JP2021034696A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2021034696A
JP2021034696A JP2019157156A JP2019157156A JP2021034696A JP 2021034696 A JP2021034696 A JP 2021034696A JP 2019157156 A JP2019157156 A JP 2019157156A JP 2019157156 A JP2019157156 A JP 2019157156A JP 2021034696 A JP2021034696 A JP 2021034696A
Authority
JP
Japan
Prior art keywords
semiconductor
region
layer
type impurities
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019157156A
Other languages
English (en)
Inventor
菅野 裕士
Yuji Sugano
裕士 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Kioxia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kioxia Corp filed Critical Kioxia Corp
Priority to JP2019157156A priority Critical patent/JP2021034696A/ja
Priority to US16/808,450 priority patent/US20210066340A1/en
Priority to TW109123158A priority patent/TWI762967B/zh
Priority to CN202010765316.5A priority patent/CN112447747B/zh
Publication of JP2021034696A publication Critical patent/JP2021034696A/ja
Priority to US17/715,541 priority patent/US11723204B2/en
Priority to US18/335,198 priority patent/US20230328992A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout

Abstract

【課題】消去動作の速度向上を図ることができる半導体記憶装置を提供することである。【解決手段】実施形態の半導体記憶装置は、複数の導電層及び複数の絶縁層を有し、導電層と絶縁層とが第1方向に交互に積層された積層体と、前記積層体内において前記第1方向に延び、半導体ボディと、前記複数の導電層の少なくとも一つと前記半導体ボディとの間に設けられた電荷蓄積膜と、を含む柱状体と、を備え、前記複数の導電層のうちの第1導電層は、前記半導体ボディと接続され、前記半導体ボディは、前記第1導電層との接続箇所から前記第1方向において近い順に、n型不純物の濃度がp型不純物の濃度より高い第1領域と、p型不純物の濃度がn型不純物の濃度より高い第2領域と、を有する。【選択図】図8

Description

本発明の実施形態は、半導体記憶装置に関する。
メモリセルが3次元に積層されたNAND型フラッシュメモリが知られている。
米国特許第9520407号明細書
本発明が解決しようとする課題は、消去動作の速度向上を図ることができる半導体記憶装置を提供することである。
実施形態の半導体記憶装置は、積層体と柱状体とを備える。前記積層体は、複数の導電層及び複数の絶縁層を有し、導電層と絶縁層とが第1方向に交互に積層されている。前記柱状体は、前記積層体内において前記第1方向に延びる。前記柱状体は、半導体ボディと電荷蓄積膜とを含む。前記電荷蓄積膜は、前記複数の導電層の少なくとも一つと前記半導体ボディとの間に設けられる。前記複数の導電層のうちの第1導電層は、前記半導体ボディと接続される。前記半導体ボディは、第1領域と第2領域とを有する。前記第1領域は、前記第1方向において、前記第2領域より前記第1導電層と前記半導体ボディとの境界の近くにある。前記第1領域は、n型不純物の濃度がp型不純物の濃度より高い。前記第2領域は、p型不純物の濃度がn型不純物の濃度より高い。
第1実施形態にかかる半導体記憶装置の回路構成を示すブロック図。 第1実施形態にかかる半導体記憶装置のメモリセルアレイの回路図。 第1実施形態にかかる半導体記憶装置のレイアウト図。 第1実施形態にかかるセルアレイ領域の近傍の平面図。 図4におけるA−A’面に沿った断面図。 第1実施形態にかかる半導体記憶装置のメモリピラーの近傍を拡大した断面図。 第1実施形態にかかる半導体記憶装置のメモリピラーの近傍を拡大し、導電層に沿って切断した断面図。 第1実施形態にかかる半導体記憶装置の特徴部分を拡大した断面図。 第1実施形態にかかる半導体記憶装置の製造方法の一例を説明するための断面図。 第1実施形態にかかる半導体記憶装置の製造方法の一例を説明するための断面図。 第1実施形態にかかる半導体記憶装置の製造方法の一例を説明するための断面図。 第1実施形態にかかる半導体記憶装置の製造方法の一例を説明するための断面図。 第1実施形態にかかる半導体記憶装置の製造方法の一例を説明するための断面図。 第1実施形態にかかる半導体記憶装置の製造方法の一例を説明するための断面図。 第1実施形態にかかる半導体記憶装置の製造方法の一例を説明するための断面図。 第1実施形態にかかる半導体記憶装置の製造方法の一例を説明するための断面図。 比較例にかかるメモリセルアレイにおける半導体ボディのバンド構造を模式的に示した図である。 本実施形態にかかるメモリセルアレイにおける半導体ボディのバンド構造を模式的に示した図である。 第1変形例にかかる半導体記憶装置の特徴部分を拡大した断面図。 第2変形例にかかる半導体記憶装置の特徴部分を拡大した断面図。 第3変形例にかかる半導体記憶装置の特徴部分を拡大した断面図。
以下、実施形態の半導体記憶装置を、図面を参照して説明する。以下の説明では、同一又は類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は省略する場合がある。図面は模式的又は概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率等は、必ずしも現実のものと同一とは限らない。本明細書において「接続」とは、物理的に接続される場合に限定されず、電気的に接続される場合も含む。本明細書で「A方向に延びている」とは、例えば、後述するX方向、Y方向、及びZ方向の各寸法のうち最小の寸法よりもA方向の寸法が大きいことを意味する。「A方向」は任意の方向である。
また先に、X方向、Y方向、Z方向について定義する。X方向及びY方向は、後述する基板の表面と略平行な方向である(図1参照)。X方向は、後述するスリットが延びている方向である。Y方向は、X方向と交差する(例えば略直交する)方向である。Z方向は、X方向及びY方向と交差(例えば略直交する)し、基板30から離れる方向である。ただしこれら表現は、便宜上のものであり、重力方向を規定するものではない。本実施形態では、Z方向は、「第1方向」の一例である。
(第1実施形態)
図1は、半導体メモリ1のシステム構成を示すブロック図である。半導体メモリ1は、不揮発性の半導体記憶装置であり、例えばNAND型フラッシュメモリである。半導体メモリ1は、例えば、メモリセルアレイ10、ロウデコーダ11、センスアンプ12、及びシーケンサ13を備える。
