KR102658230B1 - 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 반도체 메모리 장치의 동작 방법 - Google Patents

반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 반도체 메모리 장치의 동작 방법 Download PDF

Info

Publication number
KR102658230B1
KR102658230B1 KR1020180063278A KR20180063278A KR102658230B1 KR 102658230 B1 KR102658230 B1 KR 102658230B1 KR 1020180063278 A KR1020180063278 A KR 1020180063278A KR 20180063278 A KR20180063278 A KR 20180063278A KR 102658230 B1 KR102658230 B1 KR 102658230B1
Authority
KR
South Korea
Prior art keywords
scrubbing
address
refresh
memory cell
row
Prior art date
Application number
KR1020180063278A
Other languages
English (en)
Other versions
KR20190137281A (ko
Inventor
차상언
김현기
신훈
유예신
전인우
Original Assignee
삼성전자주식회사
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020180063278A priority Critical patent/KR102658230B1/ko
Priority to US16/228,518 priority patent/US10586584B2/en
Priority to TW107147194A priority patent/TW202004754A/zh
Priority to CN201910191825.9A priority patent/CN110556156A/zh
Publication of KR20190137281A publication Critical patent/KR20190137281A/ko
Priority to US16/779,194 priority patent/US10811078B2/en
Priority to US17/024,259 priority patent/US11031065B2/en
Priority to US17/322,227 priority patent/US11557332B2/en
Application granted granted Critical
Publication of KR102658230B1 publication Critical patent/KR102658230B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • G06F11/1008Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
    • G06F11/1048Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices using arrangements adapted for a specific error detection or correction feature
    • G06F11/106Correcting systematically all correctable errors, i.e. scrubbing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0614Improving the reliability of storage systems
    • G06F3/0616Improving the reliability of storage systems in relation to life time, e.g. increasing Mean Time Between Failures [MTBF]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0658Controller construction arrangements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles

Abstract

반도체 메모리 장치는 메모리 셀 어레이, 에러 정정 코드(error correction code; 이하 'ECC') 엔진, 리프레시 제어 회로, 스크러빙 제어 회로 및 제어 로직 회로를 포함한다. 상기 메모리 셀 어레이는 각각이 복수의 동적 메모리 셀들을 포함하는 복수의 메모리 셀 로우들을 구비한다. 상기 리프레시 제어 회로는 외부의 메모리 컨트롤러로부터의 제1 커맨드에 응답하여 상기 메모리 셀 로우들을 리프레시하기 위한 리프레시 로우 어드레스들을 생성한다. 상기 스크러빙 제어 회로는 상기 리프레시 로우 어드레스들을 카운팅하고, 상기 리프레시 로우 어드레스들이 N (N은 2 이상의 자연수) 번 카운팅될 때마다, 상기 메모리 셀 로우들 중 선택된 메모리 셀 로우에 대한 스크러빙 동작을 수행하기 위한 스크러빙 어드레스를 생성한다. 상기 제어 로직 회로는 상기 선택된 메모리 셀 로우의 적어도 하나의 서브 페이지로부터 제1 코드워드에 해당하는 데이터를 독출하고, 상기 제1 코드워드의 적어도 하나의 에러 비트를 정정하고, 상기 정정된 제1 코드워드를 상기 적어도 하나의 서브 페이지가 저장된 메모리 위치에 재기입하도록 상기 ECC 엔진을 제어한다.

