JP2022078119A - 磁歪部材及び磁歪部材の製造方法 - Google Patents

磁歪部材及び磁歪部材の製造方法 Download PDF

Info

Publication number
JP2022078119A
JP2022078119A JP2022023757A JP2022023757A JP2022078119A JP 2022078119 A JP2022078119 A JP 2022078119A JP 2022023757 A JP2022023757 A JP 2022023757A JP 2022023757 A JP2022023757 A JP 2022023757A JP 2022078119 A JP2022078119 A JP 2022078119A
Authority
JP
Japan
Prior art keywords
magnetostrictive
amount
parallel
magnetostriction
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022023757A
Other languages
English (en)
Inventor
和彦 大久保
Kazuhiko Okubo
祥太郎 川村
Shotaro Kawamura
聖志 泉
Kiyoshi Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2022078119A publication Critical patent/JP2022078119A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/80Constructional details
    • H10N35/85Magnetostrictive active materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/101Magnetostrictive devices with mechanical input and electrical output, e.g. generators, sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

【課題】歪定数及び平行磁歪量が高く、部材間の磁歪定数及び平行磁歪量のばらつきが少ない磁歪部材及び磁歪部材の製造方法を提供する。【解決手段】磁歪部材は、磁歪特性を有する鉄系合金の結晶からなり、長手方向及び短手方向を有する板状体であり、板状体の表面及び裏面のうちの少なくとも1つの面は、研削痕を有し、磁歪定数が200ppm以上であり、長手方向に対して平行な磁場を印加し、長手方向の磁歪量が飽和したときの磁歪量である平行磁歪量が200ppm以上である。【選択図】図1