メモリセルアレイ10は、複数のブロックBLK0〜BLKn(nは1以上の整数)を含む。ブロックBLKは、不揮発性のメモリセルトランジスタMT(図2参照)の集合である。メモリセルアレイ10には、複数のビットライン及び複数のワードラインが設けられている。各メモリセルトランジスタMTは、1本のビットラインと1本のワードラインとに接続されている。メモリセルアレイ10の詳細な構成については後述する。
ロウデコーダ11は、外部のメモリコントローラ2から受信したアドレス情報ADDに基づいて、1つのブロックBLKを選択する。ロウデコーダ11は、複数のワードラインのそれぞれに、所望の電圧を印可することで、メモリセルアレイ10に対するデータの書き込み動作及び読み出し動作を制御する。
センスアンプ12は、メモリコントローラ2から受信した書き込みデータDATに応じて、各ビットラインに所望の電圧を印加する。センスアンプ12は、ビットラインの電圧に基づいてメモリセルトランジスタMTに記憶されたデータを判定し、判定した読み出しデータDATをメモリコントローラ2に送信する。
シーケンサ13は、メモリコントローラ2から受信したコマンドCMDに基づいて、半導体メモリ1全体の動作を制御する。
以上で説明した半導体メモリ1及びメモリコントローラ2は、これらの組み合わせにより1つの半導体装置を構成してもよい。半導体装置は、例えばSD(登録商標)カードのようなメモリカードや、SSD(Solid State Drive)等が挙げられる。
次に、メモリセルアレイ10の電気的な構成について説明する。
図2は、メモリセルアレイ10の等価回路を示す図であり、一つのブロックBLKを抽出して示している。ブロックBLKは、複数(例えば4つ)のストリングユニットSU0〜SU3を含む。
各ストリングユニットSU0〜SU3は、複数のNANDストリングスNSの集合体である。各NANDストリングスNSの一端は、ビットラインBL0〜BLm(mは1以上の整数)のいずれかに接続されている。NANDストリングスNSの他端は、ソースラインSLに接続されている。各NANDストリングスNSは、複数(例えば18つ)のメモリセルトランジスタMT0〜MT17、第1選択トランジスタS1、及び第2選択トランジスタS2を含む。
複数のメモリセルトランジスタMT0〜MT17は、電気的に互いに直列に接続されている。メモリセルトランジスタMTは、制御ゲート及び電荷蓄積膜を含み、データを不揮発に記憶する。メモリセルトランジスタMTは、制御ゲートに印加された電圧に応じて、電荷蓄積膜に電荷を蓄積する。メモリセルトランジスタMTの制御ゲートは、対応するワードラインWL0〜WL17のいずれかに接続されている。メモリセルトランジスタMTは、ワードラインWLを介して、ロウデコーダ11と電気的に接続されている。
各NANDストリングスNSにおける第1選択トランジスタS1は、複数のメモリセルトランジスタMT0〜MT17と、いずれかのビットラインBL0〜BLmとの間に接続されている。第1選択トランジスタS1のドレインは、いずれかのビットラインBL0〜BLmに接続されている。第1選択トランジスタS1のソースは、メモリセルトランジスタMT17に接続されている。各NANDストリングスNSにおける第1選択トランジスタS1の制御ゲートは、いずれかの選択ゲートラインSGD0〜SGD3に接続されている。第1選択トランジスタS1は、選択ゲートラインSGDを介して、ロウデコーダ11と電気的に接続されている。第1選択トランジスタS1は、所定の電圧が選択ゲートラインSGD0〜SGD3のいずれかに印可された場合に、NANDストリングスNSとビットラインBLとを接続する。
各NANDストリングスNSにおける第2選択トランジスタS2は、複数のメモリセルトランジスタMT0〜MT17と、ソースラインSLとの間に接続されている。第2選択トランジスタS2のドレインは、メモリセルトランジスタMT0に接続されている。第2選択トランジスタS2のソースは、ソースラインSLに接続されている。第2選択トランジスタS2の制御ゲートは、選択ゲートラインSGSに接続されている。第2選択トランジスタS2は、選択ゲートラインSGSを介して、ロウデコーダ11と電気的に接続されている。第2選択トランジスタS2は、所定の電圧が選択ゲートラインSGSに印可された場合に、NANDストリングスNSとソースラインSLとを接続する。
次に、メモリセルアレイ10の構造について説明する。図3は、第1実施形態にかかる半導体記憶装置のメモリセルアレイのレイアウト図である。メモリセルアレイ10は、セルアレイ領域CAとビットラインフックアップ領域BHUとワードラインフックアップ領域WHUとコンタクト領域CRIとコンタクト領域CREとを有する。
セルアレイ領域CAは複数あり、それぞれのセルアレイ領域CAはX方向及びY方向に行列状に配列される。ビットラインフックアップ領域BHUは、Y方向に隣接するセルアレイ領域CAの間に配置される。ワードラインフックアップ領域WHUは、Y方向に延び、X方向においてセルアレイ領域CAの端部に配置される。コンタクト領域CREは、Y方向に延び、ワードラインフックアップ領域WHUを基準にセルアレイ領域CAと反対側に配置される。コンタクト領域CRIは、Y方向に延び、X方向に隣接するセルアレイ領域CA及びビットラインフックアップ領域BHUの間に配置される。
ビットラインフックアップ領域BHU上及びセルアレイ領域CA上には、Y方向に延伸するビットラインBLがX方向に複数配列される。さらに、ワードラインフックアップ領域WHU上には、X方向に延びるワードラインWLがY方向に複数配列される。
次に、メモリセルアレイ10の特徴部分の平面構造について説明する。図4は、セルアレイ領域CAの近傍の平面図である。図4は、Y方向にビットラインフックアップ領域BHUを挟む2つのセルアレイ領域CAの近傍を拡大した平面図である。
ビットラインフックアップ領域BHUとそれぞれのセルアレイ領域CAとの間には、スリットST1がある。スリットST1は、セルアレイ領域CAとビットラインフックアップ領域BHUとを電気的に分離する。スリットST1は、X方向及びZ方向に広がる。スリットST1は、メモリセルアレイ10を複数のブロックBLK0〜BLKnに区分する。
それぞれのセルアレイ領域CAには、複数のメモリピラーMPとスリットSLTとがある。本実施形態では、メモリピラーMPは「柱状体」の一例である。メモリピラーMPは、セルアレイ領域CA内に点在する。複数のメモリピラーMPは、例えば、千鳥配置で配置される。スリットSLTは、X方向及びZ方向に広がる。スリットSLTは、セルアレイ領域CA内の複数のメモリピラーMPをY方向に区分する。
ワードラインフックアップ領域WHUには、複数のコンタクトプラグCCがある。それぞれのコンタクトプラグCCは、コンタクトプラグCCの上方に配置される複数のワードラインWLとそれぞれ電気的に接続される。
ビットラインフックアップ領域BHUには、複数のコンタクトプラグCP1がある。複数のコンタクトプラグCP1は、ビットラインフックアップ領域BHU内に点在する。それぞれのコンタクトプラグCP1は、複数のビットラインBLとそれぞれ電気的に接続される。それぞれのビットラインBLは、いずれかのメモリピラーMP及びコンタクトプラグCP1と電気的に接続される。
コンタクト領域CREには複数のコンタクトプラグCP2がある。コンタクトプラグCP2は、他層の配線層(図示略)と電気的に接続される。
次に、メモリセルアレイ10の特徴部分の断面構造について説明する。図5は、図4におけるA−A’面に沿った断面図である。
図5に示すメモリセルアレイ10は、基板30と回路層PEと積層体40とカバー絶縁層50とビットラインBLとメモリピラーMPとコンタクトプラグCP1とスリットST1,SLTとビアV1,V2とを有する。
基板30は、例えば、シリコン基板である。基板30の表面領域には、複数の素子分離領域30Aがある。素子分離領域30Aは、例えば、シリコン酸化物を含む。隣接する素子分離領域30Aの間には、トランジスタTrのソース領域及びドレイン領域がある。
