JP2022019664A - 三次元強誘電体メモリ装置及びその形成方法 - Google Patents

三次元強誘電体メモリ装置及びその形成方法 Download PDF

Info

Publication number
JP2022019664A
JP2022019664A JP2021117112A JP2021117112A JP2022019664A JP 2022019664 A JP2022019664 A JP 2022019664A JP 2021117112 A JP2021117112 A JP 2021117112A JP 2021117112 A JP2021117112 A JP 2021117112A JP 2022019664 A JP2022019664 A JP 2022019664A
Authority
JP
Japan
Prior art keywords
trench
forming
ferroelectric
dielectric
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021117112A
Other languages
English (en)
Inventor
子慶 楊
Tsuching Yang
宏彰 孫
Hung-Chang Sun
國璋 ▲蒋▼
Kuo-Chang Chiang
昇志 ▲頼▼
Sheng-Chih Lai
▲ゆー▼維 江
Yu-Wei Jiang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of JP2022019664A publication Critical patent/JP2022019664A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/20Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the three-dimensional arrangements, e.g. with cells on different height levels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2253Address circuits or decoders
    • G11C11/2255Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2253Address circuits or decoders
    • G11C11/2257Word-line or row circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/10Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/40Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/50Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the boundary region between the core and peripheral circuit regions

Abstract

【課題】3次元強誘電体メモリ装置及びその形成方法を提供する。【解決手段】強誘電体メモリ(FeRAM)装置200を形成する方法は、基板50上に、第1の誘電体材料とワード線(WL)材料との交互層を含む積層体202を形成するステップと、積層体を上下方向に貫通する第1のトレンチを形成するステップと、第1のトレンチ内に、強誘電体材料205と、強誘電体材料上のチャネル材料207と、チャネル材料上の第2の誘電体材料とを形成するステップと、を含む第1のトレンチを充填するステップ及び第1のトレンチを充填した後、積層体を上下方向に貫通し、第1のトレンチにインターリーブされる第2のトレンチ212を形成するステップと、第2のトレンチ内に、強誘電体材料と、強誘電体材料上のチャネル材料と、チャネル材料上の第2の誘電体材料とを形成するステップと、を含む第2のトレンチを充填するステップを含む。【選択図】図7

