JP2020201505A - Device manufacturing method - Google Patents

Device manufacturing method Download PDF

Info

Publication number
JP2020201505A
JP2020201505A JP2020139661A JP2020139661A JP2020201505A JP 2020201505 A JP2020201505 A JP 2020201505A JP 2020139661 A JP2020139661 A JP 2020139661A JP 2020139661 A JP2020139661 A JP 2020139661A JP 2020201505 A JP2020201505 A JP 2020201505A
Authority
JP
Japan
Prior art keywords
substrate
processing
roll
unit
sheet substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020139661A
Other languages
Japanese (ja)
Inventor
義昭 鬼頭
Yoshiaki Kito
義昭 鬼頭
鈴木 智也
Tomoya Suzuki
智也 鈴木
正和 堀
Masakazu Hori
堀  正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JP2020201505A publication Critical patent/JP2020201505A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67745Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber characterized by movements or sequence of movements of transfer devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5057Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/74Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area
    • B29C65/745Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area using a single unit having both a severing tool and a welding tool
    • B29C65/7451Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area using a single unit having both a severing tool and a welding tool the severing tool and the welding tool being movable with respect to one-another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • B29C65/7847Holding or clamping means for handling purposes using vacuum to hold at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/822Transmission mechanisms
    • B29C66/8221Scissor or lever mechanisms, i.e. involving a pivot point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8324Joining or pressing tools pivoting around one axis
    • B29C66/83241Joining or pressing tools pivoting around one axis cooperating pivoting tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/853Machines for changing web rolls or filaments, e.g. for joining a replacement web to an expiring web
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H19/00Changing the web roll
    • B65H19/10Changing the web roll in unwinding mechanisms or in connection with unwinding operations
    • B65H19/18Attaching, e.g. pasting, the replacement web to the expiring web
    • B65H19/1842Attaching, e.g. pasting, the replacement web to the expiring web standing splicing, i.e. the expiring web being stationary during splicing contact
    • B65H19/1852Attaching, e.g. pasting, the replacement web to the expiring web standing splicing, i.e. the expiring web being stationary during splicing contact taking place at a distance from the replacement roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H19/00Changing the web roll
    • B65H19/10Changing the web roll in unwinding mechanisms or in connection with unwinding operations
    • B65H19/18Attaching, e.g. pasting, the replacement web to the expiring web
    • B65H19/1857Support arrangement of web rolls
    • B65H19/1873Support arrangement of web rolls with two stationary roll supports carrying alternately the replacement and the expiring roll
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • H01L21/4825Connection or disconnection of other leads to or from flat leads, e.g. wires, bumps, other flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/04Arrangements of vacuum systems or suction cups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/46Splicing
    • B65H2301/461Processing webs in splicing process
    • B65H2301/4615Processing webs in splicing process after splicing
    • B65H2301/4617Processing webs in splicing process after splicing cutting webs in splicing process
    • B65H2301/46172Processing webs in splicing process after splicing cutting webs in splicing process cutting expiring web only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/46Splicing
    • B65H2301/462Form of splice
    • B65H2301/4621Overlapping article or web portions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/46Splicing
    • B65H2301/463Splicing splicing means, i.e. means by which a web end is bound to another web end
    • B65H2301/4631Adhesive tape
    • B65H2301/46312Adhesive tape double-sided
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2408/00Specific machines
    • B65H2408/20Specific machines for handling web(s)
    • B65H2408/21Accumulators
    • B65H2408/217Accumulators of rollers type, e.g. with at least one fixed and one movable roller
    • B65H2408/2171Accumulators of rollers type, e.g. with at least one fixed and one movable roller the position of the movable roller(s), i.e. the web loop, being positively actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/61Display device manufacture, e.g. liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/0235Ribbons
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133351Manufacturing of individual cells out of a plurality of cells, e.g. by dicing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Replacement Of Web Rolls (AREA)
  • Advancing Webs (AREA)
  • Liquid Crystal (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
  • Electroluminescent Light Sources (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Folding Of Thin Sheet-Like Materials, Special Discharging Devices, And Others (AREA)

Abstract

To operate a processing unit for use in each of multiple processing steps efficiently, while improving productivity of the entire manufacturing line relevant to substrate processing.SOLUTION: A device manufacturing method includes a coating step of coating a sheet substrate with a photosensitive functional layer, while transporting at a first velocity in a first processing unit, a first recovery step of winding the sheet substrate, exported from the first processing unit, around a first recovery roller and cutting, a first patterning step of patterning the photosensitive functional layer while transporting the sheet substrate into a second processing unit where the sheet substrate is not processed, out of second processing units performing second processing while transporting the sheet substrate at a second velocity slower than the first velocity, a second recovery step of winding the sheet substrate around a second recovery roller and cutting, and a second patterning step of patterning the photosensitive functional layer while transporting the sheet substrate wound around the second recovery roller. The second patterning step is set to be started before the first patterning step is completed.SELECTED DRAWING: Figure 1

Description

本発明は、デバイス製造方法に関する。
本願は、2012年5月23日に出願された米国仮出願61/650,712及び2012年6月1日に出願された米国仮出願61/654,500に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a device manufacturing method.
This application claims priority based on US provisional application 61 / 650,712 filed on May 23, 2012 and US provisional application 61 / 654,500 filed on June 1, 2012. Is used here.

液晶表示素子等の大画面表示素子においては、平面状のガラス基板上にITO(Indium Tin Oxide)等の透明電極やSi等の半導体物質を堆積した上に金属材料を蒸着し、フォトレジストを塗布して回路パターンを転写する。その後、フォトレジストを現像した後に、エッチングすることで回路パターン等を形成している。ところが、表示素子の大画面化に伴ってガラス基板が大型化するため、基板搬送も困難になってきている。そこで、可撓性を有する基板(例えば、ポリイミド、PET、金属箔等のフィルム部材、或いは極薄ガラスシートなど)上に表示素子を形成するロール・トゥ・ロール方式(以下、単に「ロール方式」と表記する)と呼ばれる技術が提案されている(例えば、特許文献1参照)。 In a large screen display element such as a liquid crystal display element, a transparent electrode such as ITO (Indium Tin Oxide) or a semiconductor substance such as Si is deposited on a flat glass substrate, and a metal material is vapor-deposited and a photoresist is applied. And transfer the circuit pattern. Then, after developing the photoresist, a circuit pattern or the like is formed by etching. However, as the screen size of the display element increases, the size of the glass substrate increases, which makes it difficult to transport the substrate. Therefore, a roll-to-roll method (hereinafter, simply "roll method") in which a display element is formed on a flexible substrate (for example, a film member such as polyimide, PET, metal foil, or an ultrathin glass sheet). A technique called (referred to as) has been proposed (see, for example, Patent Document 1).

また、特許文献2には、回転可能な円筒状のマスクの外周部に近接して、送りローラに巻き付けて走行させられる可撓性の長尺シート(基板)を配置し、マスクのパターンを連続的に基板に露光する技術が提案されている。 Further, in Patent Document 2, a flexible long sheet (board) that can be wound around a feed roller and traveled is arranged close to the outer peripheral portion of a rotatable cylindrical mask, and the mask pattern is continuously arranged. A technique for exposing to a substrate has been proposed.

また、特許文献3には、ロール方式で送られてくる可撓性の長尺シート(基板)のパターン形成領域を平面ステージに一時的に保持し、拡大投影レンズを介して投影されるマスクのパターン像を、そのパターン形成領域に走査露光する技術が提案されている。 Further, in Patent Document 3, a mask in which a pattern forming region of a flexible long sheet (substrate) sent by a roll method is temporarily held on a flat stage and projected via a magnifying projection lens. A technique has been proposed in which a pattern image is scanned and exposed on the pattern forming region.

国際公開第2008/129819号International Publication No. 2008/129819 実開昭60−019037号公報Jitsukaisho 60-019037 特開2011−22584号公報Japanese Unexamined Patent Publication No. 2011-22584

しかしながら、上述したような従来技術には、以下のような問題が存在する。
長尺のシート状基板に対して複数の処理を順次施す場合、各処理ユニットの性能によって、処理に適した基板の搬送速度はユニット毎(処理内容毎)にまちまちになる。例えば、特許文献2のような露光処理の場合は、基板表面に塗布された感光層の感度と露光用照明光の輝度等により、基板の搬送速度(タクト)は制限される。また、エッチングやメッキ等の湿式処理や、その湿式処理後の乾燥・加熱工程でも、基板をゆっくり搬送することにより、液槽や乾燥・加熱炉を小型化できる等の利点が得られる。
However, the above-mentioned prior art has the following problems.
When a plurality of processes are sequentially applied to a long sheet-shaped substrate, the transfer speed of the substrate suitable for the process varies depending on the performance of each processing unit (for each processing content). For example, in the case of the exposure process as in Patent Document 2, the transport speed (tact) of the substrate is limited by the sensitivity of the photosensitive layer applied to the surface of the substrate, the brightness of the illumination light for exposure, and the like. Further, even in the wet treatment such as etching and plating and the drying / heating step after the wet treatment, the liquid tank and the drying / heating furnace can be miniaturized by slowly transporting the substrate.

その他、機能性材料の堆積処理や、印刷やインクジェットプリントの工程等においても、高精度化(微細化)を維持しつつ生産性も確保する為には、最適な基板搬送速度がある。しかし、それら最適な基板搬送速度は、処理ユニットよってばらばらであることが多い。 In addition, there is an optimum substrate transfer speed in order to secure productivity while maintaining high precision (miniaturization) even in the process of depositing functional materials and the processes of printing and inkjet printing. However, these optimum substrate transfer speeds often vary depending on the processing unit.

そのような複数の処理ユニットを組み合わせて、長尺のシート状基板を順次通して一連の処理を続けて行なうロール方式の製造ライン(処理システム)を構築する場合、基板の搬送速度(製造ラインの速度)は、処理中の基板搬送速度が最も低い処理ユニットに合わせられてしまう。 When constructing a roll-type manufacturing line (processing system) in which a series of processing is continuously performed by sequentially passing a long sheet-like substrate by combining such a plurality of processing units, the transfer speed of the substrate (of the production line) is constructed. The speed) is adjusted to the processing unit having the lowest substrate transfer speed during processing.

そのため、処理速度が速い処理ユニットは、性能に余裕があるにも関わらず、遅い速度で基板搬送をすることになる。そのため、処理ユニットの効率が悪くなると共に、製造ライン全体の生産性も上がらない可能性がある。 Therefore, a processing unit having a high processing speed will transfer the substrate at a slow speed even though there is a margin in performance. Therefore, the efficiency of the processing unit may deteriorate and the productivity of the entire production line may not increase.

また、特許文献1では、ロール方式で可撓性のシート基板を搬送しつつ、印刷(インクジェット)方式を主に用いて、シート基板上に電子デバイスを形成している。しかし、一般的な印刷現場では、供給ロールに巻かれたシート基板の残量が少なくなると、印刷装置を一時的に止めて、印刷装置と回収ロールとの間でシート基板を切断し、回収ロールとして巻かれた印刷済みのシート基板を次工程に送っている。その場合、印刷装置の入口から出口までの印刷経路中には、印刷途中のシート基板が残っており、これは全て不良品として廃棄される。紙やフィルム上に色インクで印刷する場合、その印刷コストは極めて安価である。しかし、ロール方式で電子デバイスを形成する場合、シート基板の単位長(m)当りの製造コストはまだまだ高価であり、一般的な印刷現場のように、装置内に残っているシート基板を廃棄すると、無駄が多くなりコスト増となる。 Further, in Patent Document 1, an electronic device is formed on a sheet substrate by mainly using a printing (injection) method while conveying a flexible sheet substrate by a roll method. However, in a general printing site, when the remaining amount of the sheet substrate wound on the supply roll becomes low, the printing apparatus is temporarily stopped, the sheet substrate is cut between the printing apparatus and the collection roll, and the collection roll is used. The printed sheet substrate wound as is sent to the next process. In that case, a sheet substrate in the middle of printing remains in the printing path from the inlet to the exit of the printing apparatus, and all of them are discarded as defective products. When printing with color ink on paper or film, the printing cost is extremely low. However, when forming an electronic device by the roll method, the manufacturing cost per unit length (m) of the sheet substrate is still high, and if the sheet substrate remaining in the apparatus is discarded as in a general printing site. , Waste increases and cost increases.

特に、有機ELによる中型、大型の表示パネルをシート基板上に形成する場合、シート基板は一連の複数の処理装置、例えば感光層印刷装置、特許文献3のような露光装置、湿式処理装置、乾燥装置等を連続的に通ってから、回収ロールに巻き上げられる。従って、供給ロールから回収ロールまで、複数の処理装置(処理工程)に仕掛かっているシート基板は極めて長くなることが想定され、ひとたびシート基板の搬送が停止すると、相当に長い距離に渡ってシート基板を無駄にしてしまうことになる。 In particular, when a medium-sized or large-sized display panel made of organic EL is formed on a sheet substrate, the sheet substrate is formed by a series of a plurality of processing devices, such as a photosensitive layer printing device, an exposure device such as Patent Document 3, a wet processing device, and drying. After passing through the device etc. continuously, it is wound up on a collection roll. Therefore, it is assumed that the sheet substrate working on a plurality of processing devices (processing processes) from the supply roll to the recovery roll becomes extremely long, and once the transfer of the sheet substrate is stopped, the sheet substrate is spread over a considerably long distance. Will be wasted.

本発明の第1の態様に従えば、可撓性を有する長尺のシート基板に感光性機能層を形成する第1処理の後、前記感光性機能層に電子デバイスの為のパターンを形成する第2処理を施すデバイス製造方法であって、供給ロールに巻かれた前記シート基板を、前記第1処理を施す第1処理ユニット内に第1速度で搬送しながら、前記シート基板に前記感光性機能層を塗布する塗布工程と、前記第1処理ユニットから搬出される前記シート基板を、所定の長さ分だけ第1回収ロールに巻き取って切断する第1の回収工程と、前記シート基板を前記第1速度よりも遅い第2速度で搬送しつつ前記第2処理を施す第2処理ユニットの複数台のうち、前記シート基板を処理していない第2処理ユニット内に、前記第1回収ロールに巻かれた前記シート基板を搬送しつつ前記感光性機能層に前記パターンを形成する第1のパターン形成工程と、前記第1の回収工程の後、引き続き、前記第1処理ユニットから前記第1速度で搬出される前記シート基板を、所定の長さ分だけ第2回収ロールに巻き取って切断する第2の回収工程と、前記複数台の第2処理ユニットのうち、前記シート基板を処理していない第2処理ユニット内に、前記第2回収ロールに巻かれた前記シート基板を搬送しつつ前記感光性機能層に前記パターンを形成する第2のパターン形成工程と、を含み、前記第1のパターン形成工程の完了前に前記第2のパターン形成工程を開始するように設定した、デバイス製造方法が提供される。 According to the first aspect of the present invention, after the first treatment of forming a photosensitive functional layer on a long flexible sheet substrate, a pattern for an electronic device is formed on the photosensitive functional layer. A device manufacturing method for performing a second treatment, wherein the sheet substrate wound on a supply roll is conveyed to the sheet substrate at a first speed while being conveyed into the first processing unit to be subjected to the first treatment, and the photosensitive of the sheet substrate is exhibited. The coating step of applying the functional layer, the first recovery step of winding the sheet substrate carried out from the first processing unit on a first recovery roll by a predetermined length and cutting the sheet substrate, and the sheet substrate. Among a plurality of second processing units that perform the second processing while being conveyed at a second speed slower than the first speed, the first recovery roll is contained in the second processing unit that has not processed the sheet substrate. After the first pattern forming step of forming the pattern on the photosensitive functional layer while conveying the sheet substrate wound around the sheet and the first recovery step, the first processing unit continues to perform the first. A second recovery step in which the sheet substrate carried out at a high speed is wound around a second recovery roll for a predetermined length and cut, and the sheet board is processed among the plurality of second processing units. The first processing unit includes a second pattern forming step of forming the pattern on the photosensitive functional layer while transporting the sheet substrate wound on the second recovery roll into the second processing unit. A device manufacturing method is provided in which the second pattern forming step is set to start before the completion of the pattern forming step.

本発明の態様では、複数の処理工程の各々で使われる処理ユニットを効率的に運用させることができ、基板処理に係る製造ライン全体の生産性を向上させることができる。 In the aspect of the present invention, the processing units used in each of the plurality of processing steps can be efficiently operated, and the productivity of the entire production line related to the substrate processing can be improved.

また、本発明の別の態様では、基板の無駄を大幅に減らすことが可能となり、コスト増を効果的に抑制することができる。 Further, in another aspect of the present invention, the waste of the substrate can be significantly reduced, and the cost increase can be effectively suppressed.

第1実施形態に係る基板処理システムを模式的に示した図である。It is a figure which showed typically the substrate processing system which concerns on 1st Embodiment. 第1実施形態に係る切断機構の概略的な斜視図である。It is a schematic perspective view of the cutting mechanism which concerns on 1st Embodiment. 第1実施形態に係る第1スプライサー部の概略的な外観斜視図である。It is a schematic external perspective view of the 1st splicer part which concerns on 1st Embodiment. 第1実施形態に係る第2スプライサー部の概略的な外観斜視図である。It is a schematic external perspective view of the 2nd splicer part which concerns on 1st Embodiment. 第1実施形態に係る基板処理システムにおける制御ブロック図である。It is a control block diagram in the substrate processing system which concerns on 1st Embodiment. 第1実施形態に係るデバイス製造システムの一部の構成を示す図である。It is a figure which shows the structure of a part of the device manufacturing system which concerns on 1st Embodiment. 第1実施形態に係る製造ラインを構成する複数の処理ユニットのモデル配置例を説明する図である。It is a figure explaining the model arrangement example of the plurality of processing units constituting the production line which concerns on 1st Embodiment. 第1実施形態に係る製造ラインによるタクト向上を説明するタイムチャートである。It is a time chart explaining the tact improvement by the production line which concerns on 1st Embodiment. 第2実施形態に係る基板処理置としてのデバイス製造システムの一部の構成を示す図である。It is a figure which shows the structure of a part of the device manufacturing system as a substrate processing place which concerns on 2nd Embodiment. 第2実施形態に係る第1スプライサー部及び第1バッファ機構の概略構成を示す図である。It is a figure which shows the schematic structure of the 1st splicer part and 1st buffer mechanism which concerns on 2nd Embodiment. 第2実施形態に係る第2スプライサー部及び第2バッファ機構の概略構成を示す図である。It is a figure which shows the schematic structure of the 2nd splicer part and the 2nd buffer mechanism which concerns on 2nd Embodiment. 第2実施形態に係る基板供給側の基板の接合・切断動作を示す図である。It is a figure which shows the joining / cutting operation of the substrate of the substrate supply side which concerns on 2nd Embodiment. 第2実施形態に係る基板供給側の基板の接合・切断動作を示す図である。It is a figure which shows the joining / cutting operation of the substrate of the substrate supply side which concerns on 2nd Embodiment. 第2実施形態に係る基板供給側の基板の接合・切断動作を示す図である。It is a figure which shows the joining / cutting operation of the substrate of the substrate supply side which concerns on 2nd Embodiment. 第2実施形態に係る基板供給側の基板の接合・切断動作を示す図である。It is a figure which shows the joining / cutting operation of the substrate of the substrate supply side which concerns on 2nd Embodiment. 第2実施形態に係る基板供給側の基板の接合・切断動作を示す図である。It is a figure which shows the joining / cutting operation of the substrate of the substrate supply side which concerns on 2nd Embodiment. 第2実施形態に係る基板供給側の基板の接合・切断動作を示す図である。It is a figure which shows the joining / cutting operation of the substrate of the substrate supply side which concerns on 2nd Embodiment. 第2実施形態に係る基板供給側の基板の接合・切断動作を示す図である。It is a figure which shows the joining / cutting operation of the substrate of the substrate supply side which concerns on 2nd Embodiment. 第2実施形態に係る基板供給側の基板の接合・切断動作を示す図である。It is a figure which shows the joining / cutting operation of the substrate of the substrate supply side which concerns on 2nd Embodiment. 第2実施形態に係る基板回収側の基板の接合・切断動作を示す図である。It is a figure which shows the joining / cutting operation of the substrate on the substrate recovery side which concerns on 2nd Embodiment. 第2実施形態に係る基板回収側の基板の接合・切断動作を示す図である。It is a figure which shows the joining / cutting operation of the substrate on the substrate recovery side which concerns on 2nd Embodiment. 第2実施形態に係る基板回収側の基板の接合・切断動作を示す図である。It is a figure which shows the joining / cutting operation of the substrate on the substrate recovery side which concerns on 2nd Embodiment. 第2実施形態に係る基板回収側の基板の接合・切断動作を示す図である。It is a figure which shows the joining / cutting operation of the substrate on the substrate recovery side which concerns on 2nd Embodiment. 第2実施形態に係る基板回収側の基板の接合・切断動作を示す図である。It is a figure which shows the joining / cutting operation of the substrate on the substrate recovery side which concerns on 2nd Embodiment. 第2実施形態に係る基板回収側の基板の接合・切断動作を示す図である。It is a figure which shows the joining / cutting operation of the substrate on the substrate recovery side which concerns on 2nd Embodiment.

第1実施形態
以下、本発明のデバイス製造方法の実施形態を、図1から図6を参照して説明する。
図1は、例として、シート状の基板Pを順次3つの処理工程A、B、Cに通すロール方式の基板処理システムSYSを模式的に示した図である。
First Embodiment Hereinafter, an embodiment of the device manufacturing method of the present invention will be described with reference to FIGS. 1 to 6.
FIG. 1 is a diagram schematically showing a roll-type substrate processing system SYS in which a sheet-shaped substrate P is sequentially passed through three processing steps A, B, and C.

基板処理システムは、基板Pに対して工程Aとして処理A(第1の処理)を施す処理ユニットUA(第1処理ユニット)、工程Bとして処理B(第1の処理、第2の処理)を施す処理ユニットUB(第1処理ユニット、第2処理ユニット)、工程Cとして処理C(第2の処理)を施す処理ユニットUC(第2処理ユニット)、切断機構CU10、接合機構PU10、選択投入機構ST1、ST2、制御部CT(図5参照)を主体に構成されている。 The substrate processing system has a processing unit UA (first processing unit) that performs processing A (first processing) as process A on the substrate P, and processing B (first processing, second processing) as process B. Processing unit UB (first processing unit, second processing unit) to be applied, processing unit UC (second processing unit) to apply processing C (second processing) as process C, cutting mechanism CU10, joining mechanism PU10, selective charging mechanism It is mainly composed of ST1, ST2, and a control unit CT (see FIG. 5).