回路層PEは、基板30上にある。回路層PEは、半導体メモリ1のロウデコーダ11、センスアンプ12、及びシーケンサ13を含む。回路層PEは、例えば、複数のトランジスタTrと複数の配線層D0,D1と複数のビアC1,C2を含む。複数のトランジスタTr、複数の配線層D0,D1及び複数のビアC1,C2は、絶縁層E1内にある。絶縁層E1は、例えば、シリコン酸化物を含む。ビアC1は、トランジスタTrのソース領域又はドレイン領域と配線層D0とを接続する。ビアC2は、トランジスタTrのゲート領域と配線層D1とを接続する。それぞれの配線層D0及び配線層D1は、X方向及びY方向に広がる。配線層D1は、コンタクトプラグCP1に接続される。ビアC1,C2及び配線層D0,D1は、例えば、タングステンを含む。
積層体40は、Z方向に複数の導電層41,43,45と複数の絶縁層42,44とを有する。導電層41、43、45と絶縁層42、44とは交互に積層されている。複数の導電層41,43,45は、それぞれX方向及びY方向に広がる。複数の絶縁層42,44は、それぞれX方向及びY方向に広がる。
導電層41は、複数の導電層のうち最も回路層PEの近くにある。導電層41は、第1導電層の一例である。導電層41は、半導体層41A,41B,41Cを含む。半導体層41Aは、回路層PE上にある。半導体層41Bは、半導体層41A上にある。半導体層41Cは、半導体層41B上にある。半導体層41A,41B,41Cの詳細は後述する。
導電層43は、複数の導電層のうち導電層41の次に回路層PEの近くにある。導電層43は、例えば金属又は半導体である。導電層43に用いられる金属は、例えば、タングステンである。導電層43に用いられる半導体は、例えば、リンがドープされたシリコンである。導電層43は、メモリピラーMPに電圧を印加し、半導体ボディ内に正孔を発生させる。導電層43は、第2選択トランジスタS2として機能する。
複数の導電層45は、複数の導電層のうち導電層41,43を除いたものである。複数の導電層45は、導電層43より上方にある。それぞれの導電層45は、絶縁層44に挟まれる。導電層45は、例えば、導電性金属を含む。導電性金属は、例えば、タングステンである。導電層45は、例えば、不純物がドープされたポリシリコンでもよい。複数の導電層45はそれぞれ、コンタクトプラグCCを介して複数のワードラインWLのそれぞれと接続される。複数の導電層45はそれぞれ、メモリセルトランジスタMTのゲート電極として機能する。複数の導電層45のうち下方に位置する導電層45(例えば、下から数層の導電層)は、第2選択トランジスタS2として機能してもよい。導電層45の数は、任意である。
絶縁層42は、導電層41と導電層43との間にある。複数の絶縁層44は、Z方向に隣り合う導電層43,45の間にある。絶縁層42,44は、例えばシリコン酸化物を含む。絶縁層42、44は、隣接する導電層41、43、45の間を絶縁する。絶縁層44の数は、導電層45の数によって決まる。
カバー絶縁層50は、積層体40の最上層の絶縁層44上にある。カバー絶縁層50は、積層体40とビットラインBLとの間を絶縁する。カバー絶縁層50は、例えば、第1層51と第2層52とを有する。カバー絶縁層50は、例えば、シリコン酸化物を含む。
ビットラインBLは、カバー絶縁層50上に複数ある。またビットラインBLは、図4に示すように、いずれかのメモリピラーMP及びコンタクトプラグCP1と電気的に接続される。図5において、ビットラインBLは、ビアV1,V2を介してメモリピラーMPと接続される。ビアV1,V2は、例えば、タングステンを含む。ビアV1は、カバー絶縁層50の第1層51内にある。ビアV2は、カバー絶縁層50の第2層52内にある。
コンタクトプラグCP1は、Z方向に延びる。コンタクトプラグCP1は、ビットラインBLと回路層PEの配線層D1とを電気的に接続する。コンタクトプラグCP1は、導電部71と絶縁層72,73とを有する。絶縁層72は、導電部71の外側面を被覆する。絶縁層73は、Z方向に導電層41,43と重なる高さ位置において、絶縁層72の外側面を被覆する。導電部71は、例えば、タングステンを含む。絶縁層72,73は、例えば、シリコン酸化物を含む。
スリットSLT,ST1は、Z方向に延びる。スリットSLT,ST1は、積層体40の最上面から導電層41に至る。スリットSLT,ST1の内部は、絶縁体である。絶縁体は、例えばシリコン酸化物を含む。
メモリピラーMPは、積層体40内にある。メモリピラーMPは、Z方向に延びる。メモリピラーMPは、積層体40の最上面から導電層41に至る。
図6は、第1実施形態にかかる半導体メモリ1のメモリピラーMPの近傍を拡大した断面図である。図7は、第1実施形態にかかる半導体メモリ1のメモリピラーMPの近傍を導電層45に沿って切断した断面図である。図6は、メモリピラーMPをYZ面で切断した断面であり、図7は、メモリピラーMPをXY面で切断した断面である。メモリピラーMPは、積層体40に形成されたメモリホールMH内にある。
メモリピラーMPはそれぞれ、コア60、半導体ボディ61、メモリ膜62を有する。メモリホールMH内には、内側から順に、コア60、半導体ボディ61、メモリ膜62がある。メモリピラーMPは、Z方向から見て、例えば、円又は楕円である。
コア60は、Z方向に延び、柱状である。コア60は、例えば、シリコン酸化物を含む。コア60は、半導体ボディ61の内側にある。
半導体ボディ61は、Z方向に延びる。半導体ボディ61は、底を有する筒状である。半導体ボディ61は、コア60の外側面を被覆する。半導体ボディ61は、例えばシリコンを含む。シリコンは、例えばアモルファスシリコンを結晶化させたポリシリコンである。半導体ボディ61は、第1選択トランジスタS1、メモリセルトランジスタMT及び第2選択トランジスタS2のそれぞれのチャネルである。チャネルは、ソース側とドレイン側との間におけるキャリアの流路である。
メモリ膜62は、Z方向に延びる。メモリ膜62は、半導体ボディ61の外側面を被覆する。メモリ膜62は、メモリホールMHの内面と半導体ボディ61の外側面との間にある。メモリ膜62は、例えば、トンネル絶縁膜63、電荷蓄積膜64及びカバー絶縁膜65を含む。トンネル絶縁膜63、電荷蓄積膜64、カバー絶縁膜65の順に、半導体ボディ61の近くにある。メモリ膜62の一部は、半導体層41Bと接続する位置で欠けている。半導体層41Bと半導体ボディ61との間にはメモリ膜62は無い。半導体層41Bと半導体ボディ61とは、メモリ膜62を介さずに接する。
トンネル絶縁膜63は、電荷蓄積膜64と半導体ボディ61との間に位置する。トンネル絶縁膜63は、例えばシリコン酸化物、又は、シリコン酸化物とシリコン窒化物とを含む。トンネル絶縁膜63は、半導体ボディ61と電荷蓄積膜64との間の電位障壁である。
電荷蓄積膜64は、それぞれの導電層45及び絶縁層44とトンネル絶縁膜63との間に位置する。電荷蓄積膜64は、例えばシリコン窒化物を含む。電荷蓄積膜64と複数の導電層45のそれぞれとが交差する部分は、それぞれトランジスタとして機能する。電荷蓄積膜64が複数の導電層45と交差する部分(電荷蓄積部)内の電荷の有無、又は、蓄積された電荷量によって、メモリセルトランジスタMTはデータを保持する。電荷蓄積部は、それぞれの導電層45と半導体ボディ61との間にあり、周りを絶縁材料で囲まれている。電荷蓄積部は、いわゆるフローティングゲート構造である。
カバー絶縁膜65は、例えば、それぞれの絶縁層44と電荷蓄積膜64との間に位置する。カバー絶縁膜65は、例えばシリコン酸化物を含む。カバー絶縁膜65は、加工時に電荷蓄積膜64をエッチングから保護する。カバー絶縁膜65は、なくてもよいし、導電層45と電荷蓄積膜64との間に一部残して、ブロック絶縁膜として用いてもよい。