Description

本願は、出願日が2020年7月16日の米国仮出願第63/052499号明細書の利益を主張するものであり、この出願は、参照により本願に組み込まれる。
半導体メモリは、例として、ラジオ、テレビ、携帯電話、パーソナルコンピューティングデバイスなどの電子アプリケーションの集積回路で使用される。半導体メモリには、2つの主要なカテゴリがある。1つは揮発性メモリで、もう1つは不揮発性メモリである。揮発性メモリには、ランダムアクセスメモリ(RAM)が含まれる。これは、スタティックランダムアクセスメモリ(SRAM)とダイナミックランダムアクセスメモリ(DRAM)の2つのサブカテゴリにさらに分割できる。SRAM及びDRAMは、いずれも電源が供給されていない場合に記憶されている情報を失うため揮発性である。
一方、不揮発性メモリは、電源が供給されなくても記憶されているデータを保持することができる。不揮発性半導体メモリの1つのタイプは、強誘電体メモリ(FeRAM、又はFRAM)である。FeRAMの利点には、書き込み/読み取り速度が速く、サイズが小さいことが含まれる。
以下、本発明及びその利点のより完全な理解のために、添付図面と併せて以下の説明を参照します。
一実施形態に係るメモリ装置を集積化した半導体装置の断面図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置の様々な図である。 他の実施形態に係る三次元(3D)強誘電体メモリ(FeRAM)装置の上面図である。 さらなる他の実施形態に係る三次元(3D)強誘電体メモリ(FeRAM)装置の上面図である。 いくつかの実施形態に係る三次元(3D)強誘電体メモリ(FeRAM)装置の形成方法のフローチャートである。
以下の開示は、本発明の異なる特徴を実施するための多くの異なる実施形態または例を提供する。以下、本開示を簡略化するために、コンポーネントおよび配置の特定の例を説明する。もちろん、これらは、一例に過ぎず、これらに限定するものではない。例えば、以下の説明における第二特徴での第一特徴の形成は、第一及び第二特徴が直接接触して形成される実施形態を含み得て、また第一特徴と第二特徴とが直接接触していなくてもよいように、第一特徴と第二特徴との間に追加の特徴が形成され得る実施形態を含み得る。
さらに、図示されているように、ここで、ある要素又は構造と別の要素又は構造との関係を説明しやすくするために、「下方」、「下」、「下部」、「上方」、「上部」などのような空間的に相対的な用語を使用することができる。空間的に相対的な用語は、図に示されている方向に加えて、使用中又は動作中の装置の異なる方向を包含することを意図している。装置は、他の方向に配向してもよく(90度又は他の配向に回転されてもよい)、本明細書で使用される空間的に相対的な記述子は、同様にそれに応じて解釈され得る。本明細書において、特に断りのない限り、異なる図面に記載されている同一又は類似の参照符号は、同一又は類似の材料を用いて同一又は類似のプロセスにより形成される同一又は類似の要素を意味する。
いくつかの実施形態では、強誘電体メモリ(FeRAM)装置において、高密度のメモリアレイを形成するためのLitho-Etch-Dep-Litho-Etch-Dep(LEDLED)法が開示されている。LEDLED法は、基板上に、第1の誘電体材料とワード線(WL)材料との交互層を含む積層体に、第1の複数のトレンチを形成するステップを含む。次に、第1の複数のトレンチ内に、強誘電体材料、チャネル材料及び第2の誘電体材料を順次形成することにより、第1の複数のトレンチを充填する。第1の複数のトレンチを充填した後、積層体内に、第1の複数のトレンチとインターリーブされる第2の複数のトレンチを形成する。次に、第2の複数のトレンチ内に、強誘電体材料、チャネル材料及び第2の誘電体材料を充填する。次に、第1及び第2の複数のトレンチ内にソース線(SL)及びビット線(BL)を形成する。LEDLED法は、第1および第2の複数のトレンチを同時に形成する参考法と比較して、参考法によるフィン構造の倒壊の問題を回避しつつ、第1及び第2の複数のトレンチをより近接させて高集積密度を得ることができる。
図1は、一実施形態に係るメモリ装置123(例えば、123A及び123B)を集積した半導体装置100の断面図である。半導体装置100は、図示された実施形態では、半導体製造の配線工程(BEOL)プロセスに三次元(3D)強誘電体メモリ(FeRAM)装置123が集積されたフィン電界効果トランジスタ(FinFET)装置である。クラッタを回避するために、メモリ装置123の詳細は、図1で図示されていないが、以降の図で図示されている。なお、ここでは非限定的な一例としてFinFETを用いているが、FeRAM装置123は、プレーナ型装置やゲートオールアラウンド(GAA)型装置などの任意の適切なデイバスとBEOLプロセスにおいて集積されてもよい。
図1に示すように、半導体装置100は、異なる種類の回路を形成するための異なる領域を含む。例えば、半導体装置100は、ロジック回路を形成するための第1の領域110を含み、かつ例えば、周辺回路、入出力(I/O)回路、静電気放電(ESD)回路、及び/又はアナログ回路などを形成するための第2の領域120を含み得る。他の種類の回路を形成するための他の領域も可能であり、本開示の範囲内に含まれることが完全に意図されている。
半導体装置100は、基板101を含む。基板101は、シリコン基板などのバルク基板であってもよく、ドープされてもよく、非ドープされてもよく、半導体オンインシュレータ(SOI)基板の活性層であってもよい。基板101は、ゲルマニウムなどの他の半導体材料、炭化ケイ素、ガリウムヒ素、リン化ガリウム、窒化ガリウム、リン化インジウム、インジウムヒ素及び/又はアンチモン化インジウムを含む化合物半導体、SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP及び/又はGaInAsPを含む合金半導体、又はこれらの組み合わせを含み得る。多層基板や傾斜基板などの他の基板を用いてもよい。
半導体製造の基板工程(FEOL)プロセスにおいて、基板101内又は上には、トランジスタ、抵抗器、コンデンサ、インダクタ、ダイオードなどの電気部品が形成される。図1の例では、基板101の上方に半導体フィン103(フィンとも呼ばれる)が突出して形成される。シャロートレンチアイソレーション(STI)領域などの分離領域105は、半導体フィン103の間又は周りに形成される。ゲート電極109は、半導体フィン103上に形成される。ゲートスペーサー111は、ゲート電極109の側壁に沿って形成される。例えば、エピタキシャルソース/ドレイン領域などのソース/ドレイン領域107は、ゲート電極109の反対側に形成される。ゲートコンタクトやソース/ドレインコンタクトなどのコンタクト113は、下層の各導電性特徴(例えば、ゲート電極109やソース/ドレイン領域107)上に形成され、かつ電気的に連結される。1つ以上の層間誘電体(ILD)層などの誘電体層117は、基板101上と半導体フィン103及びゲート電極109の周りに形成される。導電線115及びビア114を含む相互接続構造など、他の導電性特徴は、1つ以上の誘電体層117内に形成されてもよい。図1のFinFETは、公知又は当該技術分野で使用されている任意の適切な方法で形成されてもよく、ここでは詳細な説明は省略する。ここでは、説明の便宜上、基板101と、基板101内又は上に形成される電気部品(例えば、FinFET)と、コンタクト113と、導電性特徴115/114と、1つ以上の誘電体層117とをまとめて基板50と呼ぶ。
図1を参照すると、エッチストップ層(ESL)である誘電体層119は、1つ以上の誘電体層117上に形成される。一実施形態では、誘電体層119は、プラズマ強化物理気相成長(PECVD)法を用いて窒化ケイ素で形成されているが、窒化物、炭化物、それらの組み合わせなどの他の誘電体材料と、低圧化学気相堆積法(LPCVD)、PVD法などの誘電体層119を形成する別の技術とを用いてもよい。いくつかの実施形態では、誘電体層119は省略されている。次に、誘電体層121は、誘電体層119上に形成される。 誘電体層121は、PVD法、CVD法などの適切な方法により形成される酸化ケイ素、窒化ケイ素などの適切な誘電体材料であってもよい。それぞれ、複数のメモリセルを含む、1つ以上のメモリ装置123Aは、誘電体層121内に形成され、かつ誘電体層121内の導電性特徴(例えば、ビア124及び導電線125)に連結される。以下、図1に係るメモリ装置123A又は123B(例えば、3D FeRAM装置200、200A、及び200B)の種々の実施形態について詳細に説明する。
図1には、さらに、メモリ装置123A上に形成されるメモリ装置123Bの第2の層が示されている。メモリ装置123A及び123Bは、同一又は類似の構造を有してもよく、かつまとめてメモリ装置123とも呼ばれる。図1の例では、非限定的な一例として、2層のメモリ装置123が示されている。メモリ装置123の層数は、1層、3層、又はそれ以上であってもよく、本開示の範囲内に含まれることが完全に意図されている。メモリ装置123の1つ以上の層は、半導体装置100のメモリ領域130内に形成され、かつ半導体製造の配線工程(BEOL)プロセスにおいて形成されてもよい。メモリ装置123は、BEOLプロセスにおいて、第1の領域110上(例えば、真上)、第2の領域120上、又は複数の領域上など、半導体装置100内の任意の適切な位置に形成されてもよい。
