JP2022523075A - 深層学習人工ニューラルネットワークのアナログニューラルメモリにおいて不揮発性メモリセルのプログラミング動作中に格納された値を検証するためのアルゴリズム及び回路 - Google Patents
深層学習人工ニューラルネットワークのアナログニューラルメモリにおいて不揮発性メモリセルのプログラミング動作中に格納された値を検証するためのアルゴリズム及び回路 Download PDFInfo
- Publication number
- JP2022523075A JP2022523075A JP2021544167A JP2021544167A JP2022523075A JP 2022523075 A JP2022523075 A JP 2022523075A JP 2021544167 A JP2021544167 A JP 2021544167A JP 2021544167 A JP2021544167 A JP 2021544167A JP 2022523075 A JP2022523075 A JP 2022523075A
- Authority
- JP
- Japan
- Prior art keywords
- memory cell
- output
- volatile memory
- voltage
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000015654 memory Effects 0.000 title claims abstract description 238
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 36
- 230000001537 neural effect Effects 0.000 title description 5
- 238000013135 deep learning Methods 0.000 title description 3
- 238000012795 verification Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 22
- 238000010586 diagram Methods 0.000 abstract description 6
- 210000004027 cell Anatomy 0.000 description 307
- 239000013598 vector Substances 0.000 description 68
- 230000006870 function Effects 0.000 description 56
- 210000002569 neuron Anatomy 0.000 description 54
- 210000000225 synapse Anatomy 0.000 description 33
- 230000004913 activation Effects 0.000 description 26
- 238000003491 array Methods 0.000 description 24
- 239000011159 matrix material Substances 0.000 description 21
- 230000003044 adaptive effect Effects 0.000 description 20
- 239000000463 material Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 102100036301 C-C chemokine receptor type 7 Human genes 0.000 description 6
- 102100031658 C-X-C chemokine receptor type 5 Human genes 0.000 description 6
- 101000716065 Homo sapiens C-C chemokine receptor type 7 Proteins 0.000 description 6
- 101000922405 Homo sapiens C-X-C chemokine receptor type 5 Proteins 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000011176 pooling Methods 0.000 description 5
- 230000000946 synaptic effect Effects 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000000306 recurrent effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000006403 short-term memory Effects 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007787 long-term memory Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 102100023226 Early growth response protein 1 Human genes 0.000 description 1
- 230000005689 Fowler Nordheim tunneling Effects 0.000 description 1
- 241000288105 Grus Species 0.000 description 1
- 101001049697 Homo sapiens Early growth response protein 1 Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000013529 biological neural network Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 210000004205 output neuron Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 210000002325 somatostatin-secreting cell Anatomy 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3436—Arrangements for verifying correct programming or erasure