Description

本発明は、磁歪部材及び磁歪部材の製造方法に関する。
磁歪材料は、機能性材料として注目されている。例えば、鉄系合金であるFe-Ga合金は、磁歪効果および逆磁歪効果を示す材料であり、100~350ppm程度の大きな磁歪を示す。そのため、近年、エネルギーハーベスト分野の振動発電用材料として注目され、ウェアラブル端末やセンサ類などへの応用が期待されている。Fe-Ga合金の単結晶の製造方法として、引き上げ法(チョクラルスキー法、以下「Cz法」と略記する)による単結晶の育成方法が知られている(例えば、特許文献1)。また、Cz法以外の製造方法として、垂直ブリッジマン法(VB法)や垂直温度勾配凝固法(VGF法)が知られている(例えば、特許文献2、特許文献3)。
Fe-Ga合金は、結晶の<100>方位に磁化容易軸を持ち、この方位に大きな磁気歪みを現出させることができる。従来、Fe-Ga合金の磁歪部材は、Fe-Gaの多結晶から<100>方位に配向した単結晶部分を所望サイズに切断することにより製造されているが(例えば、非特許文献1)、結晶方位は磁歪特性に大きく影響するため、磁歪部材の磁歪を必要とする方向と結晶の磁気歪みが最大となる<100>方位とを一致させた単結晶が磁歪部材の材料として最適であると考えられる。
Fe-Ga合金の単結晶は、単結晶の<100>方位に対して平行に磁場を印加したとき、正の磁歪が現出する(以下、「平行磁歪量」と称す)。一方、<100>方位に対して垂直に磁場を印加したとき、負の磁歪が現出する(以下、「垂直磁歪量」と称す)。印加する磁場の強度を徐々に強めていくと、平行磁歪量あるいは垂直磁歪量がそれぞれ飽和する。磁歪定数(3/2λ100)は、飽和した平行磁歪量と、飽和した垂直磁歪量の差で決定され、下記の式(1)によって求められる(例えば、特許文献4、非特許文献2)。
3/2λ100=ε(//)― ε(⊥) ・・・式(1)
3/2λ100:磁歪定数
ε(//):<100>方向に対して平行に磁場をかけて飽和したときの平行磁歪量
ε(⊥) :<100>方向に対して垂直に磁場をかけて飽和したときの垂直磁歪量
Fe-Ga合金の磁歪特性は、磁歪・逆磁歪効果および磁歪式振動発電デバイスの特性に影響を与えると考えられており、デバイス設計をする上で重要なパラメータとなる(例えば、非特許文献4)。特に、磁歪定数は、Fe-Ga合金単結晶のGa組成に依存し、Ga組成が18~19at%と27~28at%で磁歪定数が極大になることが知られており(例えば、非特許文献2)、このようなGa濃度のFe-Ga合金をデバイスに用いることが望ましいとされる。さらに近年、磁歪定数が大きいことに加えて、平行磁歪量が大きいほど出力電圧等のデバイス特性が高い傾向にあることが報告されている(例えば、非特許文献3)。
磁歪式振動発電デバイスは、例えば、コイルに巻かれたFe-Ga磁歪部材、ヨーク、界磁用永久磁石で構成されている(例えば、特許文献5、非特許文献4)。この磁歪式振動発電デバイスでは、デバイスの可動部のヨークを振動させると、ヨークの中央に固定したFe-Ga磁歪部材が連動して振動し、逆磁歪効果によってFe-Ga磁歪部材に巻かれたコイルの磁束密度が変化し、電磁誘導起電力が発生して発電する仕組みとなる。磁歪式振動発電デバイスでは、ヨークの長手方向に力が加わって振動が起こるため、デバイスに用いるためのFe-Ga磁歪部材は、磁化容易軸である<100>を長手方向になるように加工することが望ましい。
特開2016-28831号公報 特開2016-138028号公報 特開平4-108699号公報 特表2015-517024号公報 国際公開第2011-158473号
Etrema社,State of the Art of Galfenol Processing. A. E. Clark et al., Appl. Phys. 93(2003)8621. Jung Jin Park, Suok-Min Na, Ganesh Raghunath, and Alison B. Flatau., AIP ADVANCES 6, 056221(2016). 上野敏幸, 精密工学会誌 Vol. 79, No.4, (2013) 305-308.
磁歪式振動発電デバイス等のデバイス特性は、磁歪部材の磁歪特性によって影響を受けるため、磁歪部材は、高い磁歪特性を有し、磁歪特性のばらつきの少ないものが要求される。このような中で、Fe-Ga合金の単結晶の結晶方位が<100>であり、Ga濃度が均一であるならば、磁歪定数の均一な磁歪部材が得られると思われていた。しかし、非特許文献3に記載されるように、デバイス特性は、磁歪定数だけでなく平行磁歪量の影響があることが開示されている。本発明者の調査の結果、上記のように製造した磁歪部材は、磁歪定数が均一であっても平行磁歪量(あるいは垂直磁歪量)にばらつきがあること、また、磁歪定数自体がばらつくことが判明した。
そこで、本発明は、磁歪定数及び平行磁歪量が高く、部材間の磁歪定数及び平行磁歪量のばらつきが少ない磁歪部材及び磁歪部材の製造方法を提供することを目的とする。
本発明の態様によれば、磁歪特性を有する鉄系合金の結晶からなり、長手方向及び短手方向を有する板状体であり、板状体の表面及び裏面のうちの少なくとも1つの面は、研削痕を有し、磁歪定数が200ppm以上であり、長手方向に対して平行な磁場を印加し、長手方向の磁歪量が飽和したときの磁歪量である平行磁歪量が200ppm以上である、磁歪部材が提供される。
また、研削痕は、長手方向に延びる研削痕である構成でもよい。また、研削痕を有する面の表面粗さは、長手方向の表面粗さRaが、短手方向の表面粗さRaよりも小さい構成でもよい。また、長手方向の表面粗さRaは、0.3μm以上1.5μm以下であり、短手方向の表面粗さRaは、0.6μm以上4.5μm以下である構成でもよい。
また、本発明の態様によれば、磁歪部材の製造方法であって、磁歪特性を有する鉄系合金の結晶からなりかつ長手方向及び短手方向を有する板状体の表面及び裏面のうちの少なくとも1つの面に研削痕を形成することを備え、磁歪部材は、磁歪定数が200ppm以上であり、かつ、長手方向に対して平行な磁場を印加し、長手方向の磁歪量が飽和したときの磁歪量である平行磁歪量が200ppm以上である、磁歪部材の製造方法が提供される。
本発明の態様の磁歪部材は、磁歪定数及び平行磁歪量が高く、部材間の磁歪定数及び平行磁歪量のばらつきが少ない特性を有する。本発明の態様の磁歪部材の製造方法は、磁歪定数及び平行磁歪量が高く、部材間の磁歪定数及び平行磁歪量のばらつきが少ない磁歪部材を容易に製造することができる。
(A)及び(B)は、実施形態に係る磁歪部材の一例を示す図面代用写真であり、(A)は全体像であり、(B)は(A)の一部を拡大した像である。 実施形態に係る磁歪部材の製造方法の一例を示すフローチャートである。 単結晶、薄板部材、磁歪部材の第1の例を示す図である。 単結晶、薄板部材、磁歪部材の第2の例を示す図である。 単結晶、薄板部材、磁歪部材の第3の例を示す図である。 実施例で用いた歪みゲージ法を示す図である。 比較例1の磁歪部材を示す図である。
以下、図面を参照して説明する。なお、各図面においては、適宜、一部又は全部が模式的に記載され、縮尺が変更されて記載される。
[実施形態]
以下、本実施形態の磁歪部材及び磁歪部材の製造方法について説明する。
まず、本実施形態の磁歪部材について説明する。図1(A)及び(B)は、実施形態に係る磁歪部材の一例を示す図面代用写真であり、(A)は全体像であり、(B)は(A)の一部を拡大した像である。
磁歪部材1は、図1(A)に示すように、長手方向D1及び短手方向D2を有する板状体である。板状体は、平面視において長方形状である。板状体は、表面(おもて面)3及び裏面4を有する。表面3及び裏面4は、互いに平行であるのが好ましいが、互いに平行でなくてもよい。
磁歪部材1は、鉄系合金の結晶からなる。鉄系合金は、磁歪特性を有するものであれば、特に限定されない。磁歪特性とは、磁場を印加したときに形状の変化が生じる特性を意味する。鉄系合金は、例えば、Fe-Ga、Fe-Ni、Fe-Al、Fe-Co、Tb-Fe、Tb-Dy-Fe、Sm-Fe、Pd-Fe等の合金である。また、上記合金において第3成分を添加した合金であってもよい。例えば、Fe-Ga合金においてBa、Cu等を添加した合金であってもよい。これらの鉄系合金の中でも、Fe-Ga合金は、他の合金と比較して磁歪特性が大きく加工も容易であるため、エネルギーハーベスト分野の振動発電用材料やウェアラブル端末やセンサ類などへ応用されている。以下の説明では、磁歪部材1の一例として、磁歪部材1がFe-Ga合金の単結晶からなる構成の例を説明する。
Fe-Ga合金の単結晶は、体心立方格子構造を有しており、ミラー指数における方向指数のうち第1~第3の<100>軸(図3から図5参照)が等価であり、ミラー指数における面指数のうち第1~第3の{100}面(図3から図5参照)が等価(すなわち、(100)、(010)および(001)は等価)であることを基本とするものである。また、Fe-Ga合金は、結晶の特定方位に大きな磁気歪みを現出させる特性を有する。この特性を磁歪式振動発電デバイスに利用する場合、デバイスにおいて磁歪部材1の磁歪を必要とする方向と、結晶の磁気歪みが最大となる方位(方向)とを一致させることが望ましい。具体的には、上述したように、単結晶における磁化容易方向である<100>方向を、磁歪部材1の長手方向D1に設定することが望ましい。単結晶における磁化容易方向である<100>方向を、磁歪部材1の長手方向D1とすることは、例えば、単結晶の結晶方位を公知の結晶方位解析により算出し、算出した単結晶の結晶方位に基づいて単結晶を切断することにより、実施することができる。