また図6及び図7に示すように、それぞれの導電層45と絶縁層44との間、及び、それぞれの導電層45とメモリ膜62との間には、ブロック絶縁膜45a、バリア膜45bを有してもよい。ブロック絶縁膜45aは、バックトンネリングを抑制する。バックトンネリングは、導電層45からメモリ膜62への電荷が戻る現象である。バリア膜45bは、導電層45とブロック絶縁膜45aとの間の密着性を向上させる。ブロック絶縁膜45aは、例えばシリコン酸化膜又は金属酸化物膜である。金属酸化物の一例は、アルミニウム酸化物である。バリア膜45bは、例えば導電層45がタングステンの場合、一例として窒化チタンとチタンとの積層構造膜である。
図8は、第1実施形態にかかる半導体メモリ1の特徴部分を拡大した断面図である。半導体ボディ61は、例えば、第1領域61A、第2領域61B、第3領域61Cを含む。第1領域61A、第2領域61B、第3領域61Cの順にZ方向において半導体層41Bの近くにある。
第1領域61Aは、半導体ボディ61の下部にある。第1領域61Aは、例えば、半導体ボディ61と半導体層41Bとの境界61aからZ方向に延びる。第1領域61Aは、XY方向において、例えば導電層41、絶縁層42及び導電層43の一部に囲まれる。第1領域61Aと第2領域61Bとの境界61bの高さ位置は、例えば、Z方向において、導電層43の高さの範囲内である。導電層43の高さの範囲は、導電層43の上面と下面とに挟まれる高さの範囲である。
第1領域61Aは、n型不純物とp型不純物とを両方含む。第1領域61Aにおいて、n型不純物の濃度はp型不純物の濃度より高い。半導体ボディ61と半導体層41Bとの境界61aにおけるn型不純物の濃度は、第1領域61Aと第2領域61Bとの境界61bにおけるn型不純物の濃度より高い。半導体ボディ61と半導体層41Bとの境界61aにおけるp型不純物の濃度は、第1領域61Aと第2領域61Bとの境界61bにおけるp型不純物の濃度より高い。
第1領域61Aは、n型半導体である。第1領域61Aは、例えば、n型半導体とn型半導体からなる。例えば、第1領域61Aの中で半導体層41Bに近い部分がn型半導体であり、遠い部分がn型半導体である。n型不純物は、例えばリンである。p型不純物は、例えば、ボロンである。第1領域61Aにおけるn型不純物濃度は、例えば、1×1019cm−3以上である。
第2領域61Bは、第1領域61Aと第3領域61Cとの間にある。第2領域61Bは、Z方向において、第1領域61Aより半導体層41Bと半導体ボディ61との境界61aから離れた位置にある。第2領域61Bの少なくとも一部は、Z方向において、導電層43の高さの範囲内にある。第2領域61Bは、例えば、Z方向において、導電層43の高さの範囲内にある。第2領域61Bは、例えば、X方向又はY方向から見て、導電層43と重なる。第2領域61Bは、例えば、XY方向において、導電層43に囲まれる。
第2領域61Bは、p型不純物を含む。第2領域61Bは、例えば、n型不純物とp型不純物を含む。第2領域61Bは、例えば、第1領域61Aに近い領域と第1領域61Aから遠い領域とに区分でき、第1領域61Aに近い領域はn型不純物とp型不純物を両方含み、第1領域61Aに遠い領域はp型不純物のみを含む。第2領域61Bは、p型半導体である。第2領域61Bにおけるp型不純物の濃度は、例えば、1×1018cm−3以上1×1019cm−3以下である。
第3領域61Cは、第2領域61Bを基準に、第1領域61Aと反対側にある。第3領域61Cは、Z方向において、第2領域61Bより半導体層41Bと半導体ボディ61との境界61aから離れた位置にある。第3領域61Cは、例えば、XY方向において、少なくとも一部が、いずれかの導電層45に囲まれる。
第3領域61Cは、第2領域61Bと比べてp型不純物及びn型不純物の濃度が低い。第3領域61Cは、例えば、不純物濃度が1×1018cm−3以下である。第3領域61Cは、例えば、n型不純物及びp型不純物をほとんど含まない真正半導体である。
半導体ボディ61において、n型不純物の濃度は、半導体層41Bと半導体ボディ61との境界61aからZ方向に離れるに従い、低くなる。半導体ボディ61において、p型不純物の濃度は、半導体層41Bと半導体ボディ61との境界61aからZ方向に離れるに従い、低くなる。
半導体ボディ61におけるn型不純物の濃度及びp型不純物の濃度は、例えば、二次イオン質量分析法(SIMS)で測定できる。
導電層41は、上述のように例えば、半導体層41A、半導体層41B、半導体層41Cを含む。半導体層41Aは、回路層PE上にある。半導体層41Aは、例えばn型の半導体である。半導体層41Aは、例えば、不純物がドープされたポリシリコンである。半導体層41Bは、半導体層41A上にある。半導体層41Bは、メモリピラーMPの半導体ボディ61と接する。半導体層41Bは、例えば不純物がドープされたエピタキシャル膜である。半導体層41Cは、半導体層41B上にある。半導体層41Cは、例えばn型又はノンドープの半導体である。
半導体層41Bは、例えば、第1層41Baと第2層41Bbとを含む。第1層41Baは、XY面内に広がる。第1層41Baは、n型不純物を含む。第1層41Baは、例えば、リンを含む。第1層41Baは、n型半導体である。第1層41Baは、第1部分の一例である。
第2層41Bbは、第1層41Baの少なくとも一部を被覆している。第2層41Bbは、p型不純物を含む。第2層42Bbは、例えば、ボロンを含む。第2層41Bbは、例えば、p型半導体、p型不純物を含むn型半導体である。第2層41Bbは、第2部分の一例である。第2層41Bbの一部は、第1層41Baと半導体ボディ61との間にある。第2層41Bbの厚みは、例えば、1nm以上10nm以下である。
次いで、第1実施形態にかかる半導体メモリ1のセルアレイ領域CAの部分の製造方法について説明する。以下の図9〜図16は、セルアレイ領域CAの製造方法の一例を説明するための断面図である。以下の図9〜図16は、導電層41より上の部分のみを図示する。
まず基板30内に素子分離領域30Aを形成し、トランジスタTrを回路層PE内に形成する(図1参照)。トランジスタTrは、公知の方法で作製できる。また回路層PE内において、トランジスタTrと電気的に接続される複数の配線層D0,D1及び複数のビアC1,C2を絶縁層E1内に形成する。複数の配線層D0,D1及び複数のビアC1,C2は、公知の方法で作製できる。
次いで、図9に示すように、回路層PEの上に、半導体層41A、中間膜81a、犠牲膜81b、中間膜81c、半導体層41C、絶縁層42、導電層43を順に積層する。中間膜81a及び中間膜81cは、例えば、シリコン酸化物を含む。犠牲膜81bは、例えば、p型のドープシリコン、n型のドープシリコン又はノンドープシリコンである。半導体層41A、半導体層41C、絶縁層42、導電層43は、上述のものと同様である。
次いで、図10に示すように、導電層43上に、絶縁層44と犠牲膜85とを交互に積層する。絶縁層44は、上述のものであり、例えばシリコン酸化物を含む。犠牲膜85は、例えばシリコン窒化物を含む。
次いで、図11に示すように、積層体にメモリホールMHを形成する。メモリホールMHは、積層体の上面から半導体層41Aの途中まで至る。メモリホールMHは、エッチングにより作製する。例えば、積層体の上面から半導体層41Aまで異方性エッチングする。異方性エッチングは、例えば、反応性イオンエッチング(RIE)である。
次いで、図12に示すように、メモリホールMH内にメモリ膜62、半導体ボディ61、コア60を順に形成する。メモリホールMHは、メモリ膜62、半導体ボディ61及びコア60で埋められる。メモリホールMH内にメモリピラーMPが形成される。
次いで、図13に示すように、積層体にスリットSLTを形成する。スリットSLTは、積層体の上面から犠牲膜81bの途中まで延びる。スリットSLTは、異方性エッチングにより形成する。スリットSLTの内壁には、ストッパ膜86を形成する。ストッパ膜86は、例えばシリコン窒化膜である。