- G11C16/3454—Arrangements for verifying correct programming or for detecting overprogrammed cells
- G11C16/3459—Circuits or methods to verify correct programming of nonvolatile memory cells
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
- G06N3/065—Analogue means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0223—User address space allocation, e.g. contiguous or non contiguous base addressing
- G06F12/023—Free address space management
- G06F12/0238—Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
- G06F12/0246—Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory in block erasable memory, e.g. flash memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0806—Multiuser, multiprocessor or multiprocessing cache systems
- G06F12/0811—Multiuser, multiprocessor or multiprocessing cache systems with multilevel cache hierarchies
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/54—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using elements simulating biological cells, e.g. neuron
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0408—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0408—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
- G11C16/0425—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a merged floating gate and select transistor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0408—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
- G11C16/0433—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and one or more separate select transistors
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/10—Programming or data input circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/24—Bit-line control circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C27/00—Electric analogue stores, e.g. for storing instantaneous values
- G11C27/005—Electric analogue stores, e.g. for storing instantaneous values with non-volatile charge storage, e.g. on floating gate or MNOS
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1006—Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/12—Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
- G11C8/08—Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/72—Details relating to flash memory management
- G06F2212/7201—Logical to physical mapping or translation of blocks or pages
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/72—Details relating to flash memory management
- G06F2212/7202—Allocation control and policies
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Neurology (AREA)
- Computer Hardware Design (AREA)
- Non-Volatile Memory (AREA)
- Read Only Memory (AREA)
- Semiconductor Memories (AREA)
- Control Of Electrical Variables (AREA)
- Networks Using Active Elements (AREA)
Abstract
Description