Description

반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 반도체 메모리 장치의 동작 방법{Semiconductor memory devices, memory systems including the same and method of operating semiconductor memory devices}
본 발명은 메모리 분야에 관한 것으로, 보다 상세하게는 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 반도체 메모리 장치의 동작 방법에 관한 것이다.
반도체 메모리 장치는 플래시 메모리 장치와 같은 불휘발성 메모리 장치와 DRAM과 같은 휘발성 메모리 장치로 구분될 수 있다. DRAM과 같은 휘발성 메모리 장치는 가격이 비교적 저렴하기 때문에 시스템 메모리와 같은 대용량 데이터를 저장하는데 사용되고 있다. 또한 DRAM과 같은 휘발성 반도체 메모리 장치에서는 집적도를 높이기 위하여 공정 스케일을 축소시키고 있다. 공정 스케일의 축소에 따라 비트 에러 비율(bit error rate)을 급격하게 증가하고 수율이 낮아질 것으로 예상된다. 따라서 반도체 메모리 장치의 신뢰성을 높일 수 있는 방안이 필요하다.
본 발명의 일 목적은 신뢰성과 성능을 높일 수 있는 반도체 메모리 장치를 제공하는데 있다.
본 발명의 일 목적은 신뢰성과 성능을 높일 수 있는 메모리 시스템을 제공하는데 있다.
본 발명의 일 목적은 신뢰성과 성능을 높일 수 있는 반도체 메모리 장치의 동작 방법을 제공하는데 있다.
상기 일 목적을 달성하기 위한 본 발명의 실시예들에 따른 반도체 메모리 장치는 메모리 셀 어레이, 에러 정정 코드(error correction code; 이하 'ECC') 엔진, 리프레시 제어 회로, 스크러빙 제어 회로 및 제어 로직 회로를 포함한다. 상기 메모리 셀 어레이는 각각이 복수의 동적 메모리 셀들을 포함하는 복수의 메모리 셀 로우들을 구비한다. 상기 리프레시 제어 회로는 외부의 메모리 컨트롤러로부터의 제1 커맨드에 응답하여 상기 메모리 셀 로우들을 리프레시하기 위한 리프레시 로우 어드레스들을 생성한다. 상기 스크러빙 제어 회로는 상기 리프레시 로우 어드레스들을 카운팅하고, 상기 리프레시 로우 어드레스들이 N(N은 2 이상의 자연수) 번 카운팅될 때마다, 상기 메모리 셀 로우들 중 선택된 메모리 셀 로우에 대한 스크러빙 동작을 수행하기 위한 스크러빙 어드레스를 생성한다. 상기 제어 로직 회로는 상기 메모리 컨트롤러로부터의 액세스 어드레스 및 커맨드에 응답하여 상기 ECC 엔진 및 상기 상기 스크러빙 제어 회로를 제어한다. 상기 제어 로직 회로는 상기 선택된 메모리 셀 로우의 적어도 하나의 서브 페이지로부터 제1 코드워드에 해당하는 데이터를 독출하고, 상기 제1 코드워드의 적어도 하나의 에러 비트를 정정하고, 상기 정정된 제1 코드워드를 상기 적어도 하나의 서브 페이지가 저장된 메모리 위치에 재기입하도록 상기 ECC 엔진을 제어한다.
상기 일 목적을 달성하기 위한 본 발명의 실시예들에 따른 메모리 시스템은 반도체 메모리 장치 및 상기 반도체 메모리 장치를 제어하는 메모리 컨트롤러를 포함한다. 상기 반도체 메모리 장치는 메모리 셀 어레이, 에러 정정 코드(error correction code; 이하 'ECC') 엔진, 리프레시 제어 회로, 스크러빙 제어 회로 및 제어 로직 회로를 포함한다. 상기 메모리 셀 어레이는 각각이 복수의 동적 메모리 셀들을 포함하는 복수의 메모리 셀 로우들을 구비한다. 상기 리프레시 제어 회로는 상기 메모리 컨트롤러로부터의 제1 커맨드에 응답하여 상기 메모리 셀 로우들을 리프레시하기 위한 리프레시 로우 어드레스들을 생성한다. 상기 스크러빙 제어 회로는 상기 리프레시 로우 어드레스들을 카운팅하고, 상기 리프레시 로우 어드레스들이 N(N은 2 이상의 자연수) 번 카운팅될 때마다, 상기 메모리 셀 로우들 중 선택된 메모리 셀 로우에 대한 스크러빙 동작을 수행하기 위한 스크러빙 어드레스를 생성한다. 상기 제어 로직 회로는 상기 메모리 컨트롤러로부터의 액세스 어드레스 및 커맨드에 응답하여 상기 ECC 엔진 및 상기 상기 스크러빙 제어 회로를 제어한다. 상기 제어 로직 회로는 상기 선택된 메모리 셀 로우의 적어도 하나의 서브 페이지로부터 제1 코드워드에 해당하는 데이터를 독출하고, 상기 제1 코드워드의 적어도 하나의 에러 비트를 정정하고, 상기 정정된 제1 코드워드를 상기 적어도 하나의 서브 페이지가 저장된 메모리 위치에 재기입하도록 상기 ECC 엔진을 제어한다.
상기 일 목적을 달성하기 위한 본 발명의 실시예들에 따른 각각이 복수의 동적 메모리 셀들을 포함하는 복수의 메모리 셀 로우들을 구비하는 메모리 셀 어레이를 구비하는 반도체 메모리 장치의 동작 방법에서는, 외부의 메모리 컨트롤러로부터의 제1 커맨드에 응답하여 제1 내부 어드레스들을 순차적으로 생성하고, 상기 제1 내부 어드레스들에 기초하여 상기 메모리 셀 로우들에 대하여 로우 동작을 순차적으로 수행하고, 상기 메모리 셀 로우들에 대하여 상기 로우 동작이 N(N은 2 이상의 자연수)번 수행될 때마다, 상기 반도체 메모리 장치 내부에서 생성된 제2 내부 어드레스에 상응하는 메모리 셀 로우를 선택하고, 상기 선택된 메모리 셀 로우에 대하여 M(M은 자연수)번의 칼럼 동작을 수행한다.
본 발명의 실시예들에 따르면, 반도체 메모리 장치가 ECC 엔진과 스크러빙 제어 회로를 포함하고, 복수의 메모리 셀 로우들에 대한 리프레시 동작이 N 번 수행될 때마다, 스크러빙 제어 회로에서 제공되는 스크러빙 어드레스에 해당하는 메모리 셀 로우의 복수의 코드워드들에 대하여 스크러빙 동작을 수행한다. 스크러빙 동작에서는 코드워드의 에러를 정정하여 상응하는 메모리 위치에 재기입한다. 따라서 반도체 메모리 장치에서 에러 비트가 누적되는 것을 방지하여 반도체 메모리 장치의 성능 및 신뢰성을 향상시킬 수 있다.
도 1은 본 발명의 실시예들에 따른 메모리 시스템을 나타내는 블록도이다.
도 2는 본 발명의 실시예들에 따른 도 1의 메모리 시스템에서 반도체 메모리 장치의 구성을 나타내는 블록도이다.
도 3은 본 발명의 실시예들에 따른 도 2의 반도체 메모리 장치에서 제1 뱅크 어레이를 나타낸다.
도 4는 본 발명의 실시예들에 따른 도 2의 리프레시 제어 회로를 나타내는 블록도이다.
도 5는 본 발명의 실시예들에 따른 도 4의 리프레시 제어 회로에서 리프레시 클럭 생성기의 일 예를 나타낸다.
도 6은 본 발명의 실시예들에 따른 도 4의 리프레시 제어 회로에서 리프레시 클럭 생성기의 일 예를 나타낸다.
도 7은 메모리 셀들 간의 디스터번스를 설명하기 위한 회로도이다.
도 8은 본 발명의 실시예들에 따른 도 2의 빅팀 어드레스 검출기를 나타낸다.
도 9는 도 8의 빅팀 어드레스 검출기에서 간섭 검출기의 구성을 나타내는 블록도이다.
도 10은 본 발명의 실시예들에 따른 도 2의 반도체 메모리 장치에서 스크러빙 제어 회로의 구성을 나타내는 블록도이다.
도 11은 본 발명의 실시예들에 따른 도 10의 스크러빙 제어 회로에서 스크러빙 어드레스 생성기의 구성을 나타내는 블록도이다.
도 12는 본 발명의 실시예들에 따른 도 10의 스크러빙 제어 회로에서 위크 코드워드 어드레스 생성기를 나타낸다.
도 13은 기입 동작에서 도 2의 반도체 메모리 장치의 일부를 나타낸다.
도 14는 독출 동작 또는 리프레시 동작에서 도 2의 반도체 메모리 장치의 일부를 나타낸다.
도 15는 본 발명의 실시예들에 따른 도 2의 반도체 메모리 장치에서 ECC 엔진의 구성을 나타내는 블록도이다.
도 16은 본 발명의 실시예들에 따른 도 15의 ECC 인코더를 나타낸다.
도 17은 본 발명의 실시예들에 따른 도 15의 ECC 디코더를 나타낸다.
도 18은 본 발명의 실시예들에 따른 도 17의 ECC 디코더의 동작을 나타낸다.
도 19는 도 2의 반도체 메모리 장치에서 노멀 리프레시 동작과 스크러빙 동작이 수행되는 예를 나타낸다.
도 20은 도 2의 반도체 메모리 장치에서 리프레시 동작과 스크러빙 동작이 수행되는 예를 나타낸다.
도 21은 도 19 또는 도 20에서 스크러빙 동작의 타이밍을 나타낸다.
도 22는 본 발명의 실시예들에 따른 반도체 메모리 장치를 보여주는 예시적인 블록도이다.
도 23은 본 발명의 실시예들에 따른 반도체 메모리 장치의 동작 방법을 나타내는 플로우 챠트이다.
도 24는 본 발명의 실시예들에 따른 도 의 반도체 메모리 장치가 3D 칩 구조에 적용되는 예를 나타내는 블록도이다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
도 1은 본 발명의 실시예들에 따른 메모리 시스템을 나타내는 블록도이다.
도 1을 참조하면, 메모리 시스템(20)은 메모리 컨트롤러(100) 및 적어도 하나의 반도체 메모리 장치(200)를 포함할 수 있다.
메모리 컨트롤러(Memory Controller; 100)는 메모리 시스템(Memory System; 20)의 동작을 전반적으로 제어하며, 외부의 호스트와 반도체 메모리 장치(200) 사이의 전반적인 데이터 교환을 제어한다. 예컨대, 메모리 컨트롤러(100)는 호스트의 요청에 따라 반도체 메모리 장치(200)를 제어하여 데이터를 기입하거나(write) 데이터를 독출한다(read).
또한, 메모리 컨트롤러(100)는 반도체 메모리 장치(200)를 제어하기 위한 동작 커맨드(command)들을 인가하여, 반도체 메모리 장치(200)의 동작을 제어한다.
실시예에 따라, 반도체 메모리 장치(200)는 동적 메모리 셀들을 구비하는 DRAM(dynamic random access), DDR4(double data rate 4) SDRAM(synchronous DRAM), LPDDR4(low power DDR4) SDRAM 또는 LPDDR5 SDRAM일 수 있다.
메모리 컨트롤러(100)는 반도체 메모리 장치(200)에 클럭 신호(CLK), 커맨드(CMD) 및 어드레스(ADDR)를 전송하고, 반도체 메모리 장치(200)와 메인 데이터(MD)를 주고받을 수 있다.
반도체 메모리 장치(200)는 메인 데이터(MD)와 패리티 비트들이 저장되는 메모리 셀 어레이(300), 에러 정정 코드(error correction code, 이하 'ECC') 엔진(400), 제어 로직 회로(210) 및 스크러빙 제어 회로(500)를 포함할 수 있다.
ECC 엔진(400)은 제어 로직 회로(210)의 제어에 따라 메모리 셀 어레이(300)의 타겟 페이지에 저장될 데이터에 대하여 ECC 인코딩을 수행하고, 타겟 페이지로부터 독출된 데이터에 대하여 ECC 디코딩을 수행할 수 있다.
스크러빙 컨트롤러(500)는 메모리 셀 어레이(300)에 포함되는 복수의 메모리 셀 로우들에 대하여 리프레시 동작이 수행되는 경우, N 개의 메모리 셀 로우들에 대한 리프레시 동작이 수행될 때마다, 상기 메모리 셀 로우들 중 선택된 메모리 셀 로우에 대한 스크러빙 동작이 수행될 수 있도록 스크러빙 어드레스를 생성할 수 있다. 제어 로직 회로(210)는 상기 스크러빙 어드레스가 지정하는 메모리 위치로부터 제1 코드워드에 해당하는 데이터를 독출하고, 상기 제1 코드워드의 적어도 하나의 에러 비트를 정정하고, 상기 정정된 제1 코드워드를 상기 상기 메모리 위치에 재기입하는 스크러빙 동작을 수행하도록 상기 ECC 엔진(400)을 제어할 수 있다.
도 2는 본 발명의 실시예들에 따른 도 1의 메모리 시스템에서 반도체 메모리 장치의 구성을 나타내는 블록도이다.
도 2를 참조하면, 반도체 메모리 장치(200)는 제어 로직 회로(210), 어드레스 레지스터(220), 뱅크 제어 로직(230), 리프레시 제어 회로(385), 로우 어드레스 멀티플렉서(240), 칼럼 어드레스 래치(250), 로우 디코더(260), 칼럼 디코더(270), 메모리 셀 어레이(300), 센스 앰프부(285), 입출력 게이팅 회로(290), ECC 엔진(400), 스크러빙 제어 회로(500), 빅팀 어드레스 검출기(560) 및 데이터 입출력 버퍼(295)를 포함할 수 있다.