処理ユニットUAは、供給ロールRRAが装着されるロール装着部RSAを備えており、処理Aを施した基板Pを切断機構CU10に送り出す。処理ユニットUBは、それぞれが同一の処理Bを施す処理ユニットUB1〜UB3から構成され、例えば、処理ユニットUAの基板搬送方向の下流側に上下に3段、又は水平に3列に配置される。 The processing unit UA includes a roll mounting portion RSA on which the supply roll RRA is mounted, and sends the substrate P subjected to the processing A to the cutting mechanism CU10. The processing units UB are composed of processing units UB1 to UB3, each of which performs the same processing B. For example, the processing units UB are arranged vertically in three stages or horizontally in three rows on the downstream side of the processing unit UA in the substrate transport direction.

各処理ユニットUB1〜UB3は、処理Aが施された基板Pのロールが装着される装着部RSB11〜RSB31と、処理Bを施した基板Pのロールが装着される装着部RSB12〜RSB32とを備えており、装着部RSB11〜RSB31に装着されたロールRRB11〜RRB31(以下、子ロールRRB11〜RRB31と適宜称する)からの基板Pは、処理Bを施された後に、装着部RSB12〜RSB32に装着されるロールRRB12〜RRB32(以下、子ロールRRB12〜RRB32と適宜称する)に巻き上げられる。 Each of the processing units UB1 to UB3 includes mounting portions RSB11 to RSB31 on which the roll of the substrate P subjected to the treatment A is mounted, and mounting portions RSB12 to RSB32 on which the roll of the substrate P subjected to the treatment B is mounted. The substrates P from the rolls RRB11 to RRB31 (hereinafter, appropriately referred to as child rolls RRB11 to RRB31) mounted on the mounting portions RSB11 to RSB31 are mounted on the mounting portions RSB12 to RSB32 after being subjected to the process B. The rolls RRB12 to RRB32 (hereinafter, appropriately referred to as child rolls RRB12 to RRB32) are wound up.

尚、図1において、処理ユニットUA後段の切断機構CU10の後に、処理Aを施された基板Pを巻き取るロールRR1が設けられている。このロールRR1に基板Pの所定長分が巻き上げられると、そこで基板Pが切断され、ロールRR1は各処理ユニットUB1〜UB3の装着部RSB11〜RSB31の何れかに、子ロールRRB11〜RRB31の何れかひとつとして装着される。 In FIG. 1, a roll RR1 for winding the substrate P subjected to the processing A is provided after the cutting mechanism CU10 in the subsequent stage of the processing unit UA. When a predetermined length of the substrate P is wound around the roll RR1, the substrate P is cut there, and the roll RR1 is placed on any of the mounting portions RSB11 to RSB31 of each processing unit UB1 to UB3, and any of the child rolls RRB11 to RRB31. It is installed as one.

処理ユニットUCは、処理ユニットUB1〜UB3で処理Bが施された子ロールRRB12〜RRB32の何れかひとつを、ロールRR2として装着可能である。このロールRR2に巻かれた基板P(処理A、Bを施された中間製品)は、接合機構PU10を介して処理ユニットUCに搬入され、処理Cが施される。処理Cを受けた基板Pは、ロール装着部RSCに装着された回収ロールRRCに巻き取られて回収される。 The processing unit UC can mount any one of the child rolls RRB12 to RRB32 subjected to the processing B by the processing units UB1 to UB3 as the roll RR2. The substrate P (intermediate product subjected to the treatments A and B) wound around the roll RR2 is carried into the processing unit UC via the joining mechanism PU10 and is subjected to the processing C. The substrate P that has received the treatment C is taken up by the recovery roll RRC mounted on the roll mounting portion RSC and recovered.

本実施形態における処理ユニットUAにおける処理Aの処理速度VA(基板Pの搬送速度)、処理ユニットUB1〜UB3における処理Bの処理速度VB(基板Pの搬送速度)、処理ユニットUCにおける処理Cの処理速度VC(基板Pの搬送速度)の関係は、以下となっている。
VA≒VC>VB
なお、処理ユニットUAと処理ユニットUB1〜UB3のいずれか1つとの間では、基板Pの搬送速度がVA>VBとなっているため、処理ユニットUAが搬送速度(V1)の高い第1処理ユニットに対応し、処理ユニットUB1〜UB3のいずれか1つが搬送速度(V2)の低い第2処理ユニットに対応する。一方、処理ユニットUB1〜UB3のいずれか1つと処理ユニットUCとの間では、基板Pの搬送速度がVB<VCとなっているため、処理ユニットUB1〜UB3のいずれか1つが搬送速度(V1)の低い第1処理ユニットに対応し、処理ユニットUCが搬送速度(V2)の高い第2処理ユニットに対応する。
Processing speed VA of processing A in processing unit UA (conveying speed of substrate P) in the present embodiment, processing speed VB of processing B in processing units UB1 to UB3 (conveying speed of substrate P), processing of processing C in processing unit UC The relationship of speed VC (conveyance speed of substrate P) is as follows.
VA ≒ VC> VB
Since the transfer speed of the substrate P between the processing unit UA and any one of the processing units UB1 to UB3 is VA> VB, the processing unit UA is the first processing unit having a high transfer speed (V1). Corresponding to, any one of the processing units UB1 to UB3 corresponds to the second processing unit having a low transport speed (V2). On the other hand, between the processing units UB1 to UB3 and the processing unit UC, the transfer speed of the substrate P is VB <VC, so that any one of the processing units UB1 to UB3 has a transfer speed (V1). Corresponds to the first processing unit having a low processing speed, and the processing unit UC corresponds to the second processing unit having a high transport speed (V2).

本実施形態では、処理速度VA、VCは、処理速度VBの約3倍に設定可能な構成となっている。従来のように処理工程Bを実施する処理ユニットUBが1台である場合、供給ロールRRAから回収ロールRRCまで1つにつながった基板Pが処理ユニットUA、UB、UCを順次通っていく為、その搬送速度は最も遅い処理速度VBに合わされてしまう。即ち、製造ライン全体のタクト(ライン速度、生産性)が最も遅い処理ユニットによって律則されてしまうことになる。 In the present embodiment, the processing speeds VA and VC can be set to about 3 times the processing speed VB. When there is only one processing unit UB that executes the processing step B as in the conventional case, the substrate P connected to one from the supply roll RRA to the recovery roll RRC passes through the processing units UA, UB, and UC in order. The transport speed is adjusted to the slowest processing speed VB. That is, the tact (line speed, productivity) of the entire production line is regulated by the slowest processing unit.

本実施形態では、処理速度の遅い処理ユニットUBを複線化(ここでは3台を並置)することによって、その律則に縛られない構成が可能である。この複線化(又は、複数設けること)する為には、基板PがロールRR1に所定の長さ分だけ巻き上げられたら、処理工程Aと処理工程Bを一時的に止めることなく、基板Pを切断する機構CU10が必要になる。 In the present embodiment, by double-tracking the processing unit UB having a slow processing speed (here, three units are juxtaposed), a configuration that is not bound by the law is possible. In order to make this double track (or to provide a plurality of lines), when the substrate P is wound around the roll RR1 by a predetermined length, the substrate P is cut without temporarily stopping the processing step A and the processing step B. Mechanism CU10 is required.

切断機構CU10は、主として、処理Aが施された基板Pを所定長さで切断するものであって、図1及び図2に示すように、第1バッファ機構(第1バッファ部)BF1と第1スプライサー部CSa(切断部)とを備えている。また、切断機構CU10は、第1スプライサー部CSa(切断部)の動作と第1バッファ機構BF1(バッファ部)における基板Pの蓄積量とを連動させる連動制御部をさらに備える。 The cutting mechanism CU10 mainly cuts the substrate P subjected to the process A to a predetermined length, and as shown in FIGS. 1 and 2, the first buffer mechanism (first buffer portion) BF1 and the first It is provided with one splicer portion CSa (cutting portion). Further, the cutting mechanism CU10 further includes an interlocking control unit that links the operation of the first splicer unit CSa (cutting unit) with the accumulated amount of the substrate P in the first buffer mechanism BF1 (buffer unit).

第1バッファ機構BF1は、第1の処理としての処理Aを実施するユニットUAと第1スプライサー部CSaとの間に設けられ、多数のローラ等で基板Pを折り返して所定長分を蓄積するダンサーローラ機構DR1を有し、ダンサーローラの上下動等により、基板Pの蓄積長を可変に調整しつつ、基板Pを搬入、搬出する。第1バッファ機構BF1は、処理ユニットUAの基板Pの搬送方向の下流側に隣り合って設けられ、第1スプライサー部CSaに搬出される基板Pの搬送量(或いは搬送速度)を調整するニップ駆動ローラNR1(図5参照)とを備えている。ダンサーローラ機構DR1の駆動及びニップ駆動ローラNR1の駆動は、制御部CTによって制御される。 The first buffer mechanism BF1 is provided between the unit UA that executes the process A as the first process and the first splicer unit CSa, and is a dancer that folds the substrate P with a large number of rollers or the like to accumulate a predetermined length. It has a roller mechanism DR1 and carries in and out the substrate P while variably adjusting the accumulated length of the substrate P by moving the dancer roller up and down. The first buffer mechanism BF1 is provided adjacent to the downstream side of the substrate P of the processing unit UA in the transport direction, and is a nip drive that adjusts the transport amount (or transport speed) of the substrate P to be carried out to the first splicer unit CSa. It is equipped with a roller NR1 (see FIG. 5). The drive of the dancer roller mechanism DR1 and the drive of the nip drive roller NR1 are controlled by the control unit CT.

ここで、第1スプライサー部CSaの概略的な外観斜視を示す図3により、その構成を説明する。
第1スプライサー部CSaは、上面に、例えば多孔質材で形成された吸着パッド1を有し、基板Pの搬送方向(以下、単に搬送方向と称する)に移動自在なスライダー2と、スライダー2を搬送方向に移動自在に支持するガイドレール付の昇降台3と、昇降台3を昇降させる駆動部4と、昇降台3が上昇した位置にあるときに、基板Pの幅方向に移動して、スライダー2の吸着パッド1に吸着された基板Pを切断可能なカッター部5、及び基板Pに対して粘着テープTPを貼り付け可能な貼り付け部6、昇降台3の上方に設けられ、処理Aが施された基板Pを巻き取るロールRR1用の巻き取り軸7を両側で保持する保持部8(上下動可能)、とを備えている。
Here, the configuration will be described with reference to FIG. 3, which shows a schematic external perspective of the first splicer unit CSa.
The first splicer portion CSa has a suction pad 1 formed of, for example, a porous material on the upper surface thereof, and has a slider 2 that can move in the transport direction of the substrate P (hereinafter, simply referred to as a transport direction) and a slider 2. When the lift 3 with a guide rail that supports the lift 3 so as to be movable in the transport direction, the drive unit 4 that raises and lowers the lift 3, and the lift 3 are in the raised position, they move in the width direction of the substrate P. A cutter portion 5 capable of cutting the substrate P adsorbed on the suction pad 1 of the slider 2, a pasting portion 6 on which the adhesive tape TP can be attached to the substrate P, and an elevating table 3 are provided above the processing A. It is provided with a holding portion 8 (movable up and down) for holding the winding shaft 7 for the roll RR1 for winding the substrate P on both sides.

尚、巻き取り軸7は、その外周面の一部(又は全周面)に粘着力の高い樹脂膜や材料が貼り付けられていて、巻き取り軸7の外周面に基板Pの先端部を接触させた後に、巻き取り軸7を回転させることで、基板Pを自動的に巻き取ることができる。 A resin film or material having high adhesive strength is attached to a part (or the entire peripheral surface) of the outer peripheral surface of the take-up shaft 7, and the tip of the substrate P is attached to the outer peripheral surface of the take-up shaft 7. The substrate P can be automatically wound by rotating the winding shaft 7 after the contact.

これらスライダー2、昇降台3、駆動部4、カッター部5、貼り付け部6、及び保持部8は一体化されたステーション部SNとして構成され、キャスター台等に載置されて搬送可能であり、且つ所定位置に位置決め可能である。
これらのスライダー2、駆動部4、カッター部5、貼り付け部6の各駆動は、制御部CTによって制御される(図5参照)。
また、ステーション部SNは、基板Pを保持して長尺方向に移動可能で、スライダー2、昇降台3、駆動部4などを含む移動部と、切断機構CU10による切断領域、または接合機構PU10による接合領域に移動部を移動させる移動制御部とを備える。
The slider 2, the elevating table 3, the drive unit 4, the cutter unit 5, the pasting unit 6, and the holding unit 8 are configured as an integrated station unit SN, and can be mounted on a caster table or the like for transportation. Moreover, it can be positioned at a predetermined position.
Each drive of the slider 2, the drive unit 4, the cutter unit 5, and the pasting unit 6 is controlled by the control unit CT (see FIG. 5).
Further, the station unit SN can move in the long direction while holding the substrate P, and is provided by a moving unit including a slider 2, an elevating table 3, a drive unit 4, etc. It is provided with a movement control unit that moves the moving unit to the joint region.

尚、本実施形態における貼り付け部6は、粘着テープTPによって、基板Pを貼り合せるものとするが、他の貼付方式(機構)であっても良い。例えば、接着剤を基板Pの搬送方向と直交した幅方向に、ベルト状に塗布し、加圧して貼り合せる方式、基板Pが樹脂フィルム等である場合には、基板Pの貼り合せたい部分を加熱して圧着する方式、或いは超音波接合等の方式でも構わない。 In addition, although the sticking part 6 in this embodiment is supposed to stick the substrate P by the adhesive tape TP, another sticking method (mechanism) may be used. For example, a method in which an adhesive is applied in a belt shape in a width direction orthogonal to the transport direction of the substrate P and pressure-bonded, and when the substrate P is a resin film or the like, the portion of the substrate P to be bonded is coated. A method of heating and crimping, or a method of ultrasonic bonding may be used.

また、スライダー2の上面に設けられる吸着パッド1は、真空圧によって基板Pを保持するものとしたが、真空圧以外の機械的なクランプ機構(クランプバンド等)によって基板Pをスライダー1の上面に係止する構成であっても良い。 Further, although the suction pad 1 provided on the upper surface of the slider 2 holds the substrate P by vacuum pressure, the substrate P is placed on the upper surface of the slider 1 by a mechanical clamping mechanism (clamp band or the like) other than the vacuum pressure. It may be a locking configuration.

さて、図1に示した選択投入機構ST1は、制御部CTの制御下で、処理Aが施された基板Pが巻き取り軸7に巻かれたロールRR1(以下、子ロールRR1と称する)を装着部RSB11〜RSB31のいずれかに、子ロールRRB11、RRB21、RRB31の何れかとして選択的に投入するとともに、子ロールRR1が搬出されて空いている第1スプライサー部CSaの保持部8に予備の巻き取り軸7を搬送するものである。 By the way, the selective loading mechanism ST1 shown in FIG. 1 controls a roll RR1 (hereinafter, referred to as a child roll RR1) in which the substrate P subjected to the process A is wound around the take-up shaft 7 under the control of the control unit CT. The child rolls RRB11, RRB21, and RRB31 are selectively inserted into any of the mounting portions RSB11 to RSB31, and the child roll RR1 is carried out and spared in the holding portion 8 of the vacant first splicer portion CSa. The take-up shaft 7 is conveyed.

本実施形態では、処理速度VA、VCが処理速度VCの約3倍であり、処理ユニットUBも3台設置されていることから、子ロールRR1(すなわち、子ロールRRB11〜RRB31、RRB12〜RRB32、後述するRR2)が巻き取る基板Pの長さは、親ロールとなる供給ロールRRAに巻かれた基板Pの長さの1/3程度に設定される。
従って、切断機構CU10は、供給ロールRRAに巻かれた基板Pの全長をほぼ3等分するような所定長毎に基板Pを切断する。
In the present embodiment, the processing speeds VA and VC are about three times the processing speed VC, and three processing units UB are also installed. Therefore, the child rolls RR1 (that is, the child rolls RRB11 to RRB31, RRB12 to RRB32, The length of the substrate P wound by the RR2) described later is set to about ⅔ of the length of the substrate P wound by the supply roll RRA which is the parent roll.
Therefore, the cutting mechanism CU10 cuts the substrate P at predetermined lengths so as to divide the total length of the substrate P wound around the supply roll RRA into substantially three equal parts.

また、図1の選択投入機構ST2は、処理ユニットUB1〜UB3の何れかで処理Bが施された基板Pを所定長分だけ巻き上げた、装着部RSB12〜RSB32の子ロールRRB12〜RRB32のいずれかを、制御部CTの制御下で選択して、接合機構PU10に投入(ロール搬送)するとともに、子ロールRRB12〜RRB32のいずれかが搬送されて空いている装着部RSB12〜RSB32に対して予備の巻き取り軸を装着するものである。 Further, the selective input mechanism ST2 of FIG. 1 is any one of the child rolls RRB12 to RRB32 of the mounting portions RSB12 to RSB32, in which the substrate P subjected to the processing B by any of the processing units UB1 to UB3 is wound up by a predetermined length. Is selected under the control of the control unit CT and charged (roll-conveyed) to the joining mechanism PU10, and at the same time, any of the child rolls RRB12 to RRB32 is transported and is reserved for the vacant mounting units RSB12 to RSB32. A take-up shaft is attached.

接合機構PU10は、主として、処理Bが施されて搬送された子ロールRRB12〜RRB32のいずれかを子ロールRR2として、先に投入されて切断された基板の終端付近に接合するものであって、図1に示すように、第2スプライサー部CSb(接合部)と第2バッファ機構(第2バッファ部)BF2とを備えている。また、接合機構PU10は、処理Bが施される基板を接合する第2スプライサー部CSb(接合部)と、処理Bが施される基板の搬送量に応じて基板の蓄積量が可変であり、接合部から処理Bに投入される基板の搬送量を調整する第2バッファ機構(バッファ部)BF2とを含む。 The joining mechanism PU10 mainly uses any one of the child rolls RRB12 to RRB32 that has been subjected to the process B and is conveyed as the child roll RR2, and joins the child rolls RR2 near the end of the previously charged and cut substrate. As shown in FIG. 1, it includes a second splicer portion CSb (joining portion) and a second buffer mechanism (second buffer portion) BF2. Further, in the joining mechanism PU10, the accumulated amount of the substrate is variable according to the transfer amount of the second splicer portion CSb (joining portion) for joining the substrate to which the treatment B is applied and the substrate to which the treatment B is applied. It includes a second buffer mechanism (buffer portion) BF2 that adjusts the amount of substrate transported from the joint portion to the process B.

第2スプライサー部CSbは、図4に示すように、上述した第1スプライサー部CSaに設置されたステーション部SNが、基板Pの搬送方向を逆にした状態で設置されている。すなわち、第2スプライサー部CSbは、上面に吸着パッド1を有し、搬送方向に移動自在なスライダー2と、スライダー2を搬送方向に移動自在に支持するガイドレール付きの昇降台3と、昇降台3を昇降させる駆動部4と、昇降台3が上昇した位置にあるときに、基板Pの幅方向に移動して、スライダー2の吸着パッド1に吸着された基板Pを切断可能なカッター部5、及び基板Pに対して粘着テープTPを貼り付け可能な貼り付け部6、昇降台3の上方に設けられ、処理Bが施された基板Pを巻き取る子ロールRR2用の巻き取り軸7を両側で保持する保持部8とを備えている。 As shown in FIG. 4, the second splicer unit CSb is installed with the station unit SN installed in the first splicer unit CSa described above in a state in which the transport direction of the substrate P is reversed. That is, the second splicer unit CSb has a suction pad 1 on the upper surface, a slider 2 that can move in the transport direction, a lift 3 with a guide rail that supports the slider 2 so that it can move in the transport direction, and a lift. A cutter unit 5 capable of cutting the substrate P adsorbed on the suction pad 1 of the slider 2 by moving in the width direction of the substrate P when the drive unit 4 for raising and lowering 3 and the elevating table 3 are in the raised position. , And a take-up shaft 7 for the child roll RR2, which is provided above the elevating table 3 and has a sticking portion 6 on which the adhesive tape TP can be stuck to the board P, and which takes up the board P to which the process B has been applied. It is provided with a holding portion 8 for holding on both sides.

第2バッファ機構BF2は、第1バッファ機構BF1と同様に構成され、処理ユニットUCに搬入される基板Pを調整可能な長さ範囲で可変に蓄積するものであって、処理ユニットUCの基板Pの搬送方向の上流側に隣り合って設けられている。 The second buffer mechanism BF2 is configured in the same manner as the first buffer mechanism BF1 and variably stores the substrate P carried into the processing unit UC within an adjustable length range, and is a substrate P of the processing unit UC. It is provided adjacent to the upstream side in the transport direction of.

第2バッファ機構BF2は、基板Pの搬送方向に隣り合う複数のローラが互いに逆方向に昇降することで基板Pの蓄積量を可変に調整可能なダンサーローラ機構DR2と、第2スプライサー部CSbからダンサーローラ機構DR2へ搬送される基板Pの搬送量(搬送速度)を調整するニップ駆動ローラNR2(図5参照)とを備えている。ダンサーローラ機構DR2の駆動及びニップ駆動ローラNR2の駆動は、制御部CTによって制御される。 The second buffer mechanism BF2 is derived from the dancer roller mechanism DR2, which can variably adjust the accumulated amount of the substrate P by moving a plurality of rollers adjacent to each other in the transport direction of the substrate P in opposite directions, and the second splicer unit CSb. It is provided with a nip drive roller NR2 (see FIG. 5) for adjusting the transport amount (transport speed) of the substrate P transported to the dancer roller mechanism DR2. The drive of the dancer roller mechanism DR2 and the drive of the nip drive roller NR2 are controlled by the control unit CT.

