JP2020074360A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2020074360A
JP2020074360A JP2019161649A JP2019161649A JP2020074360A JP 2020074360 A JP2020074360 A JP 2020074360A JP 2019161649 A JP2019161649 A JP 2019161649A JP 2019161649 A JP2019161649 A JP 2019161649A JP 2020074360 A JP2020074360 A JP 2020074360A
Authority
JP
Japan
Prior art keywords
film
oxide semiconductor
region
semiconductor film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2019161649A
Other languages
English (en)
Inventor
山崎 舜平
Shunpei Yamazaki
舜平 山崎
英臣 須澤
Hideomi Suzawa
英臣 須澤
正美 神長
Masami Kaminaga
正美 神長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2020074360A publication Critical patent/JP2020074360A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】セルフアライン構造の酸化物半導体膜を用いたトランジスタにおいて、高い電気特性を有し、且つ安定した電気特性を付与したトランジスタを提供する。【解決手段】酸化物半導体膜と、酸化物半導体膜の一部と重なるゲート電極と、酸化物半導体膜およびゲート電極の間のゲート絶縁膜と、を有するトランジスタを備えた半導体装置であって、酸化物半導体膜は、第1の領域と、第1の領域を挟む第2の領域とを有し、第2の領域は、不純物元素を有する。また、ゲート絶縁膜の側面は、凹部である領域を有する。また、ゲート電極の一部は、酸化物半導体膜に含まれる前記第2の領域の一部と重なる。【選択図】図1

Description

本発明は、物、方法、または、製造方法に関する。または、本発明は、プロセス、マシ
ン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。特
に、本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、それら
の駆動方法、またはそれらの製造方法に関する。特に、本発明の一態様は、電界効果トラ
ンジスタを有する半導体装置に関する。
なお、本明細書等において、半導体装置とは、半導体特性を利用することで機能しうる
装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶
装置は、半導体装置の一態様である。撮像装置、表示装置、液晶表示装置、発光装置、電
気光学装置、発電装置(薄膜太陽電池、有機薄膜太陽電池等を含む)、入出力装置、およ
び電子機器は、半導体装置を有している場合がある。
絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタ(薄膜トランジ
スタ(TFT)ともいう)を構成する技術が注目されている。該トランジスタは集積回路
(IC)や画像表示装置(表示装置)のような電子デバイスに広く応用されている。トラ
ンジスタに適用可能な半導体薄膜としてシリコンを代表とする半導体材料が広く知られて
いるが、その他の材料として酸化物半導体が注目されている。
酸化物半導体を用いたトランジスタとしては、より高機能な半導体装置への応用のため
に、より高い電気特性が求められている。例えば、チャネル領域を含む酸化物半導体膜の
一部の領域上に、ゲート電極、およびゲート絶縁膜を形成したのち、酸化物半導体膜のゲ
ート電極、およびゲート絶縁膜に覆われていない領域を低抵抗化してソース領域およびド
レイン領域を形成するセルフアライン(自己整合)構造のトランジスタが報告されている
(例えば、特許文献1参照)。
特開2007−220817号公報 特開2011−228622号公報
特許文献1においては、低抵抗のソース領域、およびドレイン領域を自己整合的に形成
するために、酸化物半導体膜のゲート電極、およびゲート絶縁膜に覆われていない領域に
層間絶縁膜としてプラズマCVD法により窒化シリコン膜を形成し、当該窒化シリコン膜
に含まれる水素を酸化物半導体膜に導入し、低抵抗領域を形成していた。しかしながら、
この方法においては、チャネル領域にも水素が拡散する可能性があり、安定した半導体特
性を得ることが難しいという問題があった。
そこで、本発明の一態様は、セルフアライン構造の酸化物半導体膜を用いたトランジス
タにおいて、高い電気特性を有するトランジスタを提供することを課題の一とする。また
は、本発明の一態様は、オン電流の高いトランジスタを提供することを課題の一とする。
または、本発明の一態様は、電気特性のばらつきの少ないトランジスタの作製方法を提供
することを課題の一とする。または、本発明の一態様は、消費電力が低減された表示装置
の作製方法を提供する。または、本発明の一態様は、新規な表示装置の作製方法を提供す
る。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の
一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課
題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、
図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、酸化物半導体膜と、酸化物半導体膜の一部と重なるゲート電極と、
酸化物半導体膜およびゲート電極の間のゲート絶縁膜と、を有するトランジスタを備えた
半導体装置であって、酸化物半導体膜は、第1の領域と、第1の領域を挟む第2の領域と
を有し、第2の領域は、不純物元素を有する。また、ゲート絶縁膜の側面は、凹部である
領域を有する。また、ゲート電極の一部は、酸化物半導体膜に含まれる第2の領域の一部
と重なる。
本発明の一態様は、酸化物半導体膜と、酸化物半導体膜の一部と重なるゲート電極と、
酸化物半導体膜およびゲート電極の間のゲート絶縁膜と、を有するトランジスタを備えた
半導体装置であって、酸化物半導体膜は、第1の領域と、第1の領域を挟む第2の領域と
を有し、第2の領域は、不純物元素を有する。また、ゲート絶縁膜は、酸化物半導体膜側
から順に、酸化物絶縁膜および窒化物絶縁膜が積層される。また、窒化物絶縁膜の側面は
、凹部である領域を有する。また、ゲート電極の一部は、酸化物半導体膜に含まれる第2
の領域の一部と重なる。
本発明の一態様は、トランジスタを有する半導体装置であって、トランジスタは、酸化
物半導体膜と、ゲート絶縁膜と、ゲート電極と、を有し、酸化物半導体膜は、第1の領域
と、第1の領域を挟む第2の領域を有し、第2の領域は、不純物元素を有し、ゲート絶縁
膜は、酸化物半導体膜およびゲート電極の間に設けられ、ゲート絶縁膜は、ゲート電極の
側面の少なくとも一部より内側である側面の領域を有し、ゲート電極は、酸化物半導体膜
に含まれる第2の領域と重なる領域を有する半導体装置である。
本発明の一態様は、トランジスタを有する半導体装置であって、トランジスタは、酸化
物半導体膜と、第1の絶縁膜と、第2の絶縁膜と、ゲート電極と、を有し、酸化物半導体
膜は、第1の領域と、第1の領域を挟む第2の領域を有し、第2の領域は、不純物元素を
有し、第1の絶縁膜は、酸化物半導体膜と接し、第1の絶縁膜は、酸素を含み、第2の絶
縁膜は、第1の絶縁膜およびゲート電極と接し、第2の絶縁膜は、窒素を含み、第2の絶
縁膜は、ゲート電極の側面の少なくとも一部より内側である側面の領域を有し、ゲート電
極は、酸化物半導体膜に含まれる第2の領域と重なる領域を有する半導体装置である。