なお、本実施形態の磁歪部材1に用いることができる結晶は、単結晶でもよいし、多結晶でもよい。<100>方向の方位集積度を高め、磁歪材料としての特性を高めるためには、多結晶よりも単結晶の使用が有利である。なお、多結晶は、単結晶より磁歪特性は落ちるものの低コストで生産が可能であるため、多結晶を用いる場合もある。
磁歪部材1は、例えばエネルギーハーベスト分野の振動発電デバイス用の材料(部品)、ウェアラブル端末やセンサ類などの材料(部品)として使用される。例えば、上記の特許文献5に示すような磁歪式振動発電デバイスは、コイル、コイルに巻かれたFe-Ga合金の磁歪部材、ヨーク、及び、界磁用永久磁石により構成されている。この磁歪式振動発電デバイスは、デバイスの可動部であるヨークを振動させると、ヨークの中央部に固定された磁歪部材が連動して振動し、逆磁歪効果によって磁歪部材に巻かれたコイルの磁束密度が変化し、電磁誘導起電力が発生することにより発電する仕組みとなっている。このような仕組みで用いられる場合、磁歪部材1の形状は、薄板状であり、平面視において細長い長方形状に設定されることが好ましい。磁歪部材1の厚さには特に限定はない。厚さの下限は、0.3mm以上が好ましく、0.4mm以上がより好ましく、0.5mm以上がさらに好ましい。また、磁歪部材1の厚さの上限は、2mm以下が好ましく、1.8mm以下がより好ましく、1.5mm以下がさらに好ましい。磁歪部材1の厚さは、0.3mm以上2mm以下が好ましく、0.4mm以上1.8mm以下がより好ましく、0.5mm以上1.5mm以下がさらに好ましい。磁歪部材1による発電の仕組みは、上記で説明したように、磁歪部材に応力与えること(振動)で逆磁歪効果により発電する仕組みである。磁歪部材1の厚みが0.3mm未満の場合振動中に破損しやすくなる。逆に磁歪部材1の厚さが2mmを超える場合、振動による応力を大きくする必要があり効率が悪くなる。磁歪部材1の形状及び大きさは、目的とするデバイスの大きさに応じて適宜設定される。例えば、磁歪部材1の大きさは、長手方向D1の長さ(寸法)L1が16mm、短手方向D2の幅(寸法)L2が4mm、厚さが1mmである。
なお、磁歪部材1の形状及び寸法は、それぞれ、特に限定されない。例えば、磁歪部材1は、平面視において長方形状でなくてもよい。例えば、磁歪部材1の形状は、平面視において、楕円状、トラック状、不定形でもよい。なお、磁歪部材1の形状が平面視において長方形状以外の場合において、長手方向D1は長径方向、長軸方向等であり、短手方向D2は長手方向D1に直交する方向である。
上述したように、本発明者らは、Fe-Ga合金の単結晶からなり、主面が{100}面であり、磁化容易方向である<100>方向を磁歪部材の長手方向とした平面視の形状が長方形状である板状の磁歪部材を複数製作した。Ga濃度が均一なFe-Ga合金の単結晶から切り出して作成した複数の磁歪部材について磁歪特性を確認した結果、作成した複数の磁歪部材は、磁歪定数は高位であるが、平行磁歪量に大きなばらつきがあることが判った。また、これらの磁歪部材は、磁歪定数自体がばらつくこともあり、磁歪定数は、単結晶から磁歪部材を切り出す位置によりばらつきがあることを見出した。さらに調査した結果、磁歪定数及び平行磁歪量は、磁歪部材の研削方向に関連があることを見出した。本発明は、上記の知見を元になされたものである。
磁歪部材は、例えば、育成された鉄系合金の結晶を一定方向に切断することにより薄板状の部材を作成し、作成した薄板状の部材を所定の大きさに切断することにより製造される。従来の磁歪部材は、磁歪部材の表裏面に研磨加工等が施され、表裏面が平滑に仕上げられていた。
本実施形態の磁歪部材1は、図1(A)及び(B)に示すように、表面3及び裏面4(「表裏面」と総称する場合もある)のうちの少なくとも1つの面は、長手方向D1に延びる複数の溝2を有することを特徴としている。以下詳細に説明する。
上述したように、Ga濃度の均一なFe-Ga単結晶から切り出した複数の磁歪部材について磁歪特性を確認した結果、磁歪定数は高位であるが、平行磁歪量にばらつきがあることが判っている。本実施形態によれば、このような平行磁歪量にばらつきがある磁歪部材においても、磁歪部材の表裏面のうちの少なくとも1つの面に、長手方向D1に延びる複数の溝2を形成することにより、磁歪定数及び平行磁歪量の双方を、高位で且つ部材間のばらつきが少ないように改質(「磁歪定数及び平行磁歪量の改質」とも称す)することができ、特に平行磁歪量を改質することができる。この改質の現象は、複数の溝2を形成したことによって結晶内に残留歪等の応力がかかり、磁気モーメントが均一に再配列して、磁歪特性が均一化したため生じると推測される。
以下、上記磁歪定数及び平行磁歪量の改質について説明する。本実施形態では、後述する実施例に示すように、複数の溝2を形成する前に平行磁歪量が低い磁歪部材のサンプルにおいて、磁歪部材の表裏面の両面に、延びる方向が異なる複数の溝2を形成し、複数の溝2の形成による磁歪定数及び平行磁歪量の変化を調べた。本実施形態では、磁歪部材に、長手方向D1と同方向に延びる複数の溝2を形成した場合(実施例3、13、16、17,19等)、短手方向D2と同方向に延びる複数の溝2を形成した場合(比較例2、3等)において、磁歪定数及び平行磁歪量を測定した。その結果を表1に示す。
複数の溝2を形成する前に平行磁歪量が低い磁歪部材のサンプルにおいて、磁歪部材に長手方向D1と同方向に延びる複数の溝2を形成した場合(実施例3、13、16、17,19等)、複数の溝2を形成することにより、磁歪定数及び平行磁歪量が低位から高位に変化し、高位で安定する。特に、平行磁歪量が、複数の溝2を形成することにより顕著に増加する。また、磁歪定数及び平行磁歪量の値は、部材間(サンプル間)のばらつきが少なかった。
これに対し、複数の溝2を形成する前に平行磁歪量が低い磁歪部材のサンプルにおいて、磁歪部材に短手方向D2と同方向に延びる複数の溝2を形成した場合(比較例2、3)、平行磁歪量は、複数の溝2を形成する前と同様に低位で安定する。また、平行磁歪量の値は、部材間(サンプル間)のばらつきが少なかった。
さらに、本実施形態では、複数の溝2を形成する前の平行磁歪量が高い磁歪部材のサンプルにおいても、磁歪部材の表裏面の両面に、延びる方向が異なる複数の溝2を形成し、複数の溝2の形成による磁歪定数及び平行磁歪量の変化を調べた。本実施形態では、磁歪部材に、長手方向D1と同方向に延びる複数の溝2を形成した場合(実施例2、5、6~11等)、短手方向D2と同方向に延びる複数の溝2を形成した場合(比較例1、4)において、磁歪定数及び平行磁歪量を測定した。
複数の溝2を形成する前に平行磁歪量が高い磁歪部材のサンプルにおいて、磁歪部材に長手方向D1と同方向に延びる複数の溝2を形成した場合(実施例2、5、6~11等)、磁歪定数及び平行磁歪量は、複数の溝2を形成する前と同様に高位で安定している。また、磁歪定数及び平行磁歪量の値は、部材間(サンプル間)のばらつきが少なかった。
これに対し、複数の溝2を形成する前に平行磁歪量が高い磁歪部材のサンプルにおいて、磁歪部材に短手方向D2と同方向に延びる複数の溝2を形成した場合(比較例1、4)、複数の溝2を形成する前の高位から低位に変化し低位で安定している。また、平行磁歪量の値は、部材間(サンプル間)のばらつきが少なかった。
上記の結果より、磁歪定数及び平行磁歪量は、磁歪部材の表面の状態に影響を受けることが判る。そして、磁歪部材の表面3及び裏面4のうちの少なくとも1つの面に、長手方向D1に延びる複数の溝2を形成することにより、磁歪定数及び平行磁歪量の双方を、高位で且つ部材間のばらつきが少ないように改質(修正)できることが判る。
また、本実施形態では、実施例34~37、比較例7~9において、長手方向D1に対して0°~60°の方向に延びる複数の溝2を形成した場合において、磁歪定数及び平行磁歪量を測定した。その結果を表6に示す。複数の溝2を形成する前に平行磁歪量が低い磁歪部材のサンプルにおいて、長手方向D1に対して0°~60°の方向に延びる複数の溝2を形成した場合、平行磁歪量は複数の溝2を形成ことにより増加するが、複数の溝2の延びる方向と長手方向D1がなす角度が0°に近いほど長手方向D1と同方向に延びる複数の溝2を形成した場合と同水準の値となり、上記角度が大きくになるに従い短手方向D2と同方向に延びる複数の溝2を形成した場合の値に近づく傾向にある。平行磁歪量の値は、長手方向D1に対して45°近辺で、0°の際の値と60°の際の値の概ね中間の値となった。この角度(複数の溝2の延びる方向と長手方向D1がなす角度)は、好ましくは40°未満であり、より好ましくは35°以下であり、より好ましくは30°以内である。上記角度が上記の好ましい範囲である場合、上記磁歪定数及び平行磁歪量の改質の効果がより確実に発現する。上記角度が30°以内である場合、より確実に平行磁歪量を200ppm以上と高位で管理することが可能となる。