図1の例では、メモリ装置123は、半導体装置100のメモリ領域130の一部の領域を占めているが、全部の領域を占めておらず、導電線125及びビア124などの他の特徴は、メモリ領域130の上下の導電性特徴に接続するために、メモリ領域130の他の領域に形成されてもよいためである。いくつかの実施形態では、メモリ装置123A又は123Bを形成するために、メモリ領域130の一部を覆うようにパターニングされるフォトレジスト層などのマスク層を形成し、マスク層によって露出されたメモリ領域130の他の領域にメモリ装置123A又は123Bを形成する。メモリ装置123を形成した後、マスク層を除去する。
図1を参照すると、メモリ領域130を形成した後、誘電体層121と、誘電体層121内の導電性特徴(例えば、ビア124及び導電線125)とを含む相互接続構造140は、メモリ領域130上に形成される。相互接続構造140は、基板101内又は上に形成される電気部品を電気的に接続して機能回路を形成されてもよい。相互接続構造140は、基板101内又は基板101上に形成される部品とメモリ装置123とを電気的に連結し、及び/又は相互接続構造140上に形成されて外部回路又は外部装置と接続するための導電性パッドとメモリ装置123とを連結してもよい。相互接続構造の形成は公知であるため、ここでは詳細な説明は省略する。
いくつかの実施形態では、メモリ装置123は、例えば、ビア124及び導電線125によって、基板50上に形成される電気部品(例えば、トランジスタ)と電気的に連結され、かついくつかの実施形態では、半導体装置100の機能回路によって制御又はアクセス(例えば、書き込み又は読み出し)される。また、メモリ装置123は、相互接続構造140の上部金属層上に形成される導電性パッドと電気的に連結されてもよく、その場合、いくつかの実施形態では、半導体装置123、半導体装置100の機能回路を介さずに、外部回路(例えば、他の半導体装置)により制御又はアクセスされてもよい。図1の例では、追加の金属層(例えば、相互接続構造140)は、メモリ装置123上に形成されるが、メモリ装置123は、半導体装置100の上部(例えば、最上部)金属層に形成されてもよく、これらの実施形態及びその変形例は、本開示の範囲内に含まれることが完全に意図されている。
図2-図8、図9a、図9b、図10、図11、図12a-図12e、及び図13は一実施形態に係る製造の様々な段階における三次元(3D)強誘電体メモリ(FeRAM)装置200の様々な図(例えば、斜視図、断面図、平面図など)である。ここでは、説明の便宜上、3D FeRAM装置は、3Dメモリ装置、又は単にメモリ装置とも呼ばれる。3Dメモリ装置200は、強誘電体材料を用いた三次元メモリ装置である。3Dメモリ装置200は、図1のメモリ装置123A及び/又は123Bとして用いてもよい。 なお、簡略化のため、3Dメモリ装置200の全ての特徴を図示しているわけではなく、3Dメモリ装置200の一部のみを図示している場合もある。
次に、図2を参照すると、製造初期段階のメモリ装置200の斜視図を示す。積層体202は、基板50上に形成される。積層体202は、誘電体材料201と導電性材料203との交互層を含む。積層体202内の誘電体材料201の各層は誘電体層201とも呼ばれ、積層体202内の導電性材料203の各層を導電層203とも呼ばれる。後述するように、導電性材料203は、3Dメモリ装置200のワード線(WL)を形成するために用いられるため、ワード線材料203とも呼ばれる。
いくつかの実施形態では、積層体202を形成するために、まず、基板50上に、PVD法、CVD法、原子層堆積法(ALD)法などの適切な堆積方法を用いて、酸化ケイ素、窒化ケイ素などの適切な誘電体材料を堆積することにより、誘電体層201を形成する。 次に、導電層203は、誘電体層201上に形成する。いくつかの実施形態では、導電層203は、金属又は金属含有材料などの導電性材料で形成される。導電層203の材料としては、例えば、Al、Ti、TiN、TaN、Co、Ag、Au、Cu、Ni、Cr、Hf、Ru、W、Ptなどが挙げられる。導電層203は、例えば、PVD法、CVD法、ALD法、又はそれらの組み合わせなどにより形成されてもよい。以上の堆積プロセスを、積層体202内に目的の層数が形成されるまで繰り返す。図示された実施形態では、積層体202の最上層は誘電体層201であり、積層体202の最上層の誘電体層201Tとも呼ばれる。なお、積層体202の層数は適切な数であり、図2に示す例に限定されない。
次に、図3において、第1のトレンチ206(開口部、凹部、スロットとも呼ばれる)は、積層体202内に形成され、かつ積層体202を貫通して基板50を露出させる。第1のトレンチ206は、例えば、フォトリソグラフィ技術及びエッチング技術を用いて形成されてもよい。図示された実施形態では、第1のトレンチ206は、積層体202の基板50に対向する下面から、基板50の遠位にある積層体202の上面まで延在する。図3の例では、第1のトレンチ206は、積層体202の反対する側壁間に連続的に延在し、それにより積層体202を貫通し、積層体202を互いに分離した(例えば、離間した)複数のスライス(例えば、フィン状構造)に分離している。なお、簡略化のため、図3は、1つの第1のトレンチ206のみを示している。一応図9bを参照すると、図9bは、後続のプロセスで積層体202に形成されて複数の第2のトレンチ212とインターリーブされる複数の第1のトレンチ206を示しており、他の材料(例えば、205、207、209、211、213)を第1のトレンチ206と第2のトレンチ212に充填して3Dメモリ装置200を形成し,詳細は後述する。
次に、図4において、強誘電体材料205は、第1のトレンチ206内に、第1のトレンチ206の側壁及び底部に沿って(例えばコンフォーマルに)形成される。強誘電体材料205は、積層体202の上面に形成されてもよい。次に、チャネル材料207は、強誘電体材料205上に(例えばコンフォーマルに)形成される。次に、キャップ層209はチャネル材料207上に(例えばコンフォーマルに)形成され、また、酸化物ライナー211はキャップ層209上に(例えばコンフォーマルに)形成される。
いくつかの実施形態では、強誘電体材料205は、BaTiO、PbTiO、PbZrO、LiNbO、NaNbO、KNbO、KTaO、BiScO、BiFeO、Hf1-xErO、Hf1-xLaO、Hf1-xO、Hf1-xGdO、Hf1-xAlO、Hf1-xZrO、Hf1-xTiO、Hf1-xTaO、AlScNなど、それらの組み合わせ、これらの多層を含み、またPVD法、CVD法、ALD法などの適切な形成方法により形成されてもよい。強誘電体材料205は、強誘電体膜とも呼ばれる。
いくつかの実施形態では、チャネル材料207は、例えば、アモルファスシリコン(a-Si)、ポリシリコン(poly-Si)、半導体酸化物(例えば、酸化インジウムガリウム亜鉛(IGZO)、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)、酸化インジウムスズ(ITO)、酸化インジウムタングステン(IWO))などの半導電性材料である。チャネル材料207は、例えば、PVD法、CVD法、ALD法、又はそれらの組み合わせなどにより形成されてもよい。
いくつかの実施形態では、キャップ層209は誘電体材料で形成される。キャップ層209は、チャネル材料207の保護層として機能し、かつ後続のプロセス(例えば、後続のエッチングプロセス)におけるH、Cl、Fなどの汚染元素がチャネル材料207中に拡散することを防止する。一実施形態では、キャップ層209は、誘電率(例えば、k値)が、例えば、7.0以上の高k誘電体材料で形成される。高k誘電体材料の実施例はHfO、TiO、HfZrO、Ta、HfSiO、ZrO、ZrSiO及び他の適切な材料を含む。キャップ層209の高k誘電体材料は原子層堆積法(ALD)、及び/又は他の適切な方法などにより形成されてもよい。
いくつかの実施形態では、キャップ層209の誘電率Kcap(例えば、a誘電体材料)は、強誘電体材料205の誘電率Kferよりも高く(例えば、Kcap>Kfer)、強誘電体材料205の電気分極方向を確実に切り替えることができる。詳細は後述するが、強誘電体材料205の電気分極方向は、3Dメモリ装置200の各メモリセルのデジタル情報(例えば、0又は1のビット)を記憶するために用いられる。強誘電体材料205の電気分極方向は、強誘電体材料205に印加される電界によって切り替えられ、かつその電界は強誘電体材料205に印加される電圧に比例する。一応図12cを参照すると、3Dメモリ装置200のメモリセル225の動作(例えば、書き込み動作)時には、電圧Vtotalは、例えば、ワード線(WL)203とソース線(SL)218との間に印加される。電圧Vtotalは、図12cの例では、WL203とSL218との間に、強誘電体材料205、チャネル材料207、キャップ層209などの材料の異なる層で共有される。換言すれば、電圧Vtotalの一部は、WL203とSL218との間の材料の各層(例えば、205、207、又は209)に印加される。材料の各層に印加される電圧はその誘電率に反比例するため、キャップ層209の誘電率Kcapを強誘電体材料205の誘電率Kferより高くして、強誘電体材料205に電圧Vtotalの実質的な割合を印加して、強誘電体材料205の電気分極方向を切り替えやすくすることが好ましい。同様の理由から、いくつかの実施形態では、チャネル材料207の誘電率も、強誘電体材料205の誘電率Kferより高くすることが好ましい。いくつかの実施形態では、キャップ層209の誘電率Kcapを強誘電体材料205の誘電率Kferの2倍、5倍、10倍、又はそれ以上に設定されることが好ましい。したがって、キャップ層209の材料としては、特に電圧Vtotalが低い用途では、AlO(k値が9-11程度である)、HfO(k値が25-27程度である)、TaO(k値が40-80程度である)などの高誘電率材料を好適に用いることができる。他の実施形態では、キャップ層209の誘電率Kcapは、例えば、強誘電体材料205に印加される電圧が強誘電体材料205のスイッチング電圧より高くなるように電圧Vtotalが十分に高い用途では、強誘電体材料205の誘電率Kferと実質的に同じであるか、又はそれより小さくてもよい。