本出願は、2019年1月29日に出願された「Precision Programming Circuit For Analog Neural Memory In Deep Learning Artificial Neural Network」と題する米国仮特許出願第62/798,394号、及び2019年3月21日に出願された「Algorithms And Circuitry For Verifying A Value Stored During A Programming Operation Of A Non-volatile Memory Cell In An Analog Neural Memory In Deep Learning Artificial Neural Network」と題する米国特許出願第16/360,955号に対する優先権を主張するものである。
アナログニューラルメモリにおいてプログラミング動作中に不揮発性メモリセルに格納された値を検証するための多数の検証アルゴリズム及び回路が開示される。
不揮発性メモリセル
不揮発性メモリセルアレイを使用するニューラルネットワーク
ベクトル行列乗算(VMM)アレイ
Ids=Io*e(Vg-Vth)/kVt=w*Io*e(Vg)/kVt
式中、w=e(-Vth)/kVtである。
Vg=k*Vt*log[Ids/wp*Io]
式中、wpは、基準又は周辺メモリセルのwである。
Iout=wa*Io*e(Vg)/kVt、すなわち
Iout=(wa/wp)*Iin=W*Iin
W=e(Vthp-Vtha)/kVt
式中、メモリアレイの各メモリセルのwa=wである。
Ids=β*(Vgs-Vth)*Vds;β=u*Cox*W/L
W=α(Vgs-Vth)
Ids=α 1/2 *β*(Vgs-Vth)2;β=u*Cox*W/L
W=α(Vgs-Vth)2
表5:図12のVMMアレイ1200の動作
表6:図13のVMMアレイ1300の動作
表7:図14のVMMアレイ1400の動作
表8:図15のVMMアレイ1500の動作
システム制御ブロック3304は、一般的な制御機能及び演算動作を処理するためのARM/MIPS/RISC_Vコアなどのマイクロコントローラコアを含んでもよい。システム制御ブロック3304はまた、単一の命令で複数のデータを演算するためのSIMD(単一命令複数データ)ユニットを含んでもよい。これは、DSPコアを含んでもよい。これは、限定することなく、プーリング、平均化、最小、最大、ソフト最大、加算、減算、乗算、除算、対数、逆対数、ReLu、シグモイド、tanh、データ圧縮などの機能を実行するためのハードウェア又はソフトウェアを含んでもよい。これは、活性化近似器/量子化器/正規化器などの機能を実行するためのハードウェア又はソフトウェアを含んでもよい。これは、入力データ近似器/量子化器/正規化器などの機能を実行する能力を含んでもよい。これは、活性化近似器/量子化器/正規化器の機能を実行するためのハードウェア又はソフトウェアを含んでもよい。ニューロメモリサブシステム3333の制御ブロックは、マイクロコントローラコア、SIMDコア、DSPコア、及び他の機能ユニットなど、システム制御ブロック3304の類似した要素を含んでもよい。
長・短期メモリ
ゲート付き回帰型ユニット
高電圧生成回路及び他の回路
精密プログラミング回路及びアルゴリズム
Claims (16)
- 格納された重みを複数のデジタル出力ビットに変換することによる、不揮発性メモリセルのマルチレベルプログラミング動作に続いて前記不揮発性メモリセル内の前記格納された重みを検証するためのニューラルネットワーク用の検証方法であって、
前記不揮発性メモリセルの出力を単一の基準線における基準値と比較し、前記メモリセルの出力が前記基準値より大きい場合には、第1の値のデジタル出力ビットを生成し、前記メモリセルの出力が前記基準値より小さい場合には、第2の値のデジタル出力ビットを生成するステップと、
残りのデジタル出力ビットのそれぞれを生成するために前記比較するステップを繰り返すステップであって、基準値は、前記先行する比較するステップの前記デジタル出力ビットに基づいて選択される、繰り返すステップと、を含む、検証方法。 - 前記不揮発性メモリセルの前記出力は、前記格納された重みから変換された電流又は電圧である、請求項1に記載の検証方法。
- 実行された最初の比較するステップは、前記複数のデジタル出力ビットの最上位ビットを生成する、請求項1に記載の検証方法。
- 実行された最後の比較するステップは、前記複数のデジタル出力ビットの最下位ビットを生成する、請求項1に記載の検証方法。
- 前記不揮発性メモリセルは、積層ゲートメモリセルである、請求項1に記載の検証方法。
- 前記不揮発性メモリセルは、スプリットゲートメモリセルである、請求項1に記載の検証方法。
- 格納された重みを複数のデジタル出力ビットに変換することによる、ニューラルネットワーク用の、不揮発性メモリセルのマルチレベルプログラミング動作に続いて前記不揮発性メモリセル内の前記格納された重みを検証するための検証方法であって、
前記不揮発性メモリセルの出力を基準値と比較し、前記不揮発性メモリセルの出力が前記基準値を超える場合には、第1の値の第1のデジタル出力ビットを生成し、前記不揮発性メモリセルの出力が前記基準値より小さい場合には、第2の値の第1のデジタル出力ビットを生成するステップと、
前記メモリセルの出力を、前記第1のデジタル出力ビットが第1の値を有する場合には第2の基準値と、前記第1のデジタル出力ビットが第2の値を有する場合には第3の基準値と比較し、
前記不揮発性メモリセルの出力が前記第2の基準値より大きい場合には、第1の値の第2のデジタル出力ビットを生成し、格納された電圧が前記第2の基準値より小さい場合には、第2の値の第2のデジタル出力ビットを生成することと、
前記不揮発性メモリセルの出力が前記第3の基準値より大きい場合には、第1の値の第2のデジタル出力ビットを生成し、前記不揮発性メモリセルの出力が前記第3の基準電圧より小さい場合には、第2の値の第2のデジタル出力ビットを生成することと、のうちの1つを実行するステップと、を含む、検証方法。 - 前記メモリセルの前記出力は、前記格納された重みから変換された電流又は電圧である、請求項7に記載の検証方法。
- 実行された最初の比較するステップは、前記複数のデジタル出力ビットの最上位ビットを生成する、請求項7に記載の検証方法。
- 前記不揮発性メモリセルは、積層ゲートメモリセルである、請求項7に記載の検証方法。
- 前記不揮発性メモリセルは、スプリットゲートメモリセルである、請求項7に記載の検証方法。
- ニューラルネットワーク用の不揮発性メモリセルのプログラミング動作に続いて検証動作中に使用する調整可能な基準電流源であって、
入力電圧を提供するための調整可能な電流源と、
前記入力電圧及び制御信号を受け取り、出力電流を生成するためのデバイスのアレイであって、前記制御信号は、温度計コード方式で前記デバイスのアレイ内の1つ以上のデバイスを作動させる、デバイスのアレイと、
前記出力電流を受け取り、基準電圧を生成するためのバッファミラーと、を含み、