また、上記の結果より、磁歪部材の表面3及び裏面4のうちの少なくとも1つの面に長手方向D1に延びる複数の溝2を形成することにより、単結晶内の相対位置の違い等に由来する磁歪定数及び平行磁歪量のばらつきが抑制され、磁歪定数及び平行磁歪量が高位で安定し、この傾向は平行磁歪量において顕著であることが判る。また、上記の結果より、平行磁歪量は、長手方向D1と複数の溝2の延びる方向とがなす角度に応じて決定され、平行磁歪量は、長手方向D1と複数の溝2の延びる方向とが平行な場合に高くなることが判り、この場合に最大となると推測される。以上のように、本実施形態の磁歪部材1が備える長手方向D1に延びる複数の溝2は、磁歪定数及び平行磁歪量の双方(少なくとも平行磁歪量)を改質することが可能なものである。本実施形態の磁歪部材1が備える長手方向D1に延びる複数の溝2は、実施例2に示す条件で製造したポリッシュ加工により平滑に仕上げた際に平行磁歪量が低い(例えば50ppm以下)磁歪部材において、平行磁歪量を顕著に増加(例えば200ppm以上、好ましくは250ppm以上)させる改質が可能なものである。
なお、平行磁歪量は磁歪部材1の長手方向D1に対して平行な磁場を印加し、長手方向D1の磁歪量が飽和したときの磁歪量である。また、垂直磁歪量は磁歪部材1の短手方向D2に対して平行な磁場を印加し、短手方向D2の磁歪量が飽和したときの磁歪量である。本実施形態の磁歪部材1における磁歪定数、平行磁歪量、及び垂直磁歪量は、後に説明する実施例の記載の通りに求めた値であり、磁歪量は式(3)に従い実際の歪検出値をゲージ率で補正して求めた値であり、磁場方向が歪みゲージの長手方向に対して平行であるときの磁歪量を、平行磁歪量とし、磁場方向が歪みゲージ長手方向に対して垂直であるときの磁歪量を、垂直磁歪量とし、磁歪定数は式(1)に従い、平行磁歪量と垂直磁歪量の差で求めた値である。また、複数の溝2の延びる方向と長手方向D1がなす角度は、異なる複数の溝における値を平均した値である。
次に、複数の溝2について説明する。複数の溝2は、表面3及び裏面4のうちの少なくとも1つの面に形成されている。図1(A)及び(B)に示す例では、複数の溝2は、表面3及び裏面4の両面に形成される。複数の溝2が表面3及び裏面4のうちの片面に形成される場合、複数の溝2が表面3及び裏面4の両面に形成されるものよりも上記の磁歪定数及び平行磁歪量の改質の効果が少なくなり、磁歪特性のばらつきが大きくなる傾向にあるため、複数の溝2は表面3及び裏面4の両面に形成されるのが好ましい。
複数の溝2は、長手方向D1に延びるように形成される。各溝2は、線状(筋状)である。各溝2は、直線状であるのが、上記の磁歪定数及び平行磁歪量の改質の効果を効率的に発現させる観点から好ましい。なお、各溝2は曲線状でもよい。各溝2の長手方向D1の長さは、特に限定されない。複数の溝2は、上記の磁歪定数及び平行磁歪量の改質の効果を効率的に発現させる観点から、短手方向D2において所定の間隔で面内に万遍なく形成されることが好ましく、面内全体に形成されるのが好ましい。なお、本実施形態において、磁歪部材1が、本発明の効果を損ねない範囲において上記長手方向以外に延びる溝を含んでもよく、このような磁歪部材を除外するものではないが、好ましくは上記長手方向以外に延びる溝はないのが理想的である。
なお、本実施形態において、複数の溝2が長手方向D1に延びるとは、複数の溝2が長手方向D1と平行な方向に延びること、及び、複数の溝2が長手方向D1と40°未満の角度で交差する方向に延びることを含む。上記したように複数の溝2が延びる方向が長手方向D1と平行な方向からずれると平行磁歪量が低くなるため、複数の溝2が延びる方向は長手方向D1と平行な方向であるのが好ましい。
図1(B)に示すような複数の溝2は、例えば、単結晶の切断により得られる薄板部材の表面3及び裏面4の少なくとも1つの面に平面研削加工を施すことにより形成することができる。この場合、複数の溝2は、平面研削加工を施した加工面に形成される研削痕(研削条痕)である。研削痕は、平面研削加工時に、砥石によって形成される痕である。この研削痕は、平面研削加工により、研削方向(砥石の移動方向又は加工テーブルの移動方向)に沿って筋状(線状)に形成される痕である。研削痕の方向(複数の溝2が延びる方向)は、研削方向を制御することにより、制御できる。研削痕は、砥石の粒度(番手)により制御できる。平面研削加工により形成した複数の溝2の状態は、顕微鏡などにより確認することができる。なお、複数の溝2を形成する方法は、後に説明するように平面研削加工に限定されない。なお、複数の溝2は、異なる方向に延びる溝を含んでもよいし、長さ又は深さが異なる形状の溝を含んでもよい。
複数の溝2が形成される面の表面粗さRaは、通常長手方向D1の表面粗さRaが短手方向D2の表面粗さRaよりも小さくなる。複数の溝2は、長手方向D1に延びるように線状(筋状)に形成される。このため、磁歪部材1の短手方向D2は、凹凸形状になるため、表面粗さRaが、長手方向D1よりも大きくなる。また、磁歪部材1の長手方向D1は、長手方向D1に延びる線状(筋状)の溝2にならうため、短手方向D2より表面粗さRaが小さくなる。本実施形態において、表面粗さRaは、1つの磁歪部材1における複数の異なる部分を測定した値を平均した値である。
複数の溝2が形成される面において、長手方向D1の表面粗さRaは、短手方向D2の表面粗さRaよりも小さい。複数の溝2が形成される面において、長手方向D1の表面粗さRaは、下限が0.3μm以上であるのが好ましく、上限が1.5μm以下であるのが好ましく、0.3μm以上1.5μm以下であるのがより好ましい。また、複数の溝2が形成される面において、短手方向D2の表面粗さRaは、下限が0.6μm以上であるのが好ましく、0.7μm以上であるのがより好ましく、上限が4.5μm以下であるのが好ましく、範囲が0.6μm以上4.5μm以下であるのが好ましく、0.7μm以上4.5μm以下であるのがより好ましい。複数の溝2が形成される面における長手方向D1又は短手方向D2の表面粗さRaが上記範囲である場合、上記の磁歪定数及び平行磁歪量の改質の効果を効率的に発現させることができる。
本実施形態の磁歪部材1の特性について説明する。本実施形態の磁歪部材1は、上記の構成により、磁歪定数が200ppm以上、好ましくは250ppm以上とすることができる。また、磁歪部材1は、上記の構成により、平行磁歪量が200ppm以上、好ましくは250ppm以上とすることができる。磁歪部材1の磁歪定数及び平行磁歪量を上記の範囲にする場合、磁歪部材1をFe-Ga合金の単結晶で形成するのが好ましい。
また、本実施形態の磁歪部材1は、磁歪部材の表面3及び裏面4のうちの少なくとも1つの面に、長手方向D1に延びる複数の溝2を形成することにより、磁歪定数及び平行磁歪量の双方を、高位で且つ部材間のばらつきが少ないように改質(修正)されている。このため、本実施形態の磁歪部材1は、1つの結晶から製造された複数の磁歪部材1の場合、複数の磁歪部材1における磁歪定数のばらつきを15%以内とすることができ、平行磁歪量のばらつきを10%以内とすることができる。また、本実施形態の磁歪部材1は、1つの結晶から製造された複数の磁歪部材1の場合、複数の磁歪部材1における磁歪定数の変動係数を、好ましくは0.1以下、より好ましくは0.06以下とすることができ、また、平行磁歪量の変動係数を、好ましくは0.1以下、より好ましくは0.05以下とすることができる。なお、本実施形態において、複数の磁歪部材1における磁歪定数及び平行磁歪量のばらつきは、下記の式(2)により算出した値である。
ばらつき(%)=|平均値と最大の外れ値との差|/平均値・・・式(2)
なお、育成された1つの結晶とは、育成された結晶のうち、磁歪部材として用いられる有効結晶(実際に部品として使用される部分)である。例えば、BV法で育成された結晶については、固化率が10%~85%の範囲のであり、CZ法で育成された結晶であれば、直径が均一の範囲(育成肩部等を除外した部分)である。
以上のように、本実施形態の磁歪部材1は、磁歪特性を有する鉄系合金の結晶からなり、長手方向及び短手方向を有する板状体であり、板状体の表面及び裏面のうちの少なくとも1つの面は、長手方向に延びる複数の溝を有する。なお、本実施形態の磁歪部材1において、上記以外の構成は任意の構成である。本実施形態の磁歪部材1は、磁歪定数及び平行磁歪量が高く、部材間の磁歪定数及び平行磁歪量のばらつきが少ない特性を有する。また、本実施形態の磁歪部材1は、上記の磁歪定数及び平行磁歪量の改質が行われ、従来の同一の単結晶から製造された磁歪部材における磁歪定数及び平行磁歪量のばらつきが修正されるため、歩留まりが高く安定に生産することができる。本実施形態の磁歪部材1は、磁歪定数及び平行磁歪量が高いため、優れた磁歪効果および逆磁歪効果を示す部材(材料)の最終製品として好適に用いることができる。
次に、本実施形態の磁歪部材の製造方法について説明する。本実施形態の磁歪部材の製造方法は、上記した本実施形態の磁歪部材1の製造方法である。本実施形態の磁歪部材の製造方法は、磁歪特性を有する鉄系合金の結晶からなりかつ長手方向D1及び短手方向D2を有する板状体の表面3及び裏面4のうちの少なくとも1つの面に、長手方向D1に延びる複数の溝2を形成することを備える。なお、以下の説明では、Fe-Ga合金の単結晶インゴットから磁歪部材1を製造する方法を一例として説明するが、本実施形態の磁歪部材の製造方法は、以下の説明に限定されない。また、本明細書中の記載のうち、本実施形態の磁歪部材の製造方法に適用可能なものは、本実施形態の磁歪部材の製造方法でも適用されるとする。
図2は、本実施形態の磁歪部材の製造方法の一例を示すフローチャートである。図3から図5は、単結晶、薄板部材及び磁歪部材の第1から第3の例を示す図である。本実施形態の磁歪部材の製造方法は、結晶用意工程(ステップS1)、結晶切断工程(ステップS2)、溝形成工程(ステップS3)、及び、切断工程(ステップS4)を備える。
