて説明する。図40(A)はトランジスタ200aの上面図である
。図40(B)は、図40(A)に示す一点鎖線X1-X2間における切断面の断面図に
相当し、図40(C)は、図40(A)に示す一点鎖線Y1-Y2間における切断面の断
面図に相当する。なお、図40(A)において、煩雑になることを避けるため、トランジ
スタ200aの構成要素の一部(ゲート絶縁層としての機能を有する絶縁層等)を省略し
て図示している。なお、以下において、一点鎖線X1-X2方向をチャネル長方向、一点
鎖線Y1-Y2方向をチャネル幅方向と呼称する場合がある。なお、トランジスタの上面
図においては、以降の図面においても図40(A)と同様に、構成要素の一部を省略して
図示する場合がある。
トランジスタ200aは、絶縁層224上の導電層221と、絶縁層224上および導電
層221上の絶縁層211と、絶縁層211上の半導体層231と、半導体層231上お
よび絶縁層211上の導電層222aと、半導体層231上および絶縁層211上の導電
層222bと、半導体層231上、導電層222a上、および導電層222b上の絶縁層
212と、絶縁層212上の導電層223と、を有する。
なお、絶縁層224は、基板であってもよい。絶縁層224を基板とする場合、当該基板
は実施の形態1に示した基板14と同様の材料を含む基板とすることができる。
また、導電層221および導電層223として、例えば実施の形態1に示した導電層31
と同様の材料を含むことができる。絶縁層211として、例えば実施の形態1に示した絶
縁層34と同様の材料を含むことができる。導電層222aおよび導電層222bとして
、例えば実施の形態1に示した導電層33および導電層51と同様の材料を含むことがで
きる。絶縁層212として、実施の形態1に示した絶縁層82と同様の材料を含むことが
できる。
また、半導体層231として、例えば実施の形態1に示した半導体層32と同様の材料を
含むことができる。本実施の形態では、半導体層231が金属酸化物を含む半導体層であ
るとして説明を行う。
絶縁層211および絶縁層212は、開口部235を有する。導電層223は、開口部2
35を介して、導電層221と電気的に接続される。
ここで、絶縁層211は、トランジスタ200aの第1のゲート絶縁層としての機能を有
し、絶縁層212は、トランジスタ200aの第2のゲート絶縁層としての機能を有する
。また、トランジスタ200aにおいて、導電層221は、第1のゲートとしての機能を
有し、導電層222aは、ソースまたはドレインの一方としての機能を有し、導電層22
2bは、ソースまたはドレインの他方としての機能を有する。また、トランジスタ200
aにおいて、導電層223は、第2のゲートとしての機能を有する。
なお、トランジスタ200aは、いわゆるチャネルエッチ型のトランジスタであり、デュ
アルゲート構造である。
また、トランジスタ200aは、導電層223を設けない構成にすることもできる。この
場合、トランジスタ200aは、いわゆるチャネルエッチ型のトランジスタであり、ボト
ムゲート構造である。
図40(B)、(C)に示すように、半導体層231は、導電層221、および導電層2
23と対向するように位置し、2つのゲートの機能を有する導電層に挟まれている。導電
層223のチャネル長方向の長さ、および導電層223のチャネル幅方向の長さは、半導
体層231のチャネル長方向の長さ、および半導体層231のチャネル幅方向の長さより
もそれぞれ長く、半導体層231の全体は、絶縁層212を介して導電層223に覆われ
ている。
別言すると、導電層221および導電層223は、絶縁層211および絶縁層212に設
けられる開口部235において接続され、かつ半導体層231の側端部よりも外側に位置
する領域を有する。
このような構成を有することで、トランジスタ200aに含まれる半導体層231を、導
電層221および導電層223の電界によって電気的に囲むことができる。トランジスタ
200aのように、第1のゲートおよび第2のゲートの電界によって、チャネル形成領域
が形成される半導体層を、電気的に囲むトランジスタのデバイス構造をsurround
ed channel(s-channel)構造と呼ぶことができる。
トランジスタ200aは、s-channel構造を有するため、第1のゲートの機能を
有する導電層221によってチャネルを誘起させるための電界を効果的に半導体層231
に印加することができるため、トランジスタ200aの電流駆動能力が向上し、高いオン
電流特性を得ることが可能となる。また、オン電流を高くすることが可能であるため、ト
ランジスタ200aを微細化することが可能となる。また、トランジスタ200aは、半
導体層231が、第1のゲートの機能を有する導電層221および第2のゲートの機能を
有する導電層223によって囲まれた構造を有するため、トランジスタ200aの機械的
強度を高めることができる。
s-channel構造であるトランジスタ200aは電界効果移動度が高く、かつ駆動
能力が高いので、トランジスタ200aを駆動回路、代表的にはゲートドライバに用いる
ことで、額縁幅の狭い(狭額縁ともいう)表示装置を提供することができる。
〔構成例2〕
次に、トランジスタの構造の一例として、トランジスタ200bについて、図41(A)
、(B)、(C)を用いて説明する。図41(A)はトランジスタ200bの上面図であ
る。図41(B)は、図41(A)に示す一点鎖線X1-X2間における切断面の断面図
に相当し、図41(C)は、図41(A)に示す一点鎖線Y1-Y2間における切断面の
断面図に相当する。
トランジスタ200bは、半導体層231、導電層222a、導電層222b、および絶
縁層212が積層構造である点において、トランジスタ200aと異なる。
絶縁層212は、半導体層231上、導電層222a上、および導電層222b上の絶縁
層212aと、絶縁層212aの上の絶縁層212bを有する。絶縁層212は、半導体
層231に酸素を供給する機能を有する。すなわち、絶縁層212は、酸素を有する。ま
た、絶縁層212aは、酸素を透過することのできる絶縁層である。なお、絶縁層212
aは、後に形成する絶縁層212bを形成する際の、半導体層231へのダメージ緩和膜
としても機能する。
絶縁層212aとしては、厚さが5nm以上150nm以下、好ましくは5nm以上50
nm以下の酸化シリコン、酸化窒化シリコン等を用いることができる。
また、絶縁層212aは、欠陥量が少ないことが好ましく、代表的には、ESR測定によ
り、シリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン密度
が3×1017spins/cm以下であることが好ましい。これは、絶縁層212a
に含まれる欠陥密度が多いと、該欠陥に酸素が結合してしまい、絶縁層212aにおける
酸素の透過性が減少してしまうためである。
なお、絶縁層212aにおいては、外部から絶縁層212aに入った酸素が全て絶縁層2
12aの外部に移動せず、絶縁層212aにとどまる酸素もある。また、絶縁層212a
に酸素が入ると共に、絶縁層212aに含まれる酸素が絶縁層212aの外部へ移動する
ことで、絶縁層212aにおいて酸素の移動が生じる場合もある。絶縁層212aとして
酸素を透過することができる酸化物絶縁層を形成すると、絶縁層212a上に設けられる
、絶縁層212bから脱離する酸素を、絶縁層212aを介して半導体層231に移動さ
せることができる。
また、絶縁層212aは、窒素酸化物に起因する準位密度が低い酸化物絶縁層を用いて形
成することができる。なお、当該窒素酸化物に起因する準位密度は、金属酸化物の価電子
帯の上端のエネルギーと金属酸化物の伝導帯の下端のエネルギーの間に形成され得る場合
がある。上記酸化物絶縁層として、窒素酸化物の放出量が少ない酸化窒化シリコン膜、ま
たは窒素酸化物の放出量が少ない酸化窒化アルミニウム膜等を用いることができる。
なお、窒素酸化物の放出量の少ない酸化窒化シリコン膜は、昇温脱離ガス分析法(TDS
:Thermal Desorption Spectroscopy)において、窒素
酸化物の放出量よりアンモニアの放出量が多い膜であり、代表的にはアンモニアの放出量
が1×1018/cm以上5×1019/cm以下である。なお、アンモニアの放出
量は、膜の表面温度が50℃以上650℃以下、好ましくは50℃以上550℃以下の加
熱処理による放出量とする。
窒素酸化物(NO、xは0よりも大きく2以下、好ましくは1以上2以下)、代表的に
はNOまたはNOは、絶縁層212a等に準位を形成する。当該準位は、半導体層23
1のエネルギーギャップ内に位置する。そのため、窒素酸化物が、絶縁層212aおよび
半導体層231の界面に拡散すると、当該準位が絶縁層212a側において電子をトラッ
プする場合がある。この結果、トラップされた電子が、絶縁層212aおよび半導体層2
31界面近傍に留まるため、トランジスタのしきい値電圧をプラス方向にシフトさせてし
まう。
また、窒素酸化物は、加熱処理においてアンモニアおよび酸素と反応する。絶縁層212
aに含まれる窒素酸化物は、加熱処理において、絶縁層212bに含まれるアンモニアと
反応するため、絶縁層212aに含まれる窒素酸化物が低減される。このため、絶縁層2
12aおよび半導体層231の界面において、電子がトラップされにくい。
絶縁層212aとして、上記酸化物絶縁層を用いることで、トランジスタのしきい値電圧
のシフトを低減することが可能であり、トランジスタの電気特性の変動を低減することが
できる。
また、上記酸化物絶縁層は、SIMSで測定される窒素濃度が6×1020atoms/
cm以下である。
基板温度が220℃以上350℃以下であり、シランおよび一酸化二窒素を用いたPEC
VD法を用いて、上記酸化物絶縁層を形成することで、緻密であり、かつ硬度の高い膜を
形成することができる。