図4を参照すると、いくつかの実施形態では、酸化物ライナー211は、酸化ケイ素などの酸化物を含み、例えばALD法などの適切な形成方法により形成される。いくつかの実施形態では、酸化物ライナー211は、後続のエッチングプロセス(図5参照)において、例えば強誘電体材料205、チャネル材料207、及びキャップ層209の側壁部などを保護する。
次に、図5において、第1のトレンチ206の底部から酸化物ライナー211の第1の部分、キャップ層209の第1の部分、チャネル材料207の第1の部分、及び強誘電体材料205の第1の部分を除去する異方性エッチングプロセスなどの適切のエッチングプロセスを行い、その結果、第1のトレンチ206の底部に基板50の上面を露出させる。図示された実施形態では、エッチングプロセスの異方性により、酸化物ライナー211の第2の部分、キャップ層209の第2の部分、チャネル材料207の第2の部分、及び酸化物ライナー211の第1のトレンチ206に対向する側壁211Sと積層体202との間に配置される強誘電体材料205の第2の部分は、異方性エッチングプロセス後に残る。なお、キャップ層209の第2の部分、チャネル材料207の第2の部分、及び強誘電体材料205の第2の部分は、断面がL字状であり、底部が酸化物ライナー211の第2の部分と基板50との間に配置される。図5に示すように、酸化物ライナー211の側壁211Sは、キャップ層209の第2の部分、チャネル材料207の第2の部分、及び強誘電体材料205の第2の部分のそれぞれの側壁と上下方向に(例えば、図5における同一の上下方向の面内で)整列される。
次に、図6において、誘電体材料213は、第1のトレンチ206内に形成されて、第1のトレンチ206内の残りの空間を充填する。いくつかの実施形態では、誘電体材料213は、酸化ケイ素、窒化ケイ素などの適切な誘電体材料を、ALD法などの適切な堆積法を用いて堆積することにより形成される。誘電体材料213は、第1のトレンチ206を過充填してもよく、かつ積層体202の上面に形成されてもよい。次に、化学機械平坦化(CMP)などの平坦化プロセスを行い、積層体202の上面から余分な強誘電体材料205、チャネル材料207、キャップ層209、酸化物ライナー211及び誘電体材料213を除去する。図6に示すように、平坦化プロセス後に、強誘電体材料205、チャネル材料207及びキャップ層209の残りの部分は、断面がL字状である。
次に、図7において、第2のトレンチ212は、積層体202内に形成される。第2のトレンチ212は、第1のトレンチ206と同様であり、同一又は類似の方法を用いて形成されてもよい。図7は、簡略化のため、1つの第2のトレンチ212のみを示す。図9bは、第1のトレンチ206とインターリーブされる積層体202内の複数の第2のトレンチ212を示す。図9bに示すように、第1のトレンチ206と第2のトレンチ212は、積層体202内に交互に形成される。
次に、図8において、強誘電体材料205、チャネル材料207、キャップ層209、及び酸化物ライナー211は、第2のトレンチ212内に(例えばコンフォーマルに)順次形成される。強誘電体材料205、チャネル材料207、キャップ層209、及び酸化物ライナー211の材料及び形成方法は、図4を参照して上述したものと同一又は類似であってもよいため、詳細な説明は省略する。
次に、図9aにおいて、第2のトレンチ212の底部から誘電体材料213の一部、酸化物ライナー211の一部、キャップ層209の一部、チャネル材料207の一部、及び強誘電体材料205の一部を除去する異方性エッチングプロセスなどの適切なエッチングプロセスを行う。エッチングプロセスの詳細は、図5を参照して上述したものと同一又は類似であってもよいため、詳細な説明は省略する。
次に、誘電体材料213は、第2のトレンチ212内に形成され、かつ第2のトレンチ212を完全に充填する。次に、CMPなどの平坦化プロセスを行い、積層体202の上面から余分な酸化物ライナー211、キャップ層209、チャネル材料207及び強誘電体材料205を除去する。
図9bは、図9aの3Dメモリ装置200のA-A断面における断面図を示す。なお、図9bは、図9aより3Dメモリ装置200の大部分を示すため、複数の第2のトレンチ212とインターリーブされる複数の第1のトレンチ206を示す。図9bにおける第1のトレンチ206及び第2のトレンチ212には、後続のプロセスでメモリセルを形成するための様々な材料の層(例えば、205、207、209、211、及び213)が充填される。第1のトレンチ206と第2のトレンチ212は、まとめてトレンチ206/212とも呼ばれる。
開示される方法は、(例えば、リソグラフィ技術及びエッチング技術を用いて)第1のトレンチ206を形成し、(例えば、材料の層205/207/209/211/213を堆積することにより)トレンチ206を充填し、(例えば、リソグラフィ技術及びエッチング技術を用いて)第2のトレンチ212を形成し、かつ(例えば、材料の層205/207/209/211/213を堆積することにより)第2のトレンチ212を充填して、図9a及び図9bの構造を形成する。したがって、開示される方法は、Litho-Etch-Dep-Litho-Etch-Dep(LEDLED)法とも呼ばれる。第1のトレンチ206と第2のトレンチ212とを同時に(例えば、同一のエッチングプロセスにより)形成する参照法と比較して、開示されるLEDLED法によれば、後述する「フィン倒壊」の問題を受けることなく、トレンチ206/212をより近接して形成することを可能にし、それによりメモリセルを他の達成可能な密度より高く形成することができる。
半導体製造プロセスの進行に伴い、高集積密度のために、構造サイズが縮小し続ける。3Dメモリ装置200のメモリセル密度を向上させるために、積層体202を多層(例えば、201、203)で形成し、隣接するトレンチ206/212間の距離W1を小さくしてトレンチ206/212を形成することが好ましい。トレンチ206/212を同時に形成すると、隣接するトレンチ206/212の間に配置される積層体202の部分(積層体202のフィン状構造とも呼ばれる)は、H/W1の高アスペクト比を有し、ここでHは、積層体202の高さである。高アスペクト比の積層体202のフィン状構造は、その後続のプロセスにおいて倒壊し、3Dメモリ装置200に不具合が生じるおそれがある。これに対し、開示されるLEDLED法を用いると、第1のトレンチ206を形成する際のフィン状構造のアスペクト比は、隣接する第1のトレンチ206間の距離W2がW1より大きいため、H/W1よりはるかに小さいH/W2となる。同様に、第2のトレンチ212を形成する際には、既に第1のトレンチ206が充填されているため、(充填されたトレンチ206を含む)フィン状構造のアスペクト比はH/W3であり、H/W1よりはるかに低い。その結果、開示されるLEDLED法により、高アスペクト比に係るフィン倒壊の問題が低減又は回避され、かつ装置信頼性及び製造歩留まりが向上する。
次に、図10において、分離領域215はトレンチ206/212内に形成されて、積層体202を上下方向に貫通する。分離領域215は、メモリセル分離領域215、又は誘電体プラグ215とも呼ばれる。いくつかの実施形態では、分離領域215を形成するために、パターニング化マスクは、積層体202の上面に形成されて、パターニング化マスク層のパターン(例えば開口部)は、分離領域215の位置に対応する。次に、パターニング化マスク層をエッチングマスクとして異方性エッチングプロセスを行い、積層体内202に積層体202を上下方向に貫通する開口部を形成する。次に、CVD法、PVD法、ALD法などの適切な形成方法を用いて、積層体202内の開口部に酸化ケイ素、窒化ケイ素などの誘電体材料を充填する。次に、CMPなどの平坦化プロセスを行い、積層体202の上面から余分な誘電体材料を除去し、開口部内の誘電体材料の残りの部分は、分離領域215を形成する。
図10の例では、分離領域215の幅は、分離領域215のあるトレンチ206/212の幅と実質的に同じであり、それによりトレンチ206/212内の分離領域215は、積層体202のトレンチに対向する側壁に物理的に接している。他の実施形態では、分離領域215の幅は、トレンチ206/212の幅より小さくてもよく、また、トレンチ206/212内の分離領域215は、トレンチ内の強誘電体材料205の側壁間に連続的に延在する。換言すれば、分離領域215は、トレンチ内において強誘電体材料205の反対する側壁に物理的に接しているが、強誘電体材料205を貫通していない。
次に、図11に示すように、酸化物ライナー211及び誘電体材料213に、積層体202の基板50とは反対側の上面から積層体202の基板50とは反対側の下面まで延在する開口部216を(例えば、フォトリソグラフィ技術及びエッチング技術を用いて)形成する。開口部216は、図11の例では、キャップ層209の側壁を露出させる。ビットライン開口部216に導電性材料(例えば217、219)を充填して、後続のプロセスでソース線(SL)218S及びビット線(BL)218Bを形成する。他の実施形態では、開口部216は、図11の開口部216より幅広く形成され、かつチャネル材料207の側壁を露出させるか(図15を参照)、又は強誘電体材料205の側壁を露出させる(図14を参照)。
次に、図12aにおいて、開口部216の側壁及び底部をライニングするように、開口部216内にバリア層217を(例えば、コンフォーマルに)形成する。バリア層217は、窒化チタンを含み得るが、窒化タンタル、チタン、タンタルなどの他の適切な材料も可能である。バリア層217を形成するために、CVD法、ALD法などの適切な形成方法を用いることができる。次に、必要に応じて異方性エッチングプロセスを行い、開口部216の底部からバリア層217の一部を除去し、開口部216の底部に基板50を露出させる。次に、開口部216を充填するように、Al、Ti、TiN、TaN、Co、Ag、Au、Cu、Ni、Cr、Hf、Ru、W、Ptなどの導電性材料219を形成する。次に、積層体202の上面から、余分なバリア層217及び余分な導電性材料219を除去するために、CMPなどの平坦化プロセスを行ってもよい。開口部216内の余分なバリア層217及び余分な導電性材料219により、導電線218が形成される。図示された実施形態では、導電線218は、積層体202を上下方向に貫通する金属コラム又は金属ピラーである。導電線218は、3Dメモリ装置200のソース線(SL)218S又はビット線(BL)218Bとも呼ばれる。
図12bは、図12aのメモリ装置200の平面図を示す。図12c、図12d、図12eは、それぞれ、図12bのメモリ装置200のB-B断面図、C-C断面図、D-D断面図である。なお、明確化のため、図12b、図12c、図12d、及び図12eは、図12aに示す3Dメモリ装置200の部分より大きいか又は小さい3Dメモリ装置の一部を示す。
図12bの平面図に示すように、分離領域215は、積層体202の第1の側壁(例えば、積層体202の最上層の誘電体層201Tの第1の側壁)から、積層体202の第1の側壁に対向する積層体202の第2の側壁(例えば、積層体202の最上層の誘電体層201Tの第2の側壁)まで連続的に延在し、積層体202の第1の側壁と第2の側壁は、同一のトレンチ206/212によって露出される積層体202の側壁である。換言すれば、図12bの横方向に沿って測定される分離領域215の幅は、同一のトレンチで露出されて積層体202の互いに対向する内部側壁間の距離と同一である。また、各導電線218は、キャップ層209の第1の側壁から、キャップ層209の第1の側壁に対向するキャップ層209の第2の側壁まで連続的に延在する。換言すれば、図12bの横方向に沿って測定される導電線218の幅は、トレンチ内のキャップ層209の対向する内部側壁間の距離と同一である。
図12bでは、3Dメモリ装置200のメモリセル225のうち、全てではないが、一部のメモリセル225が破線枠で強調表示される。図12c及び図12eにおいて、メモリセル225も破線枠で強調表示される。図12a-図12eに示すように、各メモリセル225は、強誘電体膜205が埋め込まれるトランジスタである。各メモリセル225内において、導電層203(例えば、図12cを参照)は、トランジスタのゲート電極として機能し、導電線218S及び218B(例えば、図12bを参照)は、トランジスタのソース/ドレイン領域として機能し、また、チャネル材料207はソース/ドレイン領域間のチャネル層として機能する。図12bの破線226は、3Dメモリ装置200の動作時、例えばトランジスタのゲートに電圧を印加してトランジスタをオンにした場合に、チャネル材料207に形成されるチャネル領域を示す。詳細は後述するが、各メモリセル225における強誘電体膜205の電気分極方向は、メモリセル225に記憶されるデジタル情報(例えば、「0」又は「1」)を示し、メモリセル225のトランジスタの閾値電圧を判定する。
メモリ装置において、各メモリセル225内の導電層203(例えば、ゲート電極)は、メモリセルのワード線(WL)と呼ばれ、導電線218S及び218B(例えば、ソース/ドレイン領域)はメモリセルのソース線(SL)及びビット線(BL)とも呼ばれる。
図12aに示すように、メモリ装置200の導電層203(例えば、WL)は、同一の水平面に沿って(例えば、基板50から上下方向に同じ距離に)形成される複数のメモリセルを電気的に接続する。また、図12cに示すように、各SL又はBL218は、上下方向に積層される複数のメモリセル225を電気的に接続する。したがって、開示される3Dメモリ装置200は、複数のメモリセル225間でWL、BL、SLを効率的に共有でき、メモリセル225の3D構造により、複数層のメモリセル225を積層しやすく、高密度のメモリアレイを形成することができる。
図12c及び図12eは、3Dメモリ装置200の異なる位置における強誘電体材料205、チャネル材料207及びキャップ層209の断面の異なる形状を示す。例えば、誘電体材料213を横切る上下方向の面(基板50の上面と上下方向にある面)に沿った断面(例えば、図12bのD-D断面)を示す図12eでは、強誘電体材料205、チャネル材料207及びキャップ層209は、断面がL字状である。導電線218を横切る上下方向面(基板50の上面と上下方向にある面)に沿った断面(例えば、図12bのB-B断面)を示す図12cでは、強誘電体材料205、チャネル材料207及びキャップ層209は、断面が矩形状である。
図12a-図12eを参照すると、あるメモリセル225に対して書き込み動作を行う場合に、メモリセル225内の強誘電体材料205の一部に書き込み電圧を印加する。書き込み電圧の印加は、例えば、メモリセル225のゲート電極203に第1の電圧を印加し、ソース/ドレイン領域218S/218Bに第2の電圧を印加することにより行うことができる。第1の電圧と第2の電圧との電圧差は、強誘電体材料205の分極方向を設定する。強誘電体材料205の分極方向に応じて、メモリセル225の対応するトランジスタの閾値電圧VTを低閾値電圧VLから高閾値電圧VHに、又はその逆に切り替えることができる。トランジスタの閾値電圧値(VL又はVH)は、メモリセルに記憶される「0」又は「1」のビットを示すために用いることができる。
メモリセル225の読み出し動作を行う場合、低閾値電圧VLと高閾値電圧VHとの間の電圧である読み出し電圧は、ゲート電極203に印加される。強誘電体材料205の分極方向(又はトランジスタの閾値電圧VT)に応じて、メモリセル225のトランジスタをオンしてもよく、オフしてもよい。その結果、例えば、ソース/ドレイン領域218S、218B間に電圧が印加される場合、ソース/ドレイン領域218S、218B間に電流が流れるか又は流れない。この電流を検出することにより、メモリセルに記憶されるデジタルビットを判定することができる。
次に、図13において、コンタクト227は、積層体202上に形成されて、導電線218と電気的に連結される。コンタクト227を形成するために、誘電体層221、223は、積層体202上に形成される。開口部は誘電体層221、223内に形成されて、下層の導電線218を露出させる。導電性材料は開口部内に形成されて、コンタクト227を形成する。
いくつかの実施形態では、誘電体層221は、窒化ケイ素で形成されるが、酸窒化ケイ素、炭化ケイ素などの他の適切な誘電体層であってもよい。誘電体層221は、例えば、CVD法、ALD法などにより形成されてもよい。誘電体層223は、酸化ケイ素、フォスフォシリケイトガラス(PSG)、ホウケイ酸ガラス(BSG)、ホウ素・リンドープシリケートガラス(BPSG)、非ドープケイ酸塩ガラス(USG)などの誘電体材料で形成され、CVD法、PECVD法、FCVD法などの任意の適切な方法により堆積されてもよい。誘電体層221、223内の開口部は、フォトリソグラフィ技術及びエッチング技術を用いて形成されてもよい。開口部を充填する導電性材料としては、Al、Ti、TiN、TaN、Co、Ag、Au、Cu、Ni、Cr、Hf、Ru、W、Ptなどの適切な導電性材料が挙げられる。
また、当業者であれば容易に理解できるように、3Dメモリ装置200を完成させるために追加の処理を行ってもよい。例えば、WL203と電気的に連結するようにコンタクトを形成し、積層体202の一部を除去して階段状の領域を形成し、WLと連結するコンタクトの形成を容易にすることができる。なお、簡略化のため、詳細な説明は省略する。
図14は、他の実施形態における三次元(3D)強誘電体メモリ(FeRAM)装置200Aの平面図を示す。3Dメモリ装置200Aは、図12bの3Dメモリ装置200と類似し、類似の処理ステップで形成されてもよいが、SL218S及びBL218Bは図12bに示すものより幅広く、かつトレンチ206/212内の強誘電体材料205の側壁まで延在する(例えば、物理的に接している)。
図15は、さらに別の実施形態に係る三次元(3D)強誘電体メモリ(FeRAM)装置200Bの平面図である。3Dメモリ装置200Bは、図12bの3Dメモリ装置200と類似し、類似の処理ステップで形成されてもよいが、図15のSL218S及びBL218Bは、図12bに示すものより幅広く、図14に示すものより幅狭く、かつトレンチ206/212内のチャネル材料207の側壁まで延在する(例えば、物理的に接している)。
実施形態によれば、効果が得られる。例えば、開示されるLEDLED方法は、第1のトレンチ206と第2のトレンチ212とを異なる処理ステップで形成することにより、フィン構造の倒壊の問題を回避又は低減する。その結果、装置信頼性及び製造歩留まりが向上する
図16は、いくつかの実施形態に係る三次元(3D)強誘電体メモリ(FeRAM)装置の形成方法1000のフローチャートである。図16に示す実施形態の方法は、可能な多くの実施形態の方法の一例に過ぎないことを理解されたい。当業者であれば、多くの変形例、代替例及び修正例を認識することができる。例えば、図16に示すような種々のステップを追加、除去、置き換え、再配置、又は繰り返してもよい。
図16を参照すると、ブロック1010では、基板上に、第1の誘電体材料とワード線(WL)材料との交互層を含む積層体が形成される。ブロック1020では、積層体を上下方向に貫通する第1のトレンチが形成される。ブロック1030では、第1のトレンチが充填され、第1のトレンチを充填するステップは、強誘電体材料と、強誘電体材料上のチャネル材料と、チャネル材料上の第2の誘電体材料とを第1のトレンチ内に形成する。ブロック1040では、第1のトレンチを充填した後、第1のトレンチとインターリーブされる第2のトレンチは、積層体を上下方向に貫通するように形成される。ブロック1050では、第2のトレンチが充填され、第2のトレンチを充填するステップは、強誘電体材料と、強誘電体材料上のチャネル材料と、チャネル材料上の第2の誘電体材料とを第2のトレンチ内に形成する。ブロック1060では、第2のトレンチを充填した後、積層体を上下方向に貫通する第1のトレンチ及び第2のトレンチ内にソース線(SL)及びビット線(BL)を形成する。
一実施形態では、強誘電体メモリ(FeRAM)装置の形成方法は、基板上に、第1の誘電体材料とワード線(WL)材料との交互層を含む積層体を形成するステップと、基板の遠位にある積層体の上面から積層体の基板に対向する側の下面まで積層体を上下方向に貫通する第1のトレンチを形成するステップと、第1のトレンチの底部と側壁とを強誘電体材料でライニングするステップと、強誘電体材料上の第1のトレンチ内にチャネル材料を形成するステップと、第1のトレンチ内に第2の誘電体材料を充填するステップと、第1のトレンチを充填した後、積層体を上下方向に貫通する第1の複数のトレンチとインターリーブされる第2のトレンチを形成するステップと、第2のトレンチの底部と側壁とを強誘電体材料でライニングするステップと、第2のトレンチ内に強誘電体材料上にチャネル材料を形成するステップと、第2のトレンチに第2の誘電体材料を充填するステップと、第2のトレンチを充填した後、第1のトレンチ及び第2のトレンチ内に、積層体を上下方向に貫通するソース線(SL)とビット線(BL)とを形成するステップと、含む。一実施形態では、WL材料は導電性材料であり、チャネル材料は半導体酸化物である。一実施形態では、チャネル材料は、酸化インジウムガリウム亜鉛、酸化インジウム亜鉛、酸化亜鉛、酸化インジウムスズ又は酸化インジウムタングステンを含む。一実施形態では、該方法は、第1のトレンチ内にチャネル材料を形成した後、第1のトレンチを充填する前に、チャネル材料上の第1のトレンチ内に、強誘電体材料の誘電率より高い誘電率を有するキャップ層を形成するステップと、第2のトレンチ内にチャネル材料を形成した後、前記第2のトレンチを充填する前に、チャネル材料上の第2のトレンチ内にキャップ層を形成するステップと、をさらに含む。一実施形態では、キャップ層は、高k誘電体材料で形成される。一実施形態では、SL及びBLを形成するステップは、第1のトレンチ及び第2のトレンチ内に、積層体を上下方向に貫通する開口部を形成するステップと、開口部の側壁に沿ってバリア層を形成するステップと、開口部に導電性材料を充填するステップと、を含む。一実施形態では、SL及びBLは、キャップ層の対向する側壁間に連続的に延在し、かつキャップ層の対向する側壁に接している。一実施形態では、SL及びBLは、チャネル材料の対向する側壁間に連続的に延在し、かつチャネル材料の対向する側壁に接している。一実施形態では、SL及びBLは、強誘電体材料の対向する側壁間に連続的に延在し、かつ強誘電体材料の対向する側壁に接している。一実施形態では、該方法は、第1のトレンチ内にキャップ層を形成した後、第1のトレンチを充填する前に、キャップ層上の第1のトレンチ内に酸化物ライナーを形成するステップ、をさらに含む。一実施形態では、該方法は、第1のトレンチ内に酸化物ライナーを形成した後、第1のトレンチを充填する前に、酸化物ライナーの一部、キャップ層の一部、チャネル材料の一部、及び強誘電体材料の一部を第1のトレンチの底部から除去する異方性エッチングプロセスを行うステップ、をさらに含む。一実施形態では、該方法は、第1のトレンチ内及びBLとSLとの間の第2のトレンチ内に、積層体を上下方向に貫通し、かつ平面図において、第1のトレンチ及び第2のトレンチのそれぞれのトレンチ内の強誘電体材料を貫通する分離領域を形成するステップ、をさらに含む。
一実施形態では、強誘電体メモリ(FeRAM)装置の形成方法は、基板上に、第1の誘電体材料とワード線(WL)材料との交互層を含む積層体を形成するステップと、強誘電体材料と、強誘電体材料上のチャネル材料と、チャネル材料上の第2の誘電体材料とを第1のトレンチ内に形成するステップを含む積層体を上下方向に貫通する第1のトレンチを形成するステップと、第1のトレンチを充填した後、積層体を上下方向に貫通する第1の複数のトレンチとインターリーブされる第2のトレンチを形成するステップと、強誘電体材料と、強誘電体材料上のチャネル材料と、チャネル材料上の第2の誘電体材料とを第2のトレンチ内に形成するステップを含む第2のトレンチを充填するステップと、を含む。一実施形態では、第1のトレンチを充填するステップは、チャネル材料と第2の誘電体材料との間の第1のトレンチ内に、強誘電体材料より誘電率の高い第3の誘電体材料で形成されるキャップ層を形成するステップをさらに含む。一実施形態では、第1のトレンチを充填するステップは、キャップ層と第2の誘電体材料との間の第1のトレンチ内に酸化物ライナーを形成するステップと、第1のトレンチ内に第2の誘電体材料を形成する前に、異方性エッチングプロセスを行うことにより、酸化物ライナーの一部、キャップ層の一部、チャネル材料の一部、及び強誘電体材料の一部を第1のトレンチの底部から除去するステップをさらに含む。一実施形態では、該方法は、第2のトレンチを充填した後、第1のトレンチ及び第2のトレンチ内に、積層体を上下方向に貫通するソース線(SL)及びビット線(BL)を形成するステップをさらに含み、このうち、SL及びBLを形成するステップは、第1のトレンチ及び第2のトレンチ内に、積層体を上下方向に貫通する開口部を形成するステップと、開口部の側壁及び底部にバリア層をライニングするステップと、開口部に導電性材料を充填するステップとを含む。一実施形態では、該方法は、SLとBLとの間に分離領域を形成するステップをさらに含み、このうち、分離領域を形成するステップは、第2の誘電体材料に開口部を形成するステップと、トレンチの第1の側壁からトレンチの第2の対向する側壁まで連続的に延在する分離領域を形成する開口部内に第3の誘電体材料を充填するステップとを含む。
一実施形態では、強誘電体メモリ装置は、基板上の、第1の誘電体材料とワード線(WL)材料との交互層を含む積層体と、積層体に埋め込まれ、基板の遠位にある積層体の上面から基板に対向する積層体の下面まで延在する誘電体層と、誘電体層と積層体との間にあり、誘電体層の反対側に配置される強誘電体膜と、強誘電体膜と誘電体層との間のチャネル層と、チャネル層と誘電体層との間にあり、前記強誘電体膜の第2の誘電率より高い第1の誘電率を有する誘電体材料であるキャップ層と、誘電体層に少なくとも部分的に埋め込まれ、積層体を貫通するソース線(SL)及びビット線(BL)とを含む。一実施形態では、WL材料は導電性材料であり、チャネル層は半導体酸化物である。一実施形態では、強誘電体メモリ装置は、キャップ層と誘電体層との間の酸化物ライナーをさらに含み、酸化物ライナーと基板との間に、強誘電体膜の第1の部分、チャネル層の第2の部分、及びキャップ層の第3の部分が配置され、酸化物ライナーの誘電体層に対向する側壁は、強誘電体膜の第1の部分の第1の側壁、チャネル層の第2の部分の第2の側壁、及びキャップ層の第3の部分の第3の側壁と同一の平面にある。
本発明を例示的な実施形態を参照して説明したが、本明細書は上記実施形態に限定されるものではない。本明細書を参照して、当業者には例示的な実施形態の様々な修正例及び組み合わせ、並びに発明の他の実施形態は自明である。したがって、特許請求の範囲には、このような修正例又は実施形態が包含されることが意図される。