本実施形態の磁歪部材の製造方法では、まず、結晶用意工程(ステップS1)において、磁歪特性を有する鉄系合金の結晶を用意する。用意する結晶は、単結晶でもよいし、多結晶でもよい。また、用意する結晶は、育成したものでもよいし、市販品を用いてもよい。例えば、結晶用意工程では、Fe-Ga合金の単結晶を用意する。Fe-Ga合金の単結晶の育成方法は、特に限定はない。Fe-Ga合金の単結晶の育成方法は、例えば、引き上げ法や一方向凝固法等でもよい。例えば、引き上げ法ではCz法、一方向凝固法ではVB法、VGF法およびマイクロ引き下げ法等を用いることができる。
Fe-Ga合金の単結晶は、ガリウムの含有量を18.5at%又は27.5at%にすることで磁歪定数が極大になる。このため、Fe-Gaの単結晶は、ガリウムの含有量が16.0~20.0at%または25.0~29.0at%であるのが好ましく、17.0~19at%または26.0~28.0at%になるように育成されたものがより好ましい。育成された単結晶の形状は、特に限定はなく、例えば、円柱状でもよいし、四角柱状でもよい。なお、育成した単結晶は、必要に応じて種結晶、増径部または肩部(種結晶から所定の単結晶の径まで増やす部分)等を切断装置で切断することによって、円柱状の単結晶にしてもよい。育成する単結晶の大きさは、磁歪部材が所定の方向で確保できる大きさであれば、特に限定はない。Fe-Ga単結晶を育成する場合、育成軸方向が<100>になるように種結晶の上面又は下面を{100}面に加工した種結晶を使用して育成する。育成されるFe-Ga合金単結晶は、種結晶の上面又は下面に対し垂直方向に結晶が育成され、かつ種結晶の方位が継承される。
結晶用意工程(ステップS1)の次に、結晶切断工程(ステップS2)を実施する。結晶切断工程は、結晶を切断し薄板部材を作成する工程である。薄板部材は、本実施形態の磁歪部材1の材料となる部材である。結晶切断工程は、例えば、磁歪特性を有するFe-Ga合金の単結晶を切断装置を用いて切断し、{100}面を主面とする薄板部材を作製する工程である。切断装置は、ワイヤー放電加工機、内周刃切断装置、ワイヤーソー等の切断装置を用いることができる。中でも、特にマルチワイヤーソーを使用することが、同時に複数の薄板部材を切断することができるため好ましい。単結晶の切断方向は、Fe-Gaの単結晶の場合、<100>であり、切断面すなわち薄板部材の主面が{100}面となるように切断する。単結晶の切断方向は、特に限定されない。単結晶の切断方向は、例えば、図3から図5に示すように、単結晶の育成方向(結晶が育成される方向)に対し、垂直方向でもよいし、平行方向でもよい。
結晶切断工程(ステップS2)の次に、溝形成工程(ステップS3)を実施する。溝形成工程は、得られた薄板部材の表面3及び裏面4のうちの少なくとも1つの面に、複数の溝2を形成する。溝形成工程では、薄板部材を最終的に切断して磁歪部材1にした際に、磁歪部材1の長手方向D1に延びる複数の溝2が形成されるように、薄板部材に複数の溝2を形成する。上記したように、結晶切断工程により得られた薄板部材の表裏面の少なくとも1つの面に平面研削加工を施すことにより複数の溝2を形成することができる。以下、溝形成工程を、薄板部材の平面研削加工により行う例を説明する。平面研削加工により複数の溝2を形成する場合、上記の磁歪定数及び平行磁歪量の改質の効果を効率的に発現させることができる。
平面研削加工は、平面研削盤を用いて行う。平面研削加工では、上記の磁歪定数及び平行磁歪量の改質の効果を効率的に発現させる観点から、薄板部材に形成される研削痕の方向が、磁歪部材1の長手方向D1と平行な方向となるようにするのが好ましい。この理由から、研削痕は直線状であるのが好ましい。研削痕を直線状にする場合、平面研削盤は、砥石又は加工テーブルの移動方向が直線的な方式であるのが好ましく、平型砥石を使用し加工テーブルが往復運動する方式の平面研削盤を使用することが好ましい。なお、カップ砥石を使用し加工テーブルが回転運動する平面研削盤を使用することもできるが、このような平面研削盤を使用する場合、研削痕が曲線状になるため、研削痕の曲率が小さく(曲がり具合が小さく)なるように設定するのが好ましい。
また、上記研削痕は、磁歪部材1の表面(ひょうめん)に形成される必要がある。このため、薄板部材の厚み調整等で加工する場合は、平面研削盤以外の加工機、例えば両面ラップ装置、カップ砥石等を用いた平面研削盤等で所定の加工を行った後、平面研削加工を行ってもよい。また、従来と同様に研磨加工を行い薄板部材(磁歪部材)の表面を鏡面に仕上げた後、平面研削加工を行ってもよい。平面研削加工は、上記の磁歪定数及び平行磁歪量の改質の効果を効率的に発現させる観点から、薄板部材の表裏面の双方に施すのが好ましい。
平面研削加工に使用する砥石は、例えば砥石の荒さ(番手)の下限が#40以上であるのが好ましく、#100以上であるのがより好ましく、上限が#500以下であるのが好ましく、#400以下であるのがより好ましく、範囲が#40以上#500以下であるのが好ましく、#40以上#400以下であるのがより好ましく、#100以上#400以下であるのがより好ましい。砥石の荒さ(番手)が上記範囲である場合、上記の磁歪定数及び平行磁歪量の改質の効果をより確実に発揮させることができる。なお、#40より小さい砥石を使用すると研削痕の大きさが安定しない場合がある。#500を超える砥石を使用すると、磁歪部材の表面が平滑になって、上記の磁歪定数及び平行磁歪量の改質の効果が効率的に発現しないおそれがある。
溝形成行程では、上述のように、複数の溝2は、磁歪部材1において、複数の溝2が形成される面の長手方向D1の表面粗さRaが、上述の好ましい範囲となるように形成されるのが好ましい。例えば、複数の溝2は、下限が好ましくは0.3μm以上、上限が好ましくは1.5μm以下、範囲が0.3μm以上1.5μm以下となるように形成されるのが好ましい。また、複数の溝2は、磁歪部材1において、複数の溝2が形成される面の短手方向D2の表面粗さRaが、下限が好ましくは0.6μm以上、より好ましくは0.7μm以上、下限が好ましくは4.5μm以下、範囲が好ましくは0.6μm以上4.5μm以下となるように形成されるのが好ましい。また、複数の溝2は、磁歪部材1において、磁歪定数及び平行磁歪量が上述の範囲になるように形成されるのが好ましい。例えば、複数の溝2は、磁歪部材1において、磁歪定数が200ppm以上であり、且つ、平行磁歪量が200ppm以上となるように形成するのが好ましい。上記の好ましい表面粗さRa、磁歪定数、及び、平行磁歪量の範囲となるような複数の溝2は、上記の平面研削加工により形成することができる。なお、溝形成工程は、得られた薄板部材の表面3及び裏面4のうちの少なくとも1つの面に、複数の溝2を形成することが可能であれば、平面研削加工以外の方法で実施してもよい。例えば、固定砥粒方式のワイヤーソーにより薄板部材を作製してもよい。すなわち、固定砥粒方式のワイヤーソーにより結晶をスライス加工して薄板部材を作成する際に形成される溝を複数の溝2としてもよい。ワイヤーソーによる切断には、一定ピッチで並行する複数の極細ワイヤー列に被加工物を押し当て、ワイヤーを線方向に送りながら、被加工物とワイヤーとの間に砥粒を含む加工液(スラリーともいう)を供給することによって切断する遊離砥粒方式と、ダイヤモンド等砥粒を電着又は接着剤によって固定したワイヤーを線方向に送りながら、被加工物を切断する固定砥粒方式とがある。遊離砥粒方式の切断面は、方向性のない梨地状になり、本件効果は得られないが、固定砥粒方式のワイヤーソーによる切断した場合、ワイヤーの送り方向に研削痕が発生し、上記平面研削加工と同様の複数の溝2を形成することが可能である。なお、固定砥粒方式のワイヤーソーで切断する場合、結晶切断工程(ステップS2)と溝形成工程(ステップS3)を共有することが可能であり、効率よく薄板部材を作製することができる。また、サンドペーパー等で一定圧力を掛けて、複数の溝2を形成してもよい。
溝形成工程(ステップS3)の次に、切断工程(ステップS4)を実施する。切断工程は、溝形成工程により複数の溝2を形成した薄板部材を切断し、本実施形態の磁歪部材1を得る工程である。
切断工程では、複数の溝2を形成した薄板部材を切断して磁歪部材1にする際に、磁歪部材1の長手方向D1に延びる複数の溝2が形成されるように、薄板部材を切断する。切断工程では、薄板部材を所定の大きさに切断する。切断工程では、磁歪部材1が平面視において長方形状の板状体となるように、薄板部材を磁歪部材1として切断する。切断工程では、切断装置を用いて薄板部材を切断する。切断工程で使用する切断装置は、特に限定されず、例えば、外周刃切断装置、ワイヤー放電加工機、ワイヤーソー等を使用することができる。薄板部材から磁歪部材を採取する方向には、特に限定はなく、例えば、磁歪部材の大きさ等より効率的に取得できる方向に設定すればよい。
以上のように、本実施形態の磁歪部材の製造方法は、磁歪特性を有する鉄系合金の結晶からなりかつ長手方向D1及び短手方向D2を有する板状体の表面3及び裏面4のうちの少なくとも1つの面に、長手方向D1に延びる複数の溝2を形成することを備える。なお、本実施形態の磁歪部材の製造方法において、上記以外の構成は任意の構成である。本実施形態の磁歪部材の製造方法は、磁歪定数及び平行磁歪量が高く、部材間の磁歪定数及び平行磁歪量のばらつきが少ない特性を有する磁歪部材を製造することができる。本実施形態の磁歪部材の製造方法は、磁歪特性を有する材料に複数の溝2を形成するのみでよいため、容易に実施することができる。