次いで、図14に示すように、スリットSLTを介して犠牲膜81bを等方性エッチングする。犠牲膜81bは、等方性エッチングにより除去される。等方性エッチングは、シリコン酸化物及びシリコン窒化物と比較して、n型のドープシリコン又はノンドープシリコンをより早くエッチングできるエッチャントを用いて行う。またエッチングによりメモリ膜62の一部も除去される。メモリ膜62は、犠牲膜81bが除去され、露出した部分が除去される。メモリ膜62のエッチングは、シリコン窒化物と比較して、シリコン酸化物をより早くエッチングできるエッチャントを用いて行う。メモリ膜62と同時に、中間膜81a、81cが除去される。半導体層41Aと半導体層41Cとの間には、空間Spが形成される。
次いで、図15に示すように、スリットSLTを介して、空間Sp内を半導体で埋め込む。まず空間Sp内に、第2層41Bbを形成する。第2層41Bbは、空間Spと半導体層41A又は半導体層41Cとの境界に形成される。次いで、第2層41Bbの内側に、第1層41Baを形成する。第1層41Ba及び第2層41Bbの材料は、上述のものである。第1層41Baはn型不純物を含み、第2層41Bbはp型不純物を含む。
次いで、図16に示すように、犠牲膜85を導電層45に置換する。まずスリットSLTを介して、ストッパ膜86及び犠牲膜85を除去する。ストッパ膜86及び犠牲膜85は、等方性エッチングにより除去される。等方性エッチングは、シリコン酸化物及びポリシリコンと比較してシリコン窒化物をより早くエッチングできるエッチャントを用いる。その後、犠牲膜85が除去された部分を導電材料で埋め込み、導電層45を形成する。最後に、スリットSLT内を絶縁体で埋め込む。
以上の工程により、セルアレイ領域CAが作製される。作製したセルアレイ領域CAは、後工程で加熱される。第1層41Baのn型不純物及び第2層41Bbのp型不純物は、加熱により半導体ボディ61に拡散する。第2層41Bbは第1層41Baより半導体ボディ61の近くにあり、p型不純物の拡散速度はn型不純物の拡散速度より早いため、p型不純物はn型不純物より半導体層41Bから離れた位置まで拡散する。半導体ボディ61の第1領域61A及び第2領域61Bは、例えば、加熱によるn型又はp型不純物の熱拡散により形成される。ここで示した製造工程は一例であり、各工程の間にその他の工程を挿入してもよい。
第1実施形態にかかる半導体メモリ1によれば、データの消去動作の速度向上を図ることができる。メモリセルアレイ10は、電荷蓄積膜64に蓄積された電荷によりデータを記憶する。電荷蓄積膜64にホールが注入されるとデータが消去される。ホールは、半導体ボディ61から電荷蓄積膜64に供給される。
消去動作時、半導体ボディ61は、ゲート誘導ドレインリーク(GIDL:Gate-Induced Drain Leakage)と呼ばれる現象によりホールを生成する。第1領域61Aがn型半導体の場合、導電層41に対して導電層43に負電圧を印可すると、第1領域61Aから第3領域61Cに至る半導体ボディ61に電界が発生し電子とホールの対が生成される。このホールが半導体ボディ61に蓄積されることで半導体ボディ61が充電される。半導体ボディ61がホールで十分に充電されると、半導体ボディ61と電荷蓄積膜64の間に電界が発生し、電荷蓄積膜64にホールが注入される。電荷蓄積膜64にホールが注入されるとデータが消去される。GIDLによるホールの生成量が少ないと、半導体ボディ61の充電に時間がかかり、データの消去に時間がかかる。第1実施形態にかかるメモリセルアレイ10は、半導体ボディ61内にホールを生成しやすい。以下、その理由を説明する。
図17は、比較例にかかるメモリセルアレイの導電層43の近傍における半導体ボディのバンド構造を模式的に示した図である。比較例は、半導体ボディのp型不純物の濃度がn型不純物の濃度より高い領域を有さない。
図17に示す半導体ボディは、第1領域91Aと第2領域91Bとを有する。図17において第1領域91Aはn型半導体であり、第2領域91Bは真正半導体である。n型不純物は、上述のメモリセルアレイ10と同様に、半導体層41BとメモリピラーMPとの接点から拡散する。第1領域91Aは第2領域91Bより半導体層41BとメモリピラーMPとの接点の近くに位置する。第1領域91Aは、半導体層41BとメモリピラーMPとの接点に近い側がn半導体であり、遠い側がn半導体である。
図17の左は熱平衡状態におけるバンド構造であり、右は第2領域91Bの電位を基準として導電層41に正電圧、導電層41に対して導電層43に負電圧を印可した際におけるバンド構造である。図17は、価電子帯上端Evと伝導体下端Ecの近傍のバンド構造を示している。半導体ボディに電界が加わると、半導体ボディのバンド構造は変化する。バンド構造は、例えば、図17の左の状態、すなわち熱平衡状態から右の状態、すなわち消去バイアス印加状態に変化する。第1領域91Aのn半導体領域におけるエネルギーレベルと第2領域91Bの導電層43の近傍におけるエネルギーレベルは異なり、これらの間のエネルギーレベルの違いによりバンドが傾き空乏層が形成される。空乏層においてバンド間トンネリングにより価電子帯の電子eが伝導帯に遷移すると、価電子帯にホールhが生成される。ホールhは、空乏層の電界に沿って、第2領域91B側に流れ、半導体ボディを充電する。
図18は、本実施形態にかかるメモリセルアレイ10の導電層43の近傍における半導体ボディ61のバンド構造を模式的に示した図である。
図18に示すように、本実施形態にかかる半導体ボディは、第1領域61Aと第2領域61Bと第3領域61Cとを有する。上述のように、第1領域61Aは、n型不純物の濃度がp型不純物の濃度より高い領域である。図18において、第1領域61Aは、半導体層41BとメモリピラーMPとの接点に近い側がn半導体であり、遠い側がn半導体である。第2領域61Bは、p型不純物の濃度がn型不純物の濃度より高い領域である。図18において第2領域61Bは、p半導体である。第3領域61Cは、第2領域61Bよりp型不純物及びn型不純物の濃度が低い領域である。図18において、第3領域は、真正半導体である。
図18の左は熱平衡状態におけるバンド構造である。図18では、比較のため比較例における価電子帯上端Ev及び伝導帯下端Ecを点線で示す。第2領域61Bにおけるエネルギーレベルは、第2領域61Bがp型不純物を有することで、第1領域61A及び第3領域61Cにおけるエネルギーレベルより高い。また図18に示すエネルギーレベルは、図17に示す比較例のエネルギーレベルと異なる。図18に示すエネルギーレベルは、第2領域61Bにおいて、図17に示す比較例のエネルギーレベルより高くなる。図18の左に示す価電子帯上端Evのエネルギーレベルは、第2領域61Bにおいて、図17の左に示す比較例の価電子帯上端Evのエネルギーレベルよりフェルミレベルの近くにある。図18の左に示す伝導帯下端Ecのエネルギーレベルは、第2領域61Bにおいて、図17の左に示す比較例の伝導帯下端Ecのエネルギーレベルよりフェルミレベルから離れた位置にある。
図18の右は第3領域61Cの電位を基準として導電層41に正電圧、導電層41に対して導電層43に負電圧を印可した際におけるバンド構造であり、すなわち消去バイアス印可状態のバンド構造である。
消去バイアス印加状態においても、図18に示すエネルギーレベルは、図17に示す比較例のエネルギーレベルより高くなる。その結果、空乏層における電界は、図17に示す比較例と比較して大きくなる。空乏層で生成されたホールhは、電界に沿って、第3領域61C側に流れる。空乏層における電界が大きいと電子eのバンド間トンネルの発生確率が増加し、効率的に第3領域61Cにホールhを供給できる。すなわち、本実施形態にかかるメモリセルアレイ10は、半導体ボディ61で効率的にホールhを生成でき、データの消去動作が早くなる。
(第1変形例)