상기 메모리 셀 어레이(300)는 제1 내지 제8 뱅크 어레이들(310~380)을 포함할 수 있다. 또한, 상기 로우 디코더(260)는 제1 내지 제8 뱅크 어레이들(310~380)에 각각 연결된 제1 내지 제8 뱅크 로우 디코더들(260a~260h)을 포함하고, 상기 칼럼 디코더(270)는 제1 내지 제8 뱅크 어레이들(310~380)에 각각 연결된 제1 내지 제8 뱅크 칼럼 디코더들(270a~270h)을 포함하며, 상기 센스 앰프부(285)는 제1 내지 제8 뱅크 어레이들(310~380)에 각각 연결된 제1 내지 제8 뱅크 센스 앰프들(285a~285h)을 포함할 수 있다.
제1 내지 제8 뱅크 어레이들(310~380), 제1 내지 제8 뱅크 센스 앰프들(285a~285h), 제1 내지 제8 뱅크 칼럼 디코더들(270a~270h) 및 제1 내지 제8 뱅크 로우 디코더들(260a~260h)은 제1 내지 제8 뱅크들을 각각 구성할 수 있다. 제1 내지 제8 뱅크 어레이들(310~380) 각각은 복수의 워드라인(WL)들과 복수의 비트라인(BTL)들 및 워드라인(WL)들과 비트라인(BTL)들이 교차하는 지점에 형성되는 복수의 메모리 셀(MC)들을 포함할 수 있다.
어드레스 레지스터(220)는 메모리 컨트롤러(100)로부터 뱅크 어드레스(BANK_ADDR), 로우 어드레스(ROW_ADDR) 및 칼럼 어드레스(COL_ADDR)를 포함하는 어드레스(ADDR)를 수신할 수 있다. 어드레스 레지스터(220)는 수신된 뱅크 어드레스(BANK_ADDR)를 뱅크 제어 로직(230)에 제공하고, 수신된 로우 어드레스(ROW_ADDR)를 로우 어드레스 멀티플렉서(240)에 제공하며, 수신된 칼럼 어드레스(COL_ADDR)를 칼럼 어드레스 래치(250)에 제공할 수 있다.
뱅크 제어 로직(230)은 뱅크 어드레스(BANK_ADDR)에 응답하여 뱅크 제어 신호들을 생성할 수 있다. 상기 뱅크 제어 신호들에 응답하여, 제1 내지 제8 뱅크 로우 디코더들(260a~260h) 중 뱅크 어드레스(BANK_ADDR)에 상응하는 뱅크 로우 디코더가 활성화되고, 제1 내지 제8 뱅크 칼럼 디코더들(270a~270h) 중 뱅크 어드레스(BANK_ADDR)에 상응하는 뱅크 칼럼 디코더가 활성화될 수 있다.
로우 어드레스 멀티플렉서(240)는 어드레스 레지스터(220)로부터 로우 어드레스(ROW_ADDR)를 수신하고, 리프레시 제어 회로(385)로부터 리프레시 로우 어드레스(REF_ADDR)를 수신할 수 있다. 로우 어드레스 멀티플렉서(240)는 로우 어드레스(ROW_ADDR) 또는 리프레시 로우 어드레스(REF_ADDR)를 로우 어드레스(RA)로서 선택적으로 출력할 수 있다. 로우 어드레스 멀티플렉서(240)로부터 출력된 로우 어드레스(RA)는 제1 내지 제8 뱅크 로우 디코더들(260a~260h)에 각각 인가될 수 있다.
리프레시 제어 회로(385)는 제어 로직 회로(210)로부터 제공된 제1 리프레시 제어 신호(IREF1) 또는 제2 리프레시 제어 신호(IREF2)에 응답하여 리프레시 로우 어드레스 리프레시 로우 어드레스(REF_ADDR)를 순차적으로 출력할 수 있다.
제어 로직 회로(210)는 메모리 컨트롤러(100)로부터의 커맨드(CMD)가 오토 리프레시 커맨드인 경우에, 오토 리프레시 커맨드가 인가될 때마다 제1 리프레시 제어 신호(IREF1)를 리프레시 제어 회로(385)에 인가할 수 있다. 제어 로직 회로(210)는 메모리 컨트롤러(100)로부터의 커맨드(CMD)가 셀프 리프레시 진입 커맨드인 경우에, 셀프 리프레시 진입 커맨드의 수신 후 셀프 리프레시 탈출 커맨드가 인가될 때까지 활성화되는 제2 리프레시 제어 신호(IREF2)를 리프레시 제어 회로(385)에 인가할 수 있다. 리프레시 제어 회로(385)는 제1 리프레시 제어 신호(IREF1)가 인가될 때 마다 또는 제2 리프레시 제어 신호(IREF2)가 활성화되는 동안에 리프레시 로우 어드레스(REF_ADDR)를 순차적으로 증가시키거나 감소시킬 수 있다.
제1 내지 제8 뱅크 로우 디코더들(260a~260h) 중 뱅크 제어 로직(230)에 의해 활성화된 뱅크 로우 디코더는 로우 어드레스 멀티플렉서(240)로부터 출력된 로우 어드레스(RA) 또는 스크러빙 로우 어드레스(SBRA)를 디코딩하여 상기 로우 어드레스에 상응하는 워드라인을 활성화할 수 있다. 예를 들어, 상기 활성화된 뱅크 로우 디코더는 로우 어드레스에 상응하는 워드라인에 워드라인 구동 전압을 인가할 수 있다.
칼럼 어드레스 래치(250)는 어드레스 레지스터(220)로부터 칼럼 어드레스(COL_ADDR)를 수신하고, 수신된 칼럼 어드레스(COL_ADDR)를 일시적으로 저장할 수 있다. 또한, 칼럼 어드레스 래치(250)는, 버스트 모드에서, 수신된 칼럼 어드레스(COL_ADDR)를 점진적으로 증가시킬 수 있다. 칼럼 어드레스 래치(250)는 일시적으로 저장된 또는 점진적으로 증가된 칼럼 어드레스(COL_ADDR)를 제1 내지 제8 뱅크 칼럼 디코더들(270a~270h)에 각각 인가할 수 있다.
제1 내지 제8 뱅크 칼럼 디코더들(270a~270h) 중 뱅크 제어 로직(230)에 의해 활성화된 뱅크 칼럼 디코더는 상응하는 입출력 게이팅 회로를 통하여 뱅크 어드레스(BANK_ADDR) 및 칼럼 어드레스(COL_ADDR) 또는 스크러빙 칼럼 어드레스(SBCA)에 상응하는 센스 앰프를 활성화시킬 수 있다.
입출력 게이팅 회로(290)는 입출력 데이터를 게이팅하는 회로들과 함께, 입력 데이터 마스크 로직, 제1 내지 제8 뱅크 어레이들(310~380)로부터 출력된 데이터를 저장하기 위한 독출 데이터 래치들, 및 제1 내지 제8 뱅크 어레이들(310~380)에 데이터를 기입하기 위한 기입 드라이버들을 포함할 수 있다.
제1 내지 제8 뱅크 어레이들(310~380) 중 하나의 뱅크 어레이에서 독출될 코드워드(CW)는 상기 하나의 뱅크 어레이에 상응하는 센스 앰프에 의해 감지되고, 상기 독출 데이터 래치들에 저장될 수 있다. 상기 독출 데이터 래치들에 저장된 코드워드(CW)는 ECC 엔진(400)에 의하여 ECC 디코딩이 수행된 후에 데이터 입출력 버퍼(295)를 통하여 상기 메모리 컨트롤러(100)에 제공될 수 있다.
제1 내지 제8 뱅크 어레이들(310~380) 중 하나의 뱅크 어레이에 기입될 메인 데이터(MD)는 ECC 엔진(400)에 제공되고, ECC 엔진(400)은 메인 데이터(MD)에 기초하여 패리티 비트들을 생성하고, 상기 메인 데이터와 상기 패리티 비트들을 입출력 게이팅 회로(290)에 제공하고, 입출력 게이팅 회로(290)는 상기 기입 드라이버들을 통하여 상기 메인 데이터와 상기 패리티 비트들을 상기 하나의 뱅크 어레이의 서브 페이지에 기입할 수 있다.
데이터 입출력 버퍼(295)는 기입 동작에서는 메모리 컨트롤러(100)로부터 제공되는 클럭 신호(CLK)에 기초하여 메인 데이터(MD)를 ECC 엔진(400)에 제공하고, 독출 동작에서는 ECC 엔진(400)으로부터 제공되는 메인 데이터(MD)를 메모리 컨트롤러(100)에 제공할 수 있다.
ECC 엔진(400)은 메모리 셀 어레이(300)의 타겟 페이지의 일부 영역(서브 페이지)으로부터 독출된 코드워드에 대하여 ECC 디코딩을 수행하고, 상기 코드워드의 메인 데이터에서 적어도 하나의 에러 비트가 검출되는 경우, 상기 적어도 에러 비트를 정정하면서, 에러 발생 신호(EGS)를 제어 로직 회로(210)에 제공할 수 있다. 제어 로직 회로(210)는 적어도 하나의 에러 비트가 검출된 상기 코드워드의 로우 어드레스와 컬럼 어드레스를 에러 어드레스(EADDR)로서 스크러빙 제어 회로(500)에 포함되는 어드레스 저장 테이블에 저장할 수 있다.
실시예에 따라서, 에러 어드레스(EADDR)는 제어 로직 회로(210)가 아닌 ECC 엔진(400)이 직접 위크 어드레스 테이블(560)에 저장할 수도 있다.
스크러빙 제어 회로(500)는 순차적으로 변화하는 리프레시 로우 어드레스(REF_ADDR)를 카운팅하고, N(N은 2 이상의 자연수)개의 리프레시 로우 어드레스(REF_ADDR)가 카운팅될 때마다, 노멀 스크러빙 어드레스(SCADDR)를 출력할 수 있다. 노멀 스크러빙 어드레스(SCADDR)는 스크러빙 로우 어드레스(SRA)와 스크러빙 칼럼 어드레스(SCA)를 포함할 수 있다. 스크러빙 제어 회로(500)는 제1 스크러빙 모드에서 스크러빙 로우 어드레스(SRA)와 스크러빙 칼럼 어드레스(SCA)를 로우 디코더(260)와 칼럼 디코더(270)에 각각 제공할 수 있다.
빅팀 어드레스 검출기(560)는 로우 어드레스(ROW_ADDR)에 기초하여 메모리 셀 어레이(300)의 제1 메모리 영역에 대한 액세스 횟수를 카운트하고, 상기 카운트된 액세스 횟수가 임계값에 도달하는 경우, 상기 제1 메모리 영역에 인접한 적어도 하나의 이웃 메모리 영역의 빅팀 어드레스(VCT_ADDR)를 생성할 수 있다. 빅팀 어드레스 검출기(560)는 빅팀 어드레스(VCT_ADDR)를 스크러빙 제어 회로(500) 내에 포함되는 어드레스 저장 테이블을 저장할 수 있다.
스크러빙 제어 제어 회로(500)는 제2 스크러빙 모드에서 어드레스 저장 테이블에 저장된 에러 어드레스(EADDR) 또는 빅팀 어드레스(VCT_ADDR)와 관련된 코드워드의 어드레스를 위크 코드워드 어드레스(WCADDR)로 출력할 수 있다. 위크 코드워드 어드레스(WCADDR)는 위크 코드워드 로우 어드레스(WCRA) 및 위크 코드워드 칼럼 어드레스(WCCA)를 포함할 수 있다. 스크러빙 제어 회로(500)는 제2 스크러빙 모드에서 위크 코드워드 로우 어드레스(WCRA) 및 위크 코드워드 칼럼 어드레스(WCCA)를 로우 디코더(260)와 칼럼 디코더(270)에 각각 제공할 수 있다.
제어 로직 회로(210)는 반도체 메모리 장치(200)의 동작을 제어할 수 있다. 예를 들어, 제어 로직 회로(210)는 반도체 메모리 장치(200)가 기입 동작 또는 독출 동작을 수행하도록 제어 신호들을 생성할 수 있다. 제어 로직 회로(210)는 상기 메모리 컨트롤러(100)로부터 수신되는 커맨드(CMD)를 디코딩하는 커맨드 디코더(211) 및 반도체 메모리 장치(200)의 동작 모드를 설정하기 위한 모드 레지스터(212)를 포함할 수 있다.
예를 들어, 커맨드 디코더(211)는 기입 인에이블 신호, 로우 어드레스 스트로브 신호, 칼럼 어드레스 스트로브 신호, 칩 선택 신호 등을 디코딩하여 커맨드(CMD)에 상응하는 상기 제어 신호들을 생성할 수 있다. 특히 제어 로직 회로(210)는 커맨드(CMD)를 디코딩하여 입출력 게이팅 회로 블록(290)을 제어하는 제1 제어 신호(CTL1), ECC 엔진(400)을 제어하는 제2 제어 신호(CTL2), 스크러빙 제어 회로(500)를 제어하는 제3 제어 신호(CTL3) 및 빅팀 어드레스 검출기(560)를 제어하는 제4 제어 신호(CTL4)를 생성할 수 있다. 제어 로직 회로(210)는 또한 리프레시 주기와 관련된 모드 신호(MS)를 리프레시 제어 회로(245)에 제공할 수 있다. 제어 로직 회로(210)는 반도체 메모리 장치(210)의 동작 온도를 나타내는 온도 신호(미도시)에 기초하여 모드 신호(MS)를 생성할 수 있다.
도 3은 본 발명의 실시예들에 따른 도 2의 반도체 메모리 장치에서 제1 뱅크 어레이를 나타낸다.
도 3을 참조하면, 제1 뱅크 어레이(310)는 복수개의 워드라인들(WL1~WLm, m은 2이상의 정수), 복수개의 비트라인들(BL1~BLn, n은 2이상의 정수), 그리고 워드라인들(WL1~WLm)과 비트라인들(BL1~BLn) 사이의 교차점에 배치되는 복수개의 동적 메모리 셀들(MCs)을 포함한다. 동적 메모리 셀들(MCs) 각각은 워드라인들(WL1~WLm) 각각과 비트라인들(BL1~BLn) 각각에 연결되는 셀 트랜지스터 및 상기 셀 트랜지스터에 연결되는 셀 커패시터를 포함할 수 있다.
도 4는 본 발명의 실시예들에 따른 도 2의 리프레시 제어 회로를 나타내는 블록도이다.
도 4를 참조하면, 리프레시 제어 회로(385)는 리프레시 클럭 생성기(390) 및 리프레시 카운터(397)를 포함할 수 있다.