絶縁層212bは、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁層で
ある。上記の酸化物絶縁層は、加熱により酸素の一部が脱離する。なお、TDSにおいて
、上記の酸化物絶縁層は、酸素の放出量が1.0×1019atoms/cm以上、好
ましくは3.0×1020atoms/cm以上の領域を有する。また、上記の酸素の
放出量は、TDSにおける加熱処理の温度が50℃以上650℃以下、または50℃以上
550℃以下の範囲での総量である。また、上記の酸素の放出量は、TDSにおける酸素
原子に換算しての総量である。
絶縁層212bとしては、厚さが30nm以上500nm以下、好ましくは50nm以上
400nm以下の、酸化シリコン、酸化窒化シリコン等を用いることができる。
また、絶縁層212bは、欠陥量が少ないことが好ましく、代表的には、ESR測定によ
り、シリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン密度
が1.5×1018spins/cm未満、さらには1×1018spins/cm
以下であることが好ましい。なお、絶縁層212bは、絶縁層212aと比較して半導体
層231から離れているため、絶縁層212aより、欠陥密度が多くともよい。
また、絶縁層212は、同種の材料の絶縁層を用いることができるため、絶縁層212a
と絶縁層212bの界面が明確に確認できない場合がある。したがって、本実施の形態に
おいては、絶縁層212aと絶縁層212bの界面は、破線で図示している。なお、本実
施の形態においては、絶縁層212aと絶縁層212bの2層構造について説明したが、
これに限定されず、例えば、絶縁層212aの単層構造、あるいは3層以上の積層構造と
してもよい。
トランジスタ200bにおいて、半導体層231は、絶縁層211上の半導体層231_
1と、半導体層231_1上の半導体層231_2と、を有する。なお、半導体層231
_1および半導体層231_2は、それぞれ同じ元素を有する。例えば、半導体層231
_1および半導体層231_2は、上述の半導体層231が有する元素を、それぞれ独立
に有することが好ましい。
また、半導体層231_1および半導体層231_2は、それぞれ独立に、Inの原子数
比がMの原子数比より多い領域を有すると好ましい。一例としては、半導体層231_1
および半導体層231_2のIn、M、およびZnの原子数の比を、In:M:Zn=4
:2:3近傍とすると好ましい。ここで、近傍とは、Inが4の場合、Mが1.5以上2
.5以下であり、かつZnが2以上4以下を含む。または、半導体層231_1および半
導体層231_2のIn、M、およびZnの原子数の比を、In:M:Zn=5:1:6
近傍とすると好ましい。このように、半導体層231_1および半導体層231_2を概
略同じ組成とすることで、同じスパッタリングターゲットを用いて形成できるため、製造
コストを抑制することが可能である。また、同じスパッタリングターゲットを用いる場合
、同一チャンバーにて真空中で連続して半導体層231_1および半導体層231_2を
成膜することができるため、半導体層231_1と半導体層231_2との界面に不純物
が取り込まれるのを抑制することができる。
ここで、半導体層231_1は、半導体層231_2よりも結晶性が低い領域を有してい
てもよい。なお、半導体層231_1および半導体層231_2の結晶性としては、例え
ば、X線回折(XRD:X-Ray Diffraction)を用いて分析する、ある
いは、透過型電子顕微鏡(TEM:Transmission Electron Mi
croscope)を用いて分析することで解析できる。
半導体層231_1の結晶性が低い領域が過剰酸素の拡散経路となり、半導体層231_
1よりも結晶性の高い半導体層231_2にも過剰酸素を拡散させることができる。この
ように、結晶構造が異なる半導体層の積層構造とし、結晶性の低い領域を過剰酸素の拡散
経路とすることで、信頼性の高いトランジスタを提供することができる。
また、半導体層231_2が、半導体層231_1より結晶性が高い領域を有することに
より、半導体層231に混入しうる不純物を抑制することができる。特に、半導体層23
1_2の結晶性を高めることで、導電層222aおよび導電層222bを加工する際のダ
メージを抑制することができる。半導体層231の表面、すなわち半導体層231_2の
表面は、導電層222aおよび導電層222bの加工の際のエッチャントまたはエッチン
グガスに曝される。しかしながら、半導体層231_2は、結晶性が高い領域を有する場
合、結晶性が低い半導体層231_1と比較してエッチング耐性に優れる。したがって、
半導体層231_2は、エッチングストッパーとしての機能を有する。
また、半導体層231_1は、半導体層231_2よりも結晶性が低い領域を有すること
で、キャリア密度が高くなる場合がある。
また、半導体層231_1のキャリア密度が高くなると、半導体層231_1の伝導帯に
対してフェルミ準位が相対的に高くなる場合がある。これにより、半導体層231_1の
伝導帯の下端が低くなり、半導体層231_1の伝導帯下端と、ゲート絶縁層(ここでは
、絶縁層211)中に形成されうるトラップ準位とのエネルギー差が大きくなる場合があ
る。該エネルギー差が大きくなることにより、ゲート絶縁層中にトラップされる電荷が少
なくなり、トランジスタのしきい値電圧の変動を小さくできる場合がある。また、半導体
層231_1のキャリア密度が高くなると、半導体層231の電界効果移動度を高めるこ
とができる。
なお、トランジスタ200bにおいては、半導体層231を2層の積層構造にする例を示
したが、これに限定されず、3層以上積層する構成にしてもよい。
トランジスタ200bが有する導電層222aは、導電層222a_1と、導電層222
a_1上の導電層222a_2と、導電層222a_2上の導電層222a_3と、を有
する。また、トランジスタ200bが有する導電層222bは、導電層222b_1と、
導電層222b_1上の導電層222b_2と、導電層222b_2上の導電層222b
_3と、を有する。
例えば、導電層222a_1、導電層222b_1、導電層222a_3、および導電層
222b_3としては、チタン、タングステン、タンタル、モリブデン、インジウム、ガ
リウム、錫、および亜鉛の中から選ばれるいずれか一つまたは複数を有することが好まし
い。また、導電層222a_2および導電層222b_2としては、銅、アルミニウム、
および銀の中から選ばれるいずれか一つまたは複数を有することが好ましい。
より具体的には、導電層222a_1、導電層222b_1、導電層222a_3、およ
び導電層222b_3にIn-Sn酸化物またはIn-Zn酸化物を用い、導電層222
a_2および導電層222b_2に銅を用いることができる。
また、導電層222a_1の端部は、導電層222a_2の端部よりも外側に位置する領
域を有し、導電層222a_3は、導電層222a_2の上面および側面を覆い、かつ導
電層222a_1と接する領域を有する。また、導電層222b_1の端部は、導電層2
22b_2の端部よりも外側に位置する領域を有し、導電層222b_3は、導電層22
2b_2の上面および側面を覆い、かつ導電層222b_1と接する領域を有する。
上記構成とすることで、導電層222aおよび導電層222bの配線抵抗を低くし、かつ
半導体層231への銅の拡散を抑制できるため好ましい。
〔構成例3〕
次に、トランジスタの構造の一例として、トランジスタ200cについて、図42(A)
、(B)、(C)を用いて説明する。図42(A)はトランジスタ200cの上面図であ
る。図42(B)は、図42(A)に示す一点鎖線X1-X2間における切断面の断面図
に相当し、図42(C)は、図42(A)に示す一点鎖線Y1-Y2間における切断面の
断面図に相当する。
トランジスタ200cは、絶縁層224上の導電層221と、導電層221上および絶縁
層224上の絶縁層211と、絶縁層211上の半導体層231と、半導体層231上お
よび絶縁層211上の絶縁層216と、半導体層231上および絶縁層216上の導電層
222aと、半導体層231上および絶縁層216上の導電層222bと、絶縁層216
、導電層222a、および導電層222b上の絶縁層212と、絶縁層212上の導電層
223と、を有する。
絶縁層211、絶縁層216、および絶縁層212は、開口部235を有する。トランジ
スタ200cの第1のゲートとしての機能を有する導電層221は、開口部235を介し
て、トランジスタ200cの第2のゲートとしての機能を有する導電層223と電気的に
接続される。また、絶縁層216は、開口部238aおよび開口部238bを有する。ト
ランジスタ200cのソースまたはドレインの一方としての機能を有する導電層222a
は、開口部238aを介して、半導体層231と電気的に接続される。トランジスタ20
0cのソースまたはドレインの他方としての機能を有する導電層222bは、開口部23
8bを介して、半導体層231と電気的に接続される。
絶縁層216は、トランジスタ200cのチャネル保護層としての機能を有する。絶縁層
216を有しない場合、エッチング法等により導電層222aおよび導電層222bを形
成する際に、半導体層231のチャネル形成領域にダメージが与えられる場合がある。こ
れにより、トランジスタの電気特性が不安定となる場合がある。絶縁層216を形成し、
開口部238aおよび開口部238bを設けた後に導電層を成膜し、当該導電層をエッチ
ング法等により加工して導電層222aおよび導電層222bを形成することにより、半
導体層231のチャネル形成領域へのダメージを抑制することができる。これにより、ト
ランジスタの電気特性を安定化させ、信頼性の高いトランジスタを実現できる。