Claims (20)

  1. 強誘電体メモリ(FeRAM)装置を形成する方法であって、
    基板上に、第1の誘電体材料とワード線(WL)材料との交互層を含む積層体を形成するステップと、
    前記基板の遠位にある前記積層体の上面から、前記積層体の前記基板に対向する側の下面まで、前記積層体を上下方向に貫通する第1のトレンチを形成するステップと、
    前記第1のトレンチの底部及び側壁を強誘電体材料でライニングするステップと、
    前記強誘電体材料上の前記第1のトレンチ内にチャネル材料を形成するステップと、
    前記第1のトレンチに第2の誘電体材料を充填するステップと、
    前記第1のトレンチを充填した後、前記積層体を上下方向に貫通し、前記第1のトレンチとインタリーブされる第2のトレンチを形成するステップと、
    前記第2のトレンチの底部及び側壁を前記強誘電体材料でライニングするステップと、
    前記強誘電体材料上の前記第2のトレンチ内に前記チャネル材料を形成するステップと、
    前記第2のトレンチに前記第2の誘電体材料を充填するステップと、
    前記第2のトレンチを充填した後、前記第1のトレンチ及び前記第2のトレンチ内に、前記積層体を上下方向に貫通するソース線(SL)及びビット線(BL)を形成するステップと、を含む方法。
  2. 前記WL材料が導電性材料であり、前記チャネル材料が半導体酸化物である、請求項1に記載の方法。
  3. 前記チャネル材料は、酸化インジウムガリウム亜鉛、酸化インジウム亜鉛、酸化亜鉛、酸化インジウムスズ又は酸化インジウムタングステンを含む、請求項2に記載の方法。
  4. 前記第1のトレンチ内に前記チャネル材料を形成した後、前記第1のトレンチを充填する前に、前記チャネル材料上の前記第1のトレンチ内に、誘電体材料であり、前記強誘電体材料の誘電率より高い誘電率を有するキャップ層を形成するステップと、
    第2のトレンチ内にチャネル材料を形成した後、第2のトレンチを充填する前に、チャネル材料上の第2のトレンチ内にキャップ層を形成するステップと、をさらに含む請求項1に記載の方法。
  5. 前記キャップ層は、高k誘電体材料で形成される、請求項4に記載の方法。
  6. 前記SL及びBLを形成するステップは、
    前記第1のトレンチ及び前記第2のトレンチに、前記積層体を上下方向に貫通する開口部を形成するステップと、
    前記開口部の側壁に沿ってバリア層を形成するステップと、
    前記開口部に導電性材料を充填するステップと、
    を含む請求項4に記載の方法。
  7. 前記SL及び前記BLは、前記キャップ層の対向する側壁間で連続的に延在し、かつ前記キャップ層に接している、請求項6に記載の方法。
  8. 前記SL及び前記BLは、前記チャネル材料の対向する側壁間で連続的に延在し、かつ前記チャネル材料に接している、請求項6に記載の方法。
  9. 前記SL及び前記BLは、前記強誘電体材料の対向する側壁間で連続的に延在し、かつ前記強誘電体材料層に接している、請求項6に記載の方法。
  10. 前記第1のトレンチ内に前記キャップ層を形成した後、前記第1のトレンチを充填する前に、前記キャップ層上の前記第1のトレンチ内に酸化物ライナーを形成するステップと、をさらに含む請求項4に記載の方法。
  11. 第1のトレンチ内に酸化物ライナーを形成した後、第1のトレンチを充填する前に、異方性エッチングプロセスを行うことにより、第1のトレンチの底部から酸化物ライナーの一部、キャップ層の一部、チャネル材料の一部、及び強誘電体材料の一部を除去するステップ、をさらに含む請求項10に記載の方法。
  12. 前記第1のトレンチ内及び前記BLと前記SLとの間の前記第2のトレンチ内に、前記積層体を上下方向に貫通し、かつ平面図において、第1のトレンチ及び第2のトレンチのそれぞれのトレンチ内の強誘電体材料を貫通する分離領域を形成するステップ、をさらに含む請求項1に記載の方法。
  13. 基板上に、第1の誘電体材料とワード線(WL)材料との交互層を含む積層体を形成するステップと、
    前記積層体を上下方向に貫通する第1のトレンチを形成するステップと、
    前記第1のトレンチ内に、強誘電体材料と、前記強誘電体材料上のチャネル材料と、前記チャネル材料上の第2の誘電体材料とを形成するステップを含む、前記第1のトレンチを充填するステップと、
    前記第1のトレンチを充填した後、前記積層体を上下方向に貫通し、前記第1のトレンチにインターリーブされる第2のトレンチを形成するステップと、
    前記第2のトレンチ内に、前記強誘電体材料と、前記強誘電体材料上のチャネル材料と、前記チャネル材料上の前記第2の誘電体材料とを形成するステップを含む、前記第2のトレンチを充填するステップとを含む強誘電体メモリ(FeRAM)装置を形成する方法。
  14. 前記第1のトレンチを充填するステップは、前記強誘電体材料よりも高い誘電率を有する第3の誘電体材料で形成されるキャップ層を前記チャネル材料と前記第2の誘電体材料との間に形成するステップを含む、請求項13に記載の方法。
  15. 前記第1のトレンチを充填するステップは、
    前記キャップ層と前記第2の誘電体材料との間に前記第1のトレンチ内に酸化物ライナーを形成するステップと、
    前記第1のトレンチに前記第2の誘電体材料を形成する前に、異方性エッチングプロセスを行うことにより、前記第1のトレンチの底部から、前記酸化物ライナーの一部、前記キャップ層の一部、前記チャネル材料の一部、及び前記強誘電体材料の一部を除去するステップとをさらに含む請求項14に記載に方法。
  16. 第2のトレンチを充填した後、前記第1のトレンチ及び前記第2のトレンチに前記積層体を上下方向に貫通するソース線(SL)及びビット線(BL)を形成するステップであって、
    前記第1のトレンチ及び前記第2のトレンチに、前記積層体を上下方向に貫通する開口部を形成するステップと、
    前記開口部の側壁及び底部をバリア層でライニングするステップと、
    前記開口部に導電性材料を充填するステップとを含むステップをさらに含む、請求項13に記載の方法。
  17. 前記SLと前記BLとの間に単離領域を形成するステップであって、
    前記第2の誘電体材料に開口部を形成するステップと、
    前記開口部に前記単離領域を形成する第3の誘電体材料で前記開口部を充填するステップと、を含むステップをさらに含み、
    各前記単離領域は、各トレンチの第1の側壁から各トレンチの第2の対向する側壁まで連続的に延在する請求項16に記載の方法。
  18. 基板上の、第1の誘電体材料とワード線(WL)材料との交互層を含む積層体と、
    積層体に埋め込まれ、前記基板の遠位にある積層体の上面から基板に面する積層体の下面まで延在する誘電体層と、
    前記誘電体層と前記積層体との間にあり、前記誘電体層の反対側に配置された強誘電体膜と、
    前記強誘電体膜と前記誘電体層との間のチャネル層と、
    前記チャネル層と前記誘電体層との間にあり、前記強誘電体膜の第2の誘電率よりも高い第1の誘電率を有する誘電体材料であるキャップ層と、
    前記誘電体層に少なくとも部分的に埋め込まれ、前記積層体を貫通するソース線(SL)及びビット線(BL)とを含む、強誘電体メモリ装置。
  19. 前記WL材料は導電性材料であり、前記チャネル層は半導体酸化物である請求項18に記載の強誘電体メモリ装置。
  20. 前記キャップ層と前記ゲート誘電体層との間の酸化物ライナーをさらに含み、前記第1の部分、前記チャネル層の第2の部分、前記キャップ層の第3の部分は、前記酸化物ライナーと前記基板との間に配置され、前記誘電体層に対向する前記酸化物ライナーの側壁は、前記強誘電体膜の前記第1の部分の第1の側壁、前記チャネル層の前記第2の部分の第2の側壁、及び前記キャップ層の第3の部分の第3の側壁と同じ平面にある、請求項18に記載の強誘電体メモリ装置。
JP2021117112A 2020-07-16 2021-07-15 三次元強誘電体メモリ装置及びその形成方法 Pending JP2022019664A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063052499P 2020-07-16 2020-07-16
US63/052,499 2020-07-16
US17/316,167 2021-05-10
US17/316,167 US11903214B2 (en) 2020-07-16 2021-05-10 Three-dimensional ferroelectric random access memory devices and methods of forming

Publications (1)

Publication Number Publication Date
JP2022019664A true JP2022019664A (ja) 2022-01-27

Family

ID=76958716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021117112A Pending JP2022019664A (ja) 2020-07-16 2021-07-15 三次元強誘電体メモリ装置及びその形成方法

Country Status (7)

Country Link
US (1) US11903214B2 (ja)
EP (1) EP3940777A1 (ja)
JP (1) JP2022019664A (ja)
KR (1) KR102644760B1 (ja)
CN (1) CN113594175B (ja)
DE (1) DE102021112675A1 (ja)
TW (1) TWI820442B (ja)

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6173684B2 (ja) * 2012-12-25 2017-08-02 株式会社日立ハイテクノロジーズ 半導体装置の製造方法
US9419010B2 (en) 2014-02-24 2016-08-16 Macronix International Co., Ltd. High aspect ratio etching method
JP2015176910A (ja) * 2014-03-13 2015-10-05 株式会社東芝 半導体メモリ
US20160118404A1 (en) 2014-10-09 2016-04-28 Haibing Peng Three-dimensional non-volatile ferroelectric random access memory
EP3038141B1 (en) * 2014-12-23 2019-08-28 IMEC vzw Method of reading a memory cell of a vertical ferroelectric memory device
KR20180045660A (ko) * 2016-10-26 2018-05-04 에스케이하이닉스 주식회사 비휘발성 메모리 장치 및 그 기록 방법
KR102653527B1 (ko) 2016-11-09 2024-04-01 에스케이하이닉스 주식회사 비휘발성 메모리 장치 및 그 제조 방법
TWI621248B (zh) 2016-12-15 2018-04-11 旺宏電子股份有限公司 立體記憶體元件及其製作方法
KR20180106661A (ko) * 2017-03-21 2018-10-01 에스케이하이닉스 주식회사 강유전성 메모리 소자 및 그 제조 방법
US9941299B1 (en) * 2017-05-24 2018-04-10 Sandisk Technologies Llc Three-dimensional ferroelectric memory device and method of making thereof
CN109698162A (zh) 2017-10-20 2019-04-30 萨摩亚商费洛储存科技股份有限公司 三维存储元件及其制造方法
US10777566B2 (en) 2017-11-10 2020-09-15 Macronix International Co., Ltd. 3D array arranged for memory and in-memory sum-of-products operations
KR102448489B1 (ko) 2018-02-02 2022-09-30 선라이즈 메모리 코포레이션 3-차원 수직 nor 플래시 박막 트랜지스터 스트링들
KR102538701B1 (ko) * 2018-02-22 2023-06-01 에스케이하이닉스 주식회사 강유전성 메모리 장치 및 그 구동 방법
US10403631B1 (en) * 2018-08-13 2019-09-03 Wuxi Petabyte Technologies Co., Ltd. Three-dimensional ferroelectric memory devices
CN109473431A (zh) * 2018-11-13 2019-03-15 中国科学院微电子研究所 一种三维铁电存储器及其制作方法
WO2020118301A1 (en) 2018-12-07 2020-06-11 Sunrise Memory Corporation Methods for forming multi-layer vertical nor-type memory string arrays
US11177284B2 (en) * 2018-12-20 2021-11-16 Sandisk Technologies Llc Ferroelectric memory devices containing a two-dimensional charge carrier gas channel and methods of making the same
TWI704680B (zh) 2018-12-24 2020-09-11 旺宏電子股份有限公司 立體記憶體元件及其製作方法
US10811427B1 (en) * 2019-04-18 2020-10-20 Macronix International Co., Ltd. Semiconductor structure and manufacturing method thereof
CN111244098B (zh) * 2020-01-16 2021-03-26 长江存储科技有限责任公司 三维存储器及其制备方法
US11532640B2 (en) * 2020-05-29 2022-12-20 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing a three-dimensional memory
US11587823B2 (en) 2020-06-29 2023-02-21 Taiwan Semiconductor Manufacturing Co., Ltd. Three-dimensional memory device and method
US11569165B2 (en) * 2020-07-29 2023-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Memory cell array, semiconductor device including the same, and manufacturing method thereof

Also Published As

Publication number Publication date
CN113594175A (zh) 2021-11-02
TW202218136A (zh) 2022-05-01
KR102644760B1 (ko) 2024-03-06
CN113594175B (zh) 2024-01-12
TWI820442B (zh) 2023-11-01
EP3940777A1 (en) 2022-01-19
DE102021112675A1 (de) 2022-01-20
US20220020775A1 (en) 2022-01-20
US11903214B2 (en) 2024-02-13
KR20220009878A (ko) 2022-01-25

Similar Documents

Publication Publication Date Title
US11495618B2 (en) Three-dimensional memory device and method
KR102597954B1 (ko) 메모리 어레이 계단 구조체
US20220310132A1 (en) Memory Array Word Line Routing
US20230165011A1 (en) Three-dimensional stackable ferroelectric random access memory devices and methods of forming
US20220358984A1 (en) Memory Array Including Dummy Regions
US11770934B2 (en) Semiconductor structure and method of fabricating the same
CN113745238A (zh) 三维存储器件和方法
US20230008998A1 (en) Three-Dimensional Memory Device and Method
US20230063038A1 (en) Memory Device and Method of Forming Thereof
US11844224B2 (en) Memory structure and method of forming the same
US20220285394A1 (en) Three-dimensional memory device and method
CN113594175B (zh) 铁电随机存取存储器器件及其形成方法
US20240155845A1 (en) Three-dimensional ferroelectric random access memory devices and methods of forming
TWI805343B (zh) 半導體裝置及其製造方法
CN116598288A (zh) 集成电路器件