前記基準電圧は、前記調整可能な電圧源及び前記制御信号に応じて変化する、調整可能な基準電流源。 - 前記バッファミラーは、ミラーバイアス電圧を駆動する演算増幅器を含む、請求項12に記載の調整可能な基準電流源。
- 前記デバイスのアレイ内の各デバイスは、第1のNMOSトランジスタ及び第2のNMOSトランジスタを含み、前記第1のNMOSトランジスタのソースは、前記第2のNMOSトランジスタのドレインに結合される、請求項12に記載の調整可能な基準電流源。
- 前記不揮発性メモリセルは、スプリットゲートメモリセルである、請求項12に記載の調整可能な基準電流源。
- 前記不揮発性メモリセルは、積層ゲートメモリセルである、請求項12に記載の調整可能な基準電流源。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962798394P | 2019-01-29 | 2019-01-29 | |
US62/798,394 | 2019-01-29 | ||
US16/360,955 US11144824B2 (en) | 2019-01-29 | 2019-03-21 | Algorithms and circuitry for verifying a value stored during a programming operation of a non-volatile memory cell in an analog neural memory in deep learning artificial neural network |
US16/360,955 | 2019-03-21 | ||
PCT/US2019/050119 WO2020159583A1 (en) | 2019-01-29 | 2019-09-07 | Algorithms and circuitry for verifying a value stored during a programming operation of a non-volatile memory cell in an analog neural memory in deep learning artificial neural network |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022523075A true JP2022523075A (ja) | 2022-04-21 |
JP7153802B2 JP7153802B2 (ja) | 2022-10-14 |
Family
ID=71731340
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021544169A Active JP7201831B2 (ja) | 2019-01-29 | 2019-09-05 | 深層学習人工ニューラルネットワークにおけるアナログニューラルメモリ用の精密プログラミング回路 |
JP2021544167A Active JP7153802B2 (ja) | 2019-01-29 | 2019-09-07 | 深層学習人工ニューラルネットワークのアナログニューラルメモリにおいて不揮発性メモリセルのプログラミング動作中に格納された値を検証するためのアルゴリズム及び回路 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021544169A Active JP7201831B2 (ja) | 2019-01-29 | 2019-09-05 | 深層学習人工ニューラルネットワークにおけるアナログニューラルメモリ用の精密プログラミング回路 |
Country Status (7)
Country | Link |
---|---|
US (4) | US11144824B2 (ja) |
EP (4) | EP3918601B1 (ja) |
JP (2) | JP7201831B2 (ja) |
KR (2) | KR20210110638A (ja) |
CN (2) | CN113366573A (ja) |
TW (2) | TWI803727B (ja) |
WO (2) | WO2020159582A1 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11144824B2 (en) * | 2019-01-29 | 2021-10-12 | Silicon Storage Technology, Inc. | Algorithms and circuitry for verifying a value stored during a programming operation of a non-volatile memory cell in an analog neural memory in deep learning artificial neural network |
US11886987B2 (en) * | 2019-06-25 | 2024-01-30 | Arm Limited | Non-volatile memory-based compact mixed-signal multiply-accumulate engine |
US12026601B2 (en) * | 2019-06-26 | 2024-07-02 | Micron Technology, Inc. | Stacked artificial neural networks |
US20210064379A1 (en) | 2019-08-29 | 2021-03-04 | Arm Limited | Refactoring MAC Computations for Reduced Programming Steps |
US11164068B1 (en) * | 2020-11-13 | 2021-11-02 | International Business Machines Corporation | Feature recognition with oscillating neural network |
US20230049032A1 (en) * | 2021-08-02 | 2023-02-16 | Silicon Storage Technology, Inc. | Output circuitry for analog neural memory in a deep learning artificial neural network |
KR102514652B1 (ko) * | 2021-11-19 | 2023-03-29 | 서울대학교산학협력단 | 뉴로모픽 소자를 위한 가중치 전사 장치 및 이를 이용한 가중치 전사 방법 |