絶縁層216は、例えば絶縁層212と同様の材料を含むことができる。
絶縁層216は、過剰酸素領域を有することが好ましい、絶縁層216が過剰酸素領域を
有することで、半導体層231のチャネル形成領域に酸素を供給することができる。よっ
て、当該チャネル形成領域に形成される酸素欠損を過剰酸素により補填することができる
ため、信頼性の高い表示装置を提供することができる。
また、開口部238aおよび開口部238bの形成後、半導体層231に不純物元素を添
加することが好ましい。具体的には、酸素欠損を形成する元素、または酸素欠損と結合す
る元素を添加すると好ましい。これにより、詳細は後述するが、半導体層231の、導電
層222aと重なる領域(ソース領域またはドレイン領域の一方)、および導電層222
bと重なる領域(ソース領域またはドレイン領域の他方)の導電性を高くすることができ
る。これにより、トランジスタ200cの電流駆動能力が向上し、高いオン電流特性を得
ることが可能となる。
なお、トランジスタ200cは、いわゆるチャネル保護型のトランジスタであり、デュア
ルゲート構造である。
トランジスタ200cは、トランジスタ200aおよびトランジスタ200bと同様にs
-channel構造をとる。このような構成を有することで、トランジスタ200cに
含まれる半導体層231を、導電層221および導電層223の電界によって電気的に取
り囲むことができる。
トランジスタ200cは、s-channel構造を有するため、導電層221または導
電層223によってチャネルを誘起させるための電界を効果的に半導体層231に印加す
ることができる。これにより、トランジスタ200cの電流駆動能力が向上し、高いオン
電流特性を得ることが可能となる。また、オン電流を高くすることが可能であるため、ト
ランジスタ200cを微細化することが可能となる。また、トランジスタ200cは、半
導体層231が、導電層221、および導電層223によって取り囲まれた構造を有する
ため、トランジスタ200cの機械的強度を高めることができる。
なお、トランジスタ200cは、導電層223を設けない構成にすることもできる。この
場合、トランジスタ200cは、いわゆるチャネル保護型のトランジスタであり、ボトム
ゲート構造である。
〔構成例4〕
次に、トランジスタの構造の一例について、図43(A)、(B)、(C)、(D)を用
いて説明する。
図43(A)、(B)はトランジスタ200dの断面図であり、図43(C)、(D)は
トランジスタ200eの断面図である。なお、トランジスタ200dは、先に示すトラン
ジスタ200bの変形例であり、トランジスタ200eは、先に示すトランジスタ200
cの変形例である。したがって、図43(A)、(B)、(C)、(D)において、トラ
ンジスタ200bおよびトランジスタ200cと同様の機能を有する部分については、同
様の符号を付し、詳細な説明を省略する。
なお、図43(A)はトランジスタ200dのチャネル長方向の断面図であり、図43(
B)はトランジスタ200dのチャネル幅方向の断面図である。また、図43(C)はト
ランジスタ200eのチャネル長方向の断面図であり、図43(D)はトランジスタ20
0eのチャネル幅方向の断面図である。
図43(A)、(B)に示すトランジスタ200dは、トランジスタ200bと比較し、
導電層223、および開口部235が設けられない。また、トランジスタ200dは、ト
ランジスタ200bと比較し、絶縁層212、導電層222a、および導電層222bの
構成が異なる。
トランジスタ200dにおいて、絶縁層212は、絶縁層212cと、絶縁層212c上
の絶縁層212dとを有する。絶縁層212cとしては、半導体層231に酸素を供給す
る機能と、不純物(代表的には、水、水素等)の入り込みを抑制する機能と、を有する。
絶縁層212cとしては、酸化アルミニウム膜、酸化窒化アルミニウム膜、または窒化酸
化アルミニウム膜を用いることができる。特に、絶縁層212cとしては、反応性スパッ
タリング法によって形成される酸化アルミニウム膜であることが好ましい。なお、反応性
スパッタリング法で酸化アルミニウム膜を形成する方法の一例としては、以下に示す方法
が挙げられる。
まず、スパッタリングチャンバー内に、不活性ガス(代表的にはArガス)と、酸素ガス
と、を混合したガスを導入する。続けて、スパッタリングチャンバーに配置されたアルミ
ニウムターゲットに電圧を印加することで、酸化アルミニウム膜を成膜することができる
。なお、アルミニウムターゲットに電圧を印加する電源としては、DC電源、AC電源、
またはRF電源が挙げられる。特に、DC電源を用いると生産性が向上するため好ましい
絶縁層212dは、不純物(代表的には水、水素等)の入り込みを抑制する機能を有する
。絶縁層212dとしては、窒化シリコン膜、窒化酸化シリコン膜、酸化窒化シリコン膜
を用いることができる。特に、絶縁層212dとしては、PECVD法によって形成され
る窒化シリコン膜が好ましい。PECVD法によって形成される窒化シリコン膜は、高い
膜密度を得られやすいため好ましい。なお、PECVD法によって形成される窒化シリコ
ン膜は、膜中の水素濃度が高い場合がある。
トランジスタ200dにおいては、絶縁層212dの下層には絶縁層212cが配置され
ているため、絶縁層212dに含まれる水素は、半導体層231側に拡散しない、または
拡散し難い。
なお、トランジスタ200dは、トランジスタ200bとは異なり、シングルゲートのト
ランジスタである。シングルゲートのトランジスタとすることで、マスク枚数を低減でき
るため、生産性を高めることができる。
図43(C)、(D)に示すトランジスタ200eは、トランジスタ200cと比較し、
絶縁層216、および絶縁層212の構成が異なる。具体的には、トランジスタ200e
は、絶縁層216の代わりに絶縁層216aを有し、絶縁層212の代わりに絶縁層21
2dを有する。
絶縁層216aは、絶縁層212cと同様の機能を有する。
トランジスタ200d、およびトランジスタ200eの構造とすることで、大きな設備投
資を行わずに、既存の生産ラインを用いて製造することができる。例えば、水素化アモル
ファスシリコンの製造工場を、酸化物半導体の製造工場に簡易的に置き換えることが可能
となる。
〔構成例5〕
次に、トランジスタの構造の一例として、トランジスタ200fについて、図44(A)
、(B)、(C)を用いて説明する。図44(A)はトランジスタ200fの上面図であ
る。図44(B)は、図44(A)に示す一点鎖線X1-X2間における切断面の断面図
に相当し、図44(C)は、図44(A)に示す一点鎖線Y1-Y2間における切断面の
断面図に相当する。
図44(A)、(B)、(C)に示すトランジスタ200fは、絶縁層224上の導電層
221と、導電層221上および絶縁層224上の絶縁層211と、絶縁層211上の半
導体層231と、半導体層231上の絶縁層212と、絶縁層212上の導電層223と
、絶縁層211上、半導体層231上、および導電層223上の絶縁層215を有する。
なお、半導体層231は、導電層223と重なるチャネル形成領域231iと、絶縁層2
15と接するソース領域231sと、絶縁層215と接するドレイン領域231dと、を
有する。
また、絶縁層215は、窒素または水素を有する。絶縁層215と、ソース領域231s
およびドレイン領域231dと、が接することで、絶縁層215中の窒素または水素がソ
ース領域231sおよびドレイン領域231d中に添加される。ソース領域231sおよ
びドレイン領域231dは、窒素または水素が添加されることで、キャリア密度が高くな
る。
また、トランジスタ200fは、絶縁層215に設けられた開口部236aを介してソー
ス領域231sに電気的に接続される導電層222aを有してもよい。また、トランジス
タ200fは、絶縁層215に設けられた開口部236bを介してドレイン領域231d
に電気的に接続される導電層222bを有してもよい。
絶縁層211は、第1のゲート絶縁層としての機能を有し、絶縁層212は、第2のゲー
ト絶縁層としての機能を有する。また、絶縁層215は保護絶縁層としての機能を有する
また、絶縁層212は、過剰酸素領域を有する。絶縁層212が過剰酸素領域を有するこ
とで、半導体層231が有するチャネル形成領域231i中に過剰酸素を供給することが
できる。よって、チャネル形成領域231iに形成されうる酸素欠損を過剰酸素により補
填することができるため、信頼性の高い表示装置を提供することができる。
なお、半導体層231中に過剰酸素を供給させるためには、半導体層231の下方に形成
される絶縁層211に過剰酸素を供給してもよい。この場合、絶縁層211中に含まれる
過剰酸素は、半導体層231が有するソース領域231s、およびドレイン領域231d
にも供給されうる。ソース領域231s、およびドレイン領域231d中に過剰酸素が供
給されると、ソース領域231s、およびドレイン領域231dの抵抗が高くなる場合が
ある。
一方で、半導体層231の上方に形成される絶縁層212に過剰酸素を有する構成とする
ことで、チャネル形成領域231iにのみ選択的に過剰酸素を供給させることが可能とな
る。あるいは、チャネル形成領域231i、ソース領域231s、およびドレイン領域2
31dに過剰酸素を供給させたのち、ソース領域231sおよびドレイン領域231dの
キャリア密度を選択的に高めることで、ソース領域231s、およびドレイン領域231
dの抵抗が高くなることを抑制することができる。
また、半導体層231が有するソース領域231sおよびドレイン領域231dは、それ
ぞれ、酸素欠損を形成する元素、または酸素欠損と結合する元素を有すると好ましい。当
該酸素欠損を形成する元素、または酸素欠損と結合する元素としては、代表的には水素、
ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、チタン、希ガス等が挙げられる。また