리프레시 클럭 생성기(390)는 제1 리프레시 제어 신호(IREF1), 제2 리프레시 제어 신호(IREF2) 및 모드 신호(MS)에 기초하여 리프레시 클럭 신호(RCK)를 생성할 수 있다. 여기서 모드 신호(MS)는 리프레시 클럭(RCK)의 주기를 결정하는 신호이다. 상술한 바와 같이, 리프레시 클럭 생성기(390)는 제1 리프레시 제어 신호(IREF1)가 인가될 때마다 또는 제2 리프레시 제어 신호(IREF2)가 활성화되는 동안에 리프레시 클럭 신호(RCK)를 생성할 수 있다.
리프레시 카운터(397)는 리프레시 클럭 신호(RCK)의 주기마다 카운팅 동작을 수행하여 메모리 셀 로우들 각각을 지정하는 리프레쉬 로우 어드레스(REF_ADDR)를 생성할 수 있다.
도 5는 본 발명의 실시예들에 따른 도 4의 리프레시 제어 회로에서 리프레시 클럭 생성기의 일 예를 나타낸다.
도 5를 참조하면, 리프레시 클럭 생성기(390a)는 복수의 발진기들(391, 392, 393), 멀티플렉서(394) 및 디코더(395a)를 포함할 수 있다. 디코더(395a)는 제1 리프레시 제어 신호(IREF1), 제2 리프레시 제어 신호(IREF2) 및 모드 신호(MS)를 디코딩하여 클럭 제어 신호(RCS1)를 출력할 수 있다. 복수의 발진기들(391, 392, 393)은 서로 다른 주기를 가지는 리프레시 클럭 신호들(RCK1, RCK2, RCK3)을 발생한다. 멀티플렉서(394)는 클럭 제어 신호(RCS1)에 응답하여 복수의 리프레시 클럭 신호들(RCK1, RCK2, RCK3) 중에서 어느 하나를 선택하여, 리프레시 클럭 신호(RCK)로서 출력한다.
도 6은 본 발명의 실시예들에 따른 도 4의 리프레시 제어 회로에서 리프레시 클럭 생성기의 일 예를 나타낸다.
도 6을 참조하면, 리프레시 클럭 생성기(390b)는 디코더(395b), 바이어스부(396a) 및 발진기(396b)를 포함할 수 있다. 디코더(395b)는 제1 리프레시 제어 신호(IREF1), 제2 리프레시 제어 신호(IREF2) 및 모드 신호(MS)를 디코딩하여 클럭 제어 신호(RCS2)를 출력할 수 있다. 바이어스부(396a)는 클럭 제어 신호(RCS2)에 응답하여 제어 전압(VCON)을 발생할 수 있다. 발진기(396b)는 제어 전압(VCON)에 따라, 그 주기가 가변되는 리프레시 클럭 신호(RCK)를 발생할 수 있다.
도 7은 메모리 셀들 간의 디스터번스를 설명하기 위한 회로도이다.
도 7을 참조하면, 본 발명의 반도체 메모리 장치는 메모리 셀들(51, 52, 53)과 비트 라인 감지 증폭기(60)를 포함한다.
메모리 셀들(51, 52, 53) 각각은 동일한 비트 라인(BTL)에 연결된 것으로 가정한다. 그리고 메모리 셀(51)은 워드 라인(WL<q-1>)에, 메모리 셀(52)은 워드 라인(WL<q>)에, 그리고 메모리 셀(53)은 워드 라인(WL<q+1>)에 연결된다. 메모리 셀(51)은 액세스 트랜지스터(CT1)와 셀 커패시터(CC1)를 포함한다. 액세스 트랜지스터(CT1)의 게이트 단은 워드 라인(WL<q-1>)에 연결되고, 일단은 비트 라인(BTL)에 연결된다. 메모리 셀(52)은 액세스 트랜지스터(CT2)와 셀 커패시터(CC2)를 포함한다. 액세스 트랜지스터(CT2)의 게이트 단은 워드 라인(WL<q>)에, 일단은 비트 라인(BTL)에 연결된다. 그리고 메모리 셀(53)은 액세스 트랜지스터(CT3)와 셀 커패시터(CC3)를 포함한다. 액세스 트랜지스터(CT3)의 게이트 단은 워드 라인(WL<q+1>)에 연결되고, 일단은 비트 라인(BTL)에 연결된다.
비트 라인 감지 증폭기(60)는 비트 라인들(BTL, BTLB) 중에 저전위 비트 라인을 방전하는 N 감지 증폭기(NSA)와 비트 라인들(BTL, BTLB) 중에 고전위 비트 라인을 충전하는 P 감지 증폭기(PSA)를 포함할 수 있다.
리프레시 동작시에, 비트 라인 감지 증폭기(60)는 N 감지 증폭기(NSA) 또는 P 감지 증폭기(PSA)를 통해서 저장된 데이터를 선택된 메모리 셀에 재기입하게 될 것이다. 기입 동작이나 독출 동작시 워드 라인(WL<q>)에 부스팅 전압(예를 들면, Vpp)이 제공될 것이다. 그러면, 용량성 커플링(Capacitive Coupling) 효과에 의해서 인접한 워드 라인(WL<p-1>, WL<p+1>)의 전압은 선택 전압이 제공되지 않았음에도 상승하게 될 것이다. 이러한 용량성 커플링은 워드 라인들 간의 기생성 용량(Ccl1, Ccl2)으로 도시하였다. 리프레시 동작이 진행되지 않는 기간 동안에 워드 라인(WL<q>)이 반복적으로 액세스되면, 워드 라인(WL<q-1>, WL<q+1>)에 연결된 메모리 셀들(51, 53)의 셀 커패시터들(CC1, CC3)에 저장된 전하는 점점 누설될수 있다. 이 경우, 셀 커패시터(CC1)에 저장된 논리 '0'과 셀 커패시터(CC3)에 저장된 논리 '1'의 신뢰성은 보장되기 어렵다. 따라서, 적절한 시점에 워드 라인(WL<q-1>, WL<q+1>)에 연결된 메모리 셀들에 대한 스크러빙 동작이 필요하다.
도 8은 본 발명의 실시예들에 따른 도 2의 빅팀 어드레스 검출기를 나타낸다.
도 8을 참조하면, 빅팀 어드레스 검출기(560)는 간섭 검출기(570) 및 빅팀 어드레스 생성기(575)를 포함할 수 있다.
간섭 검출기(570)는 로우 어드레스(ROW_ADDR)에 기초하여 상기 제1 메모리 영역(또는 적어도 하나의 메모리 셀 로우)에 대한 액세스 횟수를 카운트하여 정해진 시간 동안에 상기 제1 메모리 영역에 대한 액세스 횟수가 임계값에 도달하면 제1 검출 신호(DET1)를 생성할 수 있다.
빅팀 어드레스 생성기(575)는 제1 검출 신호(DET1)에 응답하여 적어도 하나의 빅팀 어드레스(VCT_ADDR1, VCT_ADDR2)를 생성할 수 있다. 적어도 하나의 빅팀 어드레스(VCT_ADDR1, VCT_ADDR2)는 상기 제1 메모리 영역에 인접한 제2 메모리 영역 및 제3 메모리 영역을 지정하는 로우 어드레스일 수 있다. 빅팀 어드레스 생성기(575)는 빅팀 어드레스(VCT_ADDR1, VCT_ADDR2)들을 스크러빙 제어 회로(500)의 어드레스 저장 테이블에 제공할 수 있다.
도 9는 도 8의 빅팀 어드레스 검출기에서 간섭 검출기의 구성을 나타내는 블록도이다.
도 9를 참조하면, 간섭 검출기(570)는 액세스 카운터(571), 임계값 레지스터(573) 및 비교기(575)를 포함할 수 있다.
액세스 카운터(571)는 로우 어드레스(ROW_ADDR)에 기초하여 특정 어드레스(또는 특정 메모리 영역)에 대한 액세스 횟수를 카운팅할 수 있다. 예를 들면, 액세스 카운터(571)는 특정 워드 라인에 대한 액세스 횟수를 카운트할 수 있다. 액세스 횟수는 특정 워드 라인에 대해, 또는 적어도 2개의 워드 라인들로 구성되는 워드 라인 그룹에 대해 카운트될 수 있다. 뿐만 아니라, 액세스 횟수의 카운트는 특정 블록 단위, 뱅크 단위, 그리고 칩 단위로 수행될 수도 있을 것이다.
임계값 레지스터(573)는 특정 워드 라인이나 메모리 단위에서 데이터의 신뢰성을 보장할 수 있는 최대 간섭 발생 횟수를 저장한다. 예를 들면, 하나의 워드 라인에 대한 임계치가 임계값 레지스터(573)에 저장될 수도 있을 것이다. 또는 하나의 워드 라인 그룹이나, 하나의 블록, 하나의 뱅크 단위, 하나의 칩에 대한 임계값이 임계값 레지스터(573)에 저장될 수 있을 것이다.
비교기(575)는 임계값 레지스터(573)에 저장된 임계값과 액세스 카운트(571)에 의해서 카운트되는 특정 메모리 영역에 대한 액세스 횟수를 비교한다. 만일, 카운트된 액세스 횟수가 임계값에 도달하는 메모리 영역이 존재하는 경우, 비교기(575)는 제1 검출 신호(DET1)를 생성할 수 있다.
도 10은 본 발명의 실시예들에 따른 도 2의 반도체 메모리 장치에서 스크러빙 제어 회로의 구성을 나타내는 블록도이다.
도 10을 참조하면, 스크러빙 제어 회로(500)는 카운터(505), 스크러빙 어드레스 생성기(510) 및 위크 코드워드 어드레스 생성기(520)를 포함할 수 있다.
카운터(505)는 리프레시 로우 어드레스(REF_ADDR)를 카운팅하되, 리프레시 로우 어드레스(REF_ADDR)가 카운팅 제어 신호(CCS)가 지정하는 횟수만큼 카운팅되면, 제1 구간 동안에 활성화되는 내부 스크러빙 신호(ISRB)를 생성한다. 상기 제1 구간은 하나의 메모리 셀 로우를 리프레시하는데 필요한 시간에 해당할 수 있다.
스크러빙 어드레스 생성기(510)는 내부 스크러빙 신호(ISRB) 및 스크러빙 모드 신호(SMS)에 응답하여, 제1 스크러빙 모드에서, 메모리 셀 로우들 각각에 포함되는 코드워드들에 대한 노멀 스크러빙 동작과 관련된, 순차적으로 변화하는 노멀 스크러빙 어드레스(SCADDR)를 생성할 수 있다.
노멀 스크러빙 어드레스(SCADDR)는 스크러빙 로우 어드레스(SRA)와 스크러빙 칼럼 어드레스(SCA)를 포함할 수 있다. 스크러빙 로우 어드레스(SRA)는 제1 뱅크 어레이(310)의 하나의 페이지를 지정할 수 있고, 스크러빙 칼럼 어드레스(SCA)는 상기 하나의 페이지들에 포함되는 코드워드들 중 하나를 지정할 수 있다. 스크러빙 어드레스 생성기(510)는 스크러빙 로우 어드레스(SRA)는 대응되는 로우 디코더에 제공하고, 스크러빙 칼럼 어드레스(SCA)는 대응되는 칼럼 디코더에 제공할 수 있다.
노멀 스크러빙 어드레스(SCADDR)에 기초하여 수행되는 스크러빙 동작은 메모리 셀 어레이(300)에 포함되는 모든 코드워드들에 대하여 순차적으로 수행되므로, 노멀 스크러빙 동작이라 호칭될 수 있다.
위크 코드워드 어드레스 생성기(520)는 내부 스크러빙 신호(ISRB) 및 스크러빙 모드 신호(SMS)에 응답하여, 제2 스크러빙 모드에서, 제1 뱅크 어레이(310)의 위크 코드워드들에 대한 스크러빙 동작에 관련된 위크 코드워드 어드레스(WCADDR)를 생성할 수 있다. 위크 코드워드 어드레스(WCADDR)는 위크 코드워드 로우 어드레스(WCRA)와 위크 코드워드 칼럼 어드레스(WCCA)를 포함할 수 있다. 스크러빙 모드 신호(SMS)는 제1 로직 레벨일 경우, 제1 스크러빙 모드를 나타낼 수 있고, 제2 로직 레벨일 경우, 제2 스크러빙 모드를 나타낼 수 있다. 스크러빙 모드 신호(SMS)는 제3 제어 신호(CTL3)에 포함될 수 있다. 위크 코드워드 어드레스 생성기(520)는 위크 코드워드 로우 어드레스(WCRA)는 대응되는 로우 디코더에 제공하고, 위크 코드워드 칼럼 어드레스(WCCA)는 대응되는 제1 칼럼 디코더에 제공할 수 있다.
위크 코드워드 어드레스 생성기(520)는 내부에 어드레스 저장 테이블을 포함하여 빅팀 어드레스(VCT_ADDR) 및 에러 어드레스(EADDR)에 관련된 코드워드들의 어드레스들을 저장할 수 있다.
위크 코드워드 어드레스(WCADDR)에 기초하여 수행되는 스크러빙 동작은 위크 코드워드들에 대하여 수행되므로 타겟 스크러빙 동작이라 호칭될 수 있다.
도 11은 본 발명의 실시예들에 따른 도 10의 스크러빙 제어 회로에서 스크러빙 어드레스 생성기의 구성을 나타내는 블록도이다.
도 11을 참조하면, 스크러빙 어드레스 생성기(510)는 페이지 세그먼트 카운터(511) 및 로우 카운터(513)를 포함할 수 있다.
페이지 세그먼트 카운터(511)는 내부 스크러빙 신호(ISRB) 및 스크러빙 모드 신호(SMS)에 응답하여, 제1 스크러빙 모드에서, 내부 스크러빙 신호(ISRB)가 활성화되는 동안에 스크러빙 칼럼 어드레스(SCA)를 하나씩 증가시키고, 스크러빙 칼럼 어드레스(SCA)가 최대값에 도달할 때마다 최대 어드레스 검출 신호(MADT)를 활성화시켜 로우 카운터(513)에 제공하면서 리셋될 수 있다.
로우 카운터(513)는 내부 스크러빙 신호(ISRB) 및 스크러빙 모드 신호(SMS)에 응답하여 내부 스크러빙 신호(ISRB)가 최초로 인가될 때 카운팅 동작을 시작하고, 활성화된 최대 어드레스 검출 신호(MADT)가 인가될 때마다 스크러빙 로우 어드레스(SRA)를 하나씩 증가시킬 수 있다. 따라서, 내부 스크러빙 신호(ISRB)는 하나의 메모리 셀 로우에 대한 리프레쉬 동작이 수행되는 제1 구간 동안에 활성화되므로, 페이지 세그먼트 카운터(511)는 상기 제1 구간 동안에 하나의 페이지의 복수의 코드워드들에 해당하는 스크러빙 칼럼 어드레스(SCA)를 생성할 수 있다.