CN116504281A (zh) * | 2022-01-18 | 2023-07-28 | 浙江力德仪器有限公司 | 计算单元、阵列及计算方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0215497A (ja) * | 1988-04-26 | 1990-01-19 | Sgs Thomson Microelectron Sa | 1つのメモリセルに複数のデータビットを有する電気的にプログラム可能なメモリ |
JPH08297984A (ja) * | 1995-01-27 | 1996-11-12 | Sgs Thomson Microelectron Srl | 多レベル不揮発性メモリセル読み出し方法および回路 |
JP2000011674A (ja) * | 1998-06-25 | 2000-01-14 | Sony Corp | ラッチ形センス回路及びプログラム・ベリファイ回路 |
JP2011505649A (ja) * | 2007-12-04 | 2011-02-24 | マイクロン テクノロジー, インク. | メモリセルの感知 |
WO2017200883A1 (en) * | 2016-05-17 | 2017-11-23 | Silicon Storage Technology, Inc. | Deep learning neural network classifier using non-volatile memory array |
Family Cites Families (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5055897A (en) | 1988-07-27 | 1991-10-08 | Intel Corporation | Semiconductor cell for neural network and the like |
US5029130A (en) | 1990-01-22 | 1991-07-02 | Silicon Storage Technology, Inc. | Single transistor non-valatile electrically alterable semiconductor memory device |
US5093900A (en) * | 1991-02-13 | 1992-03-03 | At&T Bell Laboratories | Reconfigurable neural network |
US5237210A (en) | 1992-03-12 | 1993-08-17 | Intel Corporation | Neural network accomodating parallel synaptic weight adjustments for correlation learning algorithms |
KR100192476B1 (ko) * | 1996-06-26 | 1999-06-15 | 구본준 | 다중 비트 메모리 셀의 데이타 센싱장치 및 방법 |
US6876468B1 (en) * | 2000-09-19 | 2005-04-05 | Kabushiki Kaisha Toshiba | Image processing apparatus that performs black coloring, gamma correction and tone processing |
EP1249841B1 (en) * | 2001-04-10 | 2008-10-29 | STMicroelectronics S.r.l. | Reading circuit and method for a multilevel non volatile memory |
KR100418720B1 (ko) | 2001-06-29 | 2004-02-19 | 주식회사 하이닉스반도체 | 플래시 메모리 셀의 소거 전압 조절 회로 |
JP3908957B2 (ja) | 2002-01-24 | 2007-04-25 | シャープ株式会社 | 不揮発性半導体メモリ装置 |
US6747310B2 (en) | 2002-10-07 | 2004-06-08 | Actrans System Inc. | Flash memory cells with separated self-aligned select and erase gates, and process of fabrication |
DE102005047172B4 (de) | 2005-09-30 | 2007-09-27 | Xignal Technologies Ag | Schaltungsanordnung mit einem rückgekoppelten Operationsverstärker |
US7254071B2 (en) | 2006-01-12 | 2007-08-07 | Sandisk Corporation | Flash memory devices with trimmed analog voltages |
US7447085B2 (en) * | 2006-08-15 | 2008-11-04 | Micron Technology, Inc. | Multilevel driver |
JP4946260B2 (ja) | 2006-08-16 | 2012-06-06 | 富士通セミコンダクター株式会社 | アンチヒューズ書込電圧発生回路を内蔵する半導体メモリ装置 |
US20080056035A1 (en) | 2006-08-31 | 2008-03-06 | Micron Technology, Inc. | Method and apparatus for adaptive programming of flash memory, flash memory devices, and systems including flash memory having adaptive programming capability |
KR100909362B1 (ko) * | 2006-11-21 | 2009-07-24 | 삼성전자주식회사 | 향상된 프로그램 성능을 갖는 플래시 메모리 장치 및그것을 포함한 스마트 카드 |
JP4306763B2 (ja) | 2007-04-19 | 2009-08-05 | セイコーエプソン株式会社 | ガンマ補正回路 |
JP4365873B2 (ja) * | 2007-06-06 | 2009-11-18 | 株式会社東芝 | 電圧供給回路および半導体記憶装置 |