従来、同一の単結晶から採取した磁歪部材において、単結晶からの磁歪部材の採取位置によって、平行磁歪量のばらつきがあり、平行磁歪量が高位の磁歪部材を選定していたが、本実施形態の磁歪部材の製造方法では、上記の磁歪定数及び平行磁歪量の改質を行い、従来の同一の単結晶から製造された磁歪部材における磁歪定数及び平行磁歪量のばらつきを修正するため、磁歪定数及び平行磁歪量が高く且つ部材間の磁歪定数及び平行磁歪量のばらつきが少ない特性を有する磁歪部材を、歩留まりが高く安定に生産することができる。
以下、本発明の実施例を用いて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない
[実施例1]
化学量論比で鉄とガリウムの比率81:19で原料を調整し、垂直ブリッジマン(VB)法で育成した円柱状のFe-Ga合金の単結晶を用意した。単結晶の育成軸方向は<100>とした。結晶育成軸方向に垂直な単結晶の上面または下面の{100}面をX線回折により方位確認した。なお、この時、島津シーケンシャル形プラズマ発光分析装置(ICPS-8100)で結晶の上面及び下面サンプルを測定した結果、単結晶の濃度は、ガリウムの含有量が17.5~19.0at%であった。
次のようにして、育成した単結晶から磁歪部材を製造した。初めに、遊離砥粒式ワイヤーソー装置を用いて、単結晶育成方向に対し平行方向(<100>方位に対して平行)に単結晶を切断し、切断面すなわち主面が{100}である薄板部材を作製した。次に、得られた薄板部材に、#200の平型砥石を使用し平面研削盤により平面研削加工を実施し、薄板部材の厚みを整えるとともに、表裏面に複数の溝(研削痕)を形成した。その後、磁歪部材の長手方向が平面研削加工時の研削方向すなわち研削痕方向と同一方向になるよう切断位置を設定し、外周刃切断装置により、長手方向の寸法16mm×短手の寸法4mm×厚み1mmの大きさの磁歪部材を切出した。
次に、切り出した磁歪部材について磁歪特性を測定した。磁歪特性の測定は、歪みゲージ法で実施した。図6に示すように、製造した磁歪部材の主面である{100}面に、歪みゲージ(共和電業株式会社製)を接着剤により接着した。なお、歪みゲージの長手方向が磁歪の検出方向となるため、歪みゲージの長手方向を、磁歪部材の長手方向ならびに<100>方位と平行になるように接着した。
磁歪測定器(共和電業株式会社製)は、ネオジム系の永久磁石、ブリッジボックス、コンパクトレコーディングシステム、ストレインユニット、ダイナミックデータ集録ソフトウェアで構成した。
磁歪量は、実際の歪検出値をゲージ率で補正して決定した。
なお、ゲージ率は、下式の式(3)とした。
ε=2.00/Ks × εi ・・・式(3)
(ε:ゲージ率, εi:測定ひずみ値, Ks:使用ゲージのゲージ率)
また、磁場方向が歪みゲージの長手方向に対して平行であるときの磁歪量を、平行磁歪量とした。一方で、磁場方向が歪みゲージ長手方向に対して垂直であるときの磁歪量を、垂直磁歪量とした。磁歪定数は式(1)に従い、平行磁歪量と垂直磁歪量の差で決定した。長手方向が研削痕方向と平行になるよう加工したとき、この磁歪部材の平行磁歪量は280ppmであり、磁歪定数は285ppmとなった。
また、磁歪部材の表面を表面粗計(株式会社キーエンス製、VK-X1050)にて観察倍率20倍で、磁歪部材の長手方向と短手方向の2方向について、それぞれ5ヵ所ずつ表面粗さRaを測定し、その平均値を表面粗さRaとした。長手方向の表面粗さRaは、0.56μmであり、短手方向の表面粗さRaは、0.82μmであった。製造条件及び評価結果を表1に示す。
[実施例2~3]
実施例2、3は、平面研削加工前後の平行磁歪量の変化を確認するため、平面研削加工による研削痕が残らないように、従来方法であるカップ砥石による研削加工を行った後、磁歪部材の表面をポリシュ加工により平滑に仕上げ、所定の大きさに切断し、平行磁歪量、磁歪定数を測定した。その後、磁歪部材の長手方向が平面研削加工時の研削方向と同一方向になるように設定し平型砥石による平面研削加工を行った。上記以外は、実施例1と同様とした。製造条件及び評価結果を表1に示す。
[比較例1~2]
比較例1、2では、実施例2、3における平面研削加工を、磁歪部材の短手方向が平面研削加工時の研削方向と同一方向に代えて実施した。上記以外は、実施例2、3と同様とした。製造条件及び評価結果を表1に示す。比較例1の磁歪部材を図7に示す。
[実施例4~5、比較例3~4]
実施例4、5、比較例3、4は、それぞれ、実施例2、3、比較例1、2における単結晶から薄板部材を切り出す方向を、結晶育成方向に対して垂直方向に代えて実施したものである。上記以外は、実施例4、5、比較例3、4と同様とした。なお、表面粗さの測定は省略した。製造条件及び評価結果を表1に示す。
[実施例6~実施例15、実施例16~実施例23]
実施例6~15及び実施例16~23は、同一の単結晶より複数の薄板部材を作成し、その中よりランダムの磁歪部材を採取した。その他は、実施例4と同様とした。すなわち、実施例6~15及び実施例16~23は、それぞれ、同一の単結晶から製造した磁歪部材である。製造条件及び評価結果を表1に示す。平行磁歪量及び磁歪定数のばらつきの結果を表2、表3に記載する。なお、表面粗さの測定は省略した。
[実施例24~実施例29、比較例5~6]
実施例24~実施例29及び比較例5~6は、単結晶の切断方向及び平面研削加工で用いる砥石の粒度(番手)の条件を種々に変更して比較したものである。実施例25は、実施例2と同様に行った。実施例24、実施例26は、平面研削加工で用いる砥石の粒度(番手)の条件を変更した以外は実施例2と同様とした。実施例28は、実施例4と同様に行った。実施例27、実施例29は、平面研削加工で用いる砥石の粒度(番手)の条件を変更した以外は実施例4と同様とした。比較例5は、比較例1と同様とした。比較例6は、比較例3と同様とした。各例における表面粗さは、実施例1と同様に行った。製造条件及び評価結果を表4に示す。
[実施例30~実施例33]
実施例30~実施例33は、磁歪部材の板厚の条件を種々に変更して比較したものである。実施例31は、実施例2と同様に行った。実施例30、32~実施例33は、平面研削加工において整える板厚の条件及び用いる砥石の粒度(番手)の条件を変更した以外は実施例2と同様とした。なお、各例における表面粗さは、実施例1と同様に行った。製造条件及び評価結果を表5に示す。
[実施例34~実施例37、比較例7~9]
実施例34~実施例37、比較例7~9は、複数の溝2の延びる方向と長手方向D1がなす角度を0°、10°、20°、30°、40°、50°、60°にして比較したものである。なお、板厚は0.5mmとした。実施例34は、実施例2と同様に行った。実施例35、実施例36、比較例8、9は、それぞれ、平面研削加工における研削方向を10°、20°、40°、60°に変更した以外は実施例2と同様とした。実施例37、比較例8は、平面研削加工における研削方向を30°、50°に変更した以外は実施例4と同様とした。なお、各例における表面粗さは、実施例1と同様に行った。製造条件及び評価結果を表6に示す。
[実施例38~実施例42]
実施例38~実施例42は、結晶の材料として多結晶を用いたものである。実施例38~実施例42は、用意した単結晶を多結晶に変更した以外は、実施例2と同様にした。用意した多結晶は、化学量論比で鉄とガリウムの比率81:19で原料を調整し、垂直ブリッジマン(VB)法で育成した円柱状のFe-Ga合金の多結晶を用意した。多結晶の育成軸方向は<100>とした。結晶育成軸方向に垂直な多結晶の上面または下面の{100}面をX線回折により方位確認した。なお、この時、島津シーケンシャル形プラズマ発光分析装置(ICPS-8100)で結晶の上面サンプルを測定した結果、多結晶の濃度は、ガリウムの含有量が17.5~19.0at%であった。製造条件及び評価結果を表7に示す。
Figure 2022078119000002
Figure 2022078119000003
Figure 2022078119000004
Figure 2022078119000005
Figure 2022078119000006
Figure 2022078119000007
Figure 2022078119000008
[まとめ]
実施例の結果より、上記した磁歪定数及び平行磁歪量の改質が確認される。また、実施例の結果より、本実施形態の磁歪部材1は、磁歪定数及び平行磁歪量が高く、部材間の磁歪定数及び平行磁歪量のばらつきが少ない特性を有することが確認される。また、実施例の結果より、本発明の態様の磁歪部材の製造方法は、磁歪定数及び平行磁歪量が高く、部材間の磁歪定数及び平行磁歪量のばらつきが少ない磁歪部材を容易に製造することができることが確認される。
なお、本発明の技術範囲は、上述の実施形態等で説明した態様に限定されない。上述の実施形態等で説明した要件の1つ以上は、省略されることがある。また、上述の実施形態等で説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、日本国特許出願である特願2019-207723及び特願2020-144760、並びに上述の実施形態等で引用した全ての文献の開示を援用して本文の記載の一部とする。
1 :磁歪部材
2 :溝
3 :表面
4 :裏面
D1 :長手方向
D2 :短手方向
S1 :結晶用意工程
S2 :結晶切断工程
S3 :溝形成工程
S4 :切断工程