なお、酸化物半導体膜に含まれる第1の領域に、不純物元素が含まれてもよい。第2の
領域は、第1の領域に含まれる不純物元素より高い濃度の不純物元素を含む領域を有する
なお、不純物元素は、水素、ホウ素、窒素、フッ素、アルミニウム、リン、および希ガ
スの一以上である。または、不純物元素は、ホウ素、窒素、フッ素、アルミニウム、リン
、および希ガスの一以上と、水素とである。
また、酸化物半導体膜に含まれる第2の領域は、水素を含む膜と接する。水素を含む膜
の代表例としては、窒化物絶縁膜があり、窒化物絶縁膜の代表例としては、窒化シリコン
膜がある。
また、ゲート電極は、酸化物半導体膜と同じ金属元素を有してもよい。その場合、ゲー
ト電極は、導電性を有する酸化物半導体膜で形成される。
本発明の一態様により、セルフアライン構造の酸化物半導体膜を用いたトランジスタに
おいて、高い電気特性を有するトランジスタを提供することができる。または、本発明の
一態様により、オン電流の高いトランジスタを提供することができる。または、本発明の
一態様により、電気特性のばらつきの少ないトランジスタの作製方法を提供することがで
きる。または、本発明の一態様は、消費電力が低減された表示装置の作製方法を提供する
ことができる。または、本発明の一態様は、新規な表示装置の作製方法を提供することが
できる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の
一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果
は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図
面、請求項などの記載から、これら以外の効果を抽出することが可能である。
半導体装置の一形態を説明する断面図。 半導体装置の作製工程の一形態を説明する断面図。 半導体装置の作製工程の一形態を説明する断面図。 半導体装置の一形態を説明する断面図。 半導体装置の作製工程の一形態を説明する断面図。 半導体装置の作製工程の一形態を説明する断面図。 半導体装置の作製工程の一形態を説明する断面図。 計算モデルを説明する図。 初期状態と最終状態を説明する図。 活性化障壁を説明する図。 初期状態と最終状態を説明する図。 活性化障壁を説明する図。 Hの遷移レベルを説明する図。 抵抗率の温度依存性を説明する図。 半導体装置の一形態を説明する断面図。 半導体装置の一形態を説明する断面図。 本発明の一形態に係るトランジスタの構造およびバンド構造を説明する図。 半導体装置の一形態を説明する断面図。 酸化物半導体の断面における高分解能TEM像および局所的なフーリエ変換像。 酸化物半導体膜のナノビーム電子回折パターンを示す図、および透過電子回折測定装置の一例を説明する図。 透過電子回折測定による構造解析の一例を示す図、および平面における高分解能TEM像。 半導体装置の一形態を説明する断面図。 CAAC−OSの成膜モデルを説明する模式図、ペレットおよびCAAC−OSの断面図。 nc−OSの成膜モデルを説明する模式図、およびペレットを説明する図。 ペレットを説明する図。 被形成面においてペレットに加わる力を説明する図。 被形成面におけるペレットの動きを説明する図。 InGaZnOの結晶を説明する図。 原子が衝突する前のInGaZnOの構造などを説明する図。 原子が衝突した後のInGaZnOの構造などを説明する図。 原子が衝突した後の原子の軌跡を説明する図。 CAAC−OSおよびターゲットの断面HAADF−STEM像。 実施の形態に係る入出力装置の構成を説明する投影図。 実施の形態に係る入出力装置の構成を説明する断面図。 実施の形態に係る検知回路19および変換器CONVの構成および駆動方法を説明する図。 電子機器を説明する図。 電子照射による結晶部の変化を示す図。
以下では、本明細書に開示する発明の実施の形態について図面を用いて詳細に説明する
。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱するこ
となく、その形態および詳細を様々に変更し得ることは当業者であれば容易に理解される
。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない
なお、図面等において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、
実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、
必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。
なお、本明細書等における「第1」、「第2」、「第3」などの序数詞は、構成要素の
混同を避けるために付すものであり、数的に限定するものではないことを付記する。
なお、本明細書等において「上」や「下」の用語は、構成要素の位置関係が「直上」ま
たは「直下」であることを限定するものではない。例えば、「ゲート絶縁膜上のゲート電
極」の表現であれば、ゲート絶縁膜とゲート電極との間に他の構成要素を含むものを除外
しない。
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に
限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり
、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「
配線」が一体となって形成されている場合なども含む。
また、「ソース」や「ドレイン」の機能は、異なる極性のトランジスタを採用する場合
や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このた
め、本明細書等においては、「ソース」や「ドレイン」の用語は、入れ替えて用いること
ができるものとする。
なお、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するも
の」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するも
の」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない
。例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジス
タなどのスイッチング素子、抵抗素子、インダクタ、キャパシタ、その他の各種機能を有
する素子などが含まれる。
(実施の形態1)
本実施の形態では、半導体装置および半導体装置の作製方法の一形態を、図1乃至図3
を用いて説明する。
<半導体装置の構成>
図1に、半導体装置に含まれるトランジスタの一例として、トップゲート・セルフアラ
イン構造のトランジスタの断面図を示す。
図1(A)に示すトランジスタは、酸化物半導体膜55と、酸化物半導体膜55に接す
るゲート絶縁膜57と、ゲート絶縁膜57と接し且つ酸化物半導体膜55と重畳するゲー
ト電極59と、を有する。
また、トランジスタに含まれる酸化物半導体膜55は、基板51上の絶縁膜53上に形
成される。また、酸化物半導体膜55に含まれる第2の領域55b、55cに接する水素
を含む絶縁膜65が設けられる。
また、水素を含む絶縁膜65に接する絶縁膜67が設けられてもよい。また、水素を含
む絶縁膜65および絶縁膜67の開口部において、酸化物半導体膜55に含まれる第2の
領域55b、55cと接する一対の導電膜68、69が、設けられてもよい。また、絶縁
膜67、一対の導電膜68、69上に絶縁膜79が、設けられてもよい。
酸化物半導体膜55は、第1の領域55aおよび該第1の領域55aを挟む第2の領域
55b、55cを有する。第1の領域55aは、チャネル領域としての機能を有する。第
2の領域55b、55cは、ソース領域およびドレイン領域の機能を有する。なお、第2
の領域55b、55cは、第1の領域55aと比較して抵抗率が低いため、低抵抗領域と
いうこともできる。
本実施の形態に示すトランジスタは、ゲート絶縁膜57が、側面において、凹部を有す