US7768868B2 (en) * | 2007-06-15 | 2010-08-03 | Micron Technology, Inc. | Digital filters for semiconductor devices |
JP2009080892A (ja) | 2007-09-26 | 2009-04-16 | Toshiba Corp | 半導体記憶装置 |
US8797202B2 (en) * | 2008-03-13 | 2014-08-05 | Electro Industries/Gauge Tech | Intelligent electronic device having circuitry for highly accurate voltage sensing |
KR101463584B1 (ko) * | 2008-07-30 | 2014-11-19 | 삼성전자주식회사 | 비휘발성 메모리 장치 및 그것의 프로그램 방법 |
JP2011041172A (ja) | 2009-08-18 | 2011-02-24 | Ricoh Co Ltd | 電子ボリューム回路 |
US8441847B2 (en) | 2009-09-23 | 2013-05-14 | International Business Machines Corporation | Programming multi-level phase change memory cells |
KR101802815B1 (ko) | 2011-06-08 | 2017-12-29 | 삼성전자주식회사 | 불휘발성 메모리 장치 및 불휘발성 메모리 장치의 프로그램 방법 |
US8625337B2 (en) | 2010-05-06 | 2014-01-07 | Qualcomm Incorporated | Method and apparatus of probabilistic programming multi-level memory in cluster states of bi-stable elements |
US8409944B2 (en) | 2010-06-24 | 2013-04-02 | Semiconductor Components Industries, Llc | Process of forming an electronic device including a nonvolatile memory cell having a floating gate electrode or a conductive member with different portions |
KR101732585B1 (ko) * | 2010-08-26 | 2017-05-04 | 삼성전자주식회사 | 불휘발성 메모리 장치, 그것의 동작 방법, 그리고 그것을 포함하는 메모리 시스템 |
CA2810703C (en) * | 2010-09-15 | 2016-11-08 | Dwight Duston | Systems, devices, and/or methods for managing images |
JP2012113671A (ja) * | 2010-11-29 | 2012-06-14 | Renesas Electronics Corp | 静的検証方法及び静的検証システム並びに記録媒体 |
US8163615B1 (en) | 2011-03-21 | 2012-04-24 | Freescale Semiconductor, Inc. | Split-gate non-volatile memory cell having improved overlap tolerance and method therefor |
KR101736457B1 (ko) * | 2011-07-12 | 2017-05-17 | 삼성전자주식회사 | 불휘발성 메모리 장치, 불휘발성 메모리 장치의 소거 방법, 불휘발성 메모리 장치의 동작 방법, 불휘발성 메모리 장치를 포함하는 메모리 시스템, 메모리 시스템의 동작 방법, 불휘발성 메모리 장치를 포함하는 메모리 카드 및 솔리드 스테이트 드라이브 |
US8400212B1 (en) * | 2011-09-22 | 2013-03-19 | Sandisk Technologies Inc. | High voltage charge pump regulation system with fine step adjustment |
US8896327B2 (en) * | 2012-04-12 | 2014-11-25 | Atmel Corporation | Current mirror self-capacitance measurement |
US8816421B2 (en) * | 2012-04-30 | 2014-08-26 | Broadcom Corporation | Semiconductor device with semiconductor fins and floating gate |
US20150324691A1 (en) * | 2014-05-07 | 2015-11-12 | Seagate Technology Llc | Neural network connections using nonvolatile memory devices |
KR102237710B1 (ko) | 2014-06-18 | 2021-04-09 | 주식회사 해치텍 | 커패시터형 습도센서 |
US9373408B2 (en) | 2014-10-07 | 2016-06-21 | SanDisk Technologies, Inc. | Highly linear analog-to-digital converter and method for nonvolatile memory |
US9715924B2 (en) * | 2015-10-22 | 2017-07-25 | Sandisk Technologies Llc | Three dimensional non-volatile memory with current sensing programming status |
US10891536B1 (en) * | 2016-12-06 | 2021-01-12 | The United States Of America As Represented By The Secretary Of The Air Force | Artificial neural network for reservoir computing using stochastic logic |