次に、実施形態の第1変形例について説明する。
図19は、第1実施形態の第1変形例にかかるメモリセルアレイの特徴部分を拡大した断面図である。第1変形例にかかるメモリセルアレイは、導電層41の構造が図8に示す構造と異なる。以下に説明する以外の構成は、第1実施形態のメモリセルアレイ10と同様である。
第1変形例にかかる導電層41は、半導体層41A,41D,41Cを含む。半導体層41Dは、第1層41Daと第2層41Dbと第3層41Dcとを含む。第1層41Daは、図8における第1層41Baと同様である。第2層41Dbは、図8における第2層41Dbと同様である。
第3層41Dcは、少なくとも一部が、第1層41Daと第2層41Dbの間にある。第3層41Dcは、炭素元素を含む。第3層41Dcは、例えば、炭素がドープされたポリシリコンである。第3層41Dcは、第3部分の一例である。第3層41Dcの厚みは、例えば、1nm以上10nm以下である。
第1変形例にかかるメモリセルアレイの製造方法は、図14に至る工程まで上記の製造方法と同じである。空間Spを半導体で埋め込む際に、第2層41Db、第3層41Dc、第1層41Daの順に形成する。まず空間Sp内に、第2層41Dbを形成する。第2層41Dbは、空間Spと半導体層41A又は半導体層41Cとの境界に形成される。次いで、第2層41Dbの内側に、第3層41Dcを形成する。最後に、第3層41Dcの内側に、第1層41Daを形成する。
このような構成によっても、第1実施形態と同様に、消去動作の速度向上を図ることができる。また第3層Dcは、第1層41Daから半導体ボディ61へのn型不純物の拡散を抑制する。n型不純物の半導体ボディ61への拡散が抑制されると、第1領域61Aが形成される範囲が狭まる。第1領域61Aにおけるn半導体の領域が狭くなると、空乏層におけるエネルギーバンドの傾きがより大きくなり、ホールhの生成効率が高まる。
(第2変形例)
次に、実施形態の第2変形例について説明する。
図20は、第1実施形態の第2変形例にかかるメモリセルアレイの特徴部分を拡大した断面図である。第2変形例にかかるメモリセルアレイは、導電層41の構造が図8に示す構造と異なる。以下に説明する以外の構成は、第1実施形態のメモリセルアレイ10と同様である。
第1変形例にかかる導電層41は、半導体層41A,41E,41Cを含む。半導体層41Eは、第1層41Eaと第2層41Ebとを含む。第2層41Ebは、図8における第2層41Bbと同様である。
第1層41Eaは、XY面内に広がる。第1層41Eaは、n型不純物と炭素元素を含む。第1層41Eaは、例えば、リンとカーボンを含む。第1層41Eaは、リンとカーボンがドープされたn型半導体である。第1層41Eaは、第1部分の一例である。
第1変形例にかかるメモリセルアレイの製造方法は、第1実施形態に示す製造方法と同様である。第1層41Eaを形成する際に、第1層41Eaにカーボンをn型不純物と一緒にドープする。
このような構成によっても、第1実施形態と同様に、消去動作の速度向上を図ることができる。また第1層41Ea内に加えられた炭素元素は、第1層41Eaから半導体ボディ61へのn型不純物の拡散を抑制する。n型不純物の半導体ボディ61への拡散が抑制されると、第1領域61Aが形成される範囲が狭まる。第1領域61Aにおけるn半導体の領域が狭くなると、空乏層におけるエネルギーバンドの傾きがより大きくなり、ホールhの生成効率が高まる。
(第3変形例)
次に、実施形態の第3変形例について説明する。
図21は、第1実施形態の第3変形例にかかるメモリセルアレイの特徴部分を拡大した断面図である。第3変形例にかかるメモリセルアレイは、導電層43が第1積層体46となっている点が図8に示す構造と異なる。以下に説明する以外の構成は、第1実施形態のメモリセルアレイ10と同様である。
積層体40は、第1積層体46と第2積層体47とを有する。第1積層体46は、第2積層体47より導電層41の近くにある。第1積層体46は、複数の導電層48と複数の絶縁層49とを有し、導電層48と絶縁層49とを交互に有する。導電層48は、例えば、導電性金属を含む。導電性金属は、例えば、タングステンである。導電層48は、例えば、不純物をドープしたポリシリコンでもよい。絶縁層49は、例えばシリコン酸化物を含む。第2積層体47は、複数の導電層45と複数の絶縁層44とを有し、導電層45と絶縁層44とを交互に有する。
第1積層体46と第2積層体47との構造状の明確な区別はない。第1積層体46は、例えば、第1積層体46と第2積層体47とを合わせた積層体のうち絶縁層42との境界から導電層48が5層までの部分である。第1積層体46の複数の導電層48は、第2選択トランジスタS2として機能する。第2積層体47の複数の導電層45は、メモリセルトランジスタMTとして機能する。図21の半導体層41Cの厚みは、例えば、図8の半導体層41Cの厚みより厚い。
第3変形例にかかるメモリセルアレイの製造方法は、絶縁層42を形成後に、導電層43を形成せずに、絶縁層44と犠牲膜85とを交互に積層する点が第1実施形態にかかるメモリセルアレイの製造方法と異なる。半導体層41Cは、第1実施形態にかかるメモリセルアレイの半導体層41Cより厚くする。半導体層41Cは、スリットSLT及びメモリホールMHを形成時のストッパ層として機能する。メモリピラーMP、スリットSLT、半導体層41Bの形成手順は、第1実施形態にかかるメモリセルアレイの製造方法と同様である。
このような構成によっても、第1実施形態と同様に、消去動作の速度向上を図ることができる。
(付記)
以下、いくつかの半導体記憶装置について付記する。
[1]複数の導電層及び複数の絶縁層を有し、導電層と絶縁層とが第1方向に交互に積層された積層体と、
前記積層体内において前記第1方向に延び、半導体ボディと、前記複数の導電層のうちの少なくとも一つと前記半導体ボディとの間に設けられた電荷蓄積膜と、を含む柱状体と、を備え、
前記複数の導電層のうちの第1導電層は、前記半導体ボディと接し、
前記半導体ボディは、n型不純物の濃度がp型不純物の濃度より高い第1領域と、p型不純物の濃度がn型不純物の濃度より高い第2領域とを有し、
前記第1領域は、前記第1方向において、前記第2領域より前記第1導電層と前記半導体ボディとの境界の近くにある、半導体記憶装置。
[2].[1]に記載の半導体記憶装置において、
前記第1領域は、前記第1導電層と前記半導体ボディとの前記境界から前記第1方向に延びる。
[3].[1]に記載の半導体記憶装置において、
前記半導体ボディは、第3領域をさらに有し、
前記第3領域は、前記第1方向において、前記第2領域より前記第1導電層と前記半導体ボディとの前記境界から離れた位置にあり、
前記第3領域は、前記n型不純物及び前記p型不純物を含まない又は前記第2領域と比べて前記p型不純物及び前記n型不純物の濃度が低い。
[4].[1]に記載の半導体記憶装置において、
前記第1導電層と前記半導体ボディとの前記境界におけるn型不純物の濃度は、前記第1領域と前記第2領域との境界におけるn型不純物の濃度より高い。
[5].[1]に記載の半導体記憶装置において、
前記半導体ボディの前記n型不純物の濃度は、前記第1導電層と前記半導体ボディとの境界から前記第1方向に離れるに従い、低くなる。
[6].[1]に記載の半導体記憶装置において、
前記半導体ボディの前記p型不純物の濃度は、前記第1導電層と前記半導体ボディとの境界から前記第1方向に離れるに従い、低くなる。
[7].[1]に記載の半導体記憶装置において、
前記第1導電層は、第1部分と第2部分とを有し、
前記第1部分はn型不純物を含み、前記第2部分はp型不純物を含み、
前記第2部分の少なくとも一部は、前記第1部分と前記半導体ボディとの間にある。
[8].[6]に記載の半導体記憶装置において、
前記第1導電層は、第3部分をさらに有し、
前記第3部分は炭素元素を含み、
前記第3部分の少なくとも一部は、前記第1部分と前記第2部分との間にある。