Claims (5)

  1. 磁歪特性を有する鉄系合金の結晶からなり、
    長手方向及び短手方向を有する板状体であり、
    前記板状体の表面及び裏面のうちの少なくとも1つの面は、研削痕を有し、
    磁歪定数が200ppm以上であり、
    前記長手方向に対して平行な磁場を印加し、前記長手方向の磁歪量が飽和したときの磁歪量である平行磁歪量が200ppm以上である、
    磁歪部材。
  2. 前記研削痕は、長手方向に延びる研削痕である、請求項1に記載の磁歪部材。
  3. 前記研削痕を有する面の表面粗さは、前記長手方向の表面粗さRaが、前記短手方向の表面粗さRaよりも小さい、請求項1又は請求項2に記載の磁歪部材。
  4. 前記長手方向の表面粗さRaは、0.3μm以上1.5μm以下であり、前記短手方向の表面粗さRaは、0.6μm以上4.5μm以下である、請求項3に記載の磁歪部材。
  5. 磁歪部材の製造方法であって、
    磁歪特性を有する鉄系合金の結晶からなりかつ長手方向及び短手方向を有する板状体の表面及び裏面のうちの少なくとも1つの面に研削痕を形成することを備え、
    前記磁歪部材は、磁歪定数が200ppm以上であり、かつ、前記長手方向に対して平行な磁場を印加し、前記長手方向の磁歪量が飽和したときの磁歪量である平行磁歪量が200ppm以上である、磁歪部材の製造方法。
JP2022023757A 2019-11-18 2022-02-18 磁歪部材及び磁歪部材の製造方法 Pending JP2022078119A (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019207723 2019-11-18
JP2019207723 2019-11-18
JP2020144760 2020-08-28
JP2020144760 2020-08-28
JP2021545881A JP7031794B2 (ja) 2019-11-18 2020-11-04 磁歪部材及び磁歪部材の製造方法
PCT/JP2020/041260 WO2021100467A1 (ja) 2019-11-18 2020-11-04 磁歪部材及び磁歪部材の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021545881A Division JP7031794B2 (ja) 2019-11-18 2020-11-04 磁歪部材及び磁歪部材の製造方法