図5は、図1〜図4に示した基板処理システムにおける制御ブロック図である。
図5に示すように、制御部CTは、処理ユニットUA、UB(UB1〜UB3)、UCの動作を制御するとともに、切断機構CU10と接合機構PU10の各々に設けられるスライダー2、駆動部4、カッター部5、貼り付け部6、選択投入機構ST1、ST2、ダンサーローラ機構DR1、DR2、ニップ駆動ローラNR1、NR2等の駆動を統括的に制御する。その他、制御部CTは、供給ロールRRA、回収ロールRRCの回転駆動、各工程(各処理ユニット)における基板Pの搬送長を計数して管理したり、基板Pの供給側となる各ロールの基板残量と、基板Pの回収側となる各ロールの基板巻上げ量とを計数して管理したり、処理工程A〜Cまでの全体的なタクトの管理、各ロール毎に、処理上の問題の有無や不良が発生した場合の程度や場所等の情報の管理、等も行なう。制御部CTは、切断機構CU10の動作と第1バッファ部BF1における基板Pの蓄積量とを連動させる連動制御部を含む。同様に、制御部CTは、接合機構PU10の動作と第2バッファ部BF2における基板Pの蓄積量とを連動させる連動制御部を含む。
FIG. 5 is a control block diagram in the substrate processing system shown in FIGS. 1 to 4.
As shown in FIG. 5, the control unit CT controls the operations of the processing units UA, UB (UB1 to UB3), and UC, and the sliders 2 and the drive unit 4 provided on each of the cutting mechanism CU10 and the joining mechanism PU10. It comprehensively controls the drive of the cutter unit 5, the pasting unit 6, the selective input mechanisms ST1 and ST2, the dancer roller mechanisms DR1 and DR2, the nip drive rollers NR1 and NR2, and the like. In addition, the control unit CT counts and manages the supply roll RRA, the rotation drive of the recovery roll RRC, the transport length of the substrate P in each process (each processing unit), and the substrate of each roll that is the supply side of the substrate P. The remaining amount and the amount of winding of the substrate of each roll on the collection side of the substrate P are counted and managed, the overall tact management from the processing steps A to C is managed, and the processing problem occurs for each roll. It also manages information such as the degree and location of the presence or absence and the occurrence of defects. The control unit CT includes an interlocking control unit that links the operation of the cutting mechanism CU10 with the accumulated amount of the substrate P in the first buffer unit BF1. Similarly, the control unit CT includes an interlocking control unit that links the operation of the joining mechanism PU10 with the accumulated amount of the substrate P in the second buffer unit BF2.

次に、上記構成の基板処理システムの動作について説明する。
ここでは、図1に示すように、処理ユニットUB1において処理Bが完了した直後で子ロールRRB12が選択投入機構ST2によって、第2スプライサー部CSbの保持部8に搬送される。また、処理ユニットUB2においては、装着部RSB21に装着された子ロールRRB21から引き出された基板Pに対して処理Bが施される。また、処理ユニットUB3においては、次の処理対象となる子ロールRRB31が装着部RSB31に装着されるまで待機しているものとする。
Next, the operation of the substrate processing system having the above configuration will be described.
Here, as shown in FIG. 1, the child roll RRB 12 is conveyed to the holding unit 8 of the second splicer unit CSb by the selective charging mechanism ST2 immediately after the processing B is completed in the processing unit UB1. Further, in the processing unit UB2, the processing B is applied to the substrate P drawn out from the child roll RRB21 mounted on the mounting portion RSB21. Further, it is assumed that the processing unit UB3 waits until the child roll RRB31 to be processed next is mounted on the mounting portion RSB31.

また、以下の説明では、各構成機器の動作は制御部CTによって制御されているため、そのことを示す記載は省略する。 Further, in the following description, since the operation of each component device is controlled by the control unit CT, the description indicating that is omitted.

まず、第1スプライサー部CSaの保持部8に保持された子ロールRR1に、処理Aが施された基板Pが所定長さで巻かれると、第1バッファ機構BF1において、ニップ駆動ローラNR1が駆動を停止して第1スプライサー部CSaへの基板Pの供給を停止する。このとき、処理ユニットUAにおいては処理Aが継続して行われ、基板Pが第1バッファ機構BF1に送られている。そのため、第1バッファ機構BF1におけるダンサーローラ機構DR1は、基板Pの蓄積量を増加させる方向に駆動される。 First, when the substrate P subjected to the process A is wound with a predetermined length around the child roll RR1 held by the holding portion 8 of the first splicer portion CSa, the nip drive roller NR1 is driven by the first buffer mechanism BF1. Is stopped to stop the supply of the substrate P to the first splicer unit CSa. At this time, the processing A is continuously performed in the processing unit UA, and the substrate P is sent to the first buffer mechanism BF1. Therefore, the dancer roller mechanism DR1 in the first buffer mechanism BF1 is driven in a direction of increasing the accumulated amount of the substrate P.

第1バッファ機構BF1からの基板Pの供給が停止されることと連動して、第1スプライサー部CSaにおいては基板Pの切断処理が行われる。
具体的には、まず、スライダー2がカッター部5と対向する位置に移動した後に駆動部4の作動により昇降台3がスライダー2とともに上昇する。スライダー2の上昇により、吸着パッド1が基板Pを裏面(下面)から吸着保持し、カッター部5による切断位置に位置決めする。その後、カッター部5が、基板Pの幅方向に移動して基板Pを切断する。基板Pが切断されると、選択投入機構ST1が子ロールRR1を、ここでは処理ユニットUB3の装着部RSB31に子ロールRRB31として投入する。また、選択投入機構ST1は、子ロールRR1が排出されて空きとなった第1スプライサー部CSaの保持部8に予備の巻き取り軸7を装填する。
In conjunction with the suspension of the supply of the substrate P from the first buffer mechanism BF1, the first splicer unit CSa performs the cutting process of the substrate P.
Specifically, first, after the slider 2 moves to a position facing the cutter portion 5, the lift 3 rises together with the slider 2 by the operation of the drive portion 4. As the slider 2 rises, the suction pad 1 sucks and holds the substrate P from the back surface (lower surface) and positions the substrate P at the cutting position by the cutter portion 5. After that, the cutter portion 5 moves in the width direction of the substrate P to cut the substrate P. When the substrate P is cut, the selective charging mechanism ST1 inputs the child roll RR1 to the mounting portion RSB31 of the processing unit UB3 as the child roll RRB31. Further, the selective charging mechanism ST1 loads a spare take-up shaft 7 into the holding portion 8 of the first splicer portion CSa that has become empty due to the discharge of the child roll RR1.

第1スプライサー部CSaにおいて、保持部8に巻き取り軸7が装着されると、スライダー2の上面に吸着保持されている基板Pの先端部分が、巻き取り軸7の下方に位置するようにスライダー2が移動(同時にニップ駆動ローラNR1も所定量だけ同期して回転)し、巻き取り軸7を支持する保持部8が一定距離だけ降下して、基板Pの先端部分が巻き取り軸7の外周面の粘着部に密着する。こうして、第1バッファ機構BF1側から延びている基板Pの先端部分が新たな巻き取り軸7に接続されると、吸着パッド1による吸着保持を解除した後に、保持部8が元の高さ位置に戻され、駆動部4の作動により昇降台3がスライダー2とともに下降する。 In the first splicer portion CSa, when the take-up shaft 7 is attached to the holding portion 8, the slider so that the tip portion of the substrate P attracted and held on the upper surface of the slider 2 is located below the take-up shaft 7. 2 moves (at the same time, the nip drive roller NR1 also rotates synchronously by a predetermined amount), the holding portion 8 supporting the take-up shaft 7 is lowered by a certain distance, and the tip portion of the substrate P is the outer circumference of the take-up shaft 7. Adheres to the adhesive part of the surface. In this way, when the tip end portion of the substrate P extending from the first buffer mechanism BF1 side is connected to the new take-up shaft 7, the holding portion 8 is in the original height position after the suction holding by the suction pad 1 is released. The lift 3 is lowered together with the slider 2 by the operation of the drive unit 4.

その後、ニップ駆動ローラNR1と新たな巻き取り軸7の回転駆動が再開され、第1バッファ機構BF1からの基板Pの供給が再開され、基板Pは新たな巻き取り軸7に巻き取られる。基板Pの供給再開後、ニップ駆動ローラNR1は、処理ユニットUAにおける処理速度VAに応じた基板Pの送り速度(すなわち、第1バッファ機構BF1に基板Pが送られる速度)よりも僅かに早い速度で回転される。ダンサーローラ機構DR1においては、ニップ駆動ローラNR1の駆動に応じて、基板Pの蓄積量を減少させる方向に駆動される。 After that, the rotational drive of the nip drive roller NR1 and the new take-up shaft 7 is restarted, the supply of the substrate P from the first buffer mechanism BF1 is restarted, and the substrate P is taken up by the new take-up shaft 7. After resuming the supply of the substrate P, the nip drive roller NR1 has a speed slightly faster than the feed speed of the substrate P (that is, the speed at which the substrate P is fed to the first buffer mechanism BF1) according to the processing speed VA in the processing unit UA. It is rotated by. In the dancer roller mechanism DR1, the nip drive roller NR1 is driven in a direction of reducing the accumulated amount of the substrate P.

第1バッファ機構BF1に蓄積された基板Pの長さがほぼ最小となった後には、ニップ駆動ローラNR1を処理ユニットUAにおける基板Pの送り速度と同じ速度で駆動する。 After the length of the substrate P stored in the first buffer mechanism BF1 is almost minimized, the nip drive roller NR1 is driven at the same speed as the feed speed of the substrate P in the processing unit UA.

一方、処理ユニットUB3の装着部RSB31に装着された子ロールRRB31からは、基板Pが引き出され、処理速度VBに応じた速度で送られて処理Bが施され、装着部RSB32に装着された子ロールRRB32に巻き取られる。 On the other hand, the substrate P is pulled out from the child roll RRB31 mounted on the mounting portion RSB31 of the processing unit UB3, sent at a speed corresponding to the processing speed VB to perform the processing B, and the child mounted on the mounting portion RSB32. It is wound on the roll RRB32.

処理ユニットUB3において、子ロールRRB31から引き出された基板Pに対する処理Bが施されている間には、処理ユニットUB2においては、子ロールRRB21から引き出された基板Pに対する処理Bが完了し、基板Pを巻き取った子ロールRRB2が装着部RSB22で待機している。 While the processing unit UB3 is performing the processing B on the substrate P drawn out from the child roll RRB 31, the processing unit UB2 completes the processing B on the substrate P drawn out from the child roll RRB 21 and the substrate P is completed. The child roll RRB2 that has wound up is waiting at the mounting portion RSB22.

選択投入機構ST2によって、先に子ロールRR2として接合機構PU10に装着された子ロールRRB12からの基板Pに対して、処理ユニットUCによる処理Cが完了すると、接合機構PU10の第2バッファ機構BF2におけるニップ駆動ローラNR2の駆動が停止され、ダンサーローラ機構DR2への基板Pの供給が停止する。 When the processing C by the processing unit UC is completed for the substrate P from the child roll RRB12 previously mounted on the joining mechanism PU10 as the child roll RR2 by the selective input mechanism ST2, the second buffer mechanism BF2 of the joining mechanism PU10 The drive of the nip drive roller NR2 is stopped, and the supply of the substrate P to the dancer roller mechanism DR2 is stopped.

このとき、処理ユニットUCにおいては処理Cが継続して行われる。そのため、ダンサーローラ機構DR2は作動され、処理ユニットUCにおける基板Pの送り量(処理速度VC)に応じた一定速度で、第2バッファ機構BF2に蓄積されていた基板Pが処理ユニットUCに送り出される。 At this time, the processing C is continuously performed in the processing unit UC. Therefore, the dancer roller mechanism DR2 is operated, and the substrate P stored in the second buffer mechanism BF2 is sent out to the processing unit UC at a constant speed corresponding to the feed amount (processing speed VC) of the substrate P in the processing unit UC. ..

第2スプライサー部CSbにおいては、第1スプライサー部CSaにおける切断処理と同様に、スライダー2がカッター部5と対向する位置に移動した後に駆動部4の作動により昇降台3がスライダー2とともに上昇する。スライダー2の上昇により、吸着パッド1が子ロールRRB12からの基板Pを裏面(下面)から吸着保持し、カッター部5による切断位置に位置決めする。その後、カッター部5が、基板Pの幅方向に移動して基板Pを切断する。基板Pが切断されると、選択投入機構ST2は、子ロールRR2(RRB12)が巻かれていた巻き取り軸7を保持部8から取り出し、空いた保持部8には、装着部RSB22で待機している子ロールRRB22が子ロールRR2として装着される。 In the second splicer unit CSb, as in the cutting process in the first splicer unit CSa, after the slider 2 moves to a position facing the cutter unit 5, the lift 3 is raised together with the slider 2 by the operation of the drive unit 4. As the slider 2 rises, the suction pad 1 sucks and holds the substrate P from the child roll RRB 12 from the back surface (lower surface), and positions the substrate P at the cutting position by the cutter portion 5. After that, the cutter portion 5 moves in the width direction of the substrate P to cut the substrate P. When the substrate P is cut, the selective loading mechanism ST2 takes out the take-up shaft 7 on which the child roll RR2 (RRB12) is wound from the holding portion 8, and waits in the vacant holding portion 8 at the mounting portion RSB22. The child roll RRB22 is mounted as the child roll RR2.

子ロールRR2として子ロールRRB22が第2スプライサー部CSbにおける保持部8に装着されると、子ロールRR2から引き出された基板Pの先端部分が、先に切断した第2バッファ機構BF2側の基板Pの後端部と位置合せされて、2枚の基板Pが共に吸着パッド1で保持される。その状態で、2枚の基板Pが粘着テープTPにより接合される。基板Pが接合されると、吸着パッド1による吸着保持を解除した後に、駆動部4の作動により昇降台3がスライダー2とともに下降する。その後、ニップ駆動ローラNR2が駆動することにより、第2スプライサー部CSbから第2バッファ機構BF2への基板Pの供給が再開される。 When the child roll RRB22 is mounted on the holding portion 8 of the second splicer portion CSb as the child roll RR2, the tip portion of the substrate P pulled out from the child roll RR2 is cut earlier than the substrate P on the second buffer mechanism BF2 side. Aligned with the rear end portion, the two substrates P are both held by the suction pad 1. In that state, the two substrates P are joined by the adhesive tape TP. When the substrates P are joined, the lifting platform 3 is lowered together with the slider 2 by the operation of the drive unit 4 after the suction holding by the suction pad 1 is released. After that, the nip drive roller NR2 is driven to restart the supply of the substrate P from the second splicer unit CSb to the second buffer mechanism BF2.

基板Pの供給再開後、ニップ駆動ローラNR2は、処理ユニットUCにおける処理速度VCに応じた基板Pの送り速度よりも僅かに早い速度で回転される。ダンサーローラ機構DR2においては、ニップ駆動ローラNR2の駆動に応じて、基板Pの蓄積量を増加させる方向に駆動される。 After resuming the supply of the substrate P, the nip drive roller NR2 is rotated at a speed slightly faster than the feed speed of the substrate P according to the processing speed VC in the processing unit UC. In the dancer roller mechanism DR2, the nip drive roller NR2 is driven in a direction of increasing the accumulated amount of the substrate P in response to the drive.

第2バッファ機構BF2に蓄積された基板Pの長さがほぼ最大となった後には、ニップ駆動ローラNR2を処理ユニットUCにおける基板Pの送り速度と同じ速度で駆動する。そして、第2バッファ機構BF2を介して処理ユニットUCに送られた子ロールRRB22(子ロールRR2)から引き出された基板Pは、処理速度VCで処理Cが施される。 After the length of the substrate P stored in the second buffer mechanism BF2 is almost maximized, the nip drive roller NR2 is driven at the same speed as the feed speed of the substrate P in the processing unit UC. Then, the substrate P drawn out from the child roll RRB22 (child roll RR2) sent to the processing unit UC via the second buffer mechanism BF2 is subjected to the processing C at the processing speed VC.

このように、処理ユニットUAで処理Aが施された基板Pは、処理ユニットUBの台数に応じて分割された長さの子ロールRR1として巻かれた後に、処理ユニットUB1〜UB3に順次投入されて処理Bが施された後に、処理ユニットUB1〜UB3から子ロールRR2として順次処理ユニットUCに投入されて処理Cが施される。処理速度VBが処理速度VCよりも遅い処理ユニットUBについては処理速度の比に応じて3台設けられているため、3台の処理ユニットUB1〜UB3からは、見かけ上、処理速度VBの3倍の処理速度で処理Bが施された場合と同等の周期で子ロールRR2が処理ユニットVCに投入されることになる。 In this way, the substrate P subjected to the processing A by the processing unit UA is wound as a child roll RR1 having a length divided according to the number of the processing units UB, and then sequentially put into the processing units UB1 to UB3. After the processing B is applied, the processing units UB1 to UB3 are sequentially charged into the processing unit UC as child rolls RR2 to perform the processing C. Since three processing units UB having a processing speed VB slower than the processing speed VC are provided according to the ratio of the processing speeds, the three processing units UB1 to UB3 apparently triple the processing speed VB. The child roll RR2 is charged into the processing unit VC at the same cycle as when the processing B is performed at the processing speed of.

以上説明したように、本実施形態では、処理ユニットUA、UBの各々の性能によって、処理速度VA>処理速度VBに設定可能な場合には、処理ユニットUAの台数nと処理ユニットUBの台数mとの関係を、n<mとし、基板Pを台数mに応じた長さの子ロールに切断してm台の処理ユニットUB1〜UBmの何れかに選択的に投入している。その為、低い処理速度VBに律則されることなく、製造ライン全体でみると、基板Pを処理速度VAで処理することが可能となる。 As described above, in the present embodiment, when the processing speed VA> the processing speed VB can be set according to the performance of each of the processing units UA and UB, the number n of the processing units UA and the number m of the processing units UB m. The relationship with the above is n <m, and the substrate P is cut into child rolls having a length corresponding to the number of units m and selectively charged into any of m processing units UB1 to UBm. Therefore, it is possible to process the substrate P at the processing speed VA in the entire production line without being regulated by the low processing speed VB.

また、処理ユニットUB、UCの各々の性能によって、処理速度VB<処理速度VCに設定可能な場合は、複数台(m)の処理ユニットUB1〜UBmで処理Bが施された子ロールRR2の基板Pを、順次接合してn台(n<m)の処理ユニットUCに投入している。そのため、基板Pが処理ユニットUBから処理ユニットUCに搬入されるまでの待ち時間を実質的に抑制できる。
従ってこの場合も、低い処理速度VBに律則されることなく、基板Pを処理速度VC(≒VA)で処理することが可能となる。
Further, if the processing speed VB <processing speed VC can be set according to the performance of each of the processing units UB and UC, the substrate of the child roll RR2 subjected to the processing B by the processing units UB1 to UBm of a plurality of units (m). Ps are sequentially joined and put into n processing units (n <m) of processing units UC. Therefore, the waiting time until the substrate P is carried from the processing unit UB to the processing unit UC can be substantially suppressed.
Therefore, also in this case, the substrate P can be processed at the processing speed VC (≈VA) without being regulated by the low processing speed VB.

従って、本実施形態では、処理速度が異なる複数の処理A〜Cを順次施す場合でも、生産性の向上を図ることが可能になる。また、本実施形態では、処理ユニットUBの台数を処理速度の比に応じて設定している。そのため、設備を過剰に設置することなく効率的な基板処理を実現できる。加えて、本実施形態では、複線化する処理ユニットUB1〜UB3を上下方向に多段に設置する場合は、設置面積(フットプリント)を増大させることなく、効率的な基板処理を実施可能である。 Therefore, in the present embodiment, it is possible to improve the productivity even when a plurality of processes A to C having different processing speeds are sequentially applied. Further, in the present embodiment, the number of processing units UB is set according to the ratio of processing speeds. Therefore, efficient substrate processing can be realized without excessively installing equipment. In addition, in the present embodiment, when the double-tracking processing units UB1 to UB3 are installed in multiple stages in the vertical direction, efficient substrate processing can be performed without increasing the installation area (footprint).

また、本実施形態では、バッファ機構付きの切断機構CU10と、バッファ機構付きの接合機構PU10とを、切断用と接合用のどちらにも使えるような共通構成にして、ステーション部SNとして設置している。そのため、異種の装置を個別に設置する必要がなくなり、生産設備に係るコストを低減することも可能である。 Further, in the present embodiment, the cutting mechanism CU10 with a buffer mechanism and the joining mechanism PU10 with a buffer mechanism have a common configuration that can be used for both cutting and joining, and are installed as a station unit SN. There is. Therefore, it is not necessary to install different types of devices individually, and it is possible to reduce the cost related to the production equipment.

即ち、一連の複数の処理ユニットのうち、隣接する処理ユニット間で、基板Pの搬送方向の上流側の処理ユニットに対して下流側の処理ユニットの処理速度が低ければ、その間に、ステーション部SNを切断機構CU10として設置し、処理速度の関係が逆の場合には、隣接する処理ユニット間に、ステーション部SNを接合機構PU10として設置すれば良い。 That is, if the processing speed of the processing unit on the downstream side is lower than that of the processing unit on the upstream side in the transport direction of the substrate P among the adjacent processing units in the series of a plurality of processing units, the station unit SN is in between. Is installed as the cutting mechanism CU10, and when the relationship between the processing speeds is opposite, the station unit SN may be installed as the joining mechanism PU10 between the adjacent processing units.

すなわち、本実施形態の基板処理システムは、一連の複数の処理ユニットのうち、隣接する処理ユニット間で、基板Pの搬送方向の上流側の処理ユニット(第1処理ユニット)における基板Pの搬送速度に対して、下流側の処理ユニット(第2処理ユニット)における基板Pの搬送速度を低減させる際は、第1処理ユニットと第2処理ユニットとの間に、基板Pを長尺方向の所定長で切断する切断機構CU10を備え、第1処理ユニットにおける基板Pの搬送速度に対して、第2処理ユニットにおける基板Pの搬送速度を増加させる際は、第1処理ユニットと第2処理ユニットとの間に、基板Pを長尺方向に接合する接合機構PU10を備えることができる。 That is, in the substrate processing system of the present embodiment, among a series of a plurality of processing units, the transfer speed of the substrate P in the processing unit (first processing unit) on the upstream side in the transfer direction of the substrate P between adjacent processing units. On the other hand, when reducing the transport speed of the substrate P in the downstream processing unit (second processing unit), the substrate P has a predetermined length in the long direction between the first processing unit and the second processing unit. When the transfer speed of the substrate P in the second processing unit is increased with respect to the transfer speed of the substrate P in the first processing unit, the first processing unit and the second processing unit are provided with a cutting mechanism CU10 for cutting with. A joining mechanism PU10 for joining the substrate P in the long direction can be provided between them.