US12106211B2 (en) | 2017-04-27 | 2024-10-01 | The Regents Of The University Of California | Mixed signal neuromorphic computing with nonvolatile memory devices |
KR102473579B1 (ko) * | 2017-05-11 | 2022-12-01 | 포항공과대학교 산학협력단 | 가중치 소자 및 이의 작동 방법 |
US10580492B2 (en) * | 2017-09-15 | 2020-03-03 | Silicon Storage Technology, Inc. | System and method for implementing configurable convoluted neural networks with flash memories |
KR102406868B1 (ko) * | 2017-11-23 | 2022-06-10 | 삼성전자주식회사 | 메모리 장치, 메모리 시스템 및 메모리 장치의 동작 방법 |
US10748630B2 (en) * | 2017-11-29 | 2020-08-18 | Silicon Storage Technology, Inc. | High precision and highly efficient tuning mechanisms and algorithms for analog neuromorphic memory in artificial neural networks |
KR102610842B1 (ko) * | 2017-12-01 | 2023-12-07 | 한국전자통신연구원 | 뉴럴 네트워크에서의 프로세싱 엘리먼트 및 그 동작 방법 |
US10908817B2 (en) * | 2017-12-08 | 2021-02-02 | Sandisk Technologies Llc | Signal reduction in a microcontroller architecture for non-volatile memory |
KR102658230B1 (ko) * | 2018-06-01 | 2024-04-17 | 삼성전자주식회사 | 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 반도체 메모리 장치의 동작 방법 |
US10692570B2 (en) * | 2018-07-11 | 2020-06-23 | Sandisk Technologies Llc | Neural network matrix multiplication in memory cells |
US10860918B2 (en) * | 2018-08-21 | 2020-12-08 | Silicon Storage Technology, Inc. | Analog neural memory system for deep learning neural network comprising multiple vector-by-matrix multiplication arrays and shared components |
US11144824B2 (en) * | 2019-01-29 | 2021-10-12 | Silicon Storage Technology, Inc. | Algorithms and circuitry for verifying a value stored during a programming operation of a non-volatile memory cell in an analog neural memory in deep learning artificial neural network |
-
2019
- 2019-03-21 US US16/360,955 patent/US11144824B2/en active Active
- 2019-03-21 US US16/360,733 patent/US11586898B2/en active Active
- 2019-09-05 JP JP2021544169A patent/JP7201831B2/ja active Active
- 2019-09-05 WO PCT/US2019/049817 patent/WO2020159582A1/en unknown
- 2019-09-05 KR KR1020217023622A patent/KR20210110638A/ko not_active Application Discontinuation
- 2019-09-05 CN CN201980090685.4A patent/CN113366573A/zh active Pending
- 2019-09-05 EP EP19772938.7A patent/EP3918601B1/en active Active
- 2019-09-05 EP EP24177589.9A patent/EP4401080A3/en active Pending
- 2019-09-07 JP JP2021544167A patent/JP7153802B2/ja active Active
- 2019-09-07 EP EP23201693.1A patent/EP4280113A3/en active Pending
- 2019-09-07 WO PCT/US2019/050119 patent/WO2020159583A1/en unknown
- 2019-09-07 KR KR1020217023623A patent/KR102404411B1/ko active IP Right Grant
- 2019-09-07 EP EP19773616.8A patent/EP3918602B1/en active Active
- 2019-09-07 CN CN201980090494.8A patent/CN113366572B/zh active Active
- 2019-12-23 TW TW108147188A patent/TWI803727B/zh active
-
2020
- 2020-01-09 TW TW109100679A patent/TWI742508B/zh active
-
2022
- 2022-12-13 US US18/080,676 patent/US20230104689A1/en active Pending