Publications (1)

Publication Number Publication Date
JP2022078119A true JP2022078119A (ja) 2022-05-24

Family

ID=75980679

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021545881A Active JP7031794B2 (ja) 2019-11-18 2020-11-04 磁歪部材及び磁歪部材の製造方法
JP2022023757A Pending JP2022078119A (ja) 2019-11-18 2022-02-18 磁歪部材及び磁歪部材の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021545881A Active JP7031794B2 (ja) 2019-11-18 2020-11-04 磁歪部材及び磁歪部材の製造方法

Country Status (6)

Country Link
US (1) US20230074828A1 (ja)
EP (1) EP4064372A4 (ja)
JP (2) JP7031794B2 (ja)
KR (1) KR20220101096A (ja)
CN (1) CN114730826A (ja)
WO (1) WO2021100467A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022167661A (ja) * 2021-04-23 2022-11-04 住友金属鉱山株式会社 磁歪部材及び磁歪部材の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2965628B2 (ja) * 1989-06-30 1999-10-18 株式会社東芝 磁性体を構成要素とするセンサの製造方法
JPH04108699A (ja) 1990-08-28 1992-04-09 Mitsumi Electric Co Ltd Fe―Si―Al系合金単結晶の育成装置
JPH07113698A (ja) * 1993-10-19 1995-05-02 Matsushita Electric Ind Co Ltd トルクセンサ
JPH09184776A (ja) * 1995-12-28 1997-07-15 Matsushita Electric Ind Co Ltd トルクセンサ
JPH10239177A (ja) * 1997-02-26 1998-09-11 Matsushita Electric Ind Co Ltd 力学量検出素子およびその製造方法並びにトルクセンサ
JP3377519B2 (ja) * 2000-12-22 2003-02-17 ティーディーケイ株式会社 トルクセンサおよびその製造方法
US20090039714A1 (en) * 2005-03-03 2009-02-12 Pinai Mungsantisuk Magnetostrictive FeGa Alloys
JP4893366B2 (ja) * 2006-03-31 2012-03-07 Tdk株式会社 薄膜磁気デバイス
JP4905820B2 (ja) 2010-06-18 2012-03-28 国立大学法人金沢大学 発電素子および発電素子を備えた発電装置
US20150028724A1 (en) 2012-03-13 2015-01-29 Etrema Products, Inc. Single crystalline microstructures and methods and devices related thereto
JP6606638B2 (ja) 2014-07-14 2019-11-20 株式会社福田結晶技術研究所 Fe−Ga基合金単結晶の育成方法及び育成装置
JP6122882B2 (ja) * 2015-01-29 2017-04-26 日本高周波鋼業株式会社 磁歪部材およびその製造方法
JP6620067B2 (ja) 2015-07-23 2019-12-11 株式会社ぐるなび 情報処理装置、情報処理方法及びプログラム
JP6941483B2 (ja) * 2017-06-07 2021-09-29 日本高周波鋼業株式会社 磁歪部材およびその製造方法
CN111566243A (zh) * 2018-01-12 2020-08-21 Tdk株式会社 软磁性合金薄带及磁性部件
CN110093486B (zh) * 2018-01-31 2021-08-17 宝山钢铁股份有限公司 一种耐消除应力退火的低铁损取向硅钢的制造方法
JP2020144760A (ja) 2019-03-08 2020-09-10 三菱電機株式会社 データ収集装置、無人航空機、データ収集システム、データ収集方法及びプログラム

Also Published As

Publication number Publication date
CN114730826A (zh) 2022-07-08
EP4064372A1 (en) 2022-09-28
KR20220101096A (ko) 2022-07-19
WO2021100467A1 (ja) 2021-05-27
US20230074828A1 (en) 2023-03-09
EP4064372A4 (en) 2023-12-20
JPWO2021100467A1 (ja) 2021-12-02
JP7031794B2 (ja) 2022-03-08

Similar Documents

Publication Publication Date Title
KR100852536B1 (ko) 압전단결정, 압전단결정소자 및 그 제조방법
TW201915231A (zh) 碳化矽晶體及其製造方法
JP7031794B2 (ja) 磁歪部材及び磁歪部材の製造方法
US20200105997A1 (en) Magnetostriction element and method of manufacture of magnetostriction element
WO2022224974A1 (ja) 磁歪部材及び磁歪部材の製造方法
CN102869795B (zh) 作为结晶轴<001>的方位被控制的体心立方(bcc)结构的固溶体的金属材料及其制造方法
US8308874B1 (en) Magnetostrictive materials, devices and methods using high magnetostriction, high strength FeGa and FeBe alloys
JP2005322673A (ja) 圧電単結晶素子およびその製造方法
JP2022074526A (ja) 磁歪部材及び磁歪部材の製造方法
WO2022172875A1 (ja) 磁歪部材及び磁歪部材の製造方法
US20200274056A1 (en) Magnetostrictive element and method for manufacturing same
WO2022172876A1 (ja) 磁歪部材及び磁歪部材の製造方法
US20240215455A1 (en) Magnetostrictive member and method for manufacturing magnetostrictive member
KR102441220B1 (ko) MgO 소결체 스퍼터링 타깃
Fujieda et al. Influence of Co substitution on magnetostriction and on Young's modulus of Fe-Ga alloy single crystal
JP2019169673A (ja) 磁歪材料およびそれを用いた磁歪式デバイス
JP2022159777A (ja) 磁歪部材及び磁歪部材の製造方法
JP2023095318A (ja) 磁歪部材及び磁歪部材の製造方法
JP2021088471A (ja) 磁歪部材、磁歪部材の製造方法、及び、磁歪部材の評価方法
JP2020200209A (ja) 単結晶育成に用いる種結晶の製造方法
Ma et al. Magnetostriction of a< 110> oriented Tb0. 3Dy0. 7Fe1. 95 polycrystals annealed under a noncoaxial magnetic field
JP2005272203A (ja) 膜形成用基板および半導体膜の形成方法
JP2019169671A (ja) 磁歪材料およびそれを用いた磁歪式デバイス
JP2021158265A (ja) 磁歪材料およびそれを用いた磁歪式デバイス
JP2023142656A (ja) 磁歪材料及びその製造方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221116

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20221128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231011