도 12는 본 발명의 실시예들에 따른 도 10의 스크러빙 제어 회로에서 위크 코드워드 어드레스 생성기를 나타낸다.
도 12를 참조하면, 위크 코드워드 생성기(520)는 테이블 포인터(521), 어드레스 저장 테이블(530) 및 센싱부(540)를 포함할 수 있다.
어드레스 저장 테이블(530)은 메모리 셀 어레이(300)에 포함되는 코드워들 중 위크 코드워드들 각각의 어드레스 정보들(WCRA1~WCRAs, WCCA1~WCCAt, t는 s보다 큰 자연수)을 저장할 수 있다.
위크 코드워드들은 메모리 셀 어레이의 뱅크 어레이의 페이지들 중 에러 비트의 수가 기준 값 이상이 되는 위크 페이지의 코드워드들의 전체 또는 일부일 수 있다. 또한 위크 코드워드들은 집중 액세스되는 메모리 영역의 이웃 페이지의 코드워드들일 수 있다. 또한 위크 코드워드들은 반도체 메모리 장치(200)의 테스트 시에 에러 비트들이 다른 페이지보다 많이 발생한 페이지의 코드워드들의 전체 또는 일부일 수 있다.
테이블 포인터(521)는 내부 스크러빙 신호(ISRB) 및 스크러빙 모드 신호(SMS)에 응답하여 제2 스크러빙 모드에서 내부 스크러빙 신호(ISRB)가 활성화되는 제1 구간 동안 어드레스 저장 테이블(530)의 위치 정보를 제공하는 포인터 신호(TPS)를 생성하고, 포인터 신호(TPS)를 어드레스 저장 테이블(530)에 제공할 수 있다. 어드레스 저장 테이블(530)은 비휘발성 스토리지로 구성될 수 있다. 도 8의 빅팀 어드레스 생성기(575)가 제공하는 적어도 하나의 빅팀 어드레스(VCT_ADDR1, VCT_ADDR2)가 어드레스 저장 테이블(530)에 저장될 수 있다.
포인터 신호(TPS)는 내부 스크러빙 신호(ISRB)가 활성화되는 제1 구간 동안에 정해진 횟수만큼 순차적으로 증가될 수 있고, 어드레스 저장 테이블(530)은 포인터 신호(TPS)가 인가될 때마다 상응하는 위치에 저장된 위크 코드워드의 어드레스를 위크 코드워드 로우 어드레스(WCRA)와 위크 코드워드 칼럼 어드레스(WCCA)로서 센싱부(540)를 통하여 출력할 수 있다. 위크 코드워드 로우 어드레스(WCRA)는 상응하는 로우 디코더에 제공되고, 위크 코드워드 칼럼 어드레스(WCCA)는 상응하는 칼럼 디코더에 제공될 수 있다.
상술한 바와 같이, 제어 로직 회로(210)는 에러 발생 신호(EGS)에 기초하여 에러 어드레스(EADDR)를 스크러빙 제어 회로(500)에 제공할 수 있다. 예를 들어, 특정 메모리 셀 로우에 대하여 K 번의 스크러빙 동작을 수행하였는데, 상기 메모리 셀 로우에 대한 독출 동작에서 여전히 에러 비트가 검출되는 경우에 상기 메모리 셀 로우는 영속성 결함(permanent fault)을 가진다고 판단된다. 이러한 영속성 결함을 가지는 메모리 셀 로우를 교체하지 않으면 에러 비트가 누적될 수 있다. 따라서 제어 로직 회로(210) 또는 메모리 컨트롤러(100)는 상기 영속성 결함을 가지는 메모리 셀 로우를 리페어를 통하여 리던던시 메모리 셀 로우로 교체할 수 있다.
또한 제어 로직 회로(210)는 상기 스크러빙 동작에서 검출되는 메모리 셀 로우당 에러 비트들의 수에 기초하여 일부 메모리 셀 로우들에 대하여 다른 리프레쉬 주기를 적용시킬 수도 있다.
도 13은 기입 동작에서 도 2의 반도체 메모리 장치의 일부를 나타낸다.
도 13에서는 제어 로직 회로(210), 제1 뱅크 어레이(310), 입출력 게이팅 회로(290) 및 ECC 엔진(400)이 도시되어 있다.
도 13을 참조하면, 제1 뱅크 어레이(310)는 노멀 셀 어레이(NCA) 및 리던던시 셀 어레이(RCA)를 포함할 수 있다. 노멀 셀 어레이(NCA)는 복수의 제1 메모리 블록들(MB0~MB15, 311, 312, 313)을 포함할 수 있고, 리던던시 셀 어레이(RCA)는 적어도 하나의 제2 메모리 블록(314)을 포함할 수 있다. 제1 메모리 블록들(311, 312, 313)은 반도체 메모리 장치(200)의 메모리 용량을 결정하는 블록이다. 제2 메모리 블록(314)은 ECC 용 및/또는 리던던시 리페어 용 블록이다. 제2 메모리 블록(314)은 제1 메모리 블록들(311, 312, 313)에서 발생하는 불량 셀을 구제하기 위하여 ECC 용, 데이터 라인 리페어 용(data line repair) 및 블록 리페어용(block repair) 것으로 EDB 블록이라 칭할 수 도 있다. 제1 메모리 블록들(311, 312, 313) 각각은 행들 및 열들로 배열되는 복수의 제1 메모리 셀들을 포함하고, 제2 메모리 블록(314)도 행들 및 열들로 배열되는 복수의 제2 메모리 셀들을 포함한다.
입출력 게이팅 회로(290)는 제1 메모리 블록들(311, 312, 313) 및 제2 메모리 블록(294)과 각각 연결되는 복수의 스위칭 회로들(291a~291d)을 포함할 수 있다. 반도체 메모리 장치(200)에서 비트라인들은 액세스할 수 있는 칼럼 로케이션의 최대 수를 나타내는 버스트 길이(burst length, BL)를 지원하기 위하여 버스트 길이에 해당하는 비트라인들이 동시에 액세스될 수 있다. 반도체 메모리 장치(200)는 예시적으로 버스트 길이가 8로 설정될 수 있다.
ECC 엔진(400)은 스위칭 회로들(291a~291d)과 상응하는 제1 데이터 라인들(GIO[0:127]) 및 제2 데이터 라인들(EDBIO[0:7]) 각각을 통하여 연결될 수 있다. 제어 로직 회로(210)는 어드레스(ADDR) 및 커맨드(CMD)를 디코딩하여 스위칭 회로들(291a~291d)을 제어하는 제1 제어 신호(CTL1)를 입출력 게이팅 회로(290a)에 제공하고, 제2 제어 신호(CTL2)를 제2 ECC 엔진(400)에 제공할 수 있다.
커맨드(CMD)가 기입 커맨드인 경우, 제어 로직 회로(210)는 제2 제어 신호(CTL2)를 ECC 엔진(400)에 인가하고, ECC 엔진(400)은 제2 제어 신호(CTL2)에 응답하여 메인 데이터(MD)에 대하여 ECC 인코딩을 수행하여 패리티 비트들을 생성하고, 메인 데이터(MD)와 패리티 비트들을 포함하는 코드워드(CW)를 입출력 게이팅 회로(290)에 제공할 수 있다. 제어 로직 회로(210)는 제1 제어 신호(CTL1)를 입출력 게이팅 회로(290)에 인가하여 제1 뱅크 어레이(310)의 하나의 서브 페이지에 코드워드(CW)가 저장되도록 할 수 있다.
도 14는 독출 동작 또는 리프레시 동작에서 도 2의 반도체 메모리 장치의 일부를 나타낸다.
도 14를 참조하면, 커맨드(CMD)가 리프레시 동작을 지시하는 리프레시 커맨드(제1 커맨드)이거나 독출 동작을 지시하는 독출 커맨드(제2 커맨드)인 경우, 제어 로직 회로(210)는 제1 제어 신호(CTL1)를 입출력 게이팅 회로(290)에 인가하여 제1 뱅크 어레이(310)의 타겟 페이지의 서브 페이지에 저장된 코드워드(RCW)가 ECC 엔진(400)에 제공되도록 할 수 있다.
독출 동작의 경우, ECC 엔진(400)은 코드워드(RCW)에 ECC 디코딩을 수행하고, 코드워드(RCW)가 에러 비트를 포함하는 경우, 에러 발생 신호(EGS)을 제어 로직 회로(210)에 제공하다. 제어 로직 회로(210)는 코드워드(RCW)의 어드레스를 에러 어드레스로서 위크 어드레스 테이블(560)에 저장할 수 있다. 위크 어드레스(WEAK_ADDR)가 지정하는 위크 페이지에 대한 리프레시 동작의 경우 ECC 엔진(400)은 코드워드(RCW)에 ECC 디코딩을 수행하고, 코드워드(RCW)가 에러 비트를 포함하는 경우, 에러 비트를 정정하고, 정정된 메인 데이터를 서브 페이지에 재기입하는 스크러빙 동작을 수행한다. 상기 스크러빙 동작을 수행하면서 에러 비트가 검출되는 경우, ECC 엔진(400)은 에러 비트가 검출될 때마다 에러 발생 신호(EGS)를 제어 로직 회로(210)에 제공할 수 있고, 제어 로직 회로(210)는 하나의 페이지에 대한 에러 발생 신호(EGS)를 카운팅하고, 상기 카운팅 값이 기준값을 초과하는 경우, 상기 하나의 페이지의 어드레스를 에러 어드레스(EADDR)로서 위크 어드레스 테이블(560)에 저장할 수 있다. 상기 스크러빙 동작은 메모리 셀 로우들에 대한 N 번의 리프레쉬 동작들이 수행될 때마다 선택된 메모리 셀 로우의 일부 코드워드들에 대하여 수행될 수 있다.
상기 커맨드(CMD)가 독출 커맨드인 경우, ECC 엔진(400)은 정정된 메인 데이터(C_MD)를 데이터 입출력 버퍼(295)에 제공할 수 있다.
도 15는 본 발명의 실시예들에 따른 도 2의 반도체 메모리 장치에서 ECC 엔진의 구성을 나타내는 블록도이다.
도 15를 참조하면, ECC 엔진(400)은 ECC 인코더(410) 및 ECC 디코더(430)를 포함할 수 있다.
ECC 인코더(410)는 제1 뱅크 어레이(310)의 노멀 셀 어레이(NCA)에 저장될 기입 데이터(WMD)와 관련된 패리티 비트들(PRT)를 생성할 수 있다. 패리티 비트들(PRT)은 제1 뱅크 어레이(310)의 리던던시 셀 어레이(RCA)에 저장될 수 있다.
ECC 디코더(430)는 제1 뱅크 어레이(310)로부터 독출된 독출 데이터(RMD)와 패리티 비트들(PRT)을 이용하여 독출 데이터(RMD)에 대하여 ECC 디코딩을 수행할 수 있다. ECC 디코딩의 수행 결과, 독출 데이터(RMD)가 적어도 하나의 에러 비트를 포함하는 경우, ECC 디코더(430)는 에러 발생 신호(EGS)를 제어 로직 회로(210)에 제공하고, 독출 데이터(RMD)의 에러 비트를 정정하여 정정된 메인 데이터(C_MD)를 출력할 수 있다.
도 16은 본 발명의 실시예들에 따른 도 15의 ECC 인코더를 나타낸다.
도 16을 참조하면, ECC 인코더(410)는 패리티 생성기(420)를 포함할 수 있다. 패리티 생성기(420)는 128 비트의 기입 데이터(WMD)와 8 비트의 베이시트 비트(BB)를 수신하고, XOR 어레이 연산을 이용하여 8 비트의 패리티 비트들(PRT)를 생성할 수 있다. 베이시트 비트(BB)는 128 비트의 기입 데이터(WMD)에 대한 패리티 비트들(PRT)을 발생시키기 위한 비트로서 예를 들어, b'0000000 비트들로 구성될 수 있다. 베이시트 비트(BB)는 b'0000000 비트들 대신에 다른 특정 비트들을 이용할 수 있다.
도 17은 본 발명의 실시예들에 따른 도 15의 ECC 디코더를 나타낸다.
도 17를 참조하면, ECC 디코더(430)는 신드롬 생성 회로(440), XOR 게이트(451), 에러 로케이터(460) 및 데이터 정정기(470)를 포함할 수 있다. 신드롬 생성 회로(440)는 체크 비트 생성기(441) 및 신드롬 생성기(443)를 포함할 수 있다.
체크 비트 생성기(441)는 XOR 어레이 연산을 이용하여 독출 데이터(RMD)에 기초하여 체크 비트들(CHB)을 생성하고, 신드롬 생성기(443)는 패리티 비트들(PRT)과 체크 비트들(CHB)의 상승하는 비트들을 비교하여 신드롬(SDR)을 생성한다.
에러 로케이터(460)는 신드롬(SDR)의 비트들이 모두 제로가 아닌 경우, 신드롬(SDR)을 디코딩하여 독출 데이터(RMD)에 포함되는 에러 비트의 위치를 나타내는 에러 위치 신호(EPS)를 데이터 정정기(470)에 제공한다. 에러 로케이터(460)는 또한 독출 데이터(RMD)에 에러 비트가 포함되는 경우, 에러 발생 신호(EGS)를 제어 로직 회로(210)에 제공한다.
데이터 정정기(470)는 독출 데이터(RMD)를 수신하고, 독출 데이터(RMD)에 에러 비트가 포함되는 경우, 에러 위치 신호(EPS)에 기초하여 독출 데이터(RMD)의 에러 비트를 정정하여 정정된 메인 데이터(C_MD)를 출력한다.
도 18은 본 발명의 실시예들에 따른 도 17의 ECC 디코더의 동작을 나타낸다.