ることを特徴とする。具体的には、ゲート絶縁膜57は、ゲート電極59と接する領域と
比較して、幅が狭い領域を有する。即ち、ゲート絶縁膜57の側面は、ゲート電極59の
側面の一部より内側である領域を有する。
また、本実施の形態に示すトランジスタは、酸化物半導体膜55に含まれる第2の領域
55b、55cが、ゲート電極59の一部と重なる領域を有することを特徴とする。
ここで、図1(A)に示すトランジスタに含まれる酸化物半導体膜55近傍の拡大断面
図を、図1(B)乃至図1(D)に示す。
図1(B)に示すように、ゲート絶縁膜57の側面の一部は、ゲート電極59の側面よ
り内側に位置する。さらに、ゲート絶縁膜57において、酸化物半導体膜55と接する領
域の幅は、ゲート電極59と接する領域と比較して、狭い。また、酸化物半導体膜55に
含まれる第2の領域55b、55cは、ゲート電極59の一部と重なる領域を有する。該
領域をオーバーラップ領域Lovということができる。
または、図1(C)に示すように、ゲート絶縁膜57の側面の一部は、ゲート電極59
の側面より内側に位置する。さらに、ゲート絶縁膜57において、酸化物半導体膜55と
接する領域の幅は、ゲート電極59と接する領域と比較して、広い。この場合、ゲート絶
縁膜57において、最も幅の狭い領域から外側にせり出す領域であって、且つ酸化物半導
体膜55側の領域の厚さは、薄いことが好ましく、代表的には5nm以上100nm以下
、好ましくは10nm以上30nm以下であることが好ましい。最も幅の狭い領域から外
側にせり出す領域であって、且つ酸化物半導体膜55側の領域の厚さが薄いことで、ゲー
ト絶縁膜57を介してゲート電極59と重なる酸化物半導体膜に、不純物元素を添加する
ことが可能であり、酸化物半導体膜に酸素欠損を形成することができる。このため、酸化
物半導体膜55に含まれる第2の領域55b、55cは、ゲート電極59の一部と重なる
オーバーラップ領域Lovを有する。なお、ここでは、酸化物半導体膜に添加されること
で、酸化物半導体膜に酸素欠損を形成する元素を、不純物元素と表記して説明する。
または、図1(D)に示すように、ゲート絶縁膜57の側面の一部は、ゲート電極59
の側面より内側に位置する。さらに、ゲート絶縁膜57において、酸化物半導体膜55と
接する領域の幅は、ゲート電極59と接する領域の幅と、略同一である。この場合、ゲー
ト絶縁膜57において、最も幅の狭い領域から外側にせり出す領域であって、且つ酸化物
半導体膜55側の領域の厚さは、薄いことが好ましく、代表的には5nm以上100nm
以下、好ましくは10nm以上30nm以下であることが好ましい。最も幅の狭い領域か
ら外側にせり出す領域であって、且つ酸化物半導体膜55側の領域の厚さが薄いことで、
ゲート絶縁膜57を介してゲート電極59と重なる酸化物半導体膜に、不純物元素を添加
することが可能であり、酸化物半導体膜に酸素欠損を形成することができる。また、酸化
物半導体膜55に含まれる第2の領域55b、55cは、ゲート電極59の一部と重なる
オーバーラップ領域Lovを有する。
なお、オーバーラップ領域Lovの長さは、チャネル長Lの20%未満、または10%
未満、または5%未満、または2%未満であることが好ましい。なお、チャネル長Lは、
トランジスタのチャネル長方向における第1の領域55aの長さのことをいう。
酸化物半導体膜55において、第2の領域55b、55cは、不純物元素を含む領域を
有する。
また、酸化物半導体膜の原料ガスに不純物元素が含まれる場合、第1の領域55aおよ
び第2の領域55b、55cは、不純物元素を有する。この場合、第2の領域55b、5
5cは、第1の領域55aと不純物元素の濃度が異なる領域を有する。代表的には、第2
の領域55b、55cは、第1の領域55aと比較して不純物元素の濃度が高い領域を有
する。例えば、スパッタリングガスとして希ガスを用いたスパッタリング法により酸化物
半導体膜55が形成される場合、酸化物半導体膜55に希ガスが含まれる。一方、酸素欠
損を形成するために、第2の領域55b、55cに意図的に希ガスを添加することで、第
2の領域55b、55cにおいて、希ガスの濃度が高い領域が形成される。これらの結果
、第2の領域55b、55cにおいて、第1の領域55aと比較して希ガスの濃度が高い
領域が形成される。なお、第2の領域55b、55cにおいて、第1の領域55aと異な
る不純物元素が添加されていてもよい。
不純物元素の代表例としては、希ガス、水素、ホウ素、窒素、フッ素、アルミニウム、
およびリンの一以上がある。希ガスの代表例としては、ヘリウム、ネオン、アルゴン、ク
リプトンおよびキセノンがある。
不純物元素として、ホウ素、窒素、フッ素、アルミニウム、またはリンが第2の領域5
5b、55cに含まれる場合、第1の領域55aと比較して、第2の領域55b、55c
の方が、不純物元素の濃度が高い。
また、酸化物半導体膜55において、第2の領域55b、55cは、希ガス、ホウ素、
窒素、フッ素、アルミニウム、およびリンの一以上と、水素とを含む。さらに、第2の領
域55b、55cは、第1の領域55aと水素の濃度が異なる領域を有する。具体的には
、第2の領域55b、55cは、第1の領域55aと比較して、水素の濃度が高い領域を
有する。これは、酸化物半導体膜55が水素を含む絶縁膜65と接することで直接、もし
くはゲート絶縁膜57を介して、水素を含む絶縁膜65に含まれる水素が酸化物半導体膜
55に含まれる第2の領域55b、55cに拡散するためである。
第2の領域55b、55cの二次イオン質量分析法(SIMS:Secondary
Ion Mass Spectrometry)により得られる水素濃度は、8×10
atoms/cm以上、好ましくは1×1020atoms/cm以上、より好ま
しくは5×1020atoms/cm以上である。なお、第1の領域55aの二次イオ
ン質量分析法により得られる水素濃度は、5×1019atoms/cm以下、より好
ましくは1×1019atoms/cm以下、5×1018atoms/cm以下、
好ましくは1×1018atoms/cm以下、より好ましくは5×1017atom
s/cm以下、さらに好ましくは1×1016atoms/cm以下である。
第1の領域55aの水素濃度を上記範囲とすることで、第1の領域55aにおけるキャ
リアである電子の生成を抑制することが可能であり、トランジスタは、しきい値電圧がプ
ラスとなる電気特性(ノーマリーオフ特性ともいう。)を有する。
不純物元素の添加により酸素欠損が形成された酸化物半導体膜に水素が含まれると、酸
素欠損サイトに水素が入り伝導帯近傍にドナー準位が形成される。この結果、酸化物半導
体膜は、導電性が高くなり、導電体化する。導電体化された酸化物半導体膜を酸化物導電
体膜ということができる。即ち、酸化物半導体膜55において、第1の領域55aは、酸
化物半導体で形成され、第2の領域55b、55cは酸化物導電体で形成されるといえる
。酸化物半導体膜55において、第2の領域55b、55cは、第1の領域55aと比較
して水素濃度が高く、且つ不純物元素の添加による酸素欠損量が多い。代表的には、第2
の領域55b、55cの抵抗率は、1×10−3Ωcm以上1×10Ωcm未満、さら
に好ましくは、抵抗率が1×10−3Ωcm以上1×10−1Ωcm未満であることが好
ましい。
なお、一般に、酸化物半導体は、エネルギーギャップが大きいため、可視光に対して透
光性を有する。一方、酸化物導電体は、伝導帯近傍にドナー準位を有する酸化物半導体で
ある。したがって、該ドナー準位による吸収の影響は小さく、可視光に対して酸化物半導
体と同程度の透光性を有する。
図1に示すトランジスタは、ゲート絶縁膜57が、側面において、凹部を有する。即ち
、酸化物半導体膜55およびゲート電極59の間に、ゲート絶縁膜57が形成されない領
域が形成される。このため、酸素欠損を形成するために酸化物半導体膜55に不純物元素
を添加する際に、ゲート絶縁膜の側面の凹部内にも不純物元素が侵入する。さらには、ゲ
ート絶縁膜であって、厚さの薄い領域においては、ゲート絶縁膜を介して、酸化物半導体
膜55に不純物元素が添加される。これらの結果、酸化物半導体膜55であって、ゲート
電極59の一部と重なる領域に、不純物元素が添加されると共に、酸素欠損が形成される