[9].[6]に記載の半導体記憶装置において、
前記第1部分が炭素元素をさらに含む。
[10].[1]に記載の半導体記憶装置において、
前記積層体は、前記第1導電層に最も近い位置に第2導電層を有し、
前記第2領域の少なくとも一部は、前記第1方向において、前記第2導電層の高さの範囲内にある。
[11].[1]に記載の半導体記憶装置において、
前記積層体は、前記第1導電層に近い順に、第1積層体と第2積層体とを有し、
前記第2領域の少なくとも一部は、前記第1方向において、前記第1積層体の高さの範囲内にある。
[12].[1]に記載の半導体記憶装置において、
前記第1領域は、n型半導体である。
[13].[1]に記載の半導体記憶装置において、
前記第2領域は、p型半導体である。
[14].[1]に記載の半導体記憶装置において、
前記n型不純物はリンを含む。
[15].[1]に記載の半導体記憶装置において、
前記p型不純物はボロンを含む。
[16].[1]に記載の半導体記憶装置において、
前記積層体は、論理回路上に設けられている。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1…半導体メモリ、10…メモリセルアレイ、30…基板、40…積層体、41,43,45,48…導電層、41A,41B,41C,41D,41E…半導体層、41Ba,41Da,41Ea…第1層、41Bb,41Db,41Eb…第2層、41Dc…第3層、42,44,49…絶縁層、46…第1積層体、47…第2積層体、61…半導体ボディ、61a…境界、61A,91A…第1領域、61B,91B…第2領域、61C…第3領域、64…電荷蓄積膜、MP…メモリピラー、PE…回路層

Claims (10)

  1. 複数の導電層及び複数の絶縁層を有し、導電層と絶縁層とが第1方向に交互に積層された積層体と、
    前記積層体内において前記第1方向に延び、半導体ボディと、前記複数の導電層のうちの少なくとも一つと前記半導体ボディとの間に設けられた電荷蓄積膜と、を含む柱状体と、を備え、
    前記複数の導電層のうちの第1導電層は、前記半導体ボディと接し、
    前記半導体ボディは、n型不純物の濃度がp型不純物の濃度より高い第1領域と、p型不純物の濃度がn型不純物の濃度より高い第2領域とを有し、
    前記第1領域は、前記第1方向において、前記第2領域より前記第1導電層と前記半導体ボディとの境界の近くにある、半導体記憶装置。
  2. 前記半導体ボディは、第3領域をさらに有し、
    前記第3領域は、前記第1方向において、前記第2領域より前記第1導電層と前記半導体ボディとの前記境界から離れた位置にあり、
    前記第3領域は、前記n型不純物及び前記p型不純物を含まない又は前記第2領域と比べて前記p型不純物及び前記n型不純物の濃度が低い、請求項1に記載の半導体記憶装置。
  3. 前記半導体ボディの前記n型不純物及び前記p型不純物の濃度は、前記第1導電層と前記半導体ボディとの境界から前記第1方向に離れるに従い、低くなる、請求項1又は2に記載の半導体記憶装置。
  4. 前記第1導電層は、第1部分と第2部分とを有し、
    前記第1部分はn型不純物を含み、前記第2部分はp型不純物を含み、
    前記第2部分の少なくとも一部は、前記第1部分と前記半導体ボディとの間にある、請求項1〜3のいずれか一項に記載の半導体記憶装置。
  5. 前記第1導電層は、第3部分をさらに有し、
    前記第3部分は炭素元素を含み、
    前記第3部分の少なくとも一部は、前記第1部分と前記第2部分との間にある、請求項4に記載の半導体記憶装置。
  6. 前記第1部分が炭素元素をさらに含む、請求項4に記載の半導体記憶装置。
  7. 前記積層体は、前記第1導電層に最も近い位置に第2導電層を有し、
    前記第2領域の少なくとも一部は、前記第1方向において、前記第2導電層の高さの範囲内にある、請求項1〜6のいずれか一項に記載の半導体記憶装置。
  8. 前記積層体は、前記第1導電層に近い順に、第1積層体と第2積層体とを有し、
    前記第2領域の少なくとも一部は、前記第1方向において、前記第1積層体の高さの範囲内にある、請求項1〜6のいずれか一項に記載の半導体記憶装置。
  9. 前記n型不純物はリンを含む、請求項1〜8のいずれか一項に記載の半導体記憶装置。
  10. 前記p型不純物はボロンを含む、請求項1〜9のいずれか一項に記載の半導体記憶装置。
JP2019157156A 2019-08-29 2019-08-29 半導体記憶装置 Pending JP2021034696A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019157156A JP2021034696A (ja) 2019-08-29 2019-08-29 半導体記憶装置
US16/808,450 US20210066340A1 (en) 2019-08-29 2020-03-04 Semiconductor storage device
TW109123158A TWI762967B (zh) 2019-08-29 2020-07-09 半導體記憶裝置
CN202010765316.5A CN112447747B (zh) 2019-08-29 2020-08-03 半导体存储装置
US17/715,541 US11723204B2 (en) 2019-08-29 2022-04-07 Semiconductor storage device
US18/335,198 US20230328992A1 (en) 2019-08-29 2023-06-15 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019157156A JP2021034696A (ja) 2019-08-29 2019-08-29 半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2021034696A true JP2021034696A (ja) 2021-03-01

Family

ID=74677746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019157156A Pending JP2021034696A (ja) 2019-08-29 2019-08-29 半導体記憶装置

Country Status (4)

Country Link
US (3) US20210066340A1 (ja)
JP (1) JP2021034696A (ja)
CN (1) CN112447747B (ja)
TW (1) TWI762967B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220000096A (ko) * 2020-06-25 2022-01-03 삼성전자주식회사 반도체 소자
WO2023037567A1 (ja) * 2021-09-09 2023-03-16 キオクシア株式会社 半導体記憶装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100764056B1 (ko) * 2006-09-14 2007-10-08 삼성전자주식회사 상변화 기억 장치 및 그 제조 방법
KR100827661B1 (ko) * 2006-10-31 2008-05-07 삼성전자주식회사 이중의 하부 전극을 갖는 상변화 기억소자 및 그 제조방법
JP2008270343A (ja) * 2007-04-17 2008-11-06 Renesas Technology Corp 不揮発性半導体記憶装置
JP5364342B2 (ja) * 2008-11-10 2013-12-11 株式会社東芝 不揮発性半導体記憶装置、及びその製造方法