도 17 및 도 18을 참조하면, 리프레시 커맨드에 응답하는 스크러빙 동작에서, 코드워드(CW)는 적어도 하나의 에러 비트(EB1)를 포함한다. 제1 페이지로부터 코드워드(CW)가 독출되어 ECC 엔진(400)에 제공된다(591). ECC 엔진(400)은 ECC 디코딩을 수행하여 에러 비트를 정정하고(592), 정정된 메인 데이터(C_MD)를 제1 페이지의 서브 페이지에 재기입한다(593).
도 19는 도 2의 반도체 메모리 장치에서 노멀 리프레시 동작과 스크러빙 동작이 수행되는 예를 나타낸다.
도 19에서 tRFC는 리프레시 사이클을 의미하며 하나의 로우를 리프레시하는데 소요되는 시간을 나타내고, tREFI는 리프레시 인터벌을 나타내며 리프레시 커맨드가 인가되는 간격을 나타낸다. 도 19를 참조하면, 리프레시 커맨드에 응답하여 노멀 리프레시 동작(NREF)이 N 번(N은 2이상의 자연수) 수행될 때마다 스크러빙 제어 회로(500)는 스크러빙 동작(SCRB)을 수행할 메모리 셀 로우를 S번(S는 자연수) 지정하는 것을 알 수 있다.
도 20은 도 2의 반도체 메모리 장치에서 리프레시 동작과 스크러빙 동작이 수행되는 예를 나타낸다.
도 20을 참조하면, 리프레시 커맨드에 응답하여 노멀 리프레시 동작(NREF)이 N 번(N은 2 이상의 자연수) 수행될 때마다, 빅팀 어드레스(VCT_ADDR)에 해당하는 이웃 메모리 영역에 대한 리프레시 동작(FREF)이 L 번(L은 N 보다 작은 자연수) 수행되고, 스크러빙 제어 회로(500)는 스크러빙 동작(SCRB)이 지정될 메모리 셀 로우를 S 번(S는 L 보다 작은 자연수) 수행되는 것을 알 수 있다.
도 21은 도 19 또는 도 20에서 스크러빙 동작의 타이밍을 나타낸다.
도 21을 참조하면, 하나의 메모리 셀 로우에 대한 리프레쉬 동작이 수행되는 구간(tRFC) 동안, 내부 스크러빙 신호(ISRB)는 하이 레벨로 활성화된다. 리프레쉬 커맨드가 인가되고, 마진(MG)이 지난 후에 스크러빙 로우 어드레스가 지정하는 메모리 셀 로우에 연결되는 워드라인(WL)이 활성화된다. 워드라인(WL)이 활성화되고, 라스-투-카스 지연 시간(tRCD) 후에 스크러빙 로우 어드레스가 지정하는 메모리 셀 로우의 M 개의 코드워드들에 대한 스크러빙 동작(SCRB_OP)이 순차적으로 수행된다. 하나의 코드워드에 대한 스크러빙 동작은 시간(tCCDscrb) 동안 수행된다. 정정된 코드워드들은 기입 시간(tWR) 동안 해당 메모리 영역들에 재기입되고, 코드워드들의 재기입 후, 워드라인(WL)은 비활성화된다. 워드라인(WL)이 비활성화 된 후, 로우 프리차지 타임(tRP) 후에, 내부 스크러빙 신호(ISRB)는 로우 레벨로 비활성화된다.
따라서 하나의 메모리 셀 로우에 대한 리프레쉬 동작이 수행되는 동안에 다른 메모리 셀 로우의 적어도 하나의 코드워드들에 대한 스크러빙 동작이 순차적으로 수행됨을 알 수 있다.
도 22는 본 발명의 실시예들에 따른 반도체 메모리 장치를 보여주는 예시적인 블록도이다.
도 22를 참조하면, 반도체 메모리 장치(600)는, 스택드 칩 구조에서 소프트 데이터 페일의 분석 및 구제 기능을 제공하기 위해 제1 그룹 다이(610)와 제2 그룹 다이(620)를 포함할 수 있다.
상기 제1 그룹 다이(610)는 적어도 하나의 버퍼 다이(Buffer Die)로 이루어질 수 있다. 상기 제2 그룹 다이(620)는 상기 제1 그룹 다이(610)의 상부에 적층되고 복수의 쓰루 실리콘 비아(이하 TSV) 라인들을 통해 데이터를 통신하는 복수의 메모리 다이들(620-1,620-2,...,620-p)을 포함할 수 있다.
상기 복수의 메모리 다이들(620-1,620-2,...,620-p) 중 적어도 하나는 제1 그룹 다이(610)로 전송되는 전송 데이터를 이용하여 전송 패리티 비트들을 생성하는 제1 타입 ECC 엔진(622), 리프레시 제어 회로(624) 및 스크러빙 제어 회로(623)를 포함할 수 있다. 여기서, 제1 타입 ECC 엔진(622)은 메모리 다이에 설치되는 회로이므로 셀 코어 ECC 엔진으로 칭해질 수 있다. 제1 타입 ECC 엔진(622)는 도 15의 ECC 엔진(400)을 채용할 수 있다. 리프레시 제어 회로(624)는 도 4의 리프레시 제어 회로(385)를 채용할 수 있다. 스크러빙 제어 회로(623)는 도 10의 스크러빙 제어 회로(500)를 채용할 수 있다. 제1 타입 ECC 엔진(622)과 스크러빙 제어 회로(623)는 메모리 다이에 포함되는 메모리 셀 로우들에 대한 리프레시 동작 시에 스크러빙 동작을 수행하여 에러 비트를 정정함으로써 에러 비트가 누적되는 것을 방지할 수 있다.
버퍼 다이(610)는 상기 복수의 TSV 라인들을 통해 수신되는 전송 데이터에 전송 에러가 발생된 경우에 전송 패리티 비트들을 이용하여 전송 에러를 정정함에 의해 에러 정정된 데이터를 생성하는 제2 타입 ECC 엔진(612)을 포함할 수 있다. 여기서, 제2 타입 ECC 엔진(612)은 전송로의 페일을 정정하기 위한 회로이므로 비아 ECC 엔진으로 칭해질 수 있다.
반도체 메모리 장치(600)는 상기 TSV 라인들을 통해 상기 데이터 및 제어 신호들을 통신하는 스택 칩 타입 메모리 장치 혹은 스택드 메모리 장치일 수 있다. 상기 TSV 라인들은 실리콘 관통 전극들로도 칭해질 수 있다.
제1 타입 ECC 엔진(622)은 전송 데이터가 전송되기 이전에 메모리 다이(620-p)로부터 출력되는 데이터에 대한 에러 정정도 수행할 수 있다.
전송 데이터에 발생된 전송 에러는 상기 TSV 라인들에서 발생되는 노이즈에 기인하여 생성될 수 있다. 상기 TSV 라인들에서 발생되는 노이즈에 기인하여 생성되는 데이터 페일은 메모리 다이 자체에 기인하여 발생되는 데이터 페일과는 구별되는 것이므로 소프트 데이터 페일일 수 있다. 이러한 소프트 데이터 페일은 전송로 전송 페일에 의해 발생된 것이므로 ECC 동작 구현에 의해 검출 및 구제될 수 있다.
전송 데이터가 128비트인 경우에 상기 전송 패리티 비트들은 8비트로 설정될 수 있다. 실시예들에 따라서, 설정되는 비트수는 가변될 수 있다.
따라서, 하나의 메모리 다이(620-p)에 형성되는 데이터 TSV 라인 그룹(632)은 64개의 TSV 라인들(L1~Lp)로 구성될 수 있고, 패리티 TSV 라인 그룹(634)은 8개의 TSV 라인들(L10~Lq)로 구성될 수 있다. 데이터 TSV 라인 그룹(632)의 TSV 라인들라인들(L1~Lp)과 패리티 TSV 라인 그룹(634)의 TSV 라인들(L10~Lq)은 복수의 메모리 다이들(620-1~620-p)의 사이에 대응적으로 형성된 마이크로 범프(MCB)들에 연결될 수 있다.
복수의 메모리 다이들(620-1~620-p) 중 적어도 하나는 하나의 액세스 트랜지스터와 하나의 스토리지 커패시터로 이루어진 DRAM 셀들을 가질 수 있다.
반도체 메모리 장치(600)는 데이터 버스(B10)를 통해 외부의 메모리 컨트롤러와 통신하기 위해 3D 칩 구조 또는 2.5D 칩 구조를 가질 수 있다. 상기 버퍼 다이(610)는 데이터 버스(B10)를 통해 메모리 컨트롤러 연결될 수 있다.
셀 코어 ECC 엔진인 제1 타입 ECC 엔진(622)는 데이터 TSV 라인 그룹(632)을 통해 전송 데이터를 출력한다. 또한, 제1 타입 ECC 엔진(622)는 패리티 TSV 라인 그룹(634)을 통해 전송 패리티 비트들을 출력한다. 상기 출력되는 전송 데이터는 제1 타입 ECC 엔진(632)에 의해 에러 정정된 데이터일 수 있다.
비아 ECC 엔진인 제2 타입 ECC 엔진(612)는 데이터 TSV 라인 그룹(632)을 통해 수신되는 전송 데이터에 전송 에러가 발생되었는 지의 여부를 패리티 TSV 라인 그룹(634)을 통해 수신되는 전송 패리티 비트들을 이용하여 체크한다. 전송 에러가 발생되는 경우에 제2 타입 ECC 엔진(612)는 전송 패리티 비트들을 이용하여 전송 데이터에 대한 전송 에러를 정정한다. 전송 에러의 비트 수가 정정 불가한 경우에 상기 제2 타입 ECC 엔진(112)는 데이터 에러 발생을 알리는 정보를 출력할 수 있다.
고대역폭 메모리(high bandwidth memory; HBM) 이나 스택드 칩 구조에서 독출되는 데이터에 에러가 발생된 경우에 메모리 다이의 자체에서 발생된 에러인지 쓰루 실리콘 비아를 통해 데이터가 전송될 시에 노이즈에 기인하여 발생된 전송 에러인지가 불량 유형의 분석을 위해 구별되어야 한다.
본 발명의 실시예들에서는 도 22에서와 같이 메모리 다이에는 셀 코어 ECC 엔진을 설치하고, 버퍼 다이에는 비아 ECC 엔진을 설치함으로써 소프트 데이터 페일의 검출 및 정정을 검증할 수 있다. 소프트 데이터 페일은 쓰루 실리콘 비아 라인들을 통해 데이터가 전송될 시에 노이즈에 기인하여 발생된 전송 에러를 포함할 수 있다.
도 23은 본 발명의 실시예들에 따른 반도체 메모리 장치의 동작 방법을 나타내는 플로우 챠트이다.
도 2 내지 도 23을 참조하면, 각각이 복수의 동적 메모리 셀들을 포함하는 복수의 메모리 셀 로우들을 구비하는 메모리 셀 어레이(300)를 구비하는 반도체 메모리 장치(200)의 동작 방법에서는, 메모리 컨트롤러(100)로부터의 제1 커맨드에 응답하여 제1 내부 어드레스들을 순차적으로 생성한다(S110). 여기서 제1 커맨드는 리프레시 커맨드일 수 있고, 제1 내부 어드레스들은 리프레시 제어 회로(385)에서 생성되는 리프레쉬 로우 어드레스(REF_ADDR)일 수 있다.
상기 제1 내부 어드레스들에 기초하여 상기 메모리 셀 로우들에 대하여 로우 동작을 순차적으로 수행한다(S120). 여기서 상기 메모리 셀 로우들에 대한 로우 동작은 리프레시 동작일 수 있다. 상기 메모리 셀 로우들에 대하여 상기 로우 동작이 N(N은 2 이상의 자연수)번 수행될 때마다, 반도체 메모리 장치(200) 내부에서 생성된 제2 내부 어드레스에 상응하는 메모리 셀 로우를 선택하고, 상기 선택된 메모리 셀 로우에 대하여 M(M은 자연수)번의 칼럼 동작을 수행한다(S130). 여기서 제2 내부 어드레스는 스크러빙 제어 회로(500)에서 생성되는 스크러빙 어드레스이고, M 번의 칼럼 동작은 M 개의 코드워드들에 대한 스크러빙 동작일 수 있다.
도 24는 본 발명의 실시예들에 따른 도 의 반도체 메모리 장치가 3D 칩 구조에 적용되는 예를 나타내는 블록도이다.
도 24는 인터포저 층의 개재 없이 호스트와 HBM을 직접 적으로 연결한 3D 칩 구조(700)를 나타낸다.
도 24를 참조하면, PCB(720)의 상부에는 플립 칩 범프(FB)들을 통해 SoC, CPG, 혹은 GPU 일 수 있는 호스트 다이(710)가 배치된다. 상기 호스트 다이(710)의 상부에는 제2 그룹 다이(620)와 같은 HBM 구조를 형성하기 위한 메모리 다이들(D11~D14)이 적층된다.
도 24에서는 도 22의 버퍼 다이(610) 혹은 로직 다이가 생략되어 있으나, 버퍼 다이(610)는 메모리 다이(D11)와 호스트 다이(710) 사이에 배치될 수 있다. HBM 구조를 구현하기 위해 메모리 다이들(D11~D14)에는 실리콘 관통 전극이라 불려지는 TSV 라인들이 형성된다. TSV 라인들은 메모리 다이들 사이에 형성된 마이크로 범프(MCB)들과 전기적으로 연결될 수 있다.
상술한 바와 같이, 본 발명의 실시예들에서는 반도체 메모리 장치가 ECC 엔진과 스크러빙 제어 회로를 포함하고, 복수의 메모리 셀 로우들에 대한 리프레시 동작이 N 번 수행될 때마다, 스크러빙 제어 회로에서 제공되는 스크러빙 어드레스에 해당하는 메모리 셀 로우의 복수의 코드워드들에 대하여 스크러빙 동작을 수행한다. 스크러빙 동작에서는 코드워드의 에러를 정정하여 상응하는 메모리 위치에 재기입한다. 따라서 반도체 메모리 장치에서 에러 비트가 누적되는 것을 방지하여 반도체 메모리 장치의 성능 및 신뢰성을 향상시킬 수 있다.
본 발명은 복수의 동적 메모리 셀들과 ECC 엔진을 채용하는 반도체 메모리 장치를 사용하는 다양한 시스템에 적용될 수 있다. 즉 본 발명은 스마트 폰, 내비게이션 시스템, 노트북 컴퓨터, 데스크 탑 컴퓨터, 게임 콘솔 등과 같은 반도체 메모리 장치를 동작 메모리로 사용하는 다양한 시스템에 적용될 수 있다.
상술한 바와 같이, 본 발명의 실시예들을 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 것이다.