また、不純物元素が添加された領域に水素を含む絶縁膜65が接することで直接、もし
くはゲート絶縁膜57を介して、水素を含む絶縁膜65に含まれる水素が、不純物元素が
添加された領域に拡散する。
これらの結果、酸化物半導体膜55において、ゲート電極59の一部と重なる領域に、
酸素欠損及び水素を含む第2の領域55b、55cが形成される。
即ち、本実施の形態は、ゲート絶縁膜57の形状を利用して酸化物半導体膜に選択的に
不純物元素を添加すること、及びゲート絶縁膜57の形状を利用して酸化物半導体膜に選
択的に水素を拡散させること、により、酸化物半導体膜に酸素欠損及び水素を含む第2の
領域55b、55cを選択的に形成する。実施の形態3で後述するが、水素は、酸素欠損
において安定であり、酸素欠損から水素は放出されにくい。このため、第2の領域55b
、55cに含まれる水素は、チャネル領域である第1の領域55aへ拡散しにくく、トラ
ンジスタの電気特性の劣化を低減することができる。
また、酸素欠損に水素が入り伝導帯近傍にドナー準位が形成され、導電性が高くなる。
このため、第2の領域55b、55cは、ソース領域およびドレイン領域としての機能を
有する。第2の領域55b、55cがゲート電極59の一部と重なる領域は、オーバーラ
ップ領域Lovとなる。本実施の形態に示すトランジスタは、オーバーラップ領域を有す
るため、チャネル領域とソース領域およびドレイン領域との間に、高抵抗領域が形成され
ない。この結果、本実施の形態に示すトランジスタは、オン電流が高い。また、トランジ
スタにおいて、チャネル領域とソース領域およびドレイン領域との間に高抵抗領域を有す
ると、トランジスタの電気特性の劣化が生じやすいが、本実施の形態に示すトランジスタ
は、オーバラップ領域を有するため、電気特性の劣化が少なく、信頼性が高い。
また、本実施の形態に示すトランジスタにおいて、第2の領域55b、55cは、不純
物元素の添加により酸素欠損が形成されると共に、水素を含む。このため、第2の領域5
5b、55cにおける抵抗率を低減することが可能であるとともに、トランジスタごとの
第2の領域55b、55cの抵抗率のばらつきを低減することが可能である。すなわち、
酸化物半導体膜に不純物元素を添加し、酸素欠損を形成することで、第2の領域55b、
55cの抵抗率の制御が可能である。
以下に、図1に示す構成の詳細について説明する。
基板51としては、様々な基板を用いることができ、特定のものに限定されることはな
い。基板の一例としては、半導体基板(例えば単結晶基板またはシリコン基板)、SOI
基板、ガラス基板、石英基板、プラスチック基板、金属基板、ステンレス・スチル基板、
ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを
有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、または基材フィ
ルムなどがある。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウ
ケイ酸ガラス、またはソーダライムガラスなどがある。可撓性基板、貼り合わせフィルム
、基材フィルムなどの一例としては、以下のものがあげられる。例えば、ポリエチレンテ
レフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォ
ン(PES)に代表されるプラスチックがある。または、一例としては、アクリル等の合
成樹脂などがある。または、一例としては、ポリプロピレン、ポリエステル、ポリフッ化
ビニル、またはポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイ
ミド、アラミド、エポキシ、無機蒸着フィルム、または紙類などがある。特に、半導体基
板、単結晶基板、またはSOI基板などを用いてトランジスタを製造することによって、
特性、サイズ、または形状などのばらつきが少なく、電流能力が高く、サイズの小さいト
ランジスタを製造することができる。このようなトランジスタによって回路を構成すると
、回路の低消費電力化、または回路の高集積化を図ることができる。
また、基板51として、可撓性基板を用い、可撓性基板上に直接、トランジスタを形成
してもよい。または、基板51とトランジスタの間に剥離層を設けてもよい。剥離層は、
その上に半導体装置を一部あるいは全部完成させた後、基板51より分離し、他の基板に
転載するのに用いることができる。その際、トランジスタは耐熱性の劣る基板や可撓性の
基板にも転載できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリコン
膜との無機膜の積層構造の構成や、基板上にポリイミド等の有機樹脂膜が形成された構成
等を用いることができる。
トランジスタが転載される基板の一例としては、上述したトランジスタを形成すること
が可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィ
ルム基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン
、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、
再生ポリエステル)などを含む)、皮革基板、またはゴム基板などがある。これらの基板
を用いることにより、特性のよいトランジスタの形成、消費電力の小さいトランジスタの
形成、壊れにくい装置の製造、耐熱性の付与、軽量化、または薄型化を図ることができる
絶縁膜53は、酸素を含む絶縁膜または窒素を含む絶縁膜を単層または積層して形成す
ることができる。酸素を含む絶縁膜の代表例としては、酸化物絶縁膜がある。また、窒素
を含む絶縁膜の代表例としては、窒化物絶縁膜がある。なお、酸化物半導体膜55との界
面特性を向上させるため、絶縁膜53において少なくとも酸化物半導体膜55と接する領
域は酸素を含む絶縁膜で形成することが好ましい。また、絶縁膜53として加熱により酸
素を放出する酸化物絶縁膜を用いることで、加熱処理により絶縁膜53に含まれる酸素を
、酸化物半導体膜55に移動させることが可能であるため好ましい。
絶縁膜53として、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化
シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウムまたはGa−Zn酸化物な
どを用いればよく、積層または単層で設けることができる。
酸化物半導体膜55は、代表的には、In−Ga酸化物、In−Zn酸化物、In−M
−Zn酸化物(MはAl、Ga、Y、Zr、Sn、La、Ce、またはNd)等の金属酸
化物膜で形成される。
なお、酸化物半導体膜55がIn−M−Zn酸化物であるとき、InとMの原子数比率
は、InおよびMの和を100atomic%としたとき、Inが25atomic%以
上、Mが75atomic%未満、さらに好ましくはInが34atomic%以上、M
が66atomic%未満とする。
酸化物半導体膜55は、エネルギーギャップが2eV以上、好ましくは2.5eV以上
、より好ましくは3eV以上である。
酸化物半導体膜55の厚さは、3nm以上200nm以下、好ましくは3nm以上10
0nm以下、さらに好ましくは3nm以上50nm以下とする。
酸化物半導体膜55がIn−M−Zn酸化物(MはAl、Ga、Y、Zr、Sn、La
、Ce、またはNd)の場合、In−M−Zn酸化物を成膜するために用いるスパッタリ
ングターゲットの金属元素の原子数比は、Inの原子数がMの原子数以上、かつZnの原
子数がMの原子数以上であることを満たすことが好ましい。このようなスパッタリングタ
ーゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=
1:1:1.2、In:M:Zn=2:1:1.5、In:M:Zn=2:1:2.3、
In:M:Zn=2:1:3、In:M:Zn=3:1:2等が好ましい。なお、成膜さ
れる酸化物半導体膜55の原子数比はそれぞれ、誤差として上記のスパッタリングターゲ
ットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。
また、酸化物半導体膜55において、第14族元素の一つであるシリコンや炭素が含ま
れると、酸化物半導体膜55において酸素欠損が増加し、n型化してしまう。このため、
酸化物半導体膜55におけるシリコンや炭素の濃度(二次イオン質量分析法により得られ
る濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms
/cm以下とする。この結果、トランジスタは、しきい値電圧がプラスとなる電気特性
(ノーマリーオフ特性ともいう。)を有する。
また、酸化物半導体膜55において、二次イオン質量分析法により得られるアルカリ金
属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは
2×1016atoms/cm以下にする。アルカリ金属およびアルカリ土類金属は、
酸化物半導体と結合するとキャリアを生成する場合があり、トランジスタのオフ電流が増
大してしまうことがある。このため、酸化物半導体膜55のアルカリ金属またはアルカリ
土類金属の濃度を低減することが好ましい。この結果、トランジスタは、しきい値電圧が
プラスとなる電気特性(ノーマリーオフ特性ともいう。)を有する。
また、酸化物半導体膜55に窒素が含まれていると、キャリアである電子が生じ、キャ
リア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を用い
たトランジスタはノーマリーオン特性となりやすい。従って、当該酸化物半導体膜55の
第1の領域55aにおいて、窒素はできる限り低減されていることが好ましい。例えば、
二次イオン質量分析法により得られる窒素濃度は、5×1018atoms/cm以下
にすることが好ましい。
酸化物半導体膜55の第1の領域55aの不純物を低減することで、酸化物半導体膜5
5の第1の領域55aのキャリア密度を低減することができる。このため、酸化物半導体
膜55の第1の領域55aは、キャリア密度が1×1017個/cm以下、好ましくは
1×1015個/cm以下、さらに好ましくは1×1013個/cm以下、より好ま
しくは1×1011個/cm以下であることが好ましい。
酸化物半導体膜55の第1の領域55aとして、不純物濃度が低く、欠陥準位密度の低
い酸化物半導体膜を用いることで、さらに優れた電気特性を有するトランジスタを作製す
ることができる。ここでは、不純物濃度が低く、欠陥準位密度の低い(酸素欠損の少ない
)ことを高純度真性または実質的に高純度真性とよぶ。高純度真性または実質的に高純度
真性である酸化物半導体は、キャリア発生源が少ないため、キャリア密度を低くすること
ができる場合がある。従って、当該酸化物半導体膜55の第1の領域55aにチャネル領
域が形成されるトランジスタは、しきい値電圧がプラスとなる電気特性(ノーマリーオフ
特性ともいう。)になりやすい。また、高純度真性または実質的に高純度真性である酸化
物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。また
、高純度真性または実質的に高純度真性である酸化物半導体膜は、オフ電流が著しく小さ
く、ソース電極とドレイン電極間の電圧(ドレイン電圧)が1Vから10Vの範囲におい
て、オフ電流が、半導体パラメータアナライザの測定限界以下、すなわち1×10−13
A以下という特性を得ることができる。従って、当該酸化物半導体膜55の第1の領域5
5aにチャネル領域が形成されるトランジスタは、電気特性の変動が小さく、信頼性の高
いトランジスタとなる場合がある。
また、酸化物半導体膜55は、例えば非単結晶構造でもよい。非単結晶構造は、例えば
、後述するCAAC−OS(C Axis Aligned Crystalline
Oxide Semiconductor)、多結晶構造、後述する微結晶構造、または
非晶質構造を含む。非単結晶構造において、非晶質構造は最も欠陥準位密度が高く、CA
AC−OSは最も欠陥準位密度が低い。
なお、酸化物半導体膜55が、非晶質構造の領域、微結晶構造の領域、多結晶構造の領
域、CAAC−OSの領域、単結晶構造の領域の二種以上を有する混合膜であってもよい
。混合膜は、例えば、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAA
C−OSの領域、単結晶構造の領域のいずれか二種以上の領域を有する単層構造がある。
また、混合膜は、例えば、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、C
AAC−OSの領域、単結晶構造の領域のいずれか二種以上の領域の積層構造を有する場
合がある。
ゲート絶縁膜57は、酸素を含む絶縁膜または窒素を含む絶縁膜を、単層または積層し
て形成することが好ましい。代表的には、酸素を含む絶縁膜として酸化物絶縁膜を用いる
ことが可能であり、窒素を含む絶縁膜として窒化物絶縁膜を用いることが可能である。な
お、酸化物半導体膜55との界面特性を向上させるため、ゲート絶縁膜57において少な
くとも酸化物半導体膜55と接する領域は酸素を含む絶縁膜で形成することが好ましく、
代表的には酸化物絶縁膜で形成することが好ましい。
酸化物絶縁膜として、例えば酸化シリコン、酸化窒化シリコン、酸化アルミニウム、酸
化ハフニウム、酸化ガリウムまたはGa−Zn酸化物などを用いることができる。また、
窒化物絶縁膜として、窒化酸化シリコン、窒化シリコンなどを用いることができる。
また、ゲート絶縁膜57として、酸素、水素、水等のブロッキング効果を有する絶縁膜
を設けることで、酸化物半導体膜55の第1の領域55aからの酸素の外部への拡散と、
外部から酸化物半導体膜55の第1の領域55aへの水素、水等の侵入を防ぐことができ
る。酸素、水素、水等のブロッキング効果を有する絶縁膜としては、酸化アルミニウム、
酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、酸化窒化
イットリウム、酸化ハフニウム、酸化窒化ハフニウム等を用いて形成することができる。
また、ゲート絶縁膜57として、ハフニウムシリケート(HfSiO)、窒素が添加
されたハフニウムシリケート(HfSi)、窒素が添加されたハフニウムアル
ミネート(HfAl)、酸化ハフニウム、酸化イットリウムなどのhigh−
k材料を用いることでトランジスタのゲートリークを低減できる。
ゲート電極59は、アルミニウム、クロム、銅、タンタル、チタン、モリブデン、ニッ
ケル、鉄、コバルト、タングステンから選ばれた金属元素、または上述した金属元素を成
分とする合金か、上述した金属元素を組み合わせた合金等を用いて形成することができる
。また、マンガン、ジルコニウムのいずれか一または複数から選択された金属元素を用い
てもよい。また、ゲート電極59は、単層構造でも、二層以上の積層構造としてもよい。
例えば、シリコンを含むアルミニウム膜の単層構造、マンガンを含む銅膜の単層構造、ア
ルミニウム膜上にチタン膜を積層する二層構造、窒化チタン膜上にチタン膜を積層する二
層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タンタル膜または窒
化タングステン膜上にタングステン膜を積層する二層構造、マンガンを含む銅膜上に銅膜
を積層する二層構造、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにそ
の上にチタン膜を形成する三層構造、マンガンを含む銅膜上に銅膜を積層し、さらにその
上にマンガンを含む銅膜を形成する三層構造等がある。また、アルミニウムに、チタン、
タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた一
または複数を組み合わせた合金膜、もしくは窒化膜を用いてもよい。
また、ゲート電極59は、インジウム錫酸化物、酸化タングステンを含むインジウム酸
化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化
物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを含む