、希ガス元素の代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、およびキセ
ノン等がある。上記酸素欠損を形成する元素が、絶縁層215中に1つまたは複数含まれ
る場合、絶縁層215からソース領域231s、およびドレイン領域231dに拡散する
、および/または不純物添加処理によりソース領域231s、およびドレイン領域231
d中に添加される。
不純物元素が金属酸化物に添加されると、金属酸化物中の金属元素と酸素の結合が切断さ
れ、酸素欠損が形成される。または、不純物元素が金属酸化物に添加されると、金属酸化
物中の金属元素と結合していた酸素が不純物元素と結合し、金属元素から酸素が脱離され
、酸素欠損が形成される。これらの結果、金属酸化物においてキャリア密度が増加し、導
電性が高くなる。
また、導電層221は、第1のゲートとしての機能を有し、導電層223は、第2のゲー
トとしての機能を有し、導電層222aは、ソースとしての機能を有し、導電層222b
は、ドレインとしての機能を有する。
また、図44(C)に示すように、絶縁層211および絶縁層212には開口部237が
設けられる。また、導電層221は、開口部237を介して、導電層223と電気的に接
続される。よって、導電層221と導電層223には、同じ電位が与えられる。なお、開
口部237を設けずに、導電層221と、導電層223と、に異なる電位を与えてもよい
。または、開口部237を設けずに、導電層221を遮光膜として用いてもよい。例えば
、導電層221を遮光性の材料により形成することで、チャネル形成領域231iに照射
される下方からの光を抑制することができる。
また、図44(B)、(C)に示すように、半導体層231は、第1のゲートとしての機
能を有する導電層221と、第2のゲートとしての機能を有する導電層223のそれぞれ
と対向するように位置し、2つのゲートとしての機能を有する導電層に挟まれている。
また、トランジスタ200fもトランジスタ200a、トランジスタ200b、およびト
ランジスタ200cと同様にs-channel構造をとる。このような構成を有するこ
とで、トランジスタ200fに含まれる半導体層231を、第1のゲートとしての機能を
有する導電層221および第2のゲートとしての機能を有する導電層223の電界によっ
て電気的に取り囲むことができる。
トランジスタ200fは、s-channel構造を有するため、導電層221または導
電層223によってチャネルを誘起させるための電界を効果的に半導体層231に印加す
ることができる。これにより、トランジスタ200fの電流駆動能力が向上し、高いオン
電流特性を得ることが可能となる。また、オン電流を高くすることが可能であるため、ト
ランジスタ200fを微細化することが可能となる。また、トランジスタ200fは、半
導体層231が、導電層221、および導電層223によって取り囲まれた構造を有する
ため、トランジスタ200fの機械的強度を高めることができる。
なお、トランジスタ200fを、導電層223の半導体層231に対する位置、または導
電層223の形成方法から、TGSA(Top Gate Self Align)型の
FETと呼称してもよい。
なお、トランジスタ200fにおいても、トランジスタ200bと同様に半導体層231
を2層以上積層する構成にしてもよい。
また、トランジスタ200fにおいて、絶縁層212が導電層223と重なる部分にのみ
設けられているが、これに限られることなく、絶縁層212が半導体層231を覆う構成
にすることもできる。また、導電層221を設けない構成にすることもできる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み
合わせて実施することができる。
(実施の形態6)
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(cl
oud-aligned composite)-OSの構成について説明する。
<CAC-OSの構成>
CAC-OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下
、好ましくは、1nm以上2nm以下、またはその近傍のサイズで偏在した材料の一構成
である。なお、以下では、金属酸化物において、一つあるいはそれ以上の金属元素が偏在
し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上
2nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状とも
いう。
なお、金属酸化物は、少なくともインジウムを含むことが好ましい。特にインジウムおよ
び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イット
リウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲル
マニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タ
ンタル、タングステン、またはマグネシウム等から選ばれた一種、または複数種が含まれ
ていてもよい。
例えば、In-Ga-Zn酸化物におけるCAC-OS(CAC-OSの中でもIn-G
a-Zn酸化物を、特にCAC-IGZOと呼称してもよい。)とは、インジウム酸化物
(以下、InOX1(X1は0よりも大きい実数)とする。)、またはインジウム亜鉛酸
化物(以下、InX2ZnY2Z2(X2、Y2、およびZ2は0よりも大きい実数)
とする。)等と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とす
る。)、またはガリウム亜鉛酸化物(以下、GaX4ZnY4Z4(X4、Y4、およ
びZ4は0よりも大きい実数)とする。)等と、に材料が分離することでモザイク状とな
り、モザイク状のInOX1、またはInX2ZnY2Z2が、膜中に均一に分布した
構成(以下、クラウド状ともいう。)である。
つまり、CAC-OSは、GaOX3が主成分である領域と、InX2ZnY2Z2
またはInOX1が主成分である領域とが、混合している構成を有する複合金属酸化物で
ある。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が
、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2
の領域と比較して、Inの濃度が高いとする。
なお、IGZOは通称であり、In、Ga、Zn、およびOによる1つの化合物をいう場
合がある。代表例として、InGaO(ZnO)m1(m1は自然数)、またはIn
1+x0)Ga(1-x0)(ZnO)m0(-1≦x0≦1、m0は任意数)で表
される結晶性の化合物が挙げられる。
上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC(c-axis al
igned crystal)構造を有する。なお、CAAC構造とは、複数のIGZO
のナノ結晶がc軸配向を有し、かつa-b面においては配向せずに連結した結晶構造であ
る。
一方、CAC-OSは、金属酸化物の材料構成に関する。CAC-OSとは、In、Ga
、Zn、およびOを含む材料構成において、一部にGaを主成分とするナノ粒子状に観察
される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモ
ザイク状にランダムに分散している構成をいう。従って、CAC-OSにおいて、結晶構
造は副次的な要素である。
なお、CAC-OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。
例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含ま
ない。
なお、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1
主成分である領域とは、明確な境界が観察できない場合がある。
なお、ガリウムの代わりに、アルミニウム、イットリウム、銅、バナジウム、ベリリウム
、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン
、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネ
シウム等から選ばれた一種、または複数種が含まれている場合、CAC-OSは、一部に
該金属元素を主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナ
ノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をい
う。
CAC-OSは、例えば基板を意図的に加熱しない条件で、スパッタリング法により形成
することができる。また、CAC-OSをスパッタリング法で形成する場合、成膜ガスと
して、不活性ガス(代表的にはアルゴン)、酸素ガス、および窒素ガスの中から選ばれた
いずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素
ガスの流量比は低いほど好ましく、例えば酸素ガスの流量比を0%以上30%未満、好ま
しくは0%以上10%以下とすることが好ましい。
CAC-OSは、X線回折(XRD:X-ray diffraction)測定法のひ
とつであるOut-of-plane法によるθ/2θスキャンを用いて測定したときに
、明確なピークが観察されないという特徴を有する。すなわち、X線回折から、測定領域
のa-b面方向、およびc軸方向の配向は見られないことが分かる。
またCAC-OSは、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照
射することで得られる電子線回折パターンにおいて、リング状に輝度の高い領域と、該リ
ング領域に複数の輝点が観測される。従って、電子線回折パターンから、CAC-OSの
結晶構造が、平面方向、および断面方向において、配向性を有さないnc(nano-c
rystal)構造を有することがわかる。
また例えば、In-Ga-Zn酸化物におけるCAC-OSでは、エネルギー分散型X線
分光法(EDX:Energy Dispersive X-ray spectros
copy)を用いて取得したEDXマッピングにより、GaOX3が主成分である領域と
、InX2ZnY2Z2、またはInOX1が主成分である領域とが、偏在し、混合し
ている構造を有することが確認できる。
CAC-OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IG
ZO化合物と異なる性質を有する。つまり、CAC-OSは、GaOX3等が主成分であ
る領域と、InX2ZnY2Z2、またはInOX1が主成分である領域と、に互いに
相分離し、各元素を主成分とする領域がモザイク状である構造を有する。
ここで、InX2ZnY2Z2、またはInOX1が主成分である領域は、GaOX3
等が主成分である領域と比較して、導電性が高い領域である。つまり、InX2ZnY2
Z2、またはInOX1が主成分である領域を、キャリアが流れることにより、金属酸
化物としての導電性が発現する。従って、InX2ZnY2Z2、またはInOX1
主成分である領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度
(μ)が実現できる。
一方、GaOX3等が主成分である領域は、InX2ZnY2Z2、またはInOX1
が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3等が主成
分である領域が、金属酸化物中に分布することで、リーク電流を抑制し、良好なスイッチ
ング動作を実現できる。
従って、CAC-OSを半導体素子に用いた場合、GaOX3等に起因する絶縁性と、I
X2ZnY2Z2、またはInOX1に起因する導電性とが、相補的に作用すること
により、高いオン電流(Ion)、および高い電界効果移動度(μ)を実現することがで
きる。
また、CAC-OSを用いた半導体素子は、信頼性が高い。従って、CAC-OSは、デ
ィスプレイをはじめとするさまざまな半導体装置に最適である。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み
合わせて実施することができる。
(実施の形態7)
本実施の形態では、上記実施の形態で説明した表示装置の他の構成例について説明する。
図45に、表示装置10の構成例を示す。表示装置10は、基板14上に設けられた表示
部17を有する。表示部17は、配線GLおよび配線SLと接続された複数の画素11を
有する。
また、表示装置10には、複数のTABテープ(Tape Automated Bon
ding)121aおよび複数のTABテープ121bが設けられている。TABテープ
121aとTABテープ121bは、表示部17を挟んで対向する位置に設けられている
。TABテープ121aには、ゲートドライバ12a等が形成された集積回路が実装され
ており、TABテープ121bには、ゲートドライバ12b等が形成された集積回路が実
装されている。ゲートドライバ12aおよびゲートドライバ12bは複数の配線GLと接
続されており、配線GLに選択信号を供給する機能を有する。
また、表示装置10には、複数のプリント基板131aおよび複数のTABテープ132
aが設けられており、複数のプリント基板131bおよび複数のTABテープ132bが
設けられている。プリント基板131aおよびTABテープ132aと、プリント基板1
31bおよびTABテープ132bとは、表示部17を挟んで対向する位置に設けられて
いる。
プリント基板131aはそれぞれ複数のTABテープ132aと接続され、外部から入力
された信号をTABテープ132aに分配する機能を有する。プリント基板131bはそ
れぞれ複数のTABテープ132bと接続され、外部から入力された信号をTABテープ
132bに分配する機能を有する。また、TABテープ132aには、ソースドライバ1
3a等が形成された集積回路が実装されており、TABテープ132bには、ソースドラ
イバ13b等が形成された集積回路が実装されている。ソースドライバ13aおよびソー
スドライバ13bは複数の配線SLと接続されており、配線SLに信号を供給する機能を
有する。
2K、4K、8K放送等に対応可能な大画面の表示パネルを作製する場合は、図45に示
すように複数のプリント基板131aおよび複数のプリント基板131bを設けることが
好ましい。これにより、表示装置10への画像データの入力を容易に行うことができる。
なお、ゲートドライバ12a、ゲートドライバ12b、ソースドライバ13a、およびソ
ースドライバ13bは、COG(Chip On Glass)方式、COF(Chip
on Film)方式等により、基板14上に設けることもできる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み
合わせて実施することができる。
(実施の形態8)
本実施の形態では、トランジスタの半導体層に用いることのできる多結晶シリコンの結晶
化方法およびレーザ結晶化装置の一例について説明する。
結晶性の良好な多結晶シリコン層を形成するには、基板上に非晶質シリコン層を設け、当
該非晶質シリコン層にレーザ光を照射して結晶化することが好ましい。例えば、レーザ光
を線状ビームとし、当該線状ビームを非晶質シリコン層に照射しながら基板を移動させる
ことで、基板上の所望の領域に多結晶シリコン層を形成することができる。
線状ビームを用いた方法は、スループットが比較的良好である。一方で、ある領域に対し
てレーザ光が相対的に移動しながら複数回照射される方法であるため、レーザ光の出力変
動およびそれに起因するビームプロファイルの変化による結晶性のばらつきが生じやすい
。例えば、当該方法で結晶化させた半導体層を表示装置の画素が有するトランジスタに用
いると、結晶性のばらつきに起因したランダムな縞模様が表示に見えることがある。
また、線状ビームの長さは基板の一辺の長さ以上であることが理想的であるが、線状ビー
ムの長さは、レーザ発振器の出力と光学系の構成によって制限される。したがって、大型
基板の処理では基板面内を折り返してレーザ照射することが現実的である。そのため、レ
ーザ光をオーバーラップして照射する領域が生じる。当該領域の結晶性は、他の領域の結
晶性と異なりやすいため、当該領域では表示ムラが生じることがある。
上記のような問題を抑えるために、基板上に形成した非晶質シリコン層に局所的にレーザ
照射を行って結晶化させてもよい。局所的なレーザ照射では、結晶性のばらつきの少ない
多結晶シリコン層を形成しやすい。
図46(A)は、基板上に形成した非晶質シリコン層に局所的にレーザ照射を行う方法を
説明する図である。
光学系ユニット821から射出されるレーザ光826は、ミラー822で反射されてマイ
クロレンズアレイ823に入射する。マイクロレンズアレイ823は、レーザ光826を
集光して複数のレーザビーム827を形成する。
ステージ815には、非晶質シリコン層840を形成した基板830が固定される。非晶
質シリコン層840に複数のレーザビーム827を照射することで、複数の多結晶シリコ
ン層841を同時に形成することができる。
マイクロレンズアレイ823が有する個々のマイクロレンズは、表示装置の画素ピッチに
合わせて設けることが好ましい。または、画素ピッチの整数倍の間隔で設けてもよい。い
ずれの場合においても、レーザ照射とステージ815のX方向またはY方向の移動を繰り
返すことで、全ての画素に対応した領域に多結晶シリコン層を形成することができる。
例えば、マイクロレンズアレイ823が画素ピッチでM行N列(M、Nは自然数)のマイ
クロレンズを有するとき、まず所定の開始位置でレーザ光を照射し、M行N列の多結晶シ
リコン層841を形成する。そして、行方向にN列分の距離だけステージ815を移動さ
せてレーザ光を照射し、M行2N列の多結晶シリコン層841を形成する。当該工程を繰
り返し行うことで所望の領域に複数の多結晶シリコン層841を形成することができる。
また、折り返してレーザ照射工程を行う場合は、ステージ815を行方向にN列分の距離
だけ移動させてレーザ照射を行い、さらにステージ815を列方向にM行分の距離の移動
とレーザ光の照射を繰り返せばよい。
なお、レーザ光の発振周波数とステージ815の移動速度を適切に調整すれば、ステージ
815を一方向に移動させながらレーザ照射を行う方法でも、画素ピッチで多結晶シリコ
ン層を形成することができる。
レーザビーム827のサイズは、例えば、一つのトランジスタの半導体層全体が含まれる
程度の面積とすることができる。または、一つのトランジスタのチャネル形成領域全体が
含まれる程度の面積とすることができる。または、一つのトランジスタのチャネル形成領
域の一部が含まれる程度の面積とすることができる。これらは、必要とするトランジスタ
の電気特性に応じて使い分ければよい。
なお、一つの画素に複数のトランジスタを有する表示装置を対象とした場合、レーザビー
ム827は、一つの画素内の各トランジスタの半導体層全体が含まれる程度の面積とする
ことができる。また、レーザビーム827は、複数の画素が有するトランジスタの半導体
層全体が含まれる程度の面積としてもよい。
また、図47(A)に示すように、ミラー822とマイクロレンズアレイ823との間に