- 2022-12-14 US US18/081,124 patent/US20230119017A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0215497A (ja) * | 1988-04-26 | 1990-01-19 | Sgs Thomson Microelectron Sa | 1つのメモリセルに複数のデータビットを有する電気的にプログラム可能なメモリ |
JPH08297984A (ja) * | 1995-01-27 | 1996-11-12 | Sgs Thomson Microelectron Srl | 多レベル不揮発性メモリセル読み出し方法および回路 |
JP2000011674A (ja) * | 1998-06-25 | 2000-01-14 | Sony Corp | ラッチ形センス回路及びプログラム・ベリファイ回路 |
JP2011505649A (ja) * | 2007-12-04 | 2011-02-24 | マイクロン テクノロジー, インク. | メモリセルの感知 |
WO2017200883A1 (en) * | 2016-05-17 | 2017-11-23 | Silicon Storage Technology, Inc. | Deep learning neural network classifier using non-volatile memory array |
Also Published As
Publication number | Publication date |
---|---|
EP3918601B1 (en) | 2024-07-03 |
EP3918602A1 (en) | 2021-12-08 |
EP4280113A2 (en) | 2023-11-22 |
EP3918602B1 (en) | 2023-11-15 |
US20200242460A1 (en) | 2020-07-30 |
EP4401080A2 (en) | 2024-07-17 |
WO2020159582A1 (en) | 2020-08-06 |
JP7153802B2 (ja) | 2022-10-14 |
WO2020159583A1 (en) | 2020-08-06 |
US11144824B2 (en) | 2021-10-12 |
JP2022523316A (ja) | 2022-04-22 |
JP7201831B2 (ja) | 2023-01-10 |
US11586898B2 (en) | 2023-02-21 |
TWI803727B (zh) | 2023-06-01 |
EP4280113A3 (en) | 2024-05-08 |
CN113366573A (zh) | 2021-09-07 |
CN113366572B (zh) | 2023-03-24 |
US20230104689A1 (en) | 2023-04-06 |
EP3918601A1 (en) | 2021-12-08 |
EP4401080A3 (en) | 2024-10-02 |
CN113366572A (zh) | 2021-09-07 |
US20200242461A1 (en) | 2020-07-30 |
KR20210110638A (ko) | 2021-09-08 |
KR20210100194A (ko) | 2021-08-13 |
TW202040578A (zh) | 2020-11-01 |
TWI742508B (zh) | 2021-10-11 |
US20230119017A1 (en) | 2023-04-20 |
TW202333154A (zh) | 2023-08-16 |
KR102404411B1 (ko) | 2022-06-02 |
TW202046317A (zh) | 2020-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI799355B (zh) | 精確資料調校方法及用於人工神經網路中之類比神經記憶體之裝置 | |
JP7153802B2 (ja) | 深層学習人工ニューラルネットワークのアナログニューラルメモリにおいて不揮発性メモリセルのプログラミング動作中に格納された値を検証するためのアルゴリズム及び回路 | |
JP2023525771A (ja) | 論理セル及び改善されたプログラミング機構を備える人工ニューラルネットワーク内のアナログニューラルメモリアレイ | |
TWI809663B (zh) | 用於人工神經網路中之類比神經記憶體之精確資料調校方法及裝置 | |
JP2023533719A (ja) | 人工ニューラルネットワークにおけるアナログニューラルメモリアレイの適応バイアスデコーダ | |
CN115516565A (zh) | 人工神经网络中的具有源极线拉低机构的模拟神经存储器阵列 | |
US20240282351A1 (en) | Output block for array of non-volatile memory cells | |
WO2024162979A1 (en) | Current-to-voltage converter comprising common mode circuit | |
TW202314599A (zh) | 深度學習人工神經網路中類比神經記憶體的輸入電路 | |
TW202314712A (zh) | 深度學習人工神經網路中類比神經記憶體的輸出電路 | |
WO2024172829A1 (en) | Output block for a vector-by-matrix multiplication array of non-volatile memory cells | |
KR20240117630A (ko) | 딥 러닝 인공 신경망에서의 전기적 파라미터들의 교정 | |
TW202324211A (zh) | 可配置為以類比形式或數位形式儲存神經記憶體權重資料的混合記憶體系統 | |
CN118633126A (zh) | 深度学习人工神经网络中的电参数的校准 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211027 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221003 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7153802 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |