以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
本明細書においては、半導体基板の深さ方向と平行な方向における一方の側を「上」、他方の側を「下」と称する。基板、層またはその他の部材の2つの主面のうち、一方の面を上面、他方の面を下面と称する。「上」、「下」、「おもて」、「裏」の方向は重力方向、または、半導体装置の実装時における基板等への取り付け方向に限定されない。
本明細書では、X軸、Y軸およびZ軸の直交座標軸を用いて技術的事項を説明する場合がある。本明細書では、半導体基板の上面と平行な面をXY面とし、半導体基板の深さ方向をZ軸とする。なお、本明細書において、Z軸方向に半導体基板を視た場合について平面視と称する。
各実施例においては、第1導電型をN型、第2導電型をP型とした例を示しているが、第1導電型をP型、第2導電型をN型としてもよい。この場合、各実施例における基板、層、領域等の導電型は、それぞれ逆の極性となる。
本明細書では、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれ、それが付されていない層や領域よりも高ドーピング濃度および低ドーピング濃度であることを意味し、++は+よりも高ドーピング濃度、−−は−よりも低ドーピング濃度であることを意味する。
本明細書においてドーピング濃度とは、ドナーまたはアクセプタ化したドーパントの濃度を指す。したがって、その単位は、/cm3である。本明細書において、ドナーおよびアクセプタの濃度差(すなわちネットドーピング濃度)をドーピング濃度とする場合がある。この場合、ドーピング濃度はSR法で測定できる。また、ドナーおよびアクセプタの化学濃度をドーピング濃度としてもよい。この場合、ドーピング濃度はSIMS法で測定できる。特に限定していなければ、ドーピング濃度として、上記のいずれを用いてもよい。特に限定していなければ、ドーピング領域におけるドーピング濃度分布のピーク値を、当該ドーピング領域におけるドーピング濃度としてよい。
また、本明細書においてドーズ量とは、イオン注入を行う際に、ウェーハに注入される単位面積あたりのイオンの個数をいう。したがって、その単位は、/cm2である。なお、半導体領域のドーズ量は、その半導体領域の深さ方向にわたってドーピング濃度を積分した積分濃度とすることができる。その積分濃度の単位は、/cm2である。したがって、ドーズ量と積分濃度とを同じものとして扱ってよい。積分濃度は、半値幅までの積分値としてもよく、他の半導体領域のスペクトルと重なる場合には、他の半導体領域の影響を除いて導出してよい。
よって、本明細書では、ドーピング濃度の高低をドーズ量の高低として読み替えることができる。即ち、一の領域のドーピング濃度が他の領域のドーピング濃度よりも高い場合、当該一の領域のドーズ量が他の領域のドーズ量よりも高いものと理解することができる。
図1Aは、実施例1に係る半導体装置100の構成の一例を示す。本例の半導体装置100は、トランジスタ部70およびダイオード部80を備える半導体チップである。例えば、半導体装置100は、逆導通IGBT(RC−IGBT:Reverse Conducting IGBT)である。
トランジスタ部70は、半導体基板10の下面側に設けられたコレクタ領域を半導体基板10の上面に投影した領域である。コレクタ領域は、第2導電型を有する。本例のコレクタ領域は、一例としてP+型である。トランジスタ部70は、IGBT等のトランジスタを含む。トランジスタ部70は、トランジスタ部70とダイオード部80の境界に位置する境界部90を含む。
ダイオード部80は、カソード領域82を半導体基板10の上面に投影した領域であってよい。ダイオード部80は、半導体基板10の上面においてトランジスタ部70と隣接して設けられた還流ダイオード(FWD:Free Wheel Diode)等のダイオードを含む。
図1Aにおいては、半導体装置100のエッジ側であるチップ端部周辺の領域を示しており、他の領域を省略している。例えば、本例の半導体装置100のX軸方向の負側の領域には、エッジ終端構造部が設けられてよい。エッジ終端構造部は、半導体基板10の上面側の電界集中を緩和する。エッジ終端構造部は、例えばガードリング、フィールドプレート、リサーフおよびこれらを組み合わせた構造を有する。なお、本例では、便宜上、X軸方向の負側のエッジについて説明するものの、半導体装置100の他のエッジについても同様である。
半導体基板10は、シリコン基板であってよく、炭化シリコン基板であってよく、窒化ガリウム等の窒化物半導体基板等であってもよい。本例の半導体基板10は、シリコン基板である。
本例の半導体装置100は、半導体基板10の上面において、ゲートトレンチ部40、ダミートレンチ部30、第1ウェル領域11、エミッタ領域12、アノード領域13、ベース領域14、コンタクト領域15および第1高濃度領域91を備える。また、本例の半導体装置100は、半導体基板10の上面の上方に設けられたエミッタ電極52およびゲート金属層50を備える。
エミッタ電極52およびゲート金属層50は、金属を含む材料で形成される。例えば、エミッタ電極52の少なくとも一部の領域は、アルミニウム、アルミニウム‐シリコン合金、またはアルミニウム‐シリコン−銅合金で形成されてよい。ゲート金属層50の少なくとも一部の領域は、アルミニウム、アルミニウム‐シリコン合金、またはアルミニウム‐シリコン−銅合金で形成されてよい。エミッタ電極52およびゲート金属層50は、アルミニウム等で形成された領域の下層にチタンやチタン化合物等で形成されたバリアメタルを有してよい。エミッタ電極52およびゲート金属層50は、互いに分離して設けられる。
エミッタ電極52およびゲート金属層50は、層間絶縁膜を挟んで、半導体基板10の上方に設けられる。層間絶縁膜は、図1Aでは省略されている。層間絶縁膜には、コンタクトホール49、コンタクトホール54およびコンタクトホール56が貫通して設けられている。
コンタクトホール49は、ゲート金属層50とゲートランナー48とを接続する。コンタクトホール49の内部には、タングステン等で形成されたプラグが形成されてもよい。
ゲートランナー48は、ゲート金属層50とトランジスタ部70のゲートトレンチ部40とを接続する。一例において、ゲートランナー48は、半導体基板10の上面において、ゲートトレンチ部40内のゲート導電部と接続される。ゲートランナー48は、ダミートレンチ部30内のダミー導電部とは接続されない。例えば、ゲートランナー48は、不純物がドープされたポリシリコン等で形成される。
本例のゲートランナー48は、コンタクトホール49の下方から、ゲートトレンチ部40の先端部まで形成される。ゲートランナー48と半導体基板10の上面との間には、酸化膜等の絶縁膜が形成される。ゲートトレンチ部40の先端部において、ゲート導電部は半導体基板10の上面に露出している。ゲートトレンチ部40は、ゲート導電部の当該露出した部分にて、ゲートランナー48と接触する。
コンタクトホール56は、エミッタ電極52とダミートレンチ部30内のダミー導電部とを接続する。コンタクトホール56の内部には、タングステン等で形成されたプラグが形成されてもよい。
接続部25は、エミッタ電極52とダミー導電部との間に設けられる。接続部25は、不純物がドープされたポリシリコン等の、導電性を有する材料である。ここでは、接続部25は、N型の不純物がドープされたポリシリコン(N+)である。接続部25は、酸化膜等の絶縁膜等を介して、半導体基板10の上面の上方に設けられる。
ゲートトレンチ部40は、所定の配列方向(本例ではY軸方向)に沿って所定の間隔で配列される。本例のゲートトレンチ部40は、半導体基板10の上面に平行であって配列方向と垂直な延伸方向(本例ではX軸方向)に沿って延伸する2つの延伸部分39と、2つの延伸部分39を接続する接続部分41を有してよい。
接続部分41は、少なくとも一部が曲線状に形成されることが好ましい。ゲートトレンチ部40の2つの延伸部分39の端部を接続することで、延伸部分39の端部における電界集中を緩和することができる。ゲートトレンチ部40の接続部分41において、ゲートランナー48がゲート導電部と接続されてよい。
ダミートレンチ部30は、ゲートトレンチ部40と同様に、所定の配列方向(本例ではY軸方向)に沿って所定の間隔で配列される。本例のダミートレンチ部30は、ゲートトレンチ部40と同様に、半導体基板10の上面においてU字形状を有してよい。即ち、ダミートレンチ部30は、延伸方向に沿って延伸する2つの延伸部分29と、2つの延伸部分29を接続する接続部分31を有してよい。
なお、ここでは、トランジスタ部70においてゲートトレンチ部40の間に2本のダミートレンチ部30を設けているが、ゲートトレンチ部40に対するダミートレンチ部30の本数や配置は適宜設定してよい。また、トランジスタ部70においてダミートレンチ部30を設けず、全てゲートトレンチ部40としたいわゆるフルゲート構造としてもよい。
エミッタ電極52は、ゲートトレンチ部40、ダミートレンチ部30、第1ウェル領域11、エミッタ領域12、アノード領域13、ベース領域14、コンタクト領域15および第1高濃度領域91の上方に形成される。
第1ウェル領域11は、後述するドリフト領域18よりも半導体基板10の上面側に設けられた第2導電型の領域である。第1ウェル領域11は、半導体装置100のエッジ側に設けられるウェル領域の一例である。第1ウェル領域11は、一例としてP+型である。第1ウェル領域11は、ゲート金属層50が設けられる側の活性領域の端部から、予め定められた範囲で形成される。第1ウェル領域11の拡散深さは、ゲートトレンチ部40およびダミートレンチ部30の深さよりも深くてよい。ゲートトレンチ部40およびダミートレンチ部30の、ゲート金属層50側の一部の領域は、第1ウェル領域11に形成される。ゲートトレンチ部40およびダミートレンチ部30の延伸方向の端の底は、第1ウェル領域11に覆われてよい。
コンタクトホール54は、トランジスタ部70において、エミッタ領域12およびコンタクト領域15の各領域の上方に形成される。また、コンタクトホール54は、ダイオード部80において、アノード領域13の上方に形成される。コンタクトホール54は、境界部90において、エミッタ領域12およびコンタクト領域15の各領域の上方に形成される。いずれのコンタクトホール54も、X軸方向両端に設けられたベース領域14および第1ウェル領域11の上方には設けられていない。このように、層間絶縁膜には、1又は複数のコンタクトホール54が形成されている。1又は複数のコンタクトホール54は、延伸方向に延伸して設けられてよい。
境界部90は、コレクタ領域を半導体基板10の上面に投影した領域のうち、ゲートトレンチ部40がY軸方向に一定の周期で配置される領域と、ダイオード部80との境界の領域を指す。
第1メサ部60、第2メサ部62および第3メサ部64は、半導体基板10の上面と平行な面内において、Y軸方向には各トレンチ部に隣接して設けられたメサ部である。メサ部とは、隣り合う2つのトレンチ部に挟まれた半導体基板10の部分であって、半導体基板10の上面から、各トレンチ部の最も深い底部の深さまでの部分であってよい。各トレンチ部の延伸部分を1つのトレンチ部としてよい。即ち、2つの延伸部分に挟まれる領域をメサ部としてよい。
第1メサ部60は、トランジスタ部70において、ダミートレンチ部30およびゲートトレンチ部40の少なくとも1つに隣接して設けられる。また、第1メサ部60は、境界部90において、トランジスタ部70に隣接して設けられている。第1メサ部60は、半導体基板10の上面において、第1ウェル領域11と、エミッタ領域12と、ベース領域14と、コンタクト領域15とを有する。第1メサ部60では、エミッタ領域12およびコンタクト領域15が延伸方向において交互に設けられている。
第2メサ部62は、境界部90において、ダイオード部80に隣接して設けられる。第2メサ部62は、半導体基板10の上面において、第1ウェル領域11と、ベース領域14と、コンタクト領域15とを有する。なお、境界部90において、トランジスタ部70に隣接する第1メサ部60と、ダイオード部80に隣接する第2メサ部62とに挟まれる領域は、第1メサ部60および第2メサ部62の何れであってもよい。
第3メサ部64は、ダイオード部80において、隣り合うダミートレンチ部30に挟まれた領域に設けられる。第3メサ部64は、半導体基板10の上面において、第1ウェル領域11と、アノード領域13と、第1高濃度領域91とを有する。
ベース領域14は、トランジスタ部70において、半導体基板10の上面側に設けられた第2導電型の領域である。ベース領域14は、一例としてP−型である。ベース領域14は、半導体基板10の上面において、第1メサ部60および第2メサ部62のX軸方向における両端部に設けられてよい。なお、図1Aは、当該ベース領域14のX軸方向の一方の端部のみを示している。
エミッタ領域12は、第1メサ部60の上面において、ゲートトレンチ部40と接して設けられる。エミッタ領域12は、第1メサ部60を挟んでX軸方向に延伸する2本のトレンチ部の一方から他方まで、Y軸方向に設けられてよい。エミッタ領域12は、コンタクトホール54の下方にも設けられている。図1Aにおいては、平面視でコンタクトホール54と重なるエミッタ領域12の境界を、破線で示している。
また、エミッタ領域12は、ダミートレンチ部30と接してよく、接しなくてもよい。本例においては、エミッタ領域12がダミートレンチ部30と接する。本例のエミッタ領域12は第1導電型である。本例のエミッタ領域12は、一例としてN+型である。
コンタクト領域15は、ベース領域14よりもドーピング濃度の高い第2導電型の領域である。本例のコンタクト領域15は、一例としてP+型である。本例のコンタクト領域15は、第1メサ部60の上面に設けられる。コンタクト領域15は、第1メサ部60を挟んでX軸方向に延伸する2本のトレンチ部の一方から他方まで、Y軸方向に設けられてよい。コンタクト領域15は、ゲートトレンチ部40と接してよく、接しなくてもよい。また、コンタクト領域15は、ダミートレンチ部30と接してよく、接しなくてもよい。本例においては、コンタクト領域15が、ダミートレンチ部30およびゲートトレンチ部40と接する。コンタクト領域15は、コンタクトホール54の下方にも設けられている。図1Aにおいては、平面視でコンタクトホール54と重なるコンタクト領域15の境界を、破線で示している。
また、コンタクト領域15は、第2メサ部62の上面にも設けられる。一つの第2メサ部62の上面に設けられるコンタクト領域15の面積は、一つの第1メサ部60の上面に設けられるコンタクト領域15の面積よりも大きい。第2メサ部62の上面におけるコンタクト領域15は、第2メサ部62のX軸方向における両端部に設けられるベース領域14に挟まれる領域全体に設けられてよい。
アノード領域13は、ダイオード部80において、ドリフト領域18よりも半導体基板10の上面側に設けられた第2導電型の領域である。アノード領域13は、一例としてP−−型である。アノード領域13のドーピング濃度は、ベース領域14のドーピング濃度よりも低い。例えば、アノード領域13は、1.0×1013/cm2〜2.0×1013/cm2のドーズ量を有する。アノード領域13のドーパントは、ボロンであってよい。
本例のアノード領域13は、第3メサ部64の上面に設けられる。アノード領域13は、第3メサ部64において、第3メサ部64を挟む一方のダミートレンチ部30から、他方のダミートレンチ部30に渡って形成される。即ち、半導体基板10の上面において、第3メサ部64のY軸方向の幅と、第3メサ部64に設けられたアノード領域13のY軸方向の幅は等しい。なお、第3メサ部64には、エミッタ領域12が形成されてもよい。
第1高濃度領域91は、ドリフト領域18よりも半導体基板10の上面側に設けられている。第1高濃度領域91は、アノード領域13よりも高ドーピング濃度である第2導電型の領域である。第1高濃度領域91は、一例としてP−型である。第1高濃度領域91のドーピング濃度は、ベース領域14のドーピング濃度と同一であってよい。即ち、第1高濃度領域91は、ベース領域14と共通のプロセスにより形成されてよい。また、第1高濃度領域91は、ベース領域14と異なるドーピング濃度であってよい。例えば、第1高濃度領域91のドーズ量は、1.0×1013/cm2〜3.0×1013/cm2である。
X軸方向において、第1高濃度領域91は、アノード領域13と第1ウェル領域11との間に設けられる。本例の第1高濃度領域91は、X軸方向の負側において、第1ウェル領域11と隣接して設けられている。また、第1高濃度領域91は、X軸方向の正側において、アノード領域13と接している。
ここで、本例のアノード領域13は、平面視における延伸方向において、カソード領域82からカソード領域82の外側まで延伸している。これにより、本例の第1高濃度領域91は、アノード領域13とカソード領域82の外側で接している。カソード領域82の外側とは、平面視で、カソード領域82が設けられた領域以外の領域を指す。
第1高濃度領域91は、半導体基板10の上面側において、延伸方向においてアノード領域13と配列されている。第1高濃度領域91は、アノード領域13と接して設けられる。但し、第1高濃度領域91は、アノード領域13と離間して設けられてもよい。この場合、第1高濃度領域91およびアノード領域13との間には、アノード領域13および第1高濃度領域91のドーピング濃度と異なるドーピング濃度の第2導電型の領域が設けられてよい。
本例の第1高濃度領域91は、ダイオード部80において、アノード領域13よりもエッジ側に設けられる。エッジ側とは、ダイオード部80においては、アノード領域13やカソード領域82が設けられる活性領域よりも外側の領域を指す。本例では、エッジ側は、活性領域よりもX軸方向の負側の領域として図示されている。例えば、アノード領域13と第1高濃度領域91との間が、平面視における延伸方向において、ダイオード部80における1又は複数のコンタクトホール54の延伸方向の端部よりも外側に位置している。
カソード領域82は、ダイオード部80において、半導体基板10の下面側に設けられた第1導電型の領域である。本例のカソード領域82は、一例としてN+型である。平面視でカソード領域82が設けられる領域は、一点鎖線で示されている。
本例の半導体装置100は、エッジ側に第1高濃度領域91を設けることにより、アノード領域13のドーピング濃度を低下させた場合であっても、エッジ周辺の逆回復時のキャリア引き抜き効率の低下を抑制することができる。これにより、半導体装置100の逆回復耐量の低下を抑制できる。
なお、半導体装置100は、ドリフト領域18にキャリアのライフタイムを制御するためのキラーを設けてもよい。本例の半導体装置100は、アノード領域13のドーピング濃度を低ドーピング濃度とすることができるので、ドリフト領域18に設けるキラーの濃度を高ドーピング濃度にする必要がない。
図1Bは、図1Aにおけるa−a'断面の一例を示す図である。a−a'断面は、トランジスタ部70およびダイオード部80において、エミッタ領域12、コンタクト領域15およびアノード領域13を通過するYZ面である。本例の半導体装置100は、a−a'断面において、半導体基板10、層間絶縁膜38、エミッタ電極52およびコレクタ電極24を有する。エミッタ電極52は、半導体基板10の上面21および層間絶縁膜38の上面に形成される。
ドリフト領域18は、半導体基板10に設けられた第1導電型の領域である。本例のドリフト領域18は、一例としてN−型である。ドリフト領域18は、半導体基板10において他のドーピング領域が形成されずに残存した領域であってよい。即ち、ドリフト領域18のドーピング濃度は半導体基板10のドーピング濃度であってよい。
バッファ領域20は、ドリフト領域18の下方に設けられた第1導電型の領域である。本例のバッファ領域20は、一例としてN型である。バッファ領域20のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。バッファ領域20は、ベース領域14の下面側から広がる空乏層が、第2導電型のコレクタ領域22および第1導電型のカソード領域82に到達することを防ぐフィールドストップ層として機能してよい。
コレクタ領域22は、トランジスタ部70において、半導体基板10の下面側に設けられる第2導電型の領域である。コレクタ領域22は、一例としてP+型である。本例のコレクタ領域22は、バッファ領域20の下方に設けられる。
カソード領域82は、ダイオード部80において、バッファ領域20の下方に設けられる。境界Rは、コレクタ領域22とカソード領域82との境界である。即ち、境界Rは、トランジスタ部70とダイオード部80との境界を示す。
コレクタ電極24は、半導体基板10の下面23に形成される。コレクタ電極24は、金属等の導電材料で形成される。
ここで、コレクタ領域22は、第2メサ部62の下面23側の領域までY軸方向に延伸してよい。第2メサ部62の下面23までコレクタ領域22が延伸していることにより、トランジスタ部70のエミッタ領域12とダイオード部80のカソード領域82との距離を確保することができる。また、境界部90のエミッタ領域12とダイオード部80のカソード領域82との距離も確保することができる。このため、トランジスタ部70のエミッタ領域12および境界部90のエミッタ領域12を含むゲート構造部からドリフト領域18に注入される電子が、ダイオード部80のカソード領域82に流出することを防ぐことができる。
本例においては、カソード領域82が第2メサ部62の直下まで設けられる場合と比べて、第2メサ部62のコンタクト領域15と、ダイオード部80のカソード領域82との距離も長くすることができる。これにより、ダイオード部80が導通する場合に、ベース領域14よりも高いドーピング濃度のコンタクト領域15から、カソード領域82へ正孔が注入されることを抑えることができる。
蓄積領域16は、第1メサ部60、第2メサ部62および第3メサ部64において、ドリフト領域18の上方に設けられる第1導電型の領域である。本例の蓄積領域16は、一例としてN型である。蓄積領域16は、ゲートトレンチ部40に接して設けられる。蓄積領域16は、ダミートレンチ部30に接してよく、接さなくてもよい。蓄積領域16のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。蓄積領域16を設けることで、キャリア注入促進効果(IE効果)を高めて、トランジスタ部70のオン電圧を低減することができる。
なお、ここでは、蓄積領域16は、第1メサ部60、第2メサ部62および第3メサ部64において設けられているが、第1メサ部60および第2メサ部62に設けられ第3メサ部64に設けられなくてもよく、第1メサ部60に設けられ第2メサ部62および第3メサ部64に設けられなくてもよい。
ベース領域14は、第1メサ部60および第2メサ部62において、蓄積領域16の上方に設けられる第2導電型の領域である。ベース領域14は、ゲートトレンチ部40に接して設けられる。
エミッタ領域12は、第1メサ部60において、ベース領域14と上面21との間に設けられる。エミッタ領域12は、ゲートトレンチ部40と接して設けられる。エミッタ領域12は、ダミートレンチ部30と接してよく、接さなくてもよい。エミッタ領域12のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。エミッタ領域12のドーパントの一例はヒ素(As)である。なお、エミッタ領域12は、第2メサ部62に設けられなくてよい。
コンタクト領域15は、第2メサ部62において、蓄積領域16の上方に設けられる。コンタクト領域15は、第2メサ部62において、ゲートトレンチ部40に接して設けられる。
アノード領域13は、第3メサ部64において、蓄積領域16の上方に設けられる。本例のアノード領域13は、平面視で、配列方向において、カソード領域82とコレクタ領域22との境界と同一の位置に端部を有する。即ち、アノード領域13は、トランジスタ部70とダイオード部80との境界位置まで設けられている。例えば、アノード領域13は、境界Rにダミートレンチ部30が設けられている場合には、当該ダミートレンチ部30の側壁まで設けられる。このように、カソード領域82とコレクタ領域22との境界と同一の位置とは、アノード領域13の端部が境界Rと完全に一致する場合のみならず、アノード領域13の端部に隣接するダミートレンチ部30が境界Rと対応して設けられることにより、アノード領域13の端部が境界Rと完全に一致しない場合も含む。なお、アノード領域13は、コレクタ領域22の上方にも設けられてよい。
1つ以上のゲートトレンチ部40および1つ以上のダミートレンチ部30は、上面21に設けられる。各トレンチ部は、上面21からドリフト領域18まで設けられる。エミッタ領域12、アノード領域13、ベース領域14、コンタクト領域15および蓄積領域16の少なくともいずれかが設けられる領域においては、各トレンチ部はこれらの領域も貫通して、ドリフト領域18に到達する。トレンチ部がドーピング領域を貫通するとは、ドーピング領域を形成してからトレンチ部を形成する順序で製造したものに限定されない。トレンチ部を形成した後に、トレンチ部の間にドーピング領域を形成したものも、トレンチ部がドーピング領域を貫通しているものに含まれる。
ゲートトレンチ部40は、上面21に形成されたゲートトレンチ、ゲート絶縁膜42およびゲート導電部44を有する。ゲート絶縁膜42は、ゲートトレンチの内壁を覆って形成される。ゲート絶縁膜42は、ゲートトレンチの内壁の半導体を酸化または窒化して形成してよい。ゲート導電部44は、ゲートトレンチの内部においてゲート絶縁膜42よりも内側に形成される。ゲート絶縁膜42は、ゲート導電部44と半導体基板10とを絶縁する。ゲート導電部44は、ポリシリコン等の導電材料で形成される。ゲートトレンチ部40は、上面21において層間絶縁膜38により覆われる。
ゲート導電部44は、半導体基板10の深さ方向において、ゲート絶縁膜42を挟んで第1メサ部60側で隣接するベース領域14と対向する領域を含む。ゲート導電部44に所定の電圧が印加されると、ベース領域14のうちゲートトレンチに接する界面の表層に、電子の反転層によるチャネルが形成される。
ダミートレンチ部30は、ゲートトレンチ部40と同一の構造を有してよい。ダミートレンチ部30は、上面21側に形成されたダミートレンチ、ダミー絶縁膜32およびダミー導電部34を有する。ダミー絶縁膜32は、ダミートレンチの内壁を覆って形成される。ダミー導電部34は、ダミートレンチの内部に形成され、且つ、ダミー絶縁膜32よりも内側に形成される。ダミー絶縁膜32は、ダミー導電部34と半導体基板10とを絶縁する。ダミートレンチ部30は、上面21において層間絶縁膜38により覆われる。
層間絶縁膜38は、半導体基板10の上面の上方に設けられている。層間絶縁膜38は、エミッタ領域12と半導体基板10とを電気的に接続するための1又は複数のコンタクトホール54が設けられている。他のコンタクトホール49およびコンタクトホール54も同様に、層間絶縁膜38を貫通して設けられてよい。層間絶縁膜38の上方には、エミッタ電極52が設けられている。
図2は、比較例に係る半導体装置500の上面図の一例である。本例の半導体装置500は、トランジスタ部70のベース領域およびダイオード部80のアノード領域がP−−型の第2導電型領域513によって形成されている点、および、ダイオード部80の第2導電型領域513が第1ウェル領域11に接するダイオード部80のエッジ側の端部まで形成されている点で相違する。
第2導電型領域513は、第1メサ部60、第2メサ部62および第3メサ部64に設けられる。また、第2導電型領域513は、上述のように、トランジスタ部70およびダイオード部80のエッジ側の端部まで形成される。したがって、半導体装置500は、ダイオード部80のアノード領域と、トランジスタ部70およびダイオード部80のエッジ側の端部の領域とが、同一のドーピング濃度を有する。例えば、第2導電型領域513は、半導体基板10の全面に同一の条件でイオン注入が実行されることにより設けられる。また、トランジスタ部70のコンタクト領域15は、第2導電型領域513を設ける領域をマスクして追加のイオン注入を実行することにより、第2導電型領域513よりも高ドーピング濃度に設けられる。第2導電型領域513のドーピング濃度は、トランジスタ部70のベース領域としても機能するので、トランジスタ部70の特性に影響する。
ここで、半導体装置500は、トランジスタ部70の閾値電圧Vthの制約があるので、トランジスタ部70の特性を考慮して、第2導電型領域513のドーピング濃度を設定する必要がある。この場合、トランジスタ部70の特性を優先すると、トランジスタ部70のチャネルに合わせて第2導電型領域513のドーピング濃度が上昇することにより、半導体装置500の逆回復時に多数のキャリアが第2導電型領域513から注入されて、スイッチング損失Errが上昇する。また、本例のようにダイオード部80の特性を優先すると、ダイオード部80のアノード領域に合わせてトランジスタ部70およびダイオード部80のエッジ側のドーピング濃度が薄くなり逆回復時のキャリアの引き抜き効率が低下し、逆回復耐量が悪化する。このように、半導体装置500は、トランジスタ部70とダイオード部80の特性が別個に最適に設計されておらず、トランジスタ部70およびダイオード部80の導通特性と、逆回復耐量との両立が困難である。
これに対して、実施例1に係る半導体装置100は、低ドーピング濃度のアノード領域13と高ドーピング濃度の第1高濃度領域91とを選択的に設けることにより、ダイオード部80の順方向電圧Vfを向上させ、スイッチング損失Errを低減させることができる。このように、半導体装置100は、逆回復耐量の低下を抑制しつつ、トランジスタ部70およびダイオード部80の導通特性を独立して制御できる。
図3Aは、実施例2に係る半導体装置100の上面図の一例である。本例の半導体装置100は、アノード領域13および第1高濃度領域91を形成する領域が実施例1に係る半導体装置100と異なる。
アノード領域13は、X軸方向に延伸する長さが、実施例1の場合と相違する。本例のアノード領域13は、実施例1の場合よりも、カソード領域82と近くなるように、X軸方向に延伸している。アノード領域13におけるX軸方向の負側の端部は、コンタクトホール54におけるX軸方向の負側の端部と同一の位置まで延伸している。
第1高濃度領域91は、X軸方向に延伸する長さが、実施例1の場合と相違する。本例の第1高濃度領域91は、実施例1の場合よりも、カソード領域82と近くなるように、X軸方向の正側に延伸している。第1高濃度領域91におけるX軸方向の正側の端部は、コンタクトホール54におけるX軸方向の負側の端部と同一の位置まで延伸している。
即ち、本例のアノード領域13および第1高濃度領域91は、X軸方向において、互いに接触するように延伸している。また、アノード領域13と第1高濃度領域91との間が、コンタクトホール54のX軸方向の負側の端部と同一の位置に位置している。なお、コンタクトホール54のX軸方向の負側の端部とは、コンタクトホール54の内部に設けられた導電部材と、半導体基板10との界面のうち、X軸方向の負側の端部を指してよい。但し、コンタクトホール54の側壁がZ軸に対して斜めに設けられている場合、アノード領域13と第1高濃度領域91との間が、コンタクトホール54のX軸方向の負側の端部と完全に同一の位置に位置している場合のみならず、コンタクトホール54の側壁の少なくとも一部と同一の位置に位置していればよい。
また、アノード領域13は、Y軸方向に延伸する位置が、実施例1の場合と相違する。本例のアノード領域13は、実施例1の場合よりもトランジスタ部70側に延伸している。アノード領域13におけるY軸方向の正側の端部は、境界部90に設けられる。
第4メサ部66は、境界部90において、半導体基板10の上面側にアノード領域13を有するメサ部である。本例の第4メサ部66は、境界部90におけるダイオード部80側の端部において、1つ設けられる。但し、第4メサ部66は、境界部90において、複数設けられてもよい。
図3Bは、実施例2に係る半導体装置100のa−a'断面図の一例である。本例の半導体装置100は、境界部90において、第1メサ部60と、第2メサ部62と、第4メサ部66とを有する。このように、半導体装置100は、ダイオード部80に限らず、トランジスタ部70にまでアノード領域13を形成してよい。
アノード領域13は、平面視で、配列方向において、カソード領域82からコレクタ領域22が設けられた領域まで延伸している。即ち、アノード領域13は、カソード領域82の上方だけでなく、コレクタ領域22の上方にも設けられてよい。
本例の半導体装置100は、実施例1に係る第1高濃度領域91よりも、第1高濃度領域91のX軸方向に延伸する長さを長くしている。これにより、ダイオード部80の特性を悪化させることなく、半導体装置100の逆回復耐量を向上させることができる。
なお、本例で示したように、アノード領域13は、Y軸方向に延伸する位置が実施例1の場合よりもトランジスタ部70側に延伸していてもよいし、実施例1よりもダイオード部80側に後退していてもよい。すなわち、アノード領域13におけるY軸方向の正側の端部が、コレクタ領域22とカソード領域82との境界Rに隣接しておらず、第2メサ部62の第1ウェル領域11、ベース領域14、コンタクト領域15や、第1メサ部60の第1ウェル領域11、エミッタ領域12、ベース領域14、コンタクト領域15がダイオード部80側に延伸していてもよい。
図4は、実施例3に係る半導体装置100の上面図の一例である。本例の半導体装置100は、アノード領域13および第1高濃度領域91を形成する領域が実施例1に係る半導体装置100と異なる。なお、図4のa−a'断面は図1Bの場合と同様であってよい。
アノード領域13は、X軸方向に延伸する長さが、実施例1および実施例2の場合と相違する。本例のアノード領域13は、実施例1および実施例2の場合よりも、カソード領域82と近くなるように、X軸方向に延伸している。アノード領域13におけるX軸方向の負側の端部は、平面視で、カソード領域82におけるX軸方向の負側の端部と同一の位置まで延伸している。
第1高濃度領域91は、X軸方向に延伸する長さが、実施例1および実施例2の場合と相違する。本例の第1高濃度領域91は、実施例1および実施例2の場合よりも、カソード領域82と近くなるように、X軸方向に延伸している。例えば、アノード領域13と第1高濃度領域91との間が、X軸方向において、コンタクトホール54のX軸方向の負側の端部よりも、コンタクトホール54の内側に設けられる。また、本例では、第1高濃度領域91におけるX軸方向の正側の端部は、平面視で、カソード領域82の外側から、カソード領域82におけるX軸方向の負側の端部と同一の位置まで延伸している。
即ち、本例のアノード領域13および第1高濃度領域91は、X軸方向において、互いに接触するように延伸している。本例の第1高濃度領域91は、カソード領域82の端部において、アノード領域13と接している。即ち、アノード領域13と第1高濃度領域91との間が、カソード領域82のX軸方向の負側の端部と同一の位置に位置している。
なお、本例のアノード領域13は、Y軸方向に延伸する位置が、実施例1の場合と同じである。即ち、アノード領域13は、ダイオード部80に設けられ、トランジスタ部70には設けられていない。但し、アノード領域13は、実施例2の場合のように、ダイオード部80からトランジスタ部70まで延伸して設けられてもよい。
本例の半導体装置100は、アノード領域13と第1高濃度領域91との間が、平面視における延伸方向において、カソード領域82の端部と同一の位置に位置していることにより、実施例1および実施例2に係る半導体装置100よりも第1高濃度領域91の範囲が広くなる。一方、本例の半導体装置100では、アノード領域13の設けられる領域が狭くなるものの、ダイオード部80の特性への影響は小さい。これにより、ダイオード部80の特性を悪化させることなく、半導体装置100の逆回復耐量を向上させることができる。
なお、実施例1〜3では、アノード領域13と第1高濃度領域91との間の位置と、コンタクトホール54およびカソード領域82との関係を変更している。但し、アノード領域13と第1高濃度領域91との間の位置と、コンタクトホール54およびカソード領域82との関係は、実施例1〜3の関係に限られない。例えば、実施例1のように、アノード領域13と第1高濃度領域91との間の位置が、コンタクトホール54の端部の外側にある場合であっても、実施例3のように、アノード領域13と第1高濃度領域91との間の位置が、カソード領域82と同一の位置であってもよい。この場合、カソード領域82がコンタクトホール54の端部の外側に設けられる。このように、アノード領域13と第1高濃度領域91との間の位置と、コンタクトホール54およびカソード領域82との関係は、自由に変更されてよい。
具体的には、本実施形態において、アノード領域13と第1高濃度領域91(又は後述する第2高濃度領域92)との間が、カソード領域82の内側に配置されてもよいし、外側に配置されてもよいし、略同一の位置であってもよい。また、アノード領域13と第1高濃度領域91(又は後述する第2高濃度領域92)との間が、コンタクトホール54の端部よりも内側に配置されてもよいし、外側に配置されてもよいし、コンタクトホール54の端部と略同一の位置であってもよい。また、カソード領域82は、コンタクトホール54の端部よりも内側に配置されてもよいし、外側に配置されてもよいし、コンタクトホール54の端部と略同一の位置であってもよい。
図5は、ゲートランナー48の周辺の上面図の一例を示す。本例の半導体装置100は、第2高濃度領域92を更に備える。半導体装置100は、1又は複数のトランジスタ部70および1又は複数のダイオード部80を備える。
第2ウェル領域17は、半導体基板10の上面側に設けられた第2導電型の領域である。第2ウェル領域17は、一例としてP+型である。第2ウェル領域17は、第1ウェル領域11と同一のドーピング濃度を有してよい。第2ウェル領域17は、1又は複数のトランジスタ部70および1又は複数のダイオード部80のいずれかの間に設けられる。即ち、第2ウェル領域17は、トランジスタ部70とダイオード部80との間に設けられてもよく、トランジスタ部70同士の間に設けられてもよく、ダイオード部80同士の間に設けられてもよい。
第2高濃度領域92は、第2ウェル領域17と接して設けられる。第2高濃度領域92は、アノード領域13よりも高ドーピング濃度である第2導電型の領域である。第2高濃度領域92は、一例としてP−型を有する。第2高濃度領域92は、第1高濃度領域91と同一のドーピング濃度を有してよい。例えば、第2高濃度領域92のドーズ量は、2.0×1013/cm2〜3.0×1013/cm2である。また、第2高濃度領域92の厚みは、第1高濃度領域91の厚みと同一であってよい。即ち、第2高濃度領域92は、第1高濃度領域91と同一のプロセスにより設けられてよい。
本例の半導体装置100は、半導体装置100のエッジ側に設けられた第1高濃度領域91だけでなく、活性領域の内部に設けられた第2高濃度領域92を備える。これにより、半導体装置100は、エッジ側に加えて、活性領域の内部においても、逆回復時のキャリア引き抜き効率の低下を抑制することができる。これにより、半導体装置100の逆回復耐量が更に向上する。
図6は、半導体装置100の製造方法の一例を示す。同図は、アノード領域13、ベース領域14および第1高濃度領域91を形成するためのドーパント注入工程およびアニール工程について示している。
本例では、半導体基板10の全面にドーパント注入する(ステップS100)。例えば、1.0×1013/cm2〜2.0×1013/cm2のドーズ量でP型のドーパントを半導体基板10の全面に注入する。P型のドーパントは、一例としてボロンである。本例のドーパント注入工程は、事前にマスクを形成する工程が不要である。
次に、アノード領域13のみにマスクを形成する(ステップS102)。アノード領域13にマスクを形成した状態で、ベース領域14、第1高濃度領域91および第2高濃度領域92を形成する半導体基板10の領域にP型のドーパントを注入する(ステップS104)。本例のP型のドーパントは、ステップS100で注入したP型のドーパントと同一であってよい。ステップS104では、ステップS100で注入したドーピング濃度との合計が、ベース領域14、第1高濃度領域91および第2高濃度領域92の予め定められたドーピング濃度となるまでドーパントを注入する。例えば、ベース領域14、第1高濃度領域91および第2高濃度領域92のドーズ量は、合計で、2.0×1013/cm2〜3.0×1013/cm2である。
その後、アニール工程を実施する(ステップS106)。これにより、アノード領域13へのドーパント注入を抑制し、アノード領域13のドーピング濃度をベース領域14および第1高濃度領域91よりも低ドーピング濃度とすることができる。
図7は、半導体装置100の製造方法の他の例を示す。同図は、アノード領域13、ベース領域14および第1高濃度領域91を形成するためのドーパント注入工程およびアニール工程について示している。
本例では、ベース領域14、第1高濃度領域91および第2高濃度領域92にマスクを形成する(ステップS200)。次に、ベース領域14、第1高濃度領域91および第2高濃度領域92にマスクを形成した状態で、アノード領域13を形成する半導体基板10の領域にP型のドーパントを注入する(ステップS202)。次に、アノード領域13のみにマスクを形成する(ステップS204)。そして、ベース領域14、第1高濃度領域91および第2高濃度領域92にP型のドーパントを注入する(ステップS206)。その後、アニール工程を実施する(ステップS208)。これにより、アノード領域13のドーピング濃度と、ベース領域14および第1高濃度領域91のドーピング濃度とを個別に設定できる。
なお、本例では、アノード領域13にドーパントを注入した後に、ベース領域14、第1高濃度領域91および第2高濃度領域92にドーパントを注入したが、ベース領域14、第1高濃度領域91および第2高濃度領域92にドーパントを注入した後に、アノード領域13にドーパントを注入してもよい。また、本例では、ベース領域14、第1高濃度領域91および第2高濃度領域92を同一のドーパント注入工程により形成しているが、ベース領域14、第1高濃度領域91および第2高濃度領域92のマスクをそれぞれ形成することにより、ベース領域14、第1高濃度領域91および第2高濃度領域92を異なるドーパント注入工程により形成してもよい。この場合、アノード領域13と、ベース領域14と、第1高濃度領域91と、第2高濃度領域92とをそれぞれ異なるドーピング濃度に設定できる。
なお、図6および図7は、アノード領域13、ベース領域14および第1高濃度領域91を形成するためのドーパント注入工程およびアニール工程について示したが、その後またはその間、周知の方法を用いて、エミッタ領域やコンタクト領域、ウェル領域等の他の構成は形成される。
図8は、半導体装置100と半導体装置500の逆回復耐量とを比較したグラフを示す。縦軸は逆回復耐量Pmax(a.u,)を示し、横軸はダイオード部80のアノード領域のドーズ量(1013/cm2)を示す。実線は、半導体装置100の逆回復耐量を示す。破線は、半導体装置500の逆回復耐量を示す。
実施例に係る半導体装置100は、ダイオード部80において、アノード領域13と、アノード領域13よりもエッジ側に設けられ、それよりも高ドーピング濃度の第1高濃度領域91を設けている。比較例に係る半導体装置500は、均一なドーピング濃度であって、ドーピング濃度の低い第2導電型領域513を有する。
半導体装置100は、アノード領域13のドーズ量を低下させた場合であっても、第1高濃度領域91をベース領域14と同じドーピング濃度を維持することができる。したがって、半導体装置100の逆回復耐量が低下しない。
一方、半導体装置500は、ダイオード部のアノード領域へのドーズ量を低下させると、第1ウェル領域11または第2ウェル領域17に接するダイオード部80のエッジ側の端部まで、全体のドーズ量が低下することとなる。そのため半導体装置500の逆回復耐量が低下する。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。