(デバイス製造システム)
次に、上記基板処理システムが適用されるデバイス製造システムについて、図6を参照して説明する。
(Device manufacturing system)
Next, a device manufacturing system to which the substrate processing system is applied will be described with reference to FIG.

図6は、基板処理システムとしてのデバイス製造システム(フレキシブル・ディスプレー製造ライン)の一部の構成を示す図である。ここでは、供給ロールRR1から引き出された可撓性の基板P(シート、フィルム等)が、順次、n台の処理装置U1,U2,U3,U4,U5,…Unを経て、回収ロールRR2に巻き上げられるまでの例を示している。上位制御装置CONT(制御部)は、製造ラインを構成する各処理装置U1〜Unを統括制御する。 FIG. 6 is a diagram showing a partial configuration of a device manufacturing system (flexible display manufacturing line) as a substrate processing system. Here, the flexible substrate P (sheet, film, etc.) drawn out from the supply roll RR1 sequentially passes through n processing devices U1, U2, U3, U4, U5, ... Un to the recovery roll RR2. An example of how to wind up is shown. The upper control device CONT (control unit) collectively controls each of the processing devices U1 to Un constituting the production line.

尚、図6に示した処理装置U1〜Unは、図1に示した処理ユニットUA〜UCの何れかであっても良いし、処理装置U1〜Unの中で2以上の連続した処理装置をまとめて、処理ユニットUA〜UCの何れか1つに対応するようにしても良い。 The processing devices U1 to Un shown in FIG. 6 may be any of the processing units UA to UC shown in FIG. 1, and two or more continuous processing devices may be used in the processing devices U1 to Un. Collectively, it may correspond to any one of the processing units UA to UC.

図6において、直交座標系XYZは、基板Pの表面(又は裏面)がXZ面と垂直となるように設定され、基板Pの搬送方向(長尺方向)と直交する幅方向がY軸方向に設定されるものとする。なお、その基板Pは、予め所定の前処理によって、その表面を改質して活性化したもの、或いは、表面に精密パターニングの為の微細な隔壁構造(凹凸構造)を形成したものでもよい。 In FIG. 6, the Cartesian coordinate system XYZ is set so that the front surface (or back surface) of the substrate P is perpendicular to the XZ surface, and the width direction orthogonal to the transport direction (long direction) of the substrate P is the Y-axis direction. It shall be set. The substrate P may be one whose surface is modified and activated by a predetermined pretreatment in advance, or one in which a fine partition wall structure (concavo-convex structure) for precision patterning is formed on the surface.

供給ロールRR1に巻かれている基板Pは、ニップされた駆動ローラDR10によって引き出されて処理装置U1に搬送される。基板PのY軸方向(幅方向)の中心は、エッジポジションコントローラEPC1によって、目標位置に対して±十数μm〜数十μm程度の範囲に収まるようにサーボ制御される。 The substrate P wound around the supply roll RR1 is pulled out by the nipped drive roller DR10 and conveyed to the processing apparatus U1. The center of the substrate P in the Y-axis direction (width direction) is servo-controlled by the edge position controller EPC1 so as to be within a range of ± tens of μm to several tens of μm with respect to the target position.

処理装置U1は、印刷方式で基板Pの表面に感光性機能液(フォトレジスト、感光性シランカップリング材、感光性カップリング材、感光性親撥液改質剤、感光性メッキ還元剤、UV硬化樹脂液等)を、基板Pの搬送方向(長尺方向)に関して連続的又は選択的に塗布する塗布装置である。処理装置U1内には、基板Pが巻き付けられる圧胴ローラDR20、この圧胴ローラDR20上で、基板Pの表面に感光性機能液を一様に塗布する塗布用ローラ、或いは感光性機能液をインクとしてパターンを印刷する凸版または凹版の版胴ローラ等を含む塗布機構Gp1、基板Pに塗布された感光性機能液に含まれる溶剤または水分を急速に除去する乾燥機構Gp2等が設けられている。 The processing device U1 prints on the surface of the substrate P with a photosensitive functional liquid (photoresist, photosensitive silane coupling material, photosensitive coupling material, photosensitive repellent liquid modifier, photosensitive plating reducing agent, UV. This is a coating device that continuously or selectively applies a cured resin solution or the like) in the transport direction (long direction) of the substrate P. In the processing apparatus U1, an impression roller DR20 around which the substrate P is wound, a coating roller for uniformly applying the photosensitive functional liquid on the surface of the substrate P, or a photosensitive functional liquid on the impression roller DR20. A coating mechanism Gp1 including a letterpress or intaglio plate body roller for printing a pattern as ink, and a drying mechanism Gp2 for rapidly removing solvent or moisture contained in the photosensitive functional liquid applied to the substrate P are provided. ..

処理装置U2は、処理装置U1から搬送されてきた基板Pを所定温度(例えば、数十〜120℃程度)まで加熱して、表面に塗布された感光性機能層を安定に定着させる為の加熱装置である。処理装置U2内には、基板Pを折返し搬送する複数のローラとエア・ターン・バー、搬入されてきた基板Pを加熱する加熱チャンバー部HA1、加熱された基板Pの温度を、後工程(処理装置U3)の環境温度と揃うように下げる冷却チャンバー部HA2、ニップされた駆動ローラDR3等が設けられている。 The processing device U2 heats the substrate P conveyed from the processing device U1 to a predetermined temperature (for example, about several tens to 120 ° C.) to stably fix the photosensitive functional layer coated on the surface. It is a device. In the processing device U2, a plurality of rollers and an air turn bar that fold back and convey the substrate P, a heating chamber portion HA1 that heats the carried-in substrate P, and the temperature of the heated substrate P are subjected to a post-process (processing). A cooling chamber portion HA2 that lowers the temperature so as to be uniform with the ambient temperature of the apparatus U3), a nipped drive roller DR3, and the like are provided.

処理装置U3は、処理装置U2から搬送されてきた基板Pの感光性機能層に対して、ディスプレー用の回路パターンや配線パターンに対応した紫外線のパターニング光を照射する露光装置である。処理装置U3内には、基板PのY軸方向(幅方向)の中心を一定位置に制御するエッジポジションコントローラEPC、ニップされた駆動ローラDR4、基板Pを所定のテンションで部分的に巻き付けて、基板P上のパターン露光される部分を一様な円筒面状に支持する回転ドラムDR5、及び、基板Pに所定のたるみ(あそび)DLを与える2組の駆動ローラDR6、DR7等が設けられている。 The processing device U3 is an exposure device that irradiates the photosensitive functional layer of the substrate P conveyed from the processing device U2 with ultraviolet patterning light corresponding to a circuit pattern for display and a wiring pattern. The edge position controller EPC that controls the center of the substrate P in the Y-axis direction (width direction) at a fixed position, the nipped drive roller DR4, and the substrate P are partially wound in the processing device U3 with a predetermined tension. A rotating drum DR5 that supports the portion exposed to the pattern on the substrate P in a uniform cylindrical surface, and two sets of drive rollers DR6, DR7, etc. that give a predetermined slack (play) DL to the substrate P are provided. There is.

さらに処理装置U3内には、透過型円筒マスクDMと、その円筒マスクDM内に設けられて、円筒マスクDMの外周面に形成されたマスクパターンを照明する照明機構IUと、回転ドラムDR5によって円筒面状に支持される基板Pの一部分に、円筒マスクDMのマスクパターンの一部分の像と基板Pとを相対的に位置合せ(アライメント)する為に、基板Pに予め形成されたアライメントマーク等を検出するアライメント顕微鏡AM1、AM2とが設けられている。 Further, in the processing device U3, a transmissive cylindrical mask DM, a lighting mechanism IU provided in the cylindrical mask DM to illuminate the mask pattern formed on the outer peripheral surface of the cylindrical mask DM, and a rotating drum DR5 make a cylinder. In order to relatively align the image of a part of the mask pattern of the cylindrical mask DM with the substrate P on a part of the substrate P supported in a plane shape, an alignment mark or the like formed in advance on the substrate P is formed. Alignment microscopes AM1 and AM2 for detection are provided.

処理装置U4は、処理装置U3から搬送されてきた基板Pの感光性機能層に対して、湿式による現像処理、無電解メッキ処理等のような各種の湿式処理の少なくとも1つを行なうウェット処理装置である。処理装置U4内には、Z軸方向に階層化された3つの処理槽BT1、BT2、BT3と、基板Pを折り曲げて搬送する複数のローラと、ニップされた駆動ローラDR8等が設けられている。 The processing device U4 is a wet processing device that performs at least one of various wet treatments such as wet development treatment, electroless plating treatment, and the like on the photosensitive functional layer of the substrate P conveyed from the treatment device U3. Is. In the processing device U4, three processing tanks BT1, BT2, and BT3 layered in the Z-axis direction, a plurality of rollers for bending and transporting the substrate P, a nipped drive roller DR8, and the like are provided. ..

処理装置U5は、処理装置U4から搬送されてきた基板Pを暖めて、湿式プロセスで湿った基板Pの水分含有量を所定値に調整する加熱乾燥装置であるが、詳細は省略する。その後、幾つかの処理装置を経て、一連のプロセスの最後の処理装置Unを通った基板Pは、ニップされた駆動ローラDR10を介して回収ロールRR2に巻き上げられる。その巻上げの際も、基板PのY軸方向(幅方向)の中心、或いはY軸方向の基板端が、Y軸方向にばらつかないように、エッジポジションコントローラEPC2によって、駆動ローラDR10と回収ロールRR2のY軸方向の相対位置が逐次補正制御される。 The processing device U5 is a heating / drying device that warms the substrate P conveyed from the processing device U4 and adjusts the water content of the substrate P moistened by the wet process to a predetermined value, but the details will be omitted. After that, the substrate P that has passed through the final processing apparatus Un of the series of processes through several processing apparatus is wound up on the recovery roll RR2 via the nipped drive roller DR10. Even during the winding, the drive roller DR10 and the recovery roll are used by the edge position controller EPC2 so that the center of the substrate P in the Y-axis direction (width direction) or the edge of the substrate in the Y-axis direction does not vary in the Y-axis direction. The relative position of the RR2 in the Y-axis direction is sequentially corrected and controlled.

上記の図6のデバイス製造システムでは、各処理装置U1,U2,U3,U4,U5,…Unの処理速度に応じて、処理速度の遅い処理ユニットは複線化して複数台を並置するとともに、この処理装置の前に切断機構CU10を設け、基板を複数の処理装置の何れかに投入するための選択投入機構ST1を設ける。 In the device manufacturing system of FIG. 6 above, according to the processing speed of each processing device U1, U2, U3, U4, U5, ... Un, the processing units having a slow processing speed are double-tracked and a plurality of units are juxtaposed. A cutting mechanism CU10 is provided in front of the processing device, and a selective charging mechanism ST1 for charging the substrate into any of a plurality of processing devices is provided.

また処理速度の遅い複数台の処理装置の後には、各処理装置から搬出される複数の基板を順次接合する接合機構PU10を設けることにより、処理速度が大きく異なる複数の処理を順次施す場合でも、最も処理速度が低い処理工程に律則されることなく、生産性の向上を図ることが可能になる。 Further, by providing a joining mechanism PU10 for sequentially joining a plurality of substrates carried out from each processing device after a plurality of processing devices having a slow processing speed, even when a plurality of processes having significantly different processing speeds are sequentially performed. It is possible to improve productivity without being regulated by the processing process having the lowest processing speed.

図6で示した製造ラインの場合、加熱処理を行なう処理装置U2は、基板Pの搬送速度を極力低く抑えることで、チャンバー部HA1、HA2の容積を小さくすることができ、その分、使用電力を削減でき、装置設置のフットプリントも低減できるといった利点がある。 In the case of the production line shown in FIG. 6, the processing device U2 that performs the heat treatment can reduce the volumes of the chamber portions HA1 and HA2 by suppressing the transport speed of the substrate P as low as possible, and the power consumption can be reduced accordingly. There is an advantage that the footprint of the equipment can be reduced.

一方、処理装置U2の直前の処理装置U1において、基板Pの表面に感光性機能液をパターニングして印刷塗布する場合は、パターン印刷用の版胴(凹版又は凸版)ローラが使われ、このローラに感光性機能液がインクとして塗布された後、版胴ローラに基板Pを押し当ててパターンが転写される構成になる。この場合、版胴ローラから基板Pへのパターン転写特性を良好にする為には、基板Pをある程度早い速度で送る必要がある。 On the other hand, in the processing device U1 immediately before the processing device U2, when the photosensitive functional liquid is patterned and printed on the surface of the substrate P, a plate cylinder (intaglio or letterpress) roller for pattern printing is used, and this roller After the photosensitive functional liquid is applied as ink to the plate, the substrate P is pressed against the plate cylinder roller to transfer the pattern. In this case, in order to improve the pattern transfer characteristics from the plate cylinder roller to the substrate P, it is necessary to feed the substrate P at a somewhat high speed.

このように、処理装置U1と処理装置U2とでは、装置性能によってで、望まれる基板搬速度(処理速度)が大きく異なる可能性がある。従って、このような場合には、処理装置U1を図1中の処理ユニットUAとし、処理装置U2を図1中の処理ユニットUB1〜UB3のように複線化すると、効率的で生産性の高い製造ラインが構築できる。 As described above, the desired substrate carrying speed (processing speed) may be significantly different between the processing apparatus U1 and the processing apparatus U2 depending on the apparatus performance. Therefore, in such a case, if the processing device U1 is the processing unit UA in FIG. 1 and the processing device U2 is double-tracked as in the processing units UB1 to UB3 in FIG. 1, efficient and highly productive manufacturing is performed. You can build a line.

ここで、先の図1の処理システム(製造ライン)の場合に、従来の単線化による処理に比べて、どれぐらいのタクト向上が望めるかを、図7に示したモデル例に基づき、図8のタイムチャートを参照して説明する。 Here, in the case of the processing system (manufacturing line) shown in FIG. 1 above, how much tact improvement can be expected as compared with the conventional single-track processing is shown in FIG. 8 based on the model example shown in FIG. This will be explained with reference to the time chart of.

図7の(a)は、3つの工程A、B、Cの各々を担う処理ユニットUA、UB、UCを1台ずつにして単線化処理する場合のモデル例を示す。ここで、供給ロールRRAには全長1200mの基板Pが巻かれているものとする。また、各処理ユニットUA〜UCは装置の性能として、以下の処理能力を有するものと仮定する。すなわち、処理ユニットUAは、基板Pを最大15cm/sで送って処理する能力を有し、処理ユニットUBは、基板Pを最大5cm/sで送って処理する能力を有し、処理ユニットUCは、基板Pを最大15cm/sで送って処理する能力を有するものとする。 FIG. 7A shows an example of a model in which the processing units UA, UB, and UC responsible for each of the three steps A, B, and C are used as one unit for single-track processing. Here, it is assumed that a substrate P having a total length of 1200 m is wound around the supply roll RRA. Further, it is assumed that each processing unit UA to UC has the following processing capacity as the performance of the apparatus. That is, the processing unit UA has the ability to send the substrate P at a maximum of 15 cm / s for processing, the processing unit UB has the ability to send the substrate P at a maximum of 5 cm / s for processing, and the processing unit UC , The substrate P shall have the ability to feed and process at a maximum of 15 cm / s.

このような単線化の場合、ライン全体で基板Pの搬送速度は、最も遅い処理ユニットUBの速度5cm/sに合わされる為、生産タクト時間(1200mの基板に工程処理A、B、Cの全てを施す時間)は400分(6時間40分)になる。 In the case of such a single wire, the transport speed of the substrate P in the entire line is adjusted to the speed of 5 cm / s of the slowest processing unit UB, so that the production tact time (all of the process processes A, B, and C on the substrate of 1200 m). The time to apply) is 400 minutes (6 hours and 40 minutes).

これに対して、先の図1のように複線化した製造ラインのモデル例を図7の(b)に示す。各処理ユニットUA、UB(UB1〜UB3)、UCの各性能は、図7の(a)で説明したものと同じある。先の図1と同様に、処理工程Bを担う処理ユニットUBを複線化して、3台のユニットUB1〜UB3を設け、処理ユニットUAの後の切断機構CU10における切断処理時間と選択投入機構ST1による子ロール交換時間等とを含む段取り時間を3分とし、処理ユニットUCの前の接合機構PU10における接合処理時間と選択投入機構ST2による子ロール交換時間等とを含む段取り時間を3分とする。 On the other hand, a model example of the double-tracked production line as shown in FIG. 1 is shown in FIG. 7 (b). The performance of each processing unit UA, UB (UB1 to UB3), and UC is the same as that described in FIG. 7A. Similar to FIG. 1 above, the processing unit UB responsible for the processing process B is double-tracked to provide three units UB1 to UB3, and the cutting processing time in the cutting mechanism CU10 after the processing unit UA and the selective input mechanism ST1 are used. The setup time including the child roll exchange time and the like is set to 3 minutes, and the setup time including the joining processing time in the joining mechanism PU10 before the processing unit UC and the child roll exchange time by the selective input mechanism ST2 is set to 3 minutes.

また、図7の(b)のように、処理速度の遅い処理ユニットUBを複線化したことから、処理ユニットUA、UCは、それぞれの性能によって保障されている最大速度15cm/sで基板Pを搬送するように設定される。 Further, as shown in FIG. 7B, since the processing unit UB having a slow processing speed is double-tracked, the processing units UA and UC use the substrate P at a maximum speed of 15 cm / s guaranteed by their respective performances. Set to carry.

図8のタイムチャートは、図7の(b)のモデル例によるタクトを見積もったもので、ラインS1、S2、S3は、仮想的に3つの処理ユニットUB1〜UB3の各々に対応させて、各処理時間を表したものである。処理の開始時には、供給ロールRRAからの基板Pが処理ユニットUAで処理されるが、基板Pは切断機構CU10において、全長1200mの1/3毎に分割される。その為、処理ユニットUAに投入される基板の1番目の400m分は、ラインS1に示すように、約44.4分で処理された後、切断機構CU10にて3分の段取り時間を経て、処理ユニットUB1に送られる。 The time chart of FIG. 8 estimates the tact according to the model example of FIG. 7 (b), and the lines S1, S2, and S3 virtually correspond to each of the three processing units UB1 to UB3. It represents the processing time. At the start of processing, the substrate P from the supply roll RRA is processed by the processing unit UA, and the substrate P is divided into 1/3 of the total length of 1200 m by the cutting mechanism CU10. Therefore, as shown in line S1, the first 400 m of the substrate to be charged into the processing unit UA is processed in about 44.4 minutes, and then the cutting mechanism CU10 passes a setup time of 3 minutes. It is sent to the processing unit UB1.

処理ユニットUB1が、400m分の基板Pを処理するタクト時間は133.3分である。その後、所定の段取り時間(子ロールの装着等)として約3分を経た後、1番目の400m分の基板は、処理ユニットUCに投入されて、搬送速度15cm/sで処理される。処理ユニットUCによる400m分の基板のタクト時間は44.4分である。 The takt time for the processing unit UB1 to process the substrate P for 400 m is 133.3 minutes. Then, after about 3 minutes have passed as a predetermined setup time (mounting of the child roll, etc.), the first 400 m portion of the substrate is put into the processing unit UC and processed at a transport speed of 15 cm / s. The tact time of the substrate for 400 m by the processing unit UC is 44.4 minutes.

この間、ラインS2に示すように、処理ユニットUAは2番目の400m分の基板の処理を約44.4分に渡って継続し、引き続き、ラインS3に示すように、3番目の400mの基板の処理を約44.4分に渡って、搬送速度15cm/sで継続する。2番目の400m分の基板は、切断機構CU10による段取り時間3分の後に処理ユニットUB2に送られ、ここで約133.3分かけて処理される。 During this time, as shown in line S2, the processing unit UA continued processing of the second 400 m substrate for about 44.4 minutes, and subsequently, as shown in line S3, of the third 400 m substrate. The process is continued for about 44.4 minutes at a transport speed of 15 cm / s. The second 400 m substrate is sent to the processing unit UB2 after a setup time of 3 minutes by the cutting mechanism CU10, where it is processed over about 133.3 minutes.

処理ユニットUCで、1番目の400m分の基板の処理が完了するのは、開始時点から228.1分後である。しかし、その前に、2番目の400m分の基板の処理が処理ユニットUB2で完了しており、2番目の400m分の基板は接合機構PU10、選択投入機構ST2Cを介して、約3分の段取り時間の後に、1番目の400m分の基板の終端部分に接合される。
その後、処理ユニットUCは、1番目の400mの基板に接合された2番目の400m分の基板を、搬送速度15cm/sで継続的に処理する。
The processing of the first 400 m of the substrate is completed in the processing unit UC after 228.1 minutes from the start time. However, before that, the processing of the second 400 m substrate is completed by the processing unit UB2, and the second 400 m substrate is set up for about 3 minutes via the bonding mechanism PU10 and the selective loading mechanism ST2C. After some time, it is joined to the end of the first 400 m of substrate.
After that, the processing unit UC continuously processes the second 400 m substrate bonded to the first 400 m substrate at a transport speed of 15 cm / s.

同様にして、ラインS3に示すように、切断機構CU10で切断された3番目(最後)の400m分の基板は、処理ユニットUAでの処理が完了すると、処理ユニットUB3に投入され、133.3分後には子ロールRRB32に巻き取られている。3番目の400m分の基板も、処理ユニットUCにおいて、2番目の400m分の基板の処理が完了する前に、処理ユニットUB32での処理が完了している。 Similarly, as shown in line S3, the third (last) 400 m substrate cut by the cutting mechanism CU10 is charged into the processing unit UB3 when the processing by the processing unit UA is completed, and 133.3. After a minute, it is wound on the child roll RRB32. The processing of the third 400 m substrate is also completed in the processing unit UC before the processing of the second 400 m substrate is completed in the processing unit UB32.

処理ユニットUCで2番目の400m分の基板が処理されている間、3番目の400m分の基板は接合機構PU10、選択投入機構ST2Cを介して、約3分の段取り時間の後に、2番目の400m分の基板の終端部分に接合される。その後、処理ユニットUCは、2番目の400mの基板に接合された3番目の400m分の基板を、搬送速度15cm/sで継続的に処理する。 While the processing unit UC is processing the second 400 m of substrate, the third 400 m of substrate is passed through the bonding mechanism PU10 and the selective loading mechanism ST2C, and after a setup time of about 3 minutes, the second substrate is used. It is joined to the terminal portion of the substrate for 400 m. After that, the processing unit UC continuously processes the third 400 m substrate bonded to the second 400 m substrate at a transport speed of 15 cm / s.