JP5044586B2 (ja) * 2009-02-24 2012-10-10 株式会社東芝 半導体記憶装置
TWI433302B (zh) * 2009-03-03 2014-04-01 Macronix Int Co Ltd 積體電路自對準三度空間記憶陣列及其製作方法
JP4897009B2 (ja) * 2009-03-24 2012-03-14 株式会社東芝 不揮発性半導体記憶装置の製造方法
KR101616089B1 (ko) 2009-06-22 2016-04-28 삼성전자주식회사 3차원 반도체 메모리 소자
WO2012121265A1 (en) * 2011-03-10 2012-09-13 Semiconductor Energy Laboratory Co., Ltd. Memory device and method for manufacturing the same
JP2013055204A (ja) * 2011-09-02 2013-03-21 Toshiba Corp 半導体記憶装置
KR20130070150A (ko) * 2011-12-19 2013-06-27 에스케이하이닉스 주식회사 3차원 비휘발성 메모리 소자, 메모리 시스템 및 그 제조 방법
KR102094472B1 (ko) * 2013-10-08 2020-03-27 삼성전자주식회사 반도체 장치
JP2017010951A (ja) * 2014-01-10 2017-01-12 株式会社東芝 半導体記憶装置及びその製造方法
JP2015149413A (ja) * 2014-02-06 2015-08-20 株式会社東芝 半導体記憶装置及びその製造方法
US9455263B2 (en) * 2014-06-27 2016-09-27 Sandisk Technologies Llc Three dimensional NAND device with channel contacting conductive source line and method of making thereof
KR102437779B1 (ko) * 2015-08-11 2022-08-30 삼성전자주식회사 3차원 반도체 메모리 장치
JP6448503B2 (ja) * 2015-09-10 2019-01-09 東芝メモリ株式会社 不揮発性半導体記憶装置
JP6509768B2 (ja) * 2016-03-22 2019-05-08 東芝メモリ株式会社 半導体記憶装置
US9887273B2 (en) * 2016-03-31 2018-02-06 Toshiba Memory Corporation Semiconductor memory device
KR102549452B1 (ko) * 2016-03-31 2023-06-30 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
US10361218B2 (en) * 2017-02-28 2019-07-23 Toshiba Memory Corporation Semiconductor device and method for manufacturing same
US10199359B1 (en) * 2017-08-04 2019-02-05 Sandisk Technologies Llc Three-dimensional memory device employing direct source contact and hole current detection and method of making the same
JP2019041054A (ja) * 2017-08-28 2019-03-14 東芝メモリ株式会社 半導体装置
JP2019201074A (ja) 2018-05-15 2019-11-21 東芝メモリ株式会社 半導体記憶装置
KR102582670B1 (ko) * 2018-07-13 2023-09-25 삼성전자주식회사 반도체 장치
JP2020047810A (ja) 2018-09-20 2020-03-26 キオクシア株式会社 半導体記憶装置及びその製造方法
US10629613B1 (en) 2018-11-20 2020-04-21 Sandisk Technologies Llc Three-dimensional memory device having vertical semiconductor channels including source-side boron-doped pockets and methods of making the same
KR20200120112A (ko) * 2019-04-11 2020-10-21 에스케이하이닉스 주식회사 수직형 반도체 장치 및 그 제조 방법

Also Published As

Publication number Publication date
TW202109844A (zh) 2021-03-01
US20230328992A1 (en) 2023-10-12
US11723204B2 (en) 2023-08-08
CN112447747A (zh) 2021-03-05
CN112447747B (zh) 2024-02-20
US20210066340A1 (en) 2021-03-04
US20220231047A1 (en) 2022-07-21
TWI762967B (zh) 2022-05-01

Similar Documents

Publication Publication Date Title
US11805642B2 (en) Semiconductor device
US11664463B2 (en) NAND flash memory with vertical cell stack structure and method for manufacturing same
CN106558591B (zh) 三维半导体器件
US8643081B2 (en) Semiconductor memory device
KR20130005430A (ko) 불휘발성 메모리 소자 및 그 제조방법
US20120032249A1 (en) Nonvolatile semiconductor memory device and method for manufacturing nonvolatile semiconductor memory device
KR20190019672A (ko) 반도체 장치 및 그 제조방법
US10283647B2 (en) Semiconductor device
US20230328992A1 (en) Semiconductor storage device
US10685981B2 (en) Semiconductor memory device
JP5514172B2 (ja) 不揮発性半導体記憶装置およびその製造方法
US9865614B2 (en) Semiconductor device
JP2020141008A (ja) 半導体記憶装置及びその製造方法
JP2008186838A (ja) 半導体装置、その製造方法及び不揮発性半導体記憶装置
US11616070B2 (en) Semiconductor device
US20240005991A1 (en) Semiconductor storage device
TWI826937B (zh) 半導體記憶裝置及半導體記憶裝置之製造方法
US11869838B2 (en) Semiconductor storage device
TW202404053A (zh) 半導體記憶裝置及半導體記憶裝置之製造方法