インジウム錫酸化物等の透光性を有する導電性材料を適用することもできる。また、上記
透光性を有する導電性材料と、上記金属元素の積層構造とすることもできる。
また、図22に示すように、ゲート電極59は、積層構造であり、ゲート絶縁膜57と
接する導電膜59a、および導電膜59aに接する導電膜59bを有してもよい。また、
導電膜59aの端部は、導電膜59bの端部より外側に位置する。即ち、導電膜59aが
、導電膜59bから迫り出した形状を有してもよい。
水素を含む絶縁膜65は、窒化物絶縁膜を用いて形成することが好ましい。窒化物絶縁
膜として、窒化シリコン、窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミニウム
等を用いて形成することができる。水素を含む絶縁膜65に含まれる水素濃度は、1×1
22atoms/cm以上であると、酸化物半導体膜に水素を拡散させることが可能
であるため、好ましい。
一対の導電膜68、69は、アルミニウム、チタン、クロム、ニッケル、銅、イットリ
ウム、ジルコニウム、モリブデン、鉄、コバルト、銀、タンタル、またはタングステンな
どの金属、またはこれを主成分とする合金を単層構造または積層構造として用いる。例え
ば、シリコンを含むアルミニウム膜の単層構造、マンガンを含む銅膜の単層構造、チタン
膜上にアルミニウム膜を積層する二層構造、タングステン膜上にアルミニウム膜を積層す
る二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタ
ン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造、マンガ
ンを含む銅膜上に銅膜を積層する二層構造、チタン膜または窒化チタン膜と、そのチタン
膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチ
タン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と
、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層
し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造、マンガン
を含む銅膜上に銅膜を積層し、さらにその上にマンガンを含む銅膜を形成する三層構造等
がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよ
い。
絶縁膜67、79は、絶縁膜53またはゲート絶縁膜57の材料を適宜用いることがで
きる。
なお、一対の導電膜68、69が銅を含む場合、絶縁膜79は、窒素を含む絶縁膜を用
いて形成することで、銅の拡散を防ぐことが可能であり好ましい。窒素を含む絶縁膜の代
表例としては、窒化物絶縁膜がある。窒化物絶縁膜は、窒化シリコン、窒化酸化シリコン
、窒化アルミニウム、窒化酸化アルミニウム等を用いて形成することができる。
<半導体装置の作製方法>
次に、図1に示すトランジスタの作製方法について、図2および図3を用いて説明する
トランジスタを構成する膜(絶縁膜、酸化物半導体膜、金属酸化物膜、導電膜等)は、
スパッタリング法、化学気相堆積(CVD)法、真空蒸着法、パルスレーザー堆積(PL
D)法を用いて形成することができる。あるいは、塗布法や印刷法で形成することができ
る。成膜方法としては、スパッタリング法、プラズマ化学気相堆積(PECVD)法が代
表的であるが、熱CVD法でもよい。熱CVD法の例として、MOCVD(有機金属化学
堆積:Metal Organic Chemical Vapor Depositi
on)法やALD(原子層成膜)法を使ってもよい。また、ロードロック室を備えたマル
チチャンバー方式の成膜装置を用いて各膜を大気に触れさせることなく連続して積層する
ことで、各膜の界面における不純物量を低減できるため好ましい。
熱CVD法は、チャンバー内を大気圧または減圧下とし、原料ガスと酸化剤を同時にチ
ャンバー内に送り、基板近傍または基板上で反応させて基板上に堆積させることで成膜を
行う。このように、熱CVD法は、プラズマを発生させない成膜方法であるため、プラズ
マダメージにより欠陥が生成されることが無いという利点を有する。
また、ALD法は、チャンバー内を大気圧または減圧下とし、反応のための原料ガスが
順次にチャンバーに導入され、そのガス導入の順序を繰り返すことで成膜を行う。例えば
、それぞれのスイッチングバルブ(高速バルブともよぶ。)を切り替えて2種類以上の原
料ガスを順番にチャンバーに供給し、複数種の原料ガスが混ざらないように第1の原料ガ
スと同時またはその後に不活性ガス(アルゴン、或いは窒素など)などを導入し、第2の
原料ガスを導入する。なお、同時に不活性ガスを導入する場合には、不活性ガスはキャリ
アガスとなり、また、第2の原料ガスの導入時にも同時に不活性ガスを導入してもよい。
また、不活性ガスを導入する代わりに真空排気によって第1の原料ガスを排出した後、第
2の原料ガスを導入してもよい。第1の原料ガスが基板の表面に吸着して第1の単原子層
を成膜し、後から導入される第2の原料ガスと反応して、第2の単原子層が第1の単原子
層上に積層されて薄膜が形成される。
このガス導入順序を制御しつつ所望の厚さになるまで複数回繰り返すことで、段差被覆
性に優れた薄膜を形成することができる。薄膜の厚さは、ガス導入順序を繰り返す回数に
よって調節することができるため、精密な膜厚調節が可能であり、微細なトランジスタを
作製する場合に適している。
図2(A)に示すように、基板51上に、絶縁膜53および酸化物半導体膜54を形成
する。
絶縁膜53は、スパッタリング法、CVD法、蒸着法、パルスレーザー堆積(PLD)
法、印刷法、塗布法等を適宜用いて形成することができる。また、基板51上に絶縁膜を
形成した後、該絶縁膜に酸素を添加して、絶縁膜53を形成することができる。絶縁膜に
添加する酸素としては、酸素ラジカル、酸素原子、酸素原子イオン、酸素分子イオン等が
ある。また、添加方法としては、イオンドーピング法、イオン注入法、プラズマ処理法等
がある。
酸化物半導体膜54の形成方法について以下に説明する。絶縁膜53上にスパッタリン
グ法、塗布法、パルスレーザー蒸着法、レーザーアブレーション法、熱CVD法等により
酸化物半導体膜を形成する。次に、酸化物半導体膜上にリソグラフィ工程によりマスクを
形成した後、該マスクを用いて酸化物半導体膜の一部をエッチングすることで、図2(A
)に示すように、酸化物半導体膜54を形成することができる。この後、マスクを除去す
る。
また、酸化物半導体膜54として印刷法を用いることで、素子分離された酸化物半導体
膜54を直接形成することができる。
スパッタリング法で酸化物半導体膜を形成する場合、プラズマを発生させるための電源
装置は、RF電源装置、AC電源装置、DC電源装置等を適宜用いることができる。
スパッタリングガスは、希ガス(代表的にはアルゴン)雰囲気、酸素雰囲気、希ガスお
よび酸素の混合ガスを適宜用いる。なお、希ガスおよび酸素の混合ガスの場合、希ガスに
対して酸素のガス比を高めることが好ましい。
また、ターゲットは、形成する酸化物半導体膜の組成にあわせて、適宜選択すればよい
なお、酸化物半導体膜を形成する際に、例えば、スパッタリング法を用いる場合、基板
温度を150℃以上750℃以下、好ましくは150℃以上450℃以下、さらに好まし
くは200℃以上350℃以下として、酸化物半導体膜を成膜することで、CAAC−O
S膜を形成することができる。
また、後述するCAAC−OS膜を成膜するために、以下の条件を適用することが好ま
しい。
成膜時の不純物混入を抑制することで、不純物によって結晶状態が崩れることを抑制で
きる。例えば、成膜室内に存在する不純物濃度(水素、水、二酸化炭素および窒素など)
を低減すればよい。また、成膜ガス中の不純物濃度を低減すればよい。具体的には、露点
が−80℃以下、好ましくは−100℃以下である成膜ガスを用いる。
また、成膜ガス中の酸素割合を高め、電力を最適化することで成膜時のプラズマダメー