以上のように、処理工程Bのユニットを複線化することにより、1200m分の基板Pの処理は、317分(5時間17分)で終了することになる。これは、図7の(a)に示した単線化処理のモデル例と比べて、約20%のタクト向上(生産時間の短縮)になる。 As described above, by double-tracking the unit of the processing step B, the processing of the substrate P for 1200 m is completed in 317 minutes (5 hours and 17 minutes). This is an improvement in tact (shortening of production time) of about 20% as compared with the model example of the single wire processing shown in FIG. 7A.

図7の(b)に示したモデル例では、親ロールとしての供給ロールRRAに巻かれた基板Pの全長を1200mとしたが、それ以上の長さであっても、切断機構CU10での基板の分割を400m毎に行なえば、製造ラインに投入される基板を最後の処理工程Cまで、連続的に流し続けることができる。 In the model example shown in FIG. 7B, the total length of the substrate P wound around the supply roll RRA as the parent roll is 1200 m, but even if the length is longer than that, the substrate by the cutting mechanism CU10 is used. If the division is performed every 400 m, the substrate to be put into the production line can be continuously flowed until the final processing step C.

尚、図7の(b)に示したモデル例では、3台の処理ユニットUB1〜UB3を共に、同じ処理速度(5cm/s)で運転するとしたが、調整可能な範囲で、各ユニットUB1〜UB3における基板の搬送速度を微少量だけ異ならせても良い。 In the model example shown in FIG. 7B, it is assumed that all three processing units UB1 to UB3 are operated at the same processing speed (5 cm / s), but each unit UB1 to UB1 within an adjustable range. The transfer speed of the substrate in UB3 may be slightly different.

以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 Although preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to such examples. The various shapes and combinations of the constituent members shown in the above-mentioned examples are examples, and can be variously changed based on design requirements and the like without departing from the gist of the present invention.

例えば、上記実施形態では、3台の処理ユニットUB1〜UB3を設ける構成としたが、処理速度の比に応じて設定すれば2台であっても4台以上設ける構成であってもよい。 For example, in the above embodiment, three processing units UB1 to UB3 are provided, but if the setting is made according to the processing speed ratio, two or four or more processing units may be provided.

また、上記実施形態では、単線で構成される製造ライン中の一部の工程を複線化するものとした。しかし、元々の製造ライン(同じ製品、品種を生産)が最初の工程から最後の工程まで複線化されている場合であっても、上記実施形態を応用した構成が可能である。 Further, in the above embodiment, a part of the processes in the production line composed of a single wire is double-tracked. However, even when the original production line (producing the same product and variety) is double-tracked from the first process to the last process, the configuration to which the above embodiment is applied is possible.

例えば、元々、図7の(a)のような単線化処理の製造ラインが2本並置されている場合は、2台の処理ユニットUA(UA1,UA2)の各々の後に切断機構CU10(CU101,CU102)を設け、その後の2台の低タクトの処理ユニットUBは、3台を追加して5台のユニットUB1〜UB5として複線化し、さらにその後に2つの接合機構PU10(PU101,PU102)を設け、その後に、2台の処理ユニットUC(UC1,UC2)を設けても良い。 For example, when two production lines for single-track processing as shown in FIG. 7A are originally arranged side by side, the cutting mechanism CU10 (CU101, CU101,) is placed after each of the two processing units UA (UA1, UA2). CU102) is provided, and the subsequent two low-tact processing units UB are double-tracked as five units UB1 to UB5 by adding three units, and then two joining mechanisms PU10 (PU101, PU102) are provided. After that, two processing units UC (UC1, UC2) may be provided.

このような構成では、切断機構CU101、CU102の何れかで切断された単位長(例えば400m)の基板が、5台の処理ユニットUB1〜UB5のうちの空いている何れかのユニットに送られるように、選択投入機構ST2を構成し、接合機構PU101、PU102の各々が、5台の処理ユニットUB1〜UB5の何れかで処理された単位長(例えば400m)の基板を受け入れられるように、選択投入機構ST2を構成する。 In such a configuration, a substrate having a unit length (for example, 400 m) cut by either the cutting mechanism CU101 or CU102 is sent to any of the five processing units UB1 to UB5 that are free. The selective loading mechanism ST2 is configured, and each of the bonding mechanisms PU101 and PU102 is selectively loaded so that a substrate having a unit length (for example, 400 m) processed by any of the five processing units UB1 to UB5 can be received. The mechanism ST2 is configured.

また、最初の処理ユニットUA1、UA2の処理においては、処理ユニットUA1が供給ロールRRAからの基板を単位長(例えば400m)だけ処理したら、処理ユニットUA2が供給ロールRRAからの基板の処理を開始するようにするに、意図的な時間差を与えるのが良い。 Further, in the processing of the first processing units UA1 and UA2, when the processing unit UA1 processes the substrate from the supply roll RRA by the unit length (for example, 400 m), the processing unit UA2 starts processing the substrate from the supply roll RRA. In order to do so, it is better to give a deliberate time difference.

このようにすると、2台の処理ユニットUA1、UA2の各々に親ロール(RRA)を同時に装着するロール交換作業(生産の一時的な中断が発生すること)が避けられると共に、各処理ユニットを効率的に稼働させることができる。 In this way, the roll exchange work (temporary interruption of production) in which the parent roll (RRA) is simultaneously attached to each of the two processing units UA1 and UA2 can be avoided, and each processing unit can be made efficient. Can be operated as a target.

第2実施形態
以下、本発明の基板処理装置及び基板処理方法の実施形態を、図9から図25を参照して説明する。本実施形態において、上記の実施形態と同様の構成要素については、同じ符号を付してその説明を簡略化あるいは省略する。
Second Embodiment Hereinafter, embodiments of the substrate processing apparatus and the substrate processing method of the present invention will be described with reference to FIGS. 9 to 25. In the present embodiment, the same components as those in the above embodiment are designated by the same reference numerals to simplify or omit the description thereof.

図9は、本実施形態の基板処理置としてのデバイス製造システム(フレキシブル・ディスプレー製造ライン)SYSの一部の構成を示す図である。ここでは、デバイス製造システムSYSが、供給ロール(第1ロール)RR1を装着する第1装着部RS1、供給ロール(第2ロール)RR2を装着する第2装着部RS2(保持部)、回収ロール(第3ロール)RR3を装着する第3装着部RS3、回収ロール(第4ロール)RR4を装着する第4装着部RS4を備え、供給ロールRR1、RR2の何れか一方から引き出された可撓性の基板P(シート、フィルム等)が、順次、第1スプライサー部(基板つなぎ換え機構)CSa、第1バッファ機構BF1、n台の処理装置U1,U2,U3,U4,U5,…Un、第2バッファ機構BF2、第2スプライサー部(第2基板つなぎ換え機構)CSbを経て、回収ロールRR3、RR4の何れか一方に巻き上げられるまでの例を示している。 FIG. 9 is a diagram showing a partial configuration of a device manufacturing system (flexible display manufacturing line) SYS as a substrate processing device of the present embodiment. Here, the device manufacturing system SYS has a first mounting portion RS1 for mounting the supply roll (first roll) RR1, a second mounting portion RS2 (holding portion) for mounting the supply roll (second roll) RR2, and a recovery roll ( A flexible third mounting portion RS3 for mounting the third roll) RR3 and a fourth mounting portion RS4 for mounting the recovery roll (fourth roll) RR4, which are drawn from either one of the supply rolls RR1 and RR2. Substrate P (sheet, film, etc.) sequentially has a first splicer unit (board reconnection mechanism) CSa, a first buffer mechanism BF1, and n processing devices U1, U2, U3, U4, U5, ... Un, second. An example is shown in which the buffer mechanism BF2, the second splicer unit (second substrate reconnection mechanism) CSb, and the recovery rolls RR3 and RR4 are wound up.

なお、本実施形態では、第1、第2バッファ機構BF1、BF2、処理装置U1…Unに処理基板として投入された基板については基板Pと適宜称して説明する。投入前で供給ロールRR1、RR2から引き出された基板については基板P1、P2と適宜称して説明する。処理装置U1…Unによる処理後に回収ロールRR3、RR4で回収される基板については基板P3、P4と適宜称して説明する。 In the present embodiment, the substrates put into the first and second buffer mechanisms BF1, BF2, the processing devices U1 ... Un as the processing substrate will be referred to as the substrate P as appropriate. The substrates drawn out from the supply rolls RR1 and RR2 before loading will be referred to as substrates P1 and P2 as appropriate. The substrates recovered by the recovery rolls RR3 and RR4 after the treatment by the processing devices U1 ... Un will be appropriately referred to as substrates P3 and P4.

上位制御装置CONT(制御部、第2制御部)は、製造ラインを構成する各処理装置U1〜Un、及び第1、第2スプライサー部CSa、CSb、第1、第2バッファ機構BF1、BF2を統括制御する。また、上位制御装置CONTは、第1装着部RS1において供給ロールRR1に装着されるモータ軸MT1の回転駆動、及び第2装着部RS2において供給ロールRR2に装着されるモータ軸MT2の回転駆動を制御する。また、上位制御装置CONTは、基板P1(第1基板)の切断動作と第1バッファ機構BF1(バッファ機構)における基板P1の蓄積量とを連動させる連動制御部を含む。また、上位制御装置CONTは、基板P(処理基板)の切断動作と第2バッファ機構BF2における基板Pの蓄積量とを連動させる連動制御部を含む。 The upper control device CONT (control unit, second control unit) includes the processing devices U1 to Un, the first and second splicer units CSa and CSb, and the first and second buffer mechanisms BF1 and BF2 that constitute the production line. Combined control. Further, the host control device CONT controls the rotational drive of the motor shaft MT1 mounted on the supply roll RR1 in the first mounting portion RS1 and the rotational drive of the motor shaft MT2 mounted on the supply roll RR2 in the second mounting portion RS2. To do. Further, the host control device CONT includes an interlocking control unit that links the cutting operation of the substrate P1 (first substrate) with the accumulated amount of the substrate P1 in the first buffer mechanism BF1 (buffer mechanism). Further, the host control device CONT includes an interlocking control unit that links the cutting operation of the substrate P (processing substrate) with the accumulated amount of the substrate P in the second buffer mechanism BF2.

また、図10に示すように、第1装着部RS1の近傍には、供給ロールRR1における基板P1の供給状況を検出する供給センサS1が設けられている。供給センサS1は、基板P1の供給終了が検出された際に、終了信号を上位制御装置CONTに出力する。同様に、第2装着部RS2の近傍には、供給ロールRR2における基板P2の供給状況を検出する供給センサS2が設けられている。供給センサS2は、基板P2の供給終了が検出された際に、終了信号を上位制御装置CONTに出力する。 Further, as shown in FIG. 10, a supply sensor S1 for detecting the supply status of the substrate P1 on the supply roll RR1 is provided in the vicinity of the first mounting portion RS1. When the end of supply of the substrate P1 is detected, the supply sensor S1 outputs an end signal to the host control device CONT. Similarly, a supply sensor S2 for detecting the supply status of the substrate P2 on the supply roll RR2 is provided in the vicinity of the second mounting portion RS2. When the end of supply of the substrate P2 is detected, the supply sensor S2 outputs an end signal to the host control device CONT.

図9において、直交座標系XYZは、基板Pの表面(又は裏面)がXZ面と垂直となるように設定され、基板Pの搬送方向(長尺方向)と直交する幅方向がY軸方向に設定されるものとする。なお、その基板Pは、予め所定の前処理によって、その表面を改質して活性化したもの、或いは、表面に精密パターニングの微細な隔壁構造(凹凸構造)を形成したものでもよい。 In FIG. 9, the Cartesian coordinate system XYZ is set so that the front surface (or back surface) of the substrate P is perpendicular to the XZ surface, and the width direction orthogonal to the transport direction (long direction) of the substrate P is the Y-axis direction. It shall be set. The substrate P may be one whose surface is modified and activated by a predetermined pretreatment in advance, or one in which a fine partition structure (concavo-convex structure) of precision patterning is formed on the surface.

図10は、第1スプライサー部CSa及び第1バッファ機構BF1の概略構成を示す図である。 FIG. 10 is a diagram showing a schematic configuration of a first splicer unit CSa and a first buffer mechanism BF1.

第1スプライサー部CSaは、供給ロールRR1、RR2の何れか一方から引き出されて第1バッファ機構BF1に送り出す基板を、供給ロールRR1、RR2の何れか他方から引き出された基板につなぎ換えるものであって、ニップ駆動ローラNR1、切断接合ユニットCU1、CU2を備えている。また、第1スプライサー部CSa(基板つなぎ換え機構)は、切断される基板P1(第1基板)の終端部となる位置に供給ロールRR2(第2ロール)から供給される基板P2(第2基板)の先端部を接合した後に、基板P1(第1基板)を切断するように切断動作及び接合動作を制御する制御部を備えている。 The first splicer unit CSa connects the substrate drawn from either one of the supply rolls RR1 and RR2 and sent out to the first buffer mechanism BF1 to the substrate drawn out from any one of the supply rolls RR1 and RR2. The nip drive roller NR1 and the cutting and joining units CU1 and CU2 are provided. Further, the first splicer portion CSa (board reconnecting mechanism) is a substrate P2 (second substrate) supplied from the supply roll RR2 (second roll) at a position serving as a terminal portion of the substrate P1 (first substrate) to be cut. ) Is joined, and then a control unit for controlling the cutting operation and the joining operation is provided so as to cut the substrate P1 (first substrate).

ニップ駆動ローラNR1は、上位制御装置CONTの制御下で、基板P1あるいは基板P2を保持して第1バッファ機構BF1に送る、または基板Pの送りを停止するものであって、Z軸方向で第1装着部RS1と第2装着部RS2との略中間位置に配置される。 The nip drive roller NR1 holds the substrate P1 or the substrate P2 and feeds the substrate P1 or the substrate P2 to the first buffer mechanism BF1 or stops the feed of the substrate P under the control of the upper control device CONT, and is the first in the Z-axis direction. It is arranged at a substantially intermediate position between the 1 mounting portion RS1 and the 2nd mounting portion RS2.

切断接合ユニットCU1、CU2は、ニップ駆動ローラNR1のZ軸方向の位置を通るXY平面と平行な仮想接合面VF1を中心としてZ軸方向に対称に配置されている。切断接合ユニットCU1は、仮想接合面VF1に臨む位置に吸着パッド1A、カッター2A、及びテンションローラ3Aを備えている。また、切断接合ユニットCU1は、不図示の回転機構により、図10に実線で示すように、切断接合ユニットCU2と吸着パッド1Aとが対向する接合位置と、図10に二点鎖線で示すように、吸着パッド1Aが第1装着部RS1と対向する貼設位置との間を回転移動(揺動)する。さらに、切断接合ユニットCU1は、接合位置において、不図示の移動機構により、仮想接合面VF1(すなわち切断接合ユニットCU2)に対して離間・接近する方向に移動する。吸着パッド1Aは、切断接合ユニットCU1が接合位置にあるときに、カッター2Aよりも基板P(基板P1)の送り方向の下流側(+X軸側)に配置されている。 The cutting and joining units CU1 and CU2 are arranged symmetrically in the Z-axis direction about the virtual joining surface VF1 parallel to the XY plane passing through the position of the nip drive roller NR1 in the Z-axis direction. The cutting joint unit CU1 includes a suction pad 1A, a cutter 2A, and a tension roller 3A at a position facing the virtual joint surface VF1. Further, the cutting and joining unit CU1 is provided by a rotation mechanism (not shown) so that the cutting and joining unit CU2 and the suction pad 1A face each other at the joining position as shown by the solid line in FIG. 10 and the two-dot chain line in FIG. , The suction pad 1A rotates (swings) between the first mounting portion RS1 and the attachment position facing the first mounting portion RS1. Further, the cutting and joining unit CU1 moves in a direction of separating and approaching the virtual joining surface VF1 (that is, the cutting and joining unit CU2) by a moving mechanism (not shown) at the joining position. The suction pad 1A is arranged on the downstream side (+ X-axis side) of the substrate P (substrate P1) in the feed direction with respect to the cutter 2A when the cutting and bonding unit CU1 is in the bonding position.

同様に、切断接合ユニットCU2は、仮想接合面VF1に臨む位置に吸着パッド1B、カッター2B、及びテンションローラ3Bを備えている。また、切断接合ユニットCU2は、不図示の回転機構により、図10に実線で示すように、切断接合ユニットCU1と吸着パッド1Bとが対向する接合位置と、図10に二点鎖線で示すように、吸着パッド1Bが第1装着部RS2と対向する貼設位置との間を回転移動(揺動)する。さらに、切断接合ユニットCU2は、接合位置において、不図示の移動機構により、仮想接合面VF1(すなわち切断接合ユニットCU1)に対して離間・接近する方向に移動する。吸着パッド1Bは、切断接合ユニットCU2が接合位置にあるときに、カッター2Bよりも基板P(基板P2)の送り方向の下流側(+X軸側)に配置されている。 Similarly, the cutting and joining unit CU2 includes a suction pad 1B, a cutter 2B, and a tension roller 3B at a position facing the virtual joining surface VF1. Further, the cutting and joining unit CU2 has a rotation mechanism (not shown) so that the cutting and joining unit CU1 and the suction pad 1B face each other at the joining position as shown by the solid line in FIG. 10 and the two-dot chain line in FIG. , The suction pad 1B rotates (swings) between the first mounting portion RS2 and the attachment position facing the first mounting portion RS2. Further, the cutting and joining unit CU2 moves in a direction of separating and approaching the virtual joining surface VF1 (that is, the cutting and joining unit CU1) by a moving mechanism (not shown) at the joining position. The suction pad 1B is arranged on the downstream side (+ X-axis side) of the substrate P (substrate P2) in the feed direction with respect to the cutter 2B when the cutting and bonding unit CU2 is in the bonding position.

これら切断接合ユニットCU1、CU2の移動は、上位制御装置CONTによって制御される。 The movement of these cutting and joining units CU1 and CU2 is controlled by the host control device CONT.

第1バッファ機構BF1は、処理装置(処理機構)U1と第1スプライサー部CSaとの間に配置され、第1スプライサー部CSaから送られる基板Pを所定の最長蓄積範囲内で一時的に蓄積してから処理装置U1に送り出すものであって、ダンサーローラ機構DR1とニップ駆動ローラNR2を備えている。 The first buffer mechanism BF1 is arranged between the processing device (processing mechanism) U1 and the first splicer unit CSa, and temporarily stores the substrate P sent from the first splicer unit CSa within a predetermined longest storage range. Then, it is sent to the processing device U1 and includes a dancer roller mechanism DR1 and a nip drive roller NR2.

ニップ駆動ローラNR2は、第1バッファ機構BF1で蓄積された基板Pを保持して処理装置U1に送るものであって、ダンサーローラ機構DR1よりも基板Pの送り方向下流側でニップ駆動ローラNR1と略同一のZ軸位置に配置される。 The nip drive roller NR2 holds the substrate P accumulated by the first buffer mechanism BF1 and sends it to the processing device U1, and the nip drive roller NR1 and the nip drive roller NR1 are located downstream of the dancer roller mechanism DR1 in the feed direction of the substrate P. They are arranged at substantially the same Z-axis position.

ダンサーローラ機構DR1は、昇降範囲が相対的に上方に位置する複数の上段ローラRJ1と、昇降範囲が相対的に下方に位置する下段ローラRK1とがX方向に交互に配列され、且つ各ローラRJ1、RK1がそれぞれ独立してZ軸方向に移動可能となっている。上段ローラRJ1の上死点位置JU1及び下死点位置JD1は、下段ローラRK1の上死点位置JU2及び下死点位置JD2よりも上方の位置に設定されている。これらダンサーローラ機構DR1の動作についても、上位制御装置CONTによって制御される。 In the dancer roller mechanism DR1, a plurality of upper roller RJ1s whose elevating range is relatively upward and lower roller RK1 whose elevating range is relatively downward are arranged alternately in the X direction, and each roller RJ1 , RK1 can move independently in the Z-axis direction. The top dead center position JU1 and the bottom dead center position JD1 of the upper roller RJ1 are set to positions above the top dead center position JU2 and the bottom dead center position JD2 of the lower roller RK1. The operation of these dancer roller mechanism DR1 is also controlled by the host control device CONT.

図11は、第2スプライサー部CSb及び第2バッファ機構BF2の概略構成を示す図である。
第2バッファ機構BF2は、処理装置(処理機構)Unと第2スプライサー部CSbとの間に配置され、処理装置Unから送られる基板Pを所定の最長蓄積範囲内で一時的に蓄積してから第2スプライサー部CSbに送り出すものであって、ニップ駆動ローラNR3とダンサーローラ機構DR2とを備えている。
FIG. 11 is a diagram showing a schematic configuration of a second splicer unit CSb and a second buffer mechanism BF2.
The second buffer mechanism BF2 is arranged between the processing device (processing mechanism) Un and the second splicer unit CSb, and after temporarily accumulating the substrate P sent from the processing device Un within a predetermined longest storage range. It is to be sent to the second splicer unit CSb, and includes a nip drive roller NR3 and a dancer roller mechanism DR2.

ダンサーローラ機構DR2は、昇降範囲が相対的に上方に位置する複数の上段ローラRJ2と、昇降範囲が相対的に下方に位置する下段ローラRK2とがX軸方向に交互に配列され、且つ各ローラRJ2、RK2がそれぞれ独立してZ軸方向に移動可能となっている。上段ローラRJ2の上死点位置JU3及び下死点位置JD3は、下段ローラRK2の上死点位置JU4及び下死点位置JD4よりも上方の位置に設定されている。これらダンサーローラ機構DR2の動作についても、上位制御装置CONTによって制御される。 In the dancer roller mechanism DR2, a plurality of upper rollers RJ2 whose elevating range is relatively upward and lower rollers RK2 whose elevating range is relatively downward are alternately arranged in the X-axis direction, and each roller. RJ2 and RK2 can move independently in the Z-axis direction. The upper dead center position JU3 and the lower dead center position JD3 of the upper roller RJ2 are set to positions higher than the upper dead center position JU4 and the lower dead center position JD4 of the lower roller RK2. The operation of these dancer roller mechanism DR2 is also controlled by the host control device CONT.