マスク824を設けてもよい。マスク824には、各マイクロレンズに対応した複数の開
口部が設けられる。当該開口部の形状はレーザビーム827の形状に反映させることがで
き、図47(A)のようにマスク824が円形の開口部を有する場合は、円形のレーザビ
ーム827を得ることができる。また、マスク824が矩形の開口部を有する場合は、矩
形のレーザビーム827を得ることができる。マスク824は、例えば、トランジスタの
チャネル形成領域のみを結晶化させたい場合などに有効である。なお、マスク824は、
図47(B)に示すように光学系ユニット821とミラー822との間に設けてもよい。
図46(B)は、上記に示した局所的なレーザ照射の工程に用いることのできるレーザ結
晶化装置の主要な構成を説明する斜視図である。レーザ結晶化装置は、X-Yステージの
構成要素である移動機構812、移動機構813およびステージ815を有する。また、
レーザビーム827を成形するためのレーザ発振器820、光学系ユニット821、ミラ
ー822、マイクロレンズアレイ823を有する。
移動機構812および移動機構813は、水平方向に往復直線運動をする機能を備える。
移動機構812および移動機構813に動力を与える機構としては、例えば、モータで駆
動するボールネジ機構816などを用いることができる。移動機構812および移動機構
813のそれぞれの移動方向は垂直に交わるため、移動機構813に固定されるステージ
815はX方向およびY方向に自在に移動させることができる。
ステージ815は真空吸着機構などの固定機構を有し、基板830などを固定することが
できる。また、ステージ815は、必要に応じて加熱機構を有していてもよい。なお、図
示はしていないが、ステージ815はプッシャーピンおよびその上下機構を有し、基板8
30などを搬出入する際は、基板830などを上下に移動させることができる。
レーザ発振器820は、処理の目的に適した波長および強度の光が出力できればよく、パ
ルスレーザが好ましいがCWレーザであってもよい。代表的には、波長351-353n
m(XeF)、308nm(XeCl)などの紫外光を照射できるエキシマレーザを用い
ることができる。または、固体レーザ(YAGレーザ、ファイバーレーザなど)の二倍波
(515nm、532nmなど)または三倍波(343nm、355nmなど)を用いて
もよい。また、レーザ発振器820は複数であってもよい。
光学系ユニット821は、例えば、ミラー、ビームエクスパンダ、ビームホモジナイザ等
を有し、レーザ発振器820から出力されるレーザ光825のエネルギーの面内分布を均
一化させつつ伸張させることができる。
ミラー822には、例えば、誘電体多層膜ミラーを用いることができ、レーザ光の入射角
が略45°となるように設置する。マイクロレンズアレイ823には、例えば、石英板の
上面または上下面に複数の凸レンズが設けられたような形状とすることができる。
以上のレーザ結晶化装置を用いることにより、結晶性のばらつきの少ない多結晶シリコン
層を形成することができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み
合わせて実施することができる。
(実施の形態9)
本実施の形態では、本発明の一態様の電子機器について、図面を参照して説明する。
以下で例示する電子機器は、表示部に本発明の一態様の表示装置を有するものである。し
たがって、高い解像度が実現された電子機器である。また高い解像度と、大きな画面が両
立された電子機器とすることができる。
本発明の一態様の電子機器の表示部には、例えばフルハイビジョン、4K2K、8K4K
、16K8K、またはそれ以上の解像度を有する映像を表示させることができる。また、
表示部の画面サイズとしては、対角20インチ以上、または対角30インチ以上、または
対角50インチ以上、対角60インチ以上、または対角70インチ以上とすることもでき
る。
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパー
ソナルコンピュータ、コンピュータ用等のモニタ、デジタルサイネージ(Digital
Signage:電子看板)、パチンコ機等の大型ゲーム機等の比較的大きな画面を有
する電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、
携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、等が挙げられる。
本発明の一態様の電子機器または照明装置は、家屋もしくはビルの内壁もしくは外壁、ま
たは、自動車の内装もしくは外装の曲面に沿って組み込むことができる。
本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信する
ことで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナお
よび二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
本発明の一態様の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数
、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、
放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有
していてもよい。
本発明の一態様の電子機器は、様々な機能を有することができる。例えば、様々な情報(
静止画、動画、テキスト画像等)を表示部に表示する機能、タッチパネル機能、カレンダ
ー、日付または時刻等を表示する機能、様々なソフトウェア(プログラム)を実行する機
能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等
を有することができる。
図48(A)にテレビジョン装置の一例を示す。テレビジョン装置7100は筐体710
1に表示部7000が組み込まれている。ここでは、スタンド7103により筐体710
1を支持した構成を示している。
表示部7000に、本発明の一態様の表示装置を用いることができる。本発明の一態様の
表示装置を用いたテレビジョン装置7100は、高解像度の画像を表示することができる
。また、当該テレビジョン装置7100は、高解像度の画像を大画面で表示することがで
きる。また、本発明の一態様の表示装置を用いることで、テレビジョン装置7100の表
示品位を高めることができる。
図48(A)に示すテレビジョン装置7100の操作は、筐体7101が有する操作スイ
ッチや、別体のリモコン操作機7111により行うことができる。または、表示部700
0にタッチセンサを備えていてもよく、指等で表示部7000に触れることで操作しても
よい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示
する表示部を有していてもよい。リモコン操作機7111が有する操作キーまたはタッチ
パネルにより、チャンネルおよび音量の操作を行うことができ、表示部7000に表示さ
れる映像を操作することができる。
なお、テレビジョン装置7100は、受信機およびモデム等を備えた構成とする。受信機
により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無
線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双
方向(送信者と受信者間、あるいは受信者間同士等)の情報通信を行うことも可能である
図48(B)に、ノート型パーソナルコンピュータ7200を示す。ノート型パーソナル
コンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス
7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み
込まれている。
表示部7000に、本発明の一態様の表示装置を適用することができる。本発明の一態様
の表示装置を用いたノート型パーソナルコンピュータ7200は、高解像度の画像を表示
することができる。また、当該ノート型パーソナルコンピュータ7200は、高解像度の
画像を大画面で表示することができる。また、本発明の一態様の表示装置を用いることで
、ノート型パーソナルコンピュータ7200の表示品位を高めることができる。
図48(C)、(D)に、デジタルサイネージ(Digital Signage:電子
看板)の一例を示す。
図48(C)に示すデジタルサイネージ7300は、筐体7301、表示部7000、お
よびスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、ま
たは操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することがで
きる。
また、図48(D)は円柱状の柱7401に取り付けられたデジタルサイネージ7400
である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7
000を有する。
図48(C)、(D)において、表示部7000に、本発明の一態様の表示装置を適用す
ることができる。本発明の一態様の表示装置を用いたデジタルサイネージ7300および
デジタルサイネージ7400は、高解像度の画像を表示することができる。また、当該デ
ジタルサイネージ7300およびデジタルサイネージ7400は、高解像度の画像を大画
面で表示することができる。また、本発明の一態様の表示装置を用いることで、デジタル
サイネージ7300およびデジタルサイネージ7400の表示品位を高めることができる
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示
部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることがで
きる。
表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表
示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報も
しくは交通情報等の情報を提供するための用途に用いる場合には、直感的な操作によりユ
ーザビリティを高めることができる。
また、図48(C)、(D)に示すように、デジタルサイネージ7300またはデジタル
サイネージ7400は、ユーザが所持するスマートフォン等の情報端末機7311または
情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7
000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面
に表示させることができる。また、情報端末機7311または情報端末機7411を操作
することで、表示部7000の表示を切り替えることができる。
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7
311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行
させることもできる。これにより、不特定多数のユーザが同時にゲームに参加し、楽しむ
ことができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み
合わせて実施することができる。
10 表示装置
11 画素
14 基板
15 基板
16 基準電圧生成回路
17 表示部
20 液晶素子
21 導電層
22 液晶
23 導電層
26 絶縁層
30 トランジスタ
31 導電層
32 半導体層
33 導電層
34 絶縁層
35 不純物半導体層
37 半導体層
38 開口部
41 着色層
42 遮光層
50 光
51 導電層
52 導電層
53 導電層
54 導電層
55 導電層

Claims (1)

  1. 複数のゲート線と、複数のソース線と、表示部と、を有し、
    前記表示部は、m行n列(mおよびnのそれぞれは、2以上の整数)に配置された複数の画素を有し、
    前記複数の画素のそれぞれは、トランジスタと、表示素子と、を有し、
    i行目に配置された前記複数の画素は、i本目(iは1以上m以下の整数)の前記ゲート線と電気的に接続される表示装置であって、
    1列あたりg本(gは3以上の整数)の前記ソース線を有し、
    j列目(jは1以上n以下の整数)に配置されたg本の前記ソース線、およびj+1列目(jは1以上n以下の整数)に配置されたg本の前記ソース線のうち、同じ極性の信号を供給するソース線がg本隣接して設けられている、表示装置。
JP2024033925A 2017-02-17 2024-03-06 表示装置 Pending JP2024075611A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017027901 2017-02-17
JP2017027901 2017-02-17
JP2018023734A JP2018138993A (ja) 2017-02-17 2018-02-14 表示装置
JP2022119224A JP2022166018A (ja) 2017-02-17 2022-07-27 表示装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022119224A Division JP2022166018A (ja) 2017-02-17 2022-07-27 表示装置

Publications (2)

Publication Number Publication Date
JP2024075611A true JP2024075611A (ja) 2024-06-04
JP2024075611A5 JP2024075611A5 (ja) 2024-06-11

Family

ID=63167392

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018023734A Withdrawn JP2018138993A (ja) 2017-02-17 2018-02-14 表示装置
JP2022119224A Withdrawn JP2022166018A (ja) 2017-02-17 2022-07-27 表示装置
JP2024033925A Pending JP2024075611A (ja) 2017-02-17 2024-03-06 表示装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2018023734A Withdrawn JP2018138993A (ja) 2017-02-17 2018-02-14 表示装置
JP2022119224A Withdrawn JP2022166018A (ja) 2017-02-17 2022-07-27 表示装置

Country Status (7)

Country Link
US (4) US10573261B2 (ja)
JP (3) JP2018138993A (ja)
KR (3) KR102605992B1 (ja)
CN (2) CN114594636A (ja)
DE (1) DE112018000893T5 (ja)
TW (3) TWI758417B (ja)
WO (1) WO2018150293A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102717441B1 (ko) 2017-01-16 2024-10-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 제작 방법
JP2019020653A (ja) * 2017-07-20 2019-02-07 株式会社ジャパンディスプレイ 表示装置
KR102586783B1 (ko) * 2018-10-05 2023-10-12 삼성디스플레이 주식회사 표시 장치
CN208970143U (zh) * 2018-11-07 2019-06-11 惠科股份有限公司 显示面板的驱动选择电路、显示面板及显示装置
KR102571661B1 (ko) * 2018-11-09 2023-08-28 엘지디스플레이 주식회사 표시패널 및 표시장치
TWI712027B (zh) * 2019-03-28 2020-12-01 友達光電股份有限公司 顯示面板
TWI717983B (zh) * 2020-01-22 2021-02-01 友達光電股份有限公司 適合窄邊框應用的顯示面板與相關的掃描驅動電路
TW202139159A (zh) * 2020-04-10 2021-10-16 虹曜電紙技術股份有限公司 膽固醇液晶顯示器主動式矩陣及其驅動方法
TW202141459A (zh) * 2020-04-21 2021-11-01 虹曜電紙技術股份有限公司 膽固醇液晶顯示器主動式矩陣及其驅動方法
CN111474758B (zh) * 2020-05-13 2022-11-22 芜湖天马汽车电子有限公司 一种显示面板及显示装置
CN111986606A (zh) 2020-08-17 2020-11-24 武汉华星光电技术有限公司 显示面板和显示装置
US20230335050A1 (en) * 2020-10-01 2023-10-19 Semiconductor Energy Laboratory Co., Ltd. Display apparatus and electronic device
US10991290B1 (en) * 2020-10-07 2021-04-27 Novatek Microelectronics Corp. Control method of channel setting module applied to display panel
US11282467B1 (en) 2020-12-30 2022-03-22 Himax Technologies Limited Display device
TWI784390B (zh) * 2021-01-13 2022-11-21 奇景光電股份有限公司 顯示裝置
CN114822341A (zh) * 2021-01-28 2022-07-29 奇景光电股份有限公司 显示装置
KR20220125863A (ko) * 2021-03-04 2022-09-15 삼성디스플레이 주식회사 표시 장치
CN113096579B (zh) * 2021-04-06 2024-04-12 福州京东方光电科技有限公司 显示面板、显示装置及显示面板的驱动方法
CN113325644A (zh) * 2021-05-31 2021-08-31 Tcl华星光电技术有限公司 显示面板和电子设备
CN113589608B (zh) * 2021-07-09 2023-12-29 Tcl华星光电技术有限公司 显示面板及显示终端
US12119330B2 (en) 2022-12-19 2024-10-15 Stereyo Bv Configurations, methods, and devices for improved visual performance of a light-emitting element display and/or a camera recording an image from the display