ジを軽減すると好ましい。成膜ガス中の酸素割合は、30体積%以上、好ましくは100
体積%とする。
また、酸化物半導体膜を形成した後、加熱処理を行い、酸化物半導体膜の脱水素化また
は脱水化をしてもよい。加熱処理の温度は、代表的には、150℃以上基板歪み点未満、
好ましくは250℃以上450℃以下、更に好ましくは300℃以上450℃以下とする
加熱処理は、ヘリウム、ネオン、アルゴン、キセノン、クリプトン等の希ガス、または
窒素を含む不活性ガス雰囲気で行う。または、不活性ガス雰囲気で加熱した後、酸素雰囲
気で加熱してもよい。なお、上記不活性雰囲気および酸素雰囲気に水素、水などが含まれ
ないことが好ましい。処理時間は3分以上24時間以下とする。
該加熱処理は、電気炉、RTA装置等を用いることができる。RTA装置を用いること
で、短時間に限り、基板の歪み点以上の温度で熱処理を行うことができる。そのため加熱
処理時間を短縮することができる。
酸化物半導体膜を加熱しながら成膜することで、さらには酸化物半導体膜を形成した後
、加熱処理を行うことで、酸化物半導体膜において、水素濃度を5×1019atoms
/cm以下、より好ましくは1×1019atoms/cm以下、5×1018at
oms/cm未満、好ましくは1×1018atoms/cm以下、より好ましくは
5×1017atoms/cm以下、さらに好ましくは1×1016atoms/cm
以下とすることができる。
ALDを利用する成膜装置により酸化物半導体膜、例えばInGaZnO(X>0)
膜を成膜する場合には、In(CHガスとOガスを順次繰り返し導入してInO
層を形成し、その後、Ga(CHガスとOガスを同時に導入してGaO層を形
成し、更にその後Zn(CHとOガスを同時に導入してZnO層を形成する。な
お、これらの層の順番はこの例に限らない。また、これらのガスを混ぜてInGaO
やInZnO層、GaInO層、ZnInO層、GaZnO層などの混合化合物層を形
成してもよい。なお、Oガスに変えてAr等の不活性ガスでバブリングしたHOガス
を用いてもよいが、Hを含まないOガスを用いる方が好ましい。また、In(CH
ガスにかえて、In(Cガスを用いてもよい。また、Ga(CHガス
にかえて、Ga(Cガスを用いてもよい。また、Zn(CHガスにかえ
てZn(Cガスを用いてもよい。
ここでは、スパッタリング法により、厚さ35nmの酸化物半導体膜を形成した後、当
該酸化物半導体膜上にマスクを形成し、酸化物半導体膜の一部を選択的にエッチングする
。次に、マスクを除去した後、窒素および酸素を含む混合ガス雰囲気で加熱処理を行うこ
とで、酸化物半導体膜54を形成する。
なお、加熱処理は、350℃より高く650℃以下、好ましくは450℃以上600℃
以下で行うことで、後述するCAAC化率が、60%以上100%未満、好ましくは80
%以上100%未満、より好ましくは90%以上100%未満、さらに好ましくは95%
以上98%以下である酸化物半導体膜を得ることができる。また、水素、水等の含有量が
低減された酸化物半導体膜を得ることが可能である。すなわち、不純物濃度が低く、欠陥
準位密度の低い酸化物半導体膜を形成することができる。
次に、図2(B)に示すように、絶縁膜56を形成した後、ゲート電極59を形成する
絶縁膜56は、のちの工程によりゲート絶縁膜となる絶縁膜である。絶縁膜56は、ス
パッタリング法、CVD法、真空蒸着法、パルスレーザー堆積(PLD)法、熱CVD法
等で形成する。
絶縁膜56として酸化シリコン膜または酸化窒化シリコン膜を形成する場合、原料ガス
としては、シリコンを含む堆積性気体および酸化性気体を用いることが好ましい。シリコ
ンを含む堆積性気体の代表例としては、シラン、ジシラン、トリシラン、フッ化シラン等
がある。酸化性気体としては、酸素、オゾン、一酸化二窒素、二酸化窒素等がある。
また、絶縁膜56として酸化ガリウム膜を形成する場合、MOCVD法を用いて形成す
ることができる。
また、絶縁膜56として、MOCVD法やALD法などの熱CVD法を用いて、酸化ハ
フニウム膜を形成する場合には、溶媒とハフニウム前駆体化合物を含む液体(ハフニウム
アルコキシドや、テトラキスジメチルアミドハフニウム(TDMAH)などのハフニウム
アミド)を気化させた原料ガスと、酸化剤としてオゾン(O)の2種類のガスを用いる
。なお、テトラキスジメチルアミドハフニウムの化学式はHf[N(CHであ
る。また、他の材料液としては、テトラキス(エチルメチルアミド)ハフニウムなどがあ
る。
また、絶縁膜56として、MOCVD法やALD法などの熱CVD法を用いて、酸化ア
ルミニウム膜を形成する場合には、溶媒とアルミニウム前駆体化合物を含む液体(トリメ
チルアルミニウムTMAなど)を気化させた原料ガスと、酸化剤としてHOの2種類の
ガスを用いる。なお、トリメチルアルミニウムの化学式はAl(CHである。また
、他の材料液としては、トリス(ジメチルアミド)アルミニウム、トリイソブチルアルミ
ニウム、アルミニウムトリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナ
ート)などがある。なお、ALD法で形成することで、被覆率が高く、膜厚の薄い絶縁膜
56を形成することが可能である。
また、絶縁膜56として、MOCVD法やALD法などの熱CVD法を用いて、酸化シ
リコン膜を形成する場合には、ヘキサクロロジシランを被成膜面に吸着させ、吸着物に含
まれる塩素を除去し、酸化性ガス(O、一酸化二窒素)のラジカルを供給して吸着物と
反応させる。
ここでは、絶縁膜56として、プラズマCVD法により酸化窒化シリコン膜を形成する
ゲート電極59の形成方法を以下に示す。はじめに、スパッタリング法、真空蒸着法、
パルスレーザー堆積(PLD)法、熱CVD法等により導電膜を形成し、導電膜上にリソ
グラフィ工程によりマスクを形成する。次に、該マスクを用いて導電膜の一部をエッチン
グして、ゲート電極59を形成する。この後、マスクを除去する。
なお、ゲート電極59は、上記形成方法の代わりに、電解メッキ法、印刷法、インクジ
ェット法等で形成してもよい。
また、ALDを利用する成膜装置により導電膜としてタングステン膜を成膜することが
できる。この場合には、WFガスとBガスを順次繰り返し導入して初期タングス
テン膜を形成し、その後、WFガスとHガスを同時に導入してタングステン膜を形成
する。なお、Bガスに代えてSiHガスを用いてもよい。
次に、図2(C)に示すように、ゲート電極59をマスクとして絶縁膜56をエッチン
グして、ゲート絶縁膜57を形成する。絶縁膜56を等方的にエッチングすることで、ゲ
ート電極59と重なる領域の一部をエッチングすることが可能である。即ち、側面の一部
がゲート電極59の側面より内側に位置するゲート絶縁膜57を形成することができる。
次に、図2(D)に示すように、ゲート電極59をマスクとして、酸化物半導体膜54
に不純物元素62を添加する。この結果、酸化物半導体膜54の露出部に不純物元素が添
加される。また、ゲート絶縁膜57において膜厚が薄い領域では、ゲート絶縁膜57を介
して、不純物元素が酸化物半導体膜に添加される。不純物元素62の添加によるダメージ
を受け、酸化物半導体膜54には、欠陥、代表的には酸素欠損が形成される。なお、不純
物元素によっては、酸化物半導体膜54に酸素欠損を形成するが、酸化物半導体膜54内
には残存せず、放出される不純物元素もあるが、このような現象も含めて、ここでは、酸
化物半導体膜に不純物元素を添加する、と表記して説明する。
不純物元素62の添加方法としては、イオンドーピング法、イオン注入法、プラズマ処
理法等がある。プラズマ処理法の場合、添加する不純物元素を含むガス雰囲気にてプラズ
マを発生させて、プラズマ処理を行うことによって、加速させた不純物元素イオンを酸化
物半導体膜54に衝突させ、酸化物半導体膜54に酸素欠損を形成することができる。上
記プラズマを発生させる装置としては、ドライエッチング装置やプラズマCVD装置、マ
イクロ波を用いた高密度プラズマCVD装置等を用いることができる。また、プラズマ処
理を行う場合は、平行平板のカソード側に基板を設置し、基板51側にバイアスが印加さ
れるように、RF電力を供給すればよい。該RF電力としては、例えば、電力密度を0.