第2スプライサー部CSbは、第2バッファ機構BF2から送られ、回収ロールRR3、RRR4の何れか一方で回収される基板Pを、回収ロールRR3、RRR4の何れか他方に回収されるようにつなぎ換えるものであって、ニップ駆動ローラNR4、切断接合ユニットCU3、CU4を備えている。 The second splicer unit CSb reconnects the substrate P, which is sent from the second buffer mechanism BF2 and is recovered by either one of the recovery rolls RR3 and RRR4, so as to be recovered by either one of the recovery rolls RR3 and RRR4. It is provided with a nip drive roller NR4, a cutting and joining unit CU3, and a CU4.

ニップ駆動ローラNR4は、上位制御装置CONTの制御下で、第2バッファ機構BF2から送られた基板Pを切断接合ユニットCU3、CU4に向けて送る、あるいは基板Pの送りを停止するものであって、Z軸方向の位置は、第3装着部RS3と第4装着部RS4との略中間位置で、XY平面と平行な仮想接合面VF2の位置に配置される。 The nip drive roller NR4 sends the substrate P sent from the second buffer mechanism BF2 toward the cutting and joining units CU3 and CU4, or stops the feeding of the substrate P under the control of the upper control device CONT. The position in the Z-axis direction is a substantially intermediate position between the third mounting portion RS3 and the fourth mounting portion RS4, and is arranged at the position of the virtual joint surface VF2 parallel to the XY plane.

切断接合ユニットCU3、CU4は、仮想接合面VF2を中心としてZ軸方向に対称に配置されている。切断接合ユニットCU3は、仮想接合面VF2に臨む位置に吸着パッド1C、カッター2C、及びテンションローラ3Cを備えている。また、切断接合ユニットCU3は、不図示の回転機構により、図11に実線で示すように、切断接合ユニットCU4と吸着パッド1Cが対向する接合位置と、図11に二点鎖線で示すように、吸着パッド1Cが第3装着部RS3と対向する貼設位置との間を回転移動(揺動)する。さらに、切断接合ユニットCU3は、接合位置において、不図示の移動機構により、仮想接合面VF2(すなわち切断接合ユニットCU4)に対して離間・接近する方向に移動する。 The cutting and joining units CU3 and CU4 are arranged symmetrically in the Z-axis direction with the virtual joining surface VF2 as the center. The cutting joint unit CU3 includes a suction pad 1C, a cutter 2C, and a tension roller 3C at a position facing the virtual joint surface VF2. Further, the cutting and joining unit CU3 uses a rotation mechanism (not shown) so that the cutting and joining unit CU4 and the suction pad 1C face each other at the joining position as shown by the solid line in FIG. 11 and the two-dot chain line in FIG. The suction pad 1C rotates (swings) between the third mounting portion RS3 and the attachment position facing the third mounting portion RS3. Further, the cutting and joining unit CU3 moves in a direction of separating and approaching the virtual joining surface VF2 (that is, the cutting and joining unit CU4) by a moving mechanism (not shown) at the joining position.

吸着パッド1Cは、切断接合ユニットCU3が接合位置にあるときに、カッター2Cよりも基板Pの送り方向の上流側(−X軸側)に配置されている。 The suction pad 1C is arranged on the upstream side (−X axis side) of the substrate P in the feed direction with respect to the cutter 2C when the cutting and joining unit CU3 is in the joining position.

同様に、切断接合ユニットCU4は、仮想接合面VF2に臨む位置に吸着パッド1D、カッター2D、及びテンションローラ3Dを備えている。また、切断接合ユニットCU4は、不図示の回転機構により、図11に実線で示すように、切断接合ユニットCU3と吸着パッド1Dが対向する接合位置と、図11に二点鎖線で示すように、吸着パッド1Dが第4装着部RS4と対向する貼設位置との間を回転移動(揺動)する。さらに、切断接合ユニットCU4は、接合位置において、不図示の移動機構により、仮想接合面VF2(すなわち切断接合ユニットCU3)に対して離間・接近する方向に移動する。吸着パッド1Dは、切断接合ユニットCU4が接合位置にあるときに、カッター2Dよりも基板Pの送り方向の上流側(−X軸側)に配置されている。
これら切断接合ユニットCU3、CU4の移動は、上位制御装置CONTによって制御される。
Similarly, the cutting and joining unit CU4 includes a suction pad 1D, a cutter 2D, and a tension roller 3D at a position facing the virtual joining surface VF2. Further, the cutting and joining unit CU4 has a rotation mechanism (not shown) so that the cutting and joining unit CU3 and the suction pad 1D face each other at the joining position as shown by the solid line in FIG. 11 and the two-dot chain line in FIG. The suction pad 1D rotates (swings) between the fourth mounting portion RS4 and the attachment position facing the fourth mounting portion RS4. Further, the cutting and joining unit CU4 moves in a direction of separating and approaching the virtual joining surface VF2 (that is, the cutting and joining unit CU3) by a moving mechanism (not shown) at the joining position. The suction pad 1D is arranged on the upstream side (−X axis side) of the substrate P in the feed direction with respect to the cutter 2D when the cutting and joining unit CU4 is in the joining position.
The movement of these cutting and joining units CU3 and CU4 is controlled by the host control device CONT.

図11に示すように、第3装着部RS3において回収ローラRR3は、モータ軸MT3に装着される。第4装着部RS4において回収ローラRR4は、モータ軸MT4に装着される。モータ軸MT3の回転駆動、及びモータ軸MT4の回転駆動は、上位制御装置CONTにより制御される。 As shown in FIG. 11, in the third mounting portion RS3, the recovery roller RR3 is mounted on the motor shaft MT3. In the fourth mounting portion RS4, the recovery roller RR4 is mounted on the motor shaft MT4. The rotary drive of the motor shaft MT3 and the rotary drive of the motor shaft MT4 are controlled by the host control device CONT.

また、図11に示すように、第3装着部RS3の近傍には、回収ローラRR3における基板P3の巻き上げ状況を検出する巻き上げセンサS3が設けられている。巻き上げセンサS3は、基板P3の巻き上げ終了が検出された際に、終了信号を上位制御装置CONTに出力する。同様に、第4装着部RS4の近傍には、回収ローラRR4における基板P4の巻き上げ状況を検出する巻き上げセンサS4が設けられている。巻き上げセンサS4は、基板P4の巻き上げ終了が検出された際に、終了信号を上位制御装置CONTに出力する。 Further, as shown in FIG. 11, a winding sensor S3 for detecting the winding state of the substrate P3 on the recovery roller RR3 is provided in the vicinity of the third mounting portion RS3. When the winding end of the substrate P3 is detected, the winding sensor S3 outputs an end signal to the host control device CONT. Similarly, a winding sensor S4 for detecting the winding status of the substrate P4 on the recovery roller RR4 is provided in the vicinity of the fourth mounting portion RS4. When the winding end of the substrate P4 is detected, the winding sensor S4 outputs an end signal to the host control device CONT.

回収ローラRR3、RR4は、先端部がロール芯に接続され、終端部に基板P3あるいは基板4が接合される引き込み用の引き込み基板(第3基板)PK(図11では、回収ローラRR4の基板PKのみ図示)を備えている。基板PKとしては、処理装置U1〜Unによる処理が行われる基板Pと同一材料でもよいし、基板Pと略同一厚さで材質が異なるものであってもよい。 The recovery rollers RR3 and RR4 have a lead-in substrate (third substrate) PK in which the tip end portion is connected to the roll core and the substrate P3 or the substrate 4 is joined to the end portion (in FIG. 11, the substrate PK of the recovery roller RR4). Only shown). The substrate PK may be the same material as the substrate P to be processed by the processing devices U1 to Un, or may be made of substantially the same thickness as the substrate P but different in material.

本実施形態の処理装置U5は、処理装置U4から搬送されてきた基板Pを暖めて、湿式プロセスで湿った基板Pの水分含有量を所定値に調整したり、半導体材料の結晶化や金属ナノ粒子を含むインクの溶剤除去等の為の熱アニール(200°以下)を施したりする加熱乾燥装置であるが、詳細は省略する。その後、幾つかの処理装置を経て、一連のプロセスの最後の処理装置Unを通った基板Pは、第2バッファ機構BF2で一時的に蓄積され、第2スプライサー部CSbで適宜つなぎ換えが行われ、回収ロールRR3あるいは回収ロールRR4に巻き上げられる。 The processing apparatus U5 of the present embodiment warms the substrate P conveyed from the processing apparatus U4, adjusts the water content of the substrate P moistened by the wet process to a predetermined value, crystallizes the semiconductor material, and metal nanoparticles. It is a heat-drying device that performs thermal annealization (200 ° or less) for removing the solvent of ink containing particles, but the details will be omitted. After that, the substrate P that has passed through several processing devices and the final processing device Un of the series of processes is temporarily accumulated by the second buffer mechanism BF2, and is appropriately reconnected by the second splicer unit CSb. , It is wound up on the recovery roll RR3 or the recovery roll RR4.

次に、上記構成のデバイス製造システムSYSにおける基板Pの処理のうち、第1スプライサー部CSa及び第1バッファ機構BF1の動作について、図12から図19を参照して説明する。なお、デバイス製造システムSYSを構成する各種処理装置、構成機器等の動作は上位制御装置CONTによって制御されるが、以下の説明では、上位制御装置CONTが制御することに関する記載は省略する。 Next, among the processes of the substrate P in the device manufacturing system SYS having the above configuration, the operations of the first splicer unit CSa and the first buffer mechanism BF1 will be described with reference to FIGS. 12 to 19. The operations of various processing devices, constituent devices, and the like that make up the device manufacturing system SYS are controlled by the host control device CONT, but in the following description, the description of control by the host controller CONT will be omitted.

図12は、供給ロールRR1から引き出された基板P1が、切断接合ユニットCU1のローラ3A及びニップ駆動ローラNR1を介して、第1基板として第1バッファ機構BF1に送られ、第1バッファ機構BF1において一時的に蓄積されている図である。図12に示されるように、第1バッファ機構BF1においては、上段ローラRJ1が上死点位置JU1に位置し、下段ローラRK1が下死点位置JD2に位置することで、基板Pは第1バッファ機構BF1で最長に近い長さが蓄積されている。 In FIG. 12, the substrate P1 drawn out from the supply roll RR1 is sent to the first buffer mechanism BF1 as the first substrate via the roller 3A of the cutting and joining unit CU1 and the nip drive roller NR1, and in the first buffer mechanism BF1. It is a figure that is temporarily accumulated. As shown in FIG. 12, in the first buffer mechanism BF1, the upper roller RJ1 is located at the top dead center position JU1 and the lower roller RK1 is located at the bottom dead center position JD2, so that the substrate P is the first buffer. The length close to the longest is accumulated in the mechanism BF1.

第2装着部RS2において、供給ロールRR1の基板P1が尽きた場合につなぎ換えられる基板P2を巻かれた供給ロールRR2がモータ軸MT2に装着されると、切断接合ユニットCU2を回動して吸着パッド1Bを貼設位置に移動させる。貼設位置にある吸着パッド1Bに対しては、基板P2の先端部を吸着(連結又は接続)させて固定し、その後、吸着側と逆側の面に両面テープTを貼設する。
上記の基板P2の吸着パッド1Bへの吸着、及び両面テープTの貼設は、オペレータによって行われるか、ロボット等を用いて行われる。
When the supply roll RR2 wound with the substrate P2 to be reconnected when the substrate P1 of the supply roll RR1 is exhausted in the second mounting portion RS2 is mounted on the motor shaft MT2, the cutting and joining unit CU2 is rotated and sucked. Move the pad 1B to the attachment position. The tip of the substrate P2 is sucked (connected or connected) to the suction pad 1B at the sticking position to fix it, and then the double-sided tape T is stuck on the surface opposite to the suction side.
The suction of the substrate P2 to the suction pad 1B and the sticking of the double-sided tape T are performed by an operator or by using a robot or the like.

両面テープTが貼設された基板P2の吸着パッド1Bへの吸着固定が完了すると、図13に示すように、切断接合ユニットCU2を回動して基板P2を接合位置に移動させるとともに、モータ軸MT2の回転駆動により供給ロールRR2を、基板P2の供給方向とは逆方向(図13では反時計回り方向)に回転させることにより、基板P2に所定のテンションを付与しておく。 When the suction and fixing of the substrate P2 to which the double-sided tape T is attached to the suction pad 1B is completed, as shown in FIG. 13, the cutting and joining unit CU2 is rotated to move the board P2 to the joining position and the motor shaft. A predetermined tension is applied to the substrate P2 by rotating the supply roll RR2 in the direction opposite to the supply direction of the substrate P2 (counterclockwise direction in FIG. 13) by rotationally driving the MT2.

一方、供給センサS1が、供給ロールRR1からの基板P1の供給終了を検出すると、ニップ駆動ローラNR1の駆動を停止するとともに、モータ軸MT1を基板P1の送り方向と逆方向に回転駆動することにより、ニップ駆動ローラNR1と供給ロールRR1との間の基板P1に弱いテンションを付与する。 On the other hand, when the supply sensor S1 detects the end of supply of the substrate P1 from the supply roll RR1, the drive of the nip drive roller NR1 is stopped and the motor shaft MT1 is rotationally driven in the direction opposite to the feed direction of the substrate P1. , A weak tension is applied to the substrate P1 between the nip drive roller NR1 and the supply roll RR1.

ニップ駆動ローラNR1の駆動停止後もニップ駆動ローラNR2は駆動を継続している。そのため、ダンサーローラ機構DR1が作動し、ニップ駆動ローラNR2の駆動に応じて、上段ローラRJ1の下降、及び下段ローラRK1の上昇を適宜行わせる。これにより、第1バッファ機構BF1に蓄積されていた基板Pが、ニップ駆動ローラNR2によって処理装置U1に一定速度で送られ続けることになる。 Even after the drive of the nip drive roller NR1 is stopped, the nip drive roller NR2 continues to be driven. Therefore, the dancer roller mechanism DR1 operates, and the upper roller RJ1 is lowered and the lower roller RK1 is raised as appropriate according to the drive of the nip drive roller NR2. As a result, the substrate P accumulated in the first buffer mechanism BF1 is continuously sent to the processing device U1 by the nip drive roller NR2 at a constant speed.

次に、図14に示すように、切断接合ユニットCU1、CU2を互いに接近する方向に移動させ、両面テープTを介在させた状態で吸着パッド1A、1B間で基板P1、P2を一定時間圧着する。これにより、基板P2は、後工程で切断されることで基板P1の終端部となる位置に、両面テープTを介して基板P1と貼り合わされて接合される。 Next, as shown in FIG. 14, the cutting and joining units CU1 and CU2 are moved in a direction approaching each other, and the substrates P1 and P2 are crimped between the suction pads 1A and 1B for a certain period of time with the double-sided tape T interposed therebetween. .. As a result, the substrate P2 is bonded and joined to the substrate P1 via the double-sided tape T at a position that becomes the terminal portion of the substrate P1 by being cut in a later process.

なお、基板P1、P2の接合処理が行われている間も、ニップ駆動ローラNR2及びダンサーローラ機構DR1は継続して駆動され、第1バッファ機構BF1に蓄積されていた基板Pが、ニップ駆動ローラNR2によって処理装置U1に一定速度で送られ続けられている。 While the substrates P1 and P2 are being joined, the nip drive roller NR2 and the dancer roller mechanism DR1 are continuously driven, and the substrate P accumulated in the first buffer mechanism BF1 is replaced by the nip drive roller. It is continuously sent to the processing device U1 by the NR2 at a constant speed.

基板P1と基板P2とが接合されると、切断接合ユニットCU2における吸着パッド1Bを大気開放した後に、図15に示すように、切断接合ユニットCU2を切断接合ユニットCU1から離間する方向(+Z軸方向)に移動させる。これにより、供給ロールRR2から引き出された基板P2の先端部は、両面テープTにより基板P1に接合(連結又は接続)された状態で切断接合ユニットCU1の吸着パッド1Aに吸着保持される。 When the substrate P1 and the substrate P2 are joined, the suction pad 1B in the cutting joining unit CU2 is opened to the atmosphere, and then the cutting joining unit CU2 is separated from the cutting joining unit CU1 (+ Z-axis direction) as shown in FIG. ). As a result, the tip of the substrate P2 drawn out from the supply roll RR2 is adsorbed and held by the suction pad 1A of the cutting and joining unit CU1 in a state of being bonded (connected or connected) to the substrate P1 by the double-sided tape T.

この後、切断接合ユニットCU1と供給ロールRR1との間で基板P1にテンションを付与した状態で、切断接合ユニットCU1におけるカッター2Aにより、対向する基板P1を切断する。カッター2Aとしては、例えば、基板P1の幅方向(Y軸方向)に刃先をスライドさせることにより基板P1を切断する構成を採ることができる。 After that, with the substrate P1 being tensioned between the cutting and joining unit CU1 and the supply roll RR1, the opposing substrate P1 is cut by the cutter 2A in the cutting and joining unit CU1. As the cutter 2A, for example, the substrate P1 can be cut by sliding the cutting edge in the width direction (Y-axis direction) of the substrate P1.

基板P1の切断処理が行われている間も、ニップ駆動ローラNR2及びダンサーローラ機構DR1は継続して駆動され、第1バッファ機構BF1に蓄積されていた基板Pが、ニップ駆動ローラNR2によって処理装置U1に一定速度で送られ続けられている。 While the substrate P1 is being cut, the nip drive roller NR2 and the dancer roller mechanism DR1 are continuously driven, and the substrate P accumulated in the first buffer mechanism BF1 is processed by the nip drive roller NR2. It continues to be sent to U1 at a constant speed.

基板P1が切断されると、切断接合ユニットCU1における吸着パッド1Aを大気開放した後に、図16に示すように、切断接合ユニットCU1を切断接合ユニットCU2(仮想接合面VF1)から離間する方向(−Z軸方向)に移動させる。これにより、供給ロールRR1から引き出された基板P1は、供給ロールRR1の送り方向と逆方向の回転でこの供給ロールRR1に巻き取られる。 When the substrate P1 is cut, after the suction pad 1A in the cutting / joining unit CU1 is opened to the atmosphere, the cutting / joining unit CU1 is separated from the cutting / joining unit CU2 (virtual joining surface VF1) (-) as shown in FIG. Move in the Z-axis direction). As a result, the substrate P1 drawn out from the supply roll RR1 is wound around the supply roll RR1 by rotating in the direction opposite to the feed direction of the supply roll RR1.

また、供給ロールRR2については、供給ロールRR2の送り方向と逆方向の回転トルクにより、基板P2は回転ロールRR2とニップ駆動ローラNR1(及びローラ3B)との間でテンションを付与される。これにより、第1バッファ機構BF1に蓄積されていた基板Pに接続される基板が供給ロールRR2から引き出された第2基板としての基板P2に切り換えられる。第2基板としての基板P2は、基板P1(第1基)と同等の規格を有してもよい。 Further, with respect to the supply roll RR2, tension is applied to the substrate P2 between the rotary roll RR2 and the nip drive roller NR1 (and the roller 3B) by the rotational torque in the direction opposite to the feed direction of the supply roll RR2. As a result, the substrate connected to the substrate P stored in the first buffer mechanism BF1 is switched to the substrate P2 as the second substrate pulled out from the supply roll RR2. The substrate P2 as the second substrate may have the same standard as the substrate P1 (first unit).

この後、ニップ駆動ローラNR1がニップ駆動ローラNR2よりも僅かに早い速度で回転し、ダンサーローラ機構DR1においては、図17に示すように、ニップ駆動ローラNR1の駆動に応じて、上段ローラRJ1の上昇、及び下段ローラRK1の下降を適宜行わせる。また、モータ軸MT2が送り方向に回転駆動されることにより、供給ロールRR2から引き出された基板P2が送り込まれ、第1バッファ機構BF1における基板Pの蓄積長さが増加する。 After that, the nip drive roller NR1 rotates at a slightly faster speed than the nip drive roller NR2, and in the dancer roller mechanism DR1, as shown in FIG. 17, the upper roller RJ1 is driven by the nip drive roller NR1. The lower roller RK1 is raised and lowered as appropriate. Further, by rotationally driving the motor shaft MT2 in the feed direction, the substrate P2 drawn from the supply roll RR2 is fed, and the accumulated length of the substrate P in the first buffer mechanism BF1 increases.

そして、第1バッファ機構BF1における基板Pの蓄積長さがほぼ最大となったら、ニップ駆動ローラNR1はニップ駆動ローラNR2と同じ速度で回転することで、第1バッファ機構BF1における基板Pの蓄積長さが均衡する。また、ほぼ基板P1が尽きた供給ロールRR1は、第1装着部RS1から取り外され(着脱可能)、図18に示すように、基板P5が巻かれた別の供給ロールRR5が装着される。 Then, when the accumulated length of the substrate P in the first buffer mechanism BF1 becomes almost the maximum, the nip drive roller NR1 rotates at the same speed as the nip drive roller NR2, so that the accumulated length of the substrate P in the first buffer mechanism BF1 is increased. Is balanced. Further, the supply roll RR1 whose substrate P1 is almost exhausted is removed from the first mounting portion RS1 (detachable), and as shown in FIG. 18, another supply roll RR5 around which the substrate P5 is wound is mounted.

供給ロールRR5が装着されると、供給センサS2の検出結果に基づき、供給ロールRR2における基板P2が尽きる前に、図18に示すように、切断接合ユニットCU1を回動して吸着パッド1Aを貼設位置に移動させる。貼設位置にある吸着パッド1Aに対しては、基板P5の先端部を吸着させて固定(連結又は接続)し、その後、吸着側と逆側の面に両面テープTを貼設する。 When the supply roll RR5 is attached, based on the detection result of the supply sensor S2, before the substrate P2 on the supply roll RR2 is exhausted, the cutting and joining unit CU1 is rotated to attach the suction pad 1A as shown in FIG. Move to the installation position. The tip of the substrate P5 is sucked and fixed (connected or connected) to the suction pad 1A at the sticking position, and then the double-sided tape T is stuck on the surface opposite to the suction side.