Claims (20)

  1. 각각이 복수의 동적 메모리 셀들을 포함하는 복수의 메모리 셀 로우들을 구비하는 메모리 셀 어레이;
    에러 정정 코드(error correction code; 이하 'ECC') 엔진;
    외부의 메모리 컨트롤러로부터의 제1 커맨드에 응답하여 상기 메모리 셀 로우들을 리프레시하기 위한 리프레시 로우 어드레스들을 생성하는 리프레시 제어 회로;
    상기 리프레시 로우 어드레스들을 카운팅하고, 상기 리프레시 로우 어드레스들이 N (N은 2 이상의 자연수)번 카운팅될 때마다, 상기 메모리 셀 로우들 중 선택된 메모리 셀 로우에 대한 스크러빙 동작을 수행하기 위한 스크러빙 어드레스를 생성하는 스크러빙 제어 회로; 및
    상기 메모리 컨트롤러로부터의 액세스 어드레스 및 커맨드에 응답하여 상기 ECC 엔진 및 상기 스크러빙 제어 회로를 제어하는 제어 로직 회로를 포함하고,
    상기 제어 로직 회로는 상기 선택된 메모리 셀 로우의 적어도 하나의 서브 페이지로부터 제1 코드워드에 해당하는 데이터를 독출하고, 상기 제1 코드워드의 적어도 하나의 에러 비트를 정정하고, 상기 정정된 제1 코드워드를 상기 적어도 하나의 서브 페이지가 저장된 메모리 위치에 재기입하도록 상기 ECC 엔진을 제어하는 반도체 메모리 장치.
  2. 제1항에 있어서,
    상기 제1 커맨드는 리프레시 커맨드인 반도체 메모리 장치.
  3. 제1항에 있어서,
    상기 스크러빙 제어 회로는 상기 복수의 메모리 셀 로우들 중 하나에 대한 리프레시 동작이 수행되는 동안에, 상기 선택된 메모리 셀 로우에 포함되는 M(M은 자연수) 개의 코드워드들에 대한 스크러빙 어드레스를 순차적으로 생성하는 반도체 메모리 장치.
  4. 제1항에 있어서, 상기 스크러빙 제어 회로는
    상기 리프레시 로우 어드레스들을 카운팅하고, 상기 리프레시 로우 어드레스들이 M번 카운팅될 때마다 활성화되는 내부 스크러빙 신호를 생성하는 카운터;
    상기 내부 스크러빙 신호와 스크러빙 모드 신호에 응답하여 제1 스크러빙 모드에서, 상기 선택된 메모리 셀 로우의 노멀 스크러빙 동작과 관련된, 노멀 스크러빙 어드레스를 생성하는 스크러빙 어드레스 생성기; 및
    상기 내부 스크러빙 신호와 상기 스크러빙 모드 신호에 응답하여 제2 스크러빙 모드에서 상기 선택된 메모리 셀 로우의 위크 코드워들과 관련된 위크 코드워드 어드레스를 생성하는 위크 코드워드 어드레스 생성기를 포함하는 반도체 메모리 장치.
  5. 제4항에 있어서,
    상기 노멀 스크러빙 어드레스는 하나의 메모리 셀 로우를 지정하는 스크러빙 로우 어드레스와 상기 하나의 메모리 셀 로우에 포함된 코드워드들 중 하나를 지정하는 스크러빙 칼럼 어드레스를 포함하고,
    상기 스크러빙 어드레스 생성기는,
    상기 제1 스크러빙 모드에서, 상기 내부 스크러빙 신호가 활성화되는 동안에 상기 스크러빙 칼럼 어드레스를 하나씩 증가시키는 페이지 세그먼트 카운터; 및
    상기 스크러빙 칼럼 어드레스가 최대값에 도달할 때마다 상기 스크러빙 로우 어드레스를 하나씩 증가시키는 로우 카운터를 포함하는 반도체 메모리 장치.
  6. 제4항에 있어서, 상기 위크 코드워드 어드레스 생성기는,
    상기 위크 코드워드들 각각의 어드레스 정보를 저장하는 어드레스 저장 테이블; 및
    상기 내부 스크러빙 신호에 응답하여 상기 어드레스 저장 테이블의 위치 정보를 제공하는 포인터 신호를 생성하는 테이블 포인터를 포함하는 반도체 메모리 장치.
  7. 제6항에 있어서,
    상기 어드레스 저장 테이블은, 상기 제2 스크러빙 모드에서, 상기 내부 스크러빙 신호에 응답하여 상기 포인터 신호가 인가될 때마다 상응하는 위치에 저장된 위크 코드워드의 로우 어드레스와 칼럼 어드레스를 위크 코드워드 로우 어드레스와 위크 코드워드 칼럼 어드레스로서 출력하는 반도체 메모리 장치.
  8. 제1항에 있어서,
    상기 제어 로직 회로는 상기 메모리 컨트롤러로부터의 제2 커맨드에 응답하여 상기 액세스 어드레스가 지정하는 메모리 셀 로우의 적어도 하나의 서브 페이지로부터 제2 코드워드에 해당하는 데이터를 독출하고, 상기 제2 코드워드에 포함되는 적어도 하나의 에러 비트를 정정하고, 정정된 제2 코드워드를 상기 메모리 컨트롤러에 전송하도록 상기 ECC 엔진을 제어하는 반도체 메모리 장치.
  9. 제8항에 있어서,
    상기 ECC 엔진은 상기 제2 코드워드가 상기 적어도 하나의 에러 비트를 포함하는 경우, 에러 발생 신호를 제어 로직 회로에 제공하고,
    상기 제어 로직 회로는 상기 제2 코드워드의 어드레스를 에러 어드레스로서 상기 스크러빙 제어 회로에 제공하고,
    상기 스크러빙 제어 회로는 상기 에러 어드레스를 위크 코드워드 어드레스로서 내부의 어드레스 저장 테이블에 저장하는 반도체 메모리 장치.
  10. 제9항에 있어서,
    상기 제어 로직 회로는 하나의 메모리 셀 로우에 대하여 상기 에러 발생 신호가 기준 값 이상 발생되는 경우에, 상기 하나의 메모리 셀 로우의 어드레스를 상기 에러 어드레스로 상기 스크러빙 제어 회로에 제공하는 반도체 메모리 장치.
  11. 제8항에 있어서,
    상기 제2 커맨드는 독출 커맨드인 반도체 메모리 장치.
  12. 각각이 복수의 동적 메모리 셀들을 포함하는 복수의 메모리 셀 로우들을 구비하는 메모리 셀 어레이를 구비하는 반도체 메모리 장치의 동작 방법으로서,
    시간 구간 동안에 메모리 컨트롤러로부터 주기적인 리프레시 커맨드들을 수신하는 단계;
    상기 주기적인 리프레시 커맨드들 중 제1 리프레시 커맨드에 응답하여 상기 메모리 셀 로우들 중 적어도 하나에 포함된 메모리 셀들을 스크러빙하지 않고 리프레시하는 노멀 리프레시 동작을 수행하는 단계; 및
    상기 주기적인 리프레시 커맨드들 중 제2 리프레시 커맨드에 응답하여 상기 메모리 셀 로우들 중 제1 메모리 셀 로우의 적어도 하나의 서브-페이지에 대하여 스크러빙 동작을 수행하는 단계를 포함하고,
    상기 스크러빙 동작을 수행하는 단계는
    상기 제2 리프레시 커맨드에 응답하여 스크러빙 컬럼 어드레스가 최대 값에 도달할 때까지 상기 스크러빙 컬럼 어드레스를 증가시키는 단계; 및
    상기 스크러빙 컬럼 어드레스가 최대값에 도달할 때마다 스크러빙 로우 어드레스를 하나씩 증가시키는 단계를 포함하는 반도체 메모리 장치의 동작 방법.
  13. 제12항에 있어서, 상기 스크러빙 동작을 수행하는 단계는
    상기 스크러빙 컬럼 어드레스와 상기 스크러빙 로우 어드레스가 지정하는 상기 제1 메모리 셀 로우의 상기 적어도 하나의 서브 페이지로부터 제1 코드워드에 해당하는 제1 데이터를 독출하는 단계;
    상기 제1 코드워드의 적어도 하나의 에러 비트를 정정하는 단계: 및
    상기 정정된 제1 코드워드를 상기 제1 데이터가 저장된 메모리 위치에 재기입하는 단계를 포함하는 반도체 메모리 장치의 동작 방법.
  14. 제12항에 있어서,
    상기 스크러빙 동작은 상기 제2 리프레시 커맨드에 응답하여 상기 노멀 리프레시 동작 대신에 상기 적어도 하나의 서브 페이지에 수행되는 반도체 메모리 장치의 동작 방법.
  15. 각각이 복수의 동적 메모리 셀들을 포함하는 복수의 메모리 셀 로우들을 구비하는 메모리 셀 어레이를 구비하는 반도체 메모리 장치의 동작 방법으로서,
    셀프 리프레시 모드의 시간 구간 동안에 주기적인 리프레시 제어 신호들을 생성하는 단계;
    상기 주기적인 리프레시 제어 신호들 중 제1 리프레시 제어 신호에 응답하여 상기 메모리 셀 로우들 중 적어도 하나에 포함된 메모리 셀들을 스크러빙하지 않고 리프레시하는 노멀 리프레시 동작을 수행하는 단계; 및
    상기 주기적인 리프레시 제어 신호들 중 제2 리프레시 제어 신호에 응답하여 상기 메모리 셀 로우들 중 제1 메모리 셀 로우의 적어도 하나의 서브-페이지에 대하여 스크러빙 동작을 수행하는 단계를 포함하고,
    상기 스크러빙 동작을 수행하는 단계는
    상기 제2 리프레시 제어 신호에 응답하여 스크러빙 컬럼 어드레스가 최대 값에 도달할 때까지 상기 스크러빙 컬럼 어드레스를 증가시키는 단계; 및
    상기 스크러빙 컬럼 어드레스가 최대값에 도달할 때마다 스크러빙 로우 어드레스를 하나씩 증가시키는 단계를 포함하는 반도체 메모리 장치의 동작 방법.
  16. 제15항에 있어서, 상기 스크러빙 동작을 수행하는 단계는
    상기 스크러빙 컬럼 어드레스와 상기 스크러빙 로우 어드레스가 지정하는 상기 제1 메모리 셀 로우의 상기 적어도 하나의 서브 페이지로부터 제1 코드워드에 해당하는 제1 데이터를 독출하는 단계;
    상기 제1 코드워드의 적어도 하나의 에러 비트를 정정하는 단계: 및
    상기 정정된 제1 코드워드를 상기 제1 데이터가 저장된 메모리 위치에 재기입하는 단계를 포함하는 반도체 메모리 장치의 동작 방법..
  17. 제15항에 있어서,
    상기 스크러빙 동작은 상기 제2 리프레시 제어 신호에 응답하여 상기 노멀 리프레시 동작 대신에 상기 적어도 하나의 서브 페이지에 수행되는 반도체 메모리 장치의 동작 방법.
  18. 각각이 복수의 동적 메모리 셀들을 포함하는 복수의 메모리 셀 로우들을 구비하는 메모리 셀 어레이를 구비하는 반도체 메모리 장치의 동작 방법으로서,
    셀프 리프레시 모드의 시간 구간 동안에 주기적인 리프레시 로우 어드레스들을 생성하는 단계;
    상기 주기적인 리프레시 로우 어드레스들 중 제1 리프레시 로우 어드레스에 응답하여 상기 메모리 셀 로우들 중 적어도 하나에 포함된 메모리 셀들을 스크러빙하지 않고 리프레시하는 노멀 리프레시 동작을 수행하는 단계; 및
    상기 주기적인 리프레시 로우 어드레스들 중 제2 리프레시 로우 어드레스에 응답하여 상기 메모리 셀 로우들 중 제1 메모리 셀 로우의 적어도 하나의 서브-페이지에 대하여 스크러빙 동작을 수행하는 단계를 포함하는 반도체 메모리 장치의 동작 방법.
  19. 제18항에 있어서,
    상기 스크러빙 동작은 상기 제2 리프레시 로우 어드레스에 응답하여 상기 노멀 리프레시 동작 대신에 상기 적어도 하나의 서브 페이지에 수행되는 반도체 메모리 장치의 동작 방법.
  20. 제18항에 있어서,
    상기 노멀 리프레시 동작이 N(N은 2 이상의 자연수) 번 수행되는 것에 응답하여 상기 스크러빙 동작은 한번 수행되는 반도체 메모리 장치의 동작 방법.