US12080224B2 (en) 2022-12-19 2024-09-03 Stereyo Bv Configurations, methods, and devices for improved visual performance of a light-emitting element display and/or a camera recording an image from the display
US12112695B2 (en) 2022-12-19 2024-10-08 Stereyo Bv Display systems and methods with multiple and/or adaptive primary colors
EP4390915A1 (en) * 2022-12-19 2024-06-26 Stereyo BV Systems and methods for altering light output and white point of a light source or light source display
US12100363B2 (en) 2022-12-19 2024-09-24 Stereyo Bv Configurations, methods, and devices for improved visual performance of a light-emitting element display and/or a camera recording an image from the display
CN115909944A (zh) * 2022-12-27 2023-04-04 武汉天马微电子有限公司 显示面板及显示装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214818A (ja) * 1989-02-16 1990-08-27 Hitachi Ltd 液晶表示装置及びその駆動方法
JP3513371B2 (ja) 1996-10-18 2004-03-31 キヤノン株式会社 マトリクス基板と液晶装置とこれらを用いた表示装置
JP2001053283A (ja) 1999-08-12 2001-02-23 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP3829597B2 (ja) 2000-07-21 2006-10-04 セイコーエプソン株式会社 表示装置の駆動方法、駆動回路、表示装置および電子機器
KR100559225B1 (ko) * 2000-12-29 2006-03-15 비오이 하이디스 테크놀로지 주식회사 액정 표시 장치의 도트 인버젼 드라이빙 방법
KR100666646B1 (ko) * 2005-09-15 2007-01-09 삼성에스디아이 주식회사 유기전계발광표시장치 및 유기전계발광표시장치의 구동방법
US7728810B2 (en) * 2005-11-28 2010-06-01 Lg Display Co., Ltd. Display device and method for driving the same
JP4634291B2 (ja) 2005-12-01 2011-02-16 株式会社ティラド Egrクーラ
KR101189277B1 (ko) * 2005-12-06 2012-10-09 삼성디스플레이 주식회사 액정 표시 장치
US7834868B2 (en) * 2006-02-01 2010-11-16 Tpo Displays Corp. Systems for displaying images and control methods thereof
JP5127633B2 (ja) * 2008-08-25 2013-01-23 三菱電機株式会社 コンテンツ再生装置および方法
JP2010271365A (ja) * 2009-05-19 2010-12-02 Sony Corp 表示制御装置、表示制御方法
TWI464506B (zh) * 2010-04-01 2014-12-11 Au Optronics Corp 顯示器及其顯示面板
KR101758297B1 (ko) 2010-06-04 2017-07-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
CN101937634B (zh) * 2010-09-01 2012-07-04 青岛海信电器股份有限公司 液晶面板的画面调整方法和装置
JP5935238B2 (ja) * 2011-04-20 2016-06-15 Nltテクノロジー株式会社 画像表示装置並びにこれを備える端末装置
WO2012147950A1 (ja) * 2011-04-28 2012-11-01 シャープ株式会社 液晶パネル、液晶表示装置、テレビジョン受像機
WO2012157725A1 (ja) 2011-05-18 2012-11-22 シャープ株式会社 液晶表示装置
TWI466081B (zh) * 2012-02-07 2014-12-21 Novatek Microelectronics Corp 顯示驅動裝置及驅動方法
US9594281B2 (en) * 2012-11-30 2017-03-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
KR102243267B1 (ko) * 2013-11-26 2021-04-23 삼성디스플레이 주식회사 표시 장치
WO2015114970A1 (ja) * 2014-01-30 2015-08-06 シャープ株式会社 液晶表示装置
KR102339159B1 (ko) * 2015-02-03 2021-12-15 삼성디스플레이 주식회사 표시 패널 및 이를 포함하는 표시 장치
JP6707277B2 (ja) 2015-07-28 2020-06-10 アール・ビー・コントロールズ株式会社 Led照明装置
KR102391421B1 (ko) * 2016-01-28 2022-04-28 삼성디스플레이 주식회사 표시 장치
CN110100203B (zh) 2017-01-11 2023-04-21 株式会社半导体能源研究所 显示装置
US10692452B2 (en) 2017-01-16 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Display device
KR102717441B1 (ko) 2017-01-16 2024-10-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 제작 방법
WO2018130930A1 (en) 2017-01-16 2018-07-19 Semiconductor Energy Laboratory Co., Ltd. Display device
KR20180090731A (ko) 2017-02-03 2018-08-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 표시 패널, 표시 장치, 입출력 장치, 정보 처리 장치

Also Published As

Publication number Publication date
CN114594636A (zh) 2022-06-07
KR102605992B1 (ko) 2023-11-23
CN110301001B (zh) 2022-06-03
US20200126501A1 (en) 2020-04-23
KR20190116983A (ko) 2019-10-15
US20180240421A1 (en) 2018-08-23
TW202242839A (zh) 2022-11-01
US20210210035A1 (en) 2021-07-08
US20220068232A1 (en) 2022-03-03
WO2018150293A1 (en) 2018-08-23
CN110301001A (zh) 2019-10-01
TW201835889A (zh) 2018-10-01
US11176900B2 (en) 2021-11-16
JP2018138993A (ja) 2018-09-06
DE112018000893T5 (de) 2019-10-24
KR102567126B1 (ko) 2023-08-16
KR20230164749A (ko) 2023-12-04
TW202405786A (zh) 2024-02-01
TWI805262B (zh) 2023-06-11
US10573261B2 (en) 2020-02-25
US20230402018A1 (en) 2023-12-14
KR20230119740A (ko) 2023-08-16
US11735131B2 (en) 2023-08-22
JP2022166018A (ja) 2022-11-01
US10902804B2 (en) 2021-01-26
TWI758417B (zh) 2022-03-21

Similar Documents

Publication Publication Date Title
JP2024075611A (ja) 表示装置
JP7123220B2 (ja) 半導体装置
JP7451784B2 (ja) 表示装置
JP2017112385A (ja) 半導体装置
TW201133786A (en) Semiconductor device and method for manufacturing semiconductor device
US12125453B2 (en) Display device
KR20240152419A (ko) 표시 장치 및 그 제작 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240603