その後、モータ軸MT1の回転駆動により供給ロールRR5を、基板P5の供給方向とは逆方向(図18では反時計回り方向)に回転させることにより、基板P5に所定のテンションを付与しつつ、切断接合ユニットCU1を回動して、図19に示すように、接合位置に移動させる。 After that, the supply roll RR5 is rotated in the direction opposite to the supply direction of the substrate P5 (counterclockwise in FIG. 18) by rotationally driving the motor shaft MT1, so that the substrate P5 is cut while applying a predetermined tension. The joining unit CU1 is rotated to move it to the joining position as shown in FIG.

そして、供給センサS2が、供給ロールRR2における基板P2の供給終了を検出すると、ニップ駆動ローラNR1の駆動を停止するとともに、上述した手順と同様に、切断接合ユニットCU1、CU2を互いに接近する方向に移動させ、両面テープTを介在させた状態で吸着パッド1A、1B間で基板P2、P5を一定時間圧着し、さらに、切断接合ユニットCU2におけるカッター2Bにより基板P2を切断する。これにより、第1バッファ機構BF1に蓄積されていた基板Pに接続される基板が供給ロールRR5から引き出された基板P5に切り換えられる。 Then, when the supply sensor S2 detects the end of supply of the substrate P2 on the supply roll RR2, the drive of the nip drive roller NR1 is stopped, and the cutting and joining units CU1 and CU2 are brought closer to each other in the same manner as in the above procedure. The substrates P2 and P5 are crimped between the suction pads 1A and 1B for a certain period of time with the double-sided tape T interposed therebetween, and the substrate P2 is further cut by the cutter 2B in the cutting and joining unit CU2. As a result, the substrate connected to the substrate P stored in the first buffer mechanism BF1 is switched to the substrate P5 pulled out from the supply roll RR5.

このように、順次切り換えられた基板Pは、処理装置U1における感光性機能液の塗布処理、処理装置U2における加熱処理、処理装置U3におけるパターン露光処理、処理装置U4におけるウェット処理及び処理装置U5における加熱乾燥処理が施された後に、第2バッファ機構BF2、第2スプライサー部CSbに順次送られて、回収ロールRR3、あるいは回収ロールRR4に回収される。 In this way, the sequentially switched substrates P are used in the coating process of the photosensitive functional liquid in the processing device U1, the heat treatment in the processing device U2, the pattern exposure processing in the processing device U3, the wet processing in the processing device U4, and the processing device U5. After being heat-dried, it is sequentially sent to the second buffer mechanism BF2 and the second splicer unit CSb, and is collected by the recovery roll RR3 or the recovery roll RR4.

次に、上記構成のデバイス製造システムSYSにおける基板Pの処理のうち、回収ロール側の第2スプライサー部CSb及び第2バッファ機構BF2の動作について、図20から図25を参照して説明する。 Next, among the processes of the substrate P in the device manufacturing system SYS having the above configuration, the operations of the second splicer unit CSb and the second buffer mechanism BF2 on the recovery roll side will be described with reference to FIGS. 20 to 25.

図20は、ニップ駆動ローラNR3を介して、処理基板である基板Pが第2バッファ機構BF2に送られて蓄積され、第2バッファ機構BF2からニップ駆動ローラNR4を介して送られた(排出された)基板Pが、切断接合ユニットCU3のローラ3Cを介して第3装着部RS3に装着された回収ロールRR3に回収されている図である。また、図20に示されるように、第2バッファ機構BF2においては、上段ローラRJ2が下死点位置JD3に位置し、下段ローラRK2が上死点位置JU4に位置することで、基板Pは第2バッファ機構BF2で最短に近い長さが蓄積されている。 In FIG. 20, the substrate P, which is a processing substrate, is sent to and accumulated in the second buffer mechanism BF2 via the nip drive roller NR3, and is sent (discharged) from the second buffer mechanism BF2 via the nip drive roller NR4. The substrate P is recovered by the recovery roll RR3 mounted on the third mounting portion RS3 via the roller 3C of the cutting and joining unit CU3. Further, as shown in FIG. 20, in the second buffer mechanism BF2, the upper roller RJ2 is located at the bottom dead center position JD3, and the lower roller RK2 is located at the top dead center position JU4. The length close to the shortest is accumulated by the 2-buffer mechanism BF2.

第4装着部RS4において、回収ロールRR3の巻き上げ回収が完了した後に、基板Pを回収する回収ロールRR4がモータ軸MT4に装着されると、切断接合ユニットCU4を回動して吸着パッド1Dを貼設位置に移動させる。貼設位置にある吸着パッド1Dに対しては、先端部が回収ロールRR4に接続された引き込み基板PK(以下、単に基板PKと称する)の終端部を吸着させて固定(連結又は接続)し、その後、吸着側と逆側の面に両面テープTを貼設する。基板PKに両面テープTを貼設したら、切断接合ユニットCU4を回動して接合位置に移動させるとともに、モータ軸MT4の回転駆動により回収ロールRR4を、基板PK(基板P)の回収方向(図20では時計回り方向)に回転させることにより、基板PKに所定のテンションを付与しておく。 When the recovery roll RR4 for collecting the substrate P is mounted on the motor shaft MT4 after the winding recovery of the recovery roll RR3 is completed in the fourth mounting portion RS4, the cutting joint unit CU4 is rotated to attach the suction pad 1D. Move to the installation position. With respect to the suction pad 1D at the sticking position, the end portion of the lead-in substrate PK (hereinafter, simply referred to as the substrate PK) whose tip is connected to the recovery roll RR4 is attracted and fixed (connected or connected). After that, the double-sided tape T is attached to the surface opposite to the suction side. After the double-sided tape T is attached to the substrate PK, the cutting and joining unit CU4 is rotated to move it to the joining position, and the recovery roll RR4 is driven by the rotation of the motor shaft MT4 in the recovery direction of the substrate PK (board P) (FIG. In 20, a predetermined tension is applied to the substrate PK by rotating it in the clockwise direction).

そして、巻き上げセンサS3が、回収ロールRR3による基板Pの回収終了を検出すると、ニップ駆動ローラNR4の駆動を停止するとともに、ダンサーローラ機構DR2を作動させて、上段ローラRJ2の上昇、及び下段ローラRK2の下降を適宜行わせる。これにより、処理装置U5からニップ駆動ローラNR3によって送られる基板Pは、第2バッファ機構BF2における蓄積長さを一定量(製造ラインでの基板Pの搬送速度に応じた送り量)で増加させながら蓄積される。 Then, when the winding sensor S3 detects the completion of collection of the substrate P by the collection roll RR3, the drive of the nip drive roller NR4 is stopped and the dancer roller mechanism DR2 is operated to raise the upper roller RJ2 and the lower roller RK2. To make the descent of. As a result, the substrate P fed from the processing device U5 by the nip drive roller NR3 increases the accumulation length in the second buffer mechanism BF2 by a constant amount (a feed amount corresponding to the transport speed of the substrate P on the production line). Accumulate.

一方、回収ロールRR3による基板Pの回収が終了すると、図21に示すように、切断接合ユニットCU3、CU4を互いに接近する方向に移動させ、両面テープTを介在させた状態で吸着パッド1C、1D間で基板P、PKを一定時間圧着する。これにより、基板PKの終端部は、後工程で基板Pが切断されたときの先端部となる位置に、両面テープTを介して基板Pと貼り合わされて接合(連結又は接続)される。 On the other hand, when the recovery of the substrate P by the recovery roll RR3 is completed, as shown in FIG. 21, the cutting and joining units CU3 and CU4 are moved in directions close to each other, and the suction pads 1C and 1D are interposed with the double-sided tape T interposed therebetween. The substrates P and PK are crimped between them for a certain period of time. As a result, the end portion of the substrate PK is bonded (connected or connected) to the substrate P via the double-sided tape T at a position that becomes the tip portion when the substrate P is cut in the subsequent process.

基板Pと基板PKとが接合されると、切断接合ユニットCU4における吸着パッド1Dを大気開放した後に、図22に示すように、切断接合ユニットCU4を切断接合ユニットCU3から離間する方向(+Z軸方向)に移動させる。これにより、基板PKの先端部は、両面テープTにより基板Pに接合された状態で切断接合ユニットCU3の吸着パッド1Cに吸着保持される。 When the substrate P and the substrate PK are joined, the suction pad 1D in the cutting joining unit CU4 is opened to the atmosphere, and then the cutting joining unit CU4 is separated from the cutting joining unit CU3 (+ Z-axis direction) as shown in FIG. ). As a result, the tip of the substrate PK is adsorbed and held by the suction pad 1C of the cutting and joining unit CU3 in a state of being bonded to the substrate P by the double-sided tape T.

この後、切断接合ユニットCU3と回収ロールRR3との間で基板Pにテンションを付与した状態で、切断接合ユニットCU3におけるカッター2Cにより、対向する基板Pを切断する。基板Pが切断されると、切断接合ユニットCU3における吸着パッド1Cを大気開放した後に、図23に示すように、切断接合ユニットCU3を切断接合ユニットCU4から離間する方向(−Z軸方向)に移動させる。これにより、第2バッファ機構BF2から送られる基板P(すなわち、処理装置U1〜Unで処理が行われた基板P)の回収先が回収ロールRR4に切り換えられる。 After that, the opposing substrates P are cut by the cutter 2C in the cutting and joining unit CU3 in a state where the substrate P is tensioned between the cutting and joining unit CU3 and the recovery roll RR3. When the substrate P is cut, the suction pad 1C in the cutting / joining unit CU3 is opened to the atmosphere, and then the cutting / joining unit CU3 is moved in the direction away from the cutting / joining unit CU4 (-Z axis direction) as shown in FIG. Let me. As a result, the collection destination of the substrate P sent from the second buffer mechanism BF2 (that is, the substrate P processed by the processing devices U1 to Un) is switched to the collection roll RR4.

上記の第2スプライサー部CSbにおける接合処理及び切断処理が行われている間にも、第2バッファ機構BF2内の上段ローラRJ2の上昇、及び下段ローラRK2の下降が適宜行われ、処理装置U5からニップ駆動ローラNR3によって送られる基板Pは、第2バッファ機構BF2における蓄積長さを一定量で増加させながら蓄積されている。 While the joining process and the cutting process in the second splicer unit CSb are being performed, the upper roller RJ2 in the second buffer mechanism BF2 and the lower roller RK2 are appropriately lowered from the processing device U5. The substrate P sent by the nip drive roller NR3 is accumulated while increasing the accumulation length in the second buffer mechanism BF2 by a constant amount.

そして、回収ロールRR4への基板Pの回収先切り換えが完了すると、ニップ駆動ローラNR4がニップ駆動ローラNR3よりも僅かに早い速度で回転し、ダンサーローラ機構DR2においては、ニップ駆動ローラNR4の駆動に応じて、上段ローラRJ2の下降、及び下段ローラRK2の上昇を適宜行わせ、第2スプライサー部CSbにおける接合処理及び切断処理の間に第2バッファ機構BF2に蓄積された基板Pの長さを減少させ、初期状態であるほぼ最小の蓄積長さとする(図24参照)。第2バッファ機構BF2に蓄積された基板Pの長さがほぼ最小となった後には、ニップ駆動ローラNR4をニップ駆動ローラNR3と同じ速度で回転させる。 Then, when the switching of the recovery destination of the substrate P to the recovery roll RR4 is completed, the nip drive roller NR4 rotates at a speed slightly faster than the nip drive roller NR3, and in the dancer roller mechanism DR2, the nip drive roller NR4 is driven. Correspondingly, the upper roller RJ2 is lowered and the lower roller RK2 is raised as appropriate, and the length of the substrate P accumulated in the second buffer mechanism BF2 is reduced during the joining process and the cutting process in the second splicer portion CSb. The accumulation length is set to almost the minimum, which is the initial state (see FIG. 24). After the length of the substrate P stored in the second buffer mechanism BF2 is almost minimized, the nip drive roller NR4 is rotated at the same speed as the nip drive roller NR3.

一方、基板Pの回収が完了した第3装着部RS3においては、回収ロールRR3を取り外して、図24に示すように、引き込み基板PK2(以下、単に基板PK2と称する)の先端部が接続(連結又は接合)された回収ロールRR6をモータ軸MT3に装着するとともに、貼設位置に回動した切断接合ユニットCU3の吸着パッド1Cに基板PK2の終端部吸着させて固定し、その後、吸着側と逆側の面に両面テープTを貼設する。 On the other hand, in the third mounting portion RS3 in which the recovery of the substrate P is completed, the recovery roll RR3 is removed, and as shown in FIG. 24, the tip end portion of the lead-in substrate PK2 (hereinafter, simply referred to as the substrate PK2) is connected (connected). The recovered roll RR6 (or joined) is attached to the motor shaft MT3, and is fixed by sucking the end portion of the substrate PK2 to the suction pad 1C of the cutting and joining unit CU3 that has been rotated to the sticking position, and then opposite to the suction side. A double-sided tape T is attached to the side surface.

基板PK2に両面テープTを貼設したら、切断接合ユニットCU3を回動して接合位置に移動させるとともに、モータ軸MT3の回転駆動により回収ロールRR6を、基板PK2(基板P)の回収方向(図25では時計回り方向)に回転させることにより、基板PK2に所定のテンションを付与した状態で、巻き上げセンサS4による回収ロールRR3の回収終了検出まで待機する。 After the double-sided tape T is attached to the substrate PK2, the cutting and joining unit CU3 is rotated to move it to the joining position, and the recovery roll RR6 is driven by the rotation of the motor shaft MT3 in the recovery direction of the substrate PK2 (board P) (FIG. In 25, the substrate PK2 is rotated in the clockwise direction) to wait until the recovery end detection of the recovery roll RR3 by the winding sensor S4 is performed in a state where a predetermined tension is applied.

以上説明したように、本実施形態では、第1バッファ機構BF1で基板Pを一時的に蓄積して処理装置U1に送っている間に、基板Pに新しい供給ロールRR2から引き出した基板P2につなぎ換えて、第1バッファ機構BF1に送っている。そのため、処理装置U1〜Unによる各処理を停止することなく、供給元となるロールを変更することが可能になる。したがって、本実施形態では、供給ロールの変更時点で処理装置U1〜Unに投入されていた基板Pが無駄となってコスト増を招くという事態を回避することができる。 As described above, in the present embodiment, while the substrate P is temporarily stored by the first buffer mechanism BF1 and sent to the processing device U1, the substrate P is connected to the substrate P2 drawn from the new supply roll RR2. Instead, it is sent to the first buffer mechanism BF1. Therefore, it is possible to change the roll as the supply source without stopping each process by the processing devices U1 to Un. Therefore, in the present embodiment, it is possible to avoid a situation in which the substrates P that have been put into the processing devices U1 to Un at the time of changing the supply roll are wasted and cause an increase in cost.

さらに、本実施形態では、処理装置Unから送られる基板Pを第2バッファ機構BF2で一時的に蓄積している間に基板の回収先を切り換える。そのため、基板Pの回収先を変更する際にも、変更時点で処理装置U1〜Unに投入されていた基板Pが無駄となってコスト増を招くという事態を回避することができる。 Further, in the present embodiment, the collection destination of the substrate is switched while the substrate P sent from the processing device Un is temporarily stored by the second buffer mechanism BF2. Therefore, even when the collection destination of the substrate P is changed, it is possible to avoid a situation in which the substrate P charged in the processing devices U1 to Un at the time of the change is wasted and the cost is increased.

また、本実施形態では、第1スプライサー部CSa及び第2スプライサー部CSbにおいて、従前に用いられていた基板に新たな基板を接合した後で、従前の基板を切断している。そのため、先に切断を実行した場合に、付与されているテンションで切断時に基板が分離してしまい接合に支障を来す等の不具合を生じさせることなく、安定した基板処理を実行することができる。 Further, in the present embodiment, in the first splicer section CSa and the second splicer section CSb, the conventional substrate is cut after joining a new substrate to the previously used substrate. Therefore, when cutting is executed first, stable substrate processing can be executed without causing problems such as the substrate being separated at the time of cutting due to the applied tension and hindering joining. ..

以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 Although preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to such examples. The various shapes and combinations of the constituent members shown in the above-mentioned examples are examples, and can be variously changed based on design requirements and the like without departing from the gist of the present invention.

例えば、上記実施形態では、処理機構が複数の処理装置U1〜Unを備える構成を例示した。しかし、これに限定されるものではなく、一つの処理装置に上述した基板つなぎ換え機構が設けられる構成であってもよい。 For example, in the above embodiment, the configuration in which the processing mechanism includes a plurality of processing devices U1 to Un is illustrated. However, the present invention is not limited to this, and one processing apparatus may be provided with the above-described substrate reconnecting mechanism.

また、上記実施形態では、引き込み基板PKが接続された回収ロールを別途備える構成とした。しかし、例えば、使用済みで先端部の基板が切断された供給ロールを用いる構成であってもよい。 Further, in the above embodiment, a recovery roll to which the lead-in substrate PK is connected is separately provided. However, for example, a supply roll that has been used and the substrate at the tip portion has been cut may be used.

また、上記実施形態では、供給側及び回収側でそれぞれ2つのロール装着部を備える構成とした。しかし、それぞれ3つ以上のロール装着部を備えてもよい。 Further, in the above embodiment, the supply side and the collection side are each provided with two roll mounting portions. However, each may include three or more roll mounting portions.

上記実施形態では、2つの供給ロールの一方から供給される基板がロールエンドになる前に、自動的に、他方のロールからの基板をつぎ足すことで、製造ラインを止めることなく、処理を継続するようにした。製造ラインのどこかで、基板上に作られるパターンに欠陥が生じたり、製造装置の不具合が発生したりすると、大量の不良品を作り出してしまうおそれがある。 In the above embodiment, before the substrate supplied from one of the two supply rolls reaches the roll end, the substrate from the other roll is automatically added to continue the processing without stopping the production line. I tried to do it. If a defect occurs in the pattern formed on the substrate or a defect occurs in the manufacturing equipment somewhere on the manufacturing line, a large number of defective products may be produced.

そこで、最終製品ができるまでの製造ラインにおいて、長尺の基板のままプロセスを行なう多数の工程を幾つかのブロックに分け、各ブロック内では、ロール・ツー・ロールによる連続処理を行ない、次の工程ブロックには、半完成品が形成された基板を巻き取ったロール単位で搬送して、所定の装着部(RS1、又はRS2)にセットする、と言う製造ライン(工場)構成であっても良い。その場合、基板搬送は、工程ブロック単位で連続的に行なうことができ、ある工程ブロックで問題(パターン欠陥や装置不具合等)が発生した場合でも、その工程ブロックのみを一時的に停止させるだけで済み、不良品の大量発生を少なくすることができる。 Therefore, in the manufacturing line until the final product is made, many processes that carry out the process with a long substrate are divided into several blocks, and in each block, continuous processing by roll-to-roll is performed, and the next Even in a production line (factory) configuration in which a substrate on which a semi-finished product is formed is conveyed to a process block in roll units and set in a predetermined mounting portion (RS1 or RS2). good. In that case, the substrate can be continuously transported in units of process blocks, and even if a problem (pattern defect, equipment failure, etc.) occurs in a certain process block, only that process block is temporarily stopped. It is possible to reduce the large number of defective products.

また、上記の実施形態では、2つの装着部RS1、RS2の各々に装着される供給ロールRR1、RR2は、製品製造用のシート状の基板が同等の長さ分巻かれたものとし、一方の供給ロールRR1からの基板供給が終わる(ロールエンド)直前に、他方の供給ロールRR2の基板につなぎ変えて、供給ロールRR2の基板の終わりまで処理を続けるものとした。しかしながら、装着部RS1、RS2の一方に装着される供給ロールは、ロールエンドとなる他方の供給ロールを新しいロールに交換する間だけ、処理装置U1〜Unに基板を供給し続けるような使い方をしても良い。 Further, in the above embodiment, the supply rolls RR1 and RR2 mounted on each of the two mounting portions RS1 and RS2 are assumed to be a sheet-shaped substrate for manufacturing a product wound by the same length. Immediately before the substrate supply from the supply roll RR1 is completed (roll end), the substrate is connected to the substrate of the other supply roll RR2, and the processing is continued until the end of the substrate of the supply roll RR2. However, the supply roll mounted on one of the mounting portions RS1 and RS2 is used so as to continue supplying the substrate to the processing devices U1 to Un only while the other supply roll, which is the roll end, is replaced with a new roll. You may.

その場合、例えば、ロールエンドとなる供給ロールをRR2とし、そのロールRR2を装着部RS2から取り外し、新しい供給ロールを装着部RS2に装着し、第1スプライサー部CSaでの接合準備が完了する状態(図13の状態)までの段取り時間を180秒とすると、この間、他方の供給ロールRR1から処理装置U1(製造ライン)に投入される基板(P1)の長さは、処理中の基板の送り速度を50mm/秒とすると、9mとなる。 In that case, for example, the supply roll to be the roll end is set to RR2, the roll RR2 is removed from the mounting portion RS2, a new supply roll is mounted on the mounting portion RS2, and the preparation for joining in the first splicer portion CSa is completed ( Assuming that the setup time to the state of FIG. 13) is 180 seconds, the length of the substrate (P1) charged from the other supply roll RR1 to the processing apparatus U1 (manufacturing line) during this period is the feed rate of the substrate being processed. When is 50 mm / sec, it becomes 9 m.

そこで、その9m分の基板(P1)が他方の供給ロールRR1から供給されたら、直ちに第1スプライサー部CSaによって、装着部RS2に装着された新たな供給ロールRR2からの基板(P2)の先端を、供給ロールRR1から処理装置U1にほぼ9mだけ投入された基板(P1)の位置に接合(連結又は接続)した上で、その基板(P1)を切断し、供給ロールRR2からの基板(P2)につなぎ変えても良い。 Therefore, as soon as the 9 m portion of the substrate (P1) is supplied from the other supply roll RR1, the tip of the substrate (P2) from the new supply roll RR2 mounted on the mounting portion RS2 is immediately pressed by the first splicer unit CSa. , After joining (connecting or connecting) to the position of the substrate (P1) that was put into the processing device U1 from the supply roll RR1 by about 9 m, the substrate (P1) was cut, and the substrate (P2) from the supply roll RR2. You may change the connection to.