KR1020180063278A 2018-06-01 2018-06-01 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 반도체 메모리 장치의 동작 방법 KR102658230B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020180063278A KR102658230B1 (ko) 2018-06-01 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 반도체 메모리 장치의 동작 방법
US16/228,518 US10586584B2 (en) 2018-06-01 2018-12-20 Semiconductor semiconductor memory devices, memory systems and methods of operating memory devices
TW107147194A TW202004754A (zh) 2018-06-01 2018-12-26 半導體記憶元件、記憶系統以及操作半導體記憶元件的方法
CN201910191825.9A CN110556156A (zh) 2018-06-01 2019-03-14 半导体存储器件、存储系统及操作半导体存储器件的方法
US16/779,194 US10811078B2 (en) 2018-06-01 2020-01-31 Semiconductor memory devices, memory systems and methods of operating semiconductor memory devices
US17/024,259 US11031065B2 (en) 2018-06-01 2020-09-17 Semiconductor memory devices, memory systems and methods of operating semiconductor memory devices
US17/322,227 US11557332B2 (en) 2018-06-01 2021-05-17 Semiconductor memory devices, memory systems and methods of operating semiconductor memory devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180063278A KR102658230B1 (ko) 2018-06-01 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 반도체 메모리 장치의 동작 방법

Publications (2)

Publication Number Publication Date
KR20190137281A KR20190137281A (ko) 2019-12-11
KR102658230B1 true KR102658230B1 (ko) 2024-04-17

Family

ID=

Similar Documents

Publication Publication Date Title
US11031065B2 (en) Semiconductor memory devices, memory systems and methods of operating semiconductor memory devices
KR102410566B1 (ko) 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 반도체 메모리 장치의 동작 방법
KR20210063561A (ko) 반도체 메모리 장치 및 반도체 메모리 장치의 동작 방법
KR102652001B1 (ko) 반도체 메모리 장치 및 반도체 메모리 장치의 동작 방법
US11656935B2 (en) Semiconductor memory devices and memory systems
US11074127B1 (en) Semiconductor memory devices and methods of operating semiconductor memory devices
US11487615B2 (en) Semiconductor memory devices and methods of operating semiconductor memory devices
KR20220094489A (ko) 반도체 메모리 장치 및 반도체 메모리 장치의 동작 방법
EP3971901A1 (en) Dram with combined scrubbing with combined refresh and scrubing operation
KR20220060156A (ko) 반도체 메모리 장치 및 반도체 메모리 장치의 동작 방법
KR102658230B1 (ko) 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 반도체 메모리 장치의 동작 방법