また、そのように、装着部RS1に装填される供給ロールRR1からの基板(P1)を、一時的なつなぎの基板(例えば約9m分)として利用する場合、その基板(P1)に対して行なわれる処理については、各処理装置U1〜Unの条件出しやメンテナンス管理の為のパイロット処理とし、そこに形成されるデバイスは最終製品として使わないようにしても良い。 Further, when the substrate (P1) from the supply roll RR1 loaded in the mounting portion RS1 is used as a temporary connecting substrate (for example, about 9 m), the substrate (P1) is used. The processing to be performed may be a pilot processing for setting conditions and maintenance management of each processing apparatus U1 to Un, and the device formed therein may not be used as a final product.

さらに、一時的なつなぎの基板(例えば約9m分)として利用する場合は、その基板(P1)を供給ロールRR1に巻き付けておく必要はなく、例えば10m分の長さに切った枚葉の基板を折り畳んでケース等に保管しておき、そのケースから1枚ずつ基板(10m)を取り出して第1スプライサー部CSaに供給するようにしても良い。 Further, when it is used as a temporary connecting substrate (for example, about 9 m), it is not necessary to wind the substrate (P1) around the supply roll RR1, and for example, a single-wafer substrate cut to a length of 10 m. May be folded and stored in a case or the like, and the substrates (10 m) may be taken out one by one from the case and supplied to the first splicer unit CSa.

なお、本発明の技術範囲は、上述の各実施形態に限定されるものではない。例えば、上述の各実施形態で説明した要素の1つ以上は、省略されることがある。また、上述の各実施形態で説明した要素は、適宜組み合わせることができる。 The technical scope of the present invention is not limited to each of the above-described embodiments. For example, one or more of the elements described in each of the above embodiments may be omitted. In addition, the elements described in each of the above embodiments can be combined as appropriate.

BF1…第1バッファ機構(第1バッファ部、バッファ機構)、 BF2…第2バッファ機構(第2バッファ部)、 CSa…第1スプライサー部(基板つなぎ換え機構)、 CSb…第2スプライサー部(第2基板つなぎ換え機構)、 CU…切断機構、FS…基板、P…基板、 PK、PK2…引き込み基板(第3基板)、 PU10…接合機構、 RR1…供給ロール(第1ロール)、 RR2…供給ロール(第2ロール)、 RR3…回収ロール(第3ロール)、 RR4…回収ロール(第4ロール)、 RS1…第1装着部、 RS2…第2装着部、 RS3…第3装着部、 RS4…第4装着部、 ST…選択投入機構、 SYS…デバイス製造システム(基板処理装置)、 UA、UB、UB1〜UB3、UC…処理ユニット、 U1〜Un…処理装置(処理機構) BF1 ... 1st buffer mechanism (1st buffer part, buffer mechanism), BF2 ... 2nd buffer mechanism (2nd buffer part), CSa ... 1st splicer part (board reconnection mechanism), CSb ... 2nd splicer part (1st) 2 board reconnection mechanism), CU ... cutting mechanism, FS ... board, P ... board, PK, PK2 ... lead-in board (third board), PU10 ... joining mechanism, RR1 ... supply roll (first roll), RR2 ... supply Roll (2nd roll), RR3 ... Recovery roll (3rd roll), RR4 ... Recovery roll (4th roll), RS1 ... 1st mounting part, RS2 ... 2nd mounting part, RS3 ... 3rd mounting part, RS4 ... 4th mounting unit, ST ... selective input mechanism, SYS ... device manufacturing system (board processing device), UA, UB, UB1 to UB3, UC ... processing unit, U1 to Un ... processing device (processing mechanism)

Claims (5)

可撓性を有する長尺のシート基板に感光性機能層を形成する第1処理の後、前記感光性機能層に電子デバイスの為のパターンを形成する第2処理を施すデバイス製造方法であって、
供給ロールに巻かれた前記シート基板を、前記第1処理を施す第1処理ユニット内に第1速度で搬送しながら、前記シート基板に前記感光性機能層を塗布する塗布工程と、
前記第1処理ユニットから搬出される前記シート基板を、所定の長さ分だけ第1回収ロールに巻き取って切断する第1の回収工程と、
前記シート基板を前記第1速度よりも遅い第2速度で搬送しつつ前記第2処理を施す第2処理ユニットの複数台のうち、前記シート基板を処理していない第2処理ユニット内に、前記第1回収ロールに巻かれた前記シート基板を搬送しつつ前記感光性機能層に前記パターンを形成する第1のパターン形成工程と、
前記第1の回収工程の後、引き続き、前記第1処理ユニットから前記第1速度で搬出される前記シート基板を、所定の長さ分だけ第2回収ロールに巻き取って切断する第2の回収工程と、
前記複数台の第2処理ユニットのうち、前記シート基板を処理していない第2処理ユニット内に、前記第2回収ロールに巻かれた前記シート基板を搬送しつつ前記感光性機能層に前記パターンを形成する第2のパターン形成工程と、を含み、
前記第1のパターン形成工程の完了前に前記第2のパターン形成工程を開始するように設定した、デバイス製造方法。
A device manufacturing method in which a first treatment for forming a photosensitive functional layer on a long flexible sheet substrate is followed by a second treatment for forming a pattern for an electronic device on the photosensitive functional layer. ,
A coating step of applying the photosensitive functional layer to the sheet substrate while transporting the sheet substrate wound on the supply roll into the first processing unit to be subjected to the first treatment at a first speed.
A first recovery step in which the sheet substrate carried out from the first processing unit is wound around a first recovery roll by a predetermined length and cut.
Among a plurality of second processing units that perform the second processing while transporting the sheet substrate at a second speed slower than the first speed, the sheet substrate is contained in the second processing unit that has not been processed. A first pattern forming step of forming the pattern on the photosensitive functional layer while conveying the sheet substrate wound on the first recovery roll.
After the first recovery step, a second recovery in which the sheet substrate carried out from the first processing unit at the first speed is wound up on a second recovery roll by a predetermined length and cut. Process and
Among the plurality of second processing units, the pattern is transferred to the photosensitive functional layer while transporting the sheet substrate wound on the second recovery roll into the second processing unit in which the sheet substrate is not processed. Including a second pattern forming step of forming
A device manufacturing method set to start the second pattern forming step before the completion of the first pattern forming step.
請求項1に記載のデバイス製造方法であって、
前記第1速度をVA、前記第2速度をVBとしたとき、前記第2処理ユニットの台数は、速度の比VA/VBに応じて設けられる、デバイス製造方法。
The device manufacturing method according to claim 1.
A device manufacturing method in which, when the first speed is VA and the second speed is VB, the number of the second processing units is provided according to the speed ratio VA / VB.
請求項2に記載のデバイス製造方法であって、
前記第1処理ユニットは、前記シート基板の表面に前記感光性機能層を塗布する塗布装置と、塗布後の前記シート基板を乾燥する乾燥装置とを有し、
前記第2処理ユニットは、前記シート基板の前記感光性機能層に前記パターンに対応したパターニング光を照射する露光装置を有する、
デバイス製造方法。
The device manufacturing method according to claim 2.
The first processing unit includes a coating device for applying the photosensitive functional layer to the surface of the sheet substrate, and a drying device for drying the sheet substrate after coating.
The second processing unit includes an exposure apparatus that irradiates the photosensitive functional layer of the sheet substrate with patterning light corresponding to the pattern.
Device manufacturing method.
請求項3に記載のデバイス製造方法であって、
前記塗布装置は、前記感光性機能層を形成する為に、
フォトレジスト、感光性シランカップリング材、感光性親撥液改質剤、感光性メッキ還元剤、UV硬化樹脂液のいずれか1つを、前記シート基板の長尺方向に関して全体的又は選択的に塗布する、
デバイス製造方法。
The device manufacturing method according to claim 3.
The coating device is used to form the photosensitive functional layer.
Any one of a photoresist, a photosensitive silane coupling material, a photosensitive repellent liquid modifier, a photosensitive plating reducing agent, and a UV curable resin solution may be used as a whole or selectively in the elongated direction of the sheet substrate. Apply,
Device manufacturing method.
請求項1〜4のいずれか一項に記載のデバイス製造方法であって、
前記複数の第2処理ユニットの各々によって処理される前記シート基板は、前記第2処理が早く完了する順に、前記第2速度よりも早い第3速度で長尺方向に搬送しながら第3処理を施す第3処理ユニットに送られる、
デバイス製造方法。
The device manufacturing method according to any one of claims 1 to 4.
The sheet substrate processed by each of the plurality of second processing units is subjected to the third processing while being conveyed in the longitudinal direction at a third speed faster than the second speed in the order in which the second processing is completed earlier. Sent to the third processing unit to apply,
Device manufacturing method.
JP2020139661A 2012-05-23 2020-08-20 Device manufacturing method Pending JP2020201505A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261650712P 2012-05-23 2012-05-23
US61/650,712 2012-05-23
US201261654500P 2012-06-01 2012-06-01
US61/654,500 2012-06-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019175442A Division JP6753501B2 (en) 2012-05-23 2019-09-26 Device manufacturing method

Publications (1)

Publication Number Publication Date
JP2020201505A true JP2020201505A (en) 2020-12-17

Family

ID=49623585

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2014516716A Active JP6156369B2 (en) 2012-05-23 2013-04-09 Cutting mechanism, bonding mechanism, substrate processing system, substrate processing apparatus, and substrate processing method
JP2016018903A Active JP6107986B2 (en) 2012-05-23 2016-02-03 Substrate processing method and substrate cutting or bonding apparatus
JP2017106405A Pending JP2017160057A (en) 2012-05-23 2017-05-30 Substrate switching device
JP2018096942A Active JP6597835B2 (en) 2012-05-23 2018-05-21 Substrate processing system
JP2019175442A Active JP6753501B2 (en) 2012-05-23 2019-09-26 Device manufacturing method
JP2020139661A Pending JP2020201505A (en) 2012-05-23 2020-08-20 Device manufacturing method

Family Applications Before (5)

Application Number Title Priority Date Filing Date
JP2014516716A Active JP6156369B2 (en) 2012-05-23 2013-04-09 Cutting mechanism, bonding mechanism, substrate processing system, substrate processing apparatus, and substrate processing method
JP2016018903A Active JP6107986B2 (en) 2012-05-23 2016-02-03 Substrate processing method and substrate cutting or bonding apparatus
JP2017106405A Pending JP2017160057A (en) 2012-05-23 2017-05-30 Substrate switching device
JP2018096942A Active JP6597835B2 (en) 2012-05-23 2018-05-21 Substrate processing system
JP2019175442A Active JP6753501B2 (en) 2012-05-23 2019-09-26 Device manufacturing method

Country Status (6)

Country Link
JP (6) JP6156369B2 (en)
KR (5) KR102108498B1 (en)
CN (3) CN105479737B (en)
IN (1) IN2014DN10546A (en)
TW (4) TWI634595B (en)
WO (1) WO2013175882A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102108498B1 (en) * 2012-05-23 2020-05-08 가부시키가이샤 니콘 Substrate processing system
DE102014116615A1 (en) * 2014-11-13 2016-05-19 Packsys Global Ag Substrate feeding device for a packaging tube manufacturing process and substrate feeding method
KR102277364B1 (en) * 2015-09-29 2021-07-15 가부시키가이샤 니콘 manufacturing system
JP6645157B2 (en) * 2015-12-10 2020-02-12 株式会社ニコン Substrate processing equipment
TWI801347B (en) * 2016-08-08 2023-05-11 日商尼康股份有限公司 Substrate processing apparatus and substrate processing method
JP6829870B2 (en) * 2016-11-25 2021-02-17 三星ダイヤモンド工業株式会社 Board division system
JP6376483B2 (en) * 2017-01-10 2018-08-22 大日本印刷株式会社 Vapor deposition mask manufacturing method, vapor deposition mask device manufacturing method, and vapor deposition mask quality determination method
JP7015987B2 (en) * 2017-10-03 2022-02-04 パナソニックIpマネジメント株式会社 Manufacturing method of component mounting equipment and mounting board
JP6967276B2 (en) * 2017-12-28 2021-11-17 三星ダイヤモンド工業株式会社 Break device
JP7064885B2 (en) * 2018-01-05 2022-05-11 東京エレクトロン株式会社 Board gripping mechanism, board transfer device and board processing system
TWI782169B (en) * 2018-01-23 2022-11-01 日商東京威力科創股份有限公司 Joining system and joining method
KR20230051717A (en) * 2018-07-09 2023-04-18 다이니폰 인사츠 가부시키가이샤 Vapor-deposition mask manufacturing method and vapor-deposition mask device manufacturing method
JP7454837B2 (en) 2020-02-03 2024-03-25 三光機械株式会社 Packaging film joining equipment and packaging film automatic exchange equipment
WO2024053441A1 (en) * 2022-09-05 2024-03-14 株式会社瑞光 Splice device and method
KR102553891B1 (en) * 2022-09-05 2023-07-11 주식회사 스타테크 Roll to roll apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152718A (en) * 1994-11-28 1996-06-11 Nippon Seiko Kk Exposure device
JP2004103947A (en) * 2002-09-11 2004-04-02 Dainippon Printing Co Ltd Mixed-flow manufacturing line system and manufacturing method using the same
JP2004186469A (en) * 2002-12-04 2004-07-02 Nippon Telegr & Teleph Corp <Ntt> Strip-shaped continuous substrate, semiconductor device using the same, and method for manufacturing the same
JP2010282203A (en) * 2009-06-05 2010-12-16 Nikon Corp Transporting method, transporting apparatus, exposure method and exposure apparatus
JP6753501B2 (en) * 2012-05-23 2020-09-09 株式会社ニコン Device manufacturing method

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157934A (en) * 1977-07-18 1979-06-12 Compensating Tension Controls, Inc. Low tension lap slicer unit
JPS625327Y2 (en) * 1980-06-02 1987-02-06
JPS6019037A (en) 1983-07-14 1985-01-31 Nissan Motor Co Ltd Preparation of catalyst for treating exhaust gas
JPS6019037U (en) 1983-07-18 1985-02-08 株式会社リコー exposure equipment
JPH07176507A (en) * 1993-12-20 1995-07-14 Hitachi Ltd Wet treatment device and method thereof
JPH08157112A (en) * 1994-10-06 1996-06-18 Kyodo Printing Co Ltd Device and method for winding web
JPH08239144A (en) * 1995-03-03 1996-09-17 Canon Inc Method for replacing work raw material during manufacture of article made from continuous material
JPH08330205A (en) * 1995-05-29 1996-12-13 Matsushita Electron Corp Alignment method
JPH10279142A (en) * 1997-04-09 1998-10-20 Takao Eng Kk Tape material bonding device
JP3586582B2 (en) * 1999-04-09 2004-11-10 三菱重工業株式会社 Web splicing apparatus and spliced web generating method
JP4328460B2 (en) * 2000-11-09 2009-09-09 株式会社トパック Film feeder
JP2002313880A (en) * 2001-04-19 2002-10-25 Hitachi Ltd Method for manufacturing semiconductor integrated circuit device
JP2003024865A (en) * 2001-07-11 2003-01-28 Minolta Co Ltd Wet treating method of film substrate and wet treating device thereof
WO2003080490A2 (en) * 2002-03-22 2003-10-02 Magnum Manufacturing Limited Method and apparatus for overlapping sheets in a sheet feeder and providing the overlapped sheets to a printing press
JP2003327354A (en) * 2002-05-10 2003-11-19 Zuiko Corp Web splicing method and device
JP3965329B2 (en) * 2002-06-20 2007-08-29 東洋鋼鈑株式会社 Resin film connecting method and connecting device
JP2004182353A (en) * 2002-11-29 2004-07-02 Rengo Co Ltd Web splicing device
JP2004189379A (en) * 2002-12-10 2004-07-08 Rengo Co Ltd Web connection device
JP4259882B2 (en) * 2003-01-15 2009-04-30 シチズンファインテックミヨタ株式会社 Tape sticking method and tape sticking apparatus
US20050241774A1 (en) * 2004-04-30 2005-11-03 Kimberly-Clark Worldwide, Inc. Apparatus and process for aligning materials during a splice
JP2005347618A (en) 2004-06-04 2005-12-15 Fuji Photo Film Co Ltd Photosensitive web unit, and manufacturing apparatus and method of photosensitive laminate
JP2006060066A (en) * 2004-08-20 2006-03-02 Mitsubishi Electric Corp Method for forming silicon oxide film and film forming apparatus
JP4515331B2 (en) * 2005-05-30 2010-07-28 東京エレクトロン株式会社 Substrate processing system
WO2007029852A1 (en) * 2005-09-07 2007-03-15 Fujifilm Corporation Pattern exposure method and pattern exposure apparatus
JP4224479B2 (en) * 2005-09-07 2009-02-12 富士フイルム株式会社 Pattern exposure method and apparatus
JP4861778B2 (en) * 2005-09-08 2012-01-25 富士フイルム株式会社 Pattern exposure method and apparatus
JP4360684B2 (en) * 2006-02-22 2009-11-11 日東電工株式会社 Adhesive tape pasting method for semiconductor wafer and apparatus using the same
JP2008001429A (en) * 2006-05-22 2008-01-10 Sanko Kikai Kk Automatic film splicing device of filling and packaging machine
JP5059382B2 (en) 2006-11-20 2012-10-24 ディップ株式会社 System and method for automatically creating job history
WO2008129819A1 (en) * 2007-04-13 2008-10-30 Nikon Corporation Display element manufacturing method, display element manufacturing apparatus and display element
JP5197586B2 (en) * 2007-05-25 2013-05-15 浜松ホトニクス株式会社 Cutting method
JP4894010B2 (en) * 2007-06-12 2012-03-07 株式会社トーモク Paper splicing method and paper splicing device in corrugating machine
JP2009023301A (en) * 2007-07-23 2009-02-05 Fujifilm Corp Applying process of laminated film
TW200919117A (en) * 2007-08-28 2009-05-01 Tokyo Electron Ltd Coating-developing apparatus, coating-developing method and storage medium
US8782234B2 (en) 2008-05-05 2014-07-15 Siemens Industry, Inc. Arrangement for managing data center operations to increase cooling efficiency
KR101015227B1 (en) * 2008-08-06 2011-02-18 세메스 주식회사 Substrate processing apparatus and method for transferring substrate of the same
KR101181560B1 (en) * 2008-09-12 2012-09-10 다이닛뽕스크린 세이조오 가부시키가이샤 Substrate processing apparatus and substrate conveying apparatus for use in the same
JP2010113268A (en) * 2008-11-10 2010-05-20 Kyodo Printing Co Ltd Method for manufacturing shield material, and photomask
JP5630113B2 (en) 2009-07-17 2014-11-26 株式会社ニコン Pattern forming apparatus, pattern forming method, and device manufacturing method
JP5465944B2 (en) 2009-07-30 2014-04-09 日東電工株式会社 How to apply protective tape
JP4503689B1 (en) * 2009-10-13 2010-07-14 日東電工株式会社 Method and apparatus for continuous production of liquid crystal display elements
JP5313945B2 (en) 2010-02-25 2013-10-09 パナソニック株式会社 Tape sticking device, protective sheet unit, and protective sheet feeding method
JP5708179B2 (en) * 2010-04-13 2015-04-30 株式会社ニコン Exposure apparatus, substrate processing apparatus, and device manufacturing method
JP5830233B2 (en) * 2010-09-17 2015-12-09 日東電工株式会社 Sheet bonded body manufacturing method and sheet bonded body manufacturing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152718A (en) * 1994-11-28 1996-06-11 Nippon Seiko Kk Exposure device
JP2004103947A (en) * 2002-09-11 2004-04-02 Dainippon Printing Co Ltd Mixed-flow manufacturing line system and manufacturing method using the same
JP2004186469A (en) * 2002-12-04 2004-07-02 Nippon Telegr & Teleph Corp <Ntt> Strip-shaped continuous substrate, semiconductor device using the same, and method for manufacturing the same
JP2010282203A (en) * 2009-06-05 2010-12-16 Nikon Corp Transporting method, transporting apparatus, exposure method and exposure apparatus
JP6753501B2 (en) * 2012-05-23 2020-09-09 株式会社ニコン Device manufacturing method

Also Published As

Publication number Publication date
JP2020014012A (en) 2020-01-23
CN105479737B (en) 2018-11-02
TWI733096B (en) 2021-07-11
JP6156369B2 (en) 2017-07-05
KR101903927B1 (en) 2018-10-02
KR20200051053A (en) 2020-05-12
TW201841237A (en) 2018-11-16
CN104303110A (en) 2015-01-21
TW201717268A (en) 2017-05-16
CN105479737A (en) 2016-04-13
JP6753501B2 (en) 2020-09-09
JP2017160057A (en) 2017-09-14
TWI587380B (en) 2017-06-11
KR102266662B1 (en) 2021-06-21
KR20180095731A (en) 2018-08-27
TWI659462B (en) 2019-05-11
CN104303110B (en) 2016-11-16
JP6597835B2 (en) 2019-10-30
JP6107986B2 (en) 2017-04-05
JP2016130175A (en) 2016-07-21
WO2013175882A1 (en) 2013-11-28
TW201413802A (en) 2014-04-01
KR20170124631A (en) 2017-11-10
IN2014DN10546A (en) 2015-08-21
TW201923863A (en) 2019-06-16
KR20190004360A (en) 2019-01-11
JPWO2013175882A1 (en) 2016-01-12
KR101802025B1 (en) 2017-11-27
CN105467627A (en) 2016-04-06
JP2018139322A (en) 2018-09-06
KR102108498B1 (en) 2020-05-08
TWI634595B (en) 2018-09-01
KR20150016515A (en) 2015-02-12
KR101945684B1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP6753501B2 (en) Device manufacturing method
JP2008139523A (en) Optical film-pasting method, optical film-pasting device, and manufacturing method of display panel
CN103855328A (en) Sealing apparatus for organic el
JP2008015041A (en) Alignment lamination device and alignment lamination method
JP2013218157A (en) Exposure apparatus, exposure method, and substrate processing apparatus
KR20190098083A (en) System and apparatus for laminating optical film
JP5021394B2 (en) ACF pasting device and flat panel display manufacturing device
JP2007108255A (en) Device for sticking polarizing plate
KR20140134965A (en) Film treating apparatus and method for film treating using the same
JPH05162205A (en) Film pasting device
KR100669421B1 (en) Lamination apparatus
JP5969247B2 (en) Continuous manufacturing method of optical display panel, continuous manufacturing system thereof, switching method and feeding device
KR20060053357A (en) Lamination apparatus
JPH0284318A (en) Method and apparatus for bonding membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301