1W/cm以上2W/cm以下とすればよい。この結果、酸化物半導体膜54へ不純
物元素の添加量を増加させることが可能であり、酸化物半導体膜54により多くの酸素欠
損を形成できる。
なお、不純物元素62の原料ガスとして、B、PH、CH、N、NH
AlH、AlCl、SiH、Si、F、HF、Hおよび希ガスの一以上
を用いることができる。または、希ガスで希釈されたB、PH、N、NH
AlH、AlCl、F、HFおよびHの一以上を用いることができる。希ガスで
希釈されたB、PH、N、NH、AlH、AlCl、F、HFおよび
の一以上を用いて酸化物半導体膜54に添加することで、希ガスと、水素、ホウ素、
炭素、窒素、フッ素、アルミニウム、シリコン、リンおよび塩素の一以上とを同時に酸化
物半導体膜54に添加することができる。
または、希ガスを酸化物半導体膜54に添加した後、B、PH、CH、N
、NH、AlH、AlCl、SiH、Si、F、HFおよびHの一以
上を酸化物半導体膜55に添加してもよい。
または、B、PH、CH、N、NH、AlH、AlCl、SiH
、Si、F、HFおよびHの一以上を酸化物半導体膜54に添加した後、希ガ
スを酸化物半導体膜55に添加してもよい。
イオンドーピング法またはイオン注入法を用いる場合、加速電圧、ドーズ量などの注入
条件を適宜設定し、または通過させるゲート絶縁膜57の膜厚を適宜制御すればよい。例
えば、イオン注入法でアルゴンの添加を行う場合、加速電圧10kV、ドーズ量は1×1
13ions/cm以上1×1016ions/cm以下とすればよく、例えば、
1×1014ions/cmとすればよい。また、イオン注入法でリンイオンの添加を
行う場合、加速電圧30kV、ドーズ量は1×1013ions/cm以上5×10
ions/cm以下とすればよく、例えば、1×1015ions/cmとすれば
よい。
なお、不純物元素62の代わりに、酸化物半導体膜54に紫外線等を照射して、酸化物
半導体膜54に酸素欠損を形成してもよい。または、酸化物半導体膜54にレーザ光を照
射して、酸化物半導体膜54に酸素欠損を形成してもよい。
なお、ゲート電極59が露出した状態で不純物元素62を添加すると、ゲート電極59
の一部が剥離し、ゲート絶縁膜57の側面に付着してしまう場合がある。この結果、トラ
ンジスタのリーク電流が増大してしまう。このため、ゲート電極59の上面をマスクで覆
った状態で、酸化物半導体膜54に不純物元素62を添加することで、ゲート電極59の
一部がゲート絶縁膜57の側壁に付着することを防ぐことができる。
次に、図3(A)に示すように、酸化物半導体膜54、ゲート絶縁膜57、およびゲー
ト電極59上に水素を含む絶縁膜64を形成する。水素を含む絶縁膜64の形成方法とし
ては、スパッタリング法、CVD法、真空蒸着法、パルスレーザー堆積(PLD)法等が
ある。なお、水素を含む絶縁膜64の成膜方法として、ALD(原子層成膜)法を用いる
ことで、段差被覆性に優れた水素を含む絶縁膜64を形成することができる。
水素を含む絶縁膜64には水素が含まれている。このため、酸化物半導体膜54におい
て不純物元素が添加された領域と、水素を含む絶縁膜64とが接することで、水素を含む
絶縁膜64に含まれる水素が、酸化物半導体膜において不純物元素が添加された領域に移
動する。この結果、不純物元素が添加されない第1の領域55aおよび不純物元素および
水素を含む第2の領域55b、55cを有する酸化物半導体膜55が形成される。なお、
水素を含む絶縁膜64に含まれる水素は、ゲート絶縁膜57であって膜厚の薄い領域を介
して酸化物半導体膜55の一部に拡散する。この結果、第2の領域55b、55cの一部
は、ゲート絶縁膜57と重なる場合がある。以上の工程により、ゲート電極59の一部と
重なる第2の領域55b、55cを形成することができる。
また、第2の領域55b、55cは、不純物元素の添加により生じた酸素欠損、および
水素が含まれる。酸素欠損および水素の相互作用により、第2の領域55b、55cは導
電性が高くなる。すなわち、第2の領域55b、55cは、低抵抗領域となる。
次に、加熱処理を行ってもよい。該加熱処理の温度は、代表的には、150℃以上基板
歪み点未満、好ましくは200℃以上450℃以下、更に好ましくは300℃以上450
℃以下とする。当該工程により、第2の領域55b、55cの導電性がさらに高まる。
次に、図3(B)に示すように、絶縁膜66を形成してもよい。絶縁膜66を形成する
ことで、のちに形成される一対の導電膜と、ゲート電極59との間における寄生容量を低
減することができる。
次に、水素を含む絶縁膜64および絶縁膜66に開口部を形成し、第2の領域55b、
55cの一部を露出させた後、一対の導電膜68、69を形成する。次に、絶縁膜67、
一対の導電膜68、69上に絶縁膜79を形成する(図3(C)参照。)。
一対の導電膜68、69は、ゲート電極59と同様の形成方法を適宜用いることができ
る。絶縁膜79は、絶縁膜53、絶縁膜56と同様に形成することができる。
以上の工程により、トランジスタを作製することができる。
本実施の形態に示すトランジスタは、ゲート電極59の一部と、酸化物半導体膜55に
含まれる導電性の高い第2の領域55b、55cの一部とが重なるため、オン電流が大き
い。また、ゲート電極59と、一対の導電膜68、69が重なる領域がないため、寄生容
量を低減することが可能であり、オン電流が大きい。また、本実施の形態に示すトランジ
スタは、抵抗率の変動量の小さい領域を形成できるため、従来と比べ、オン電流が向上す
ると共に、トランジスタのばらつきを低減できる。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと
適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、半導体装置および半導体装置の作製方法の一形態を、図4乃至図6
を用いて説明する。
<半導体装置の構成>
図4に、半導体装置に含まれるトランジスタの一例として、トップゲート・セルフアラ
イン構造のトランジスタの断面図を示す。本実施の形態に示すトランジスタは、実施の形
態1に示すトランジスタと比較して、ゲート絶縁膜が積層構造である点が異なる。
図4(A)に示すトランジスタは、酸化物半導体膜55と、酸化物半導体膜55に接す
るゲート絶縁膜57と、ゲート絶縁膜57と接し、且つ酸化物半導体膜55と重畳するゲ
ート電極59と、を有する。ゲート絶縁膜57は、第1の絶縁膜57aおよび第2の絶縁
膜57bが、酸化物半導体膜55側から順に積層されている。即ち、第1の絶縁膜57a
は、酸化物半導体膜55に接する。第2の絶縁膜57bは、第1の絶縁膜57aおよびゲ
ート電極59の間に設けられる。なお、ここでは、図示しないが、第1の絶縁膜57a及
び第2の絶縁膜57bの間に、別途絶縁膜を有してもよい。または、第2の絶縁膜57b
及びゲート電極59の間に、別途絶縁膜を有してもよい。
第1の絶縁膜57aは、酸化物半導体膜55との界面において欠陥準位を形成しにくい
材料を用いて形成することが好ましく、代表的には酸素を含む絶縁膜を用いて形成するこ
とが好ましい。酸素を含む絶縁膜の代表例としては、酸化物絶縁膜がある。酸化物絶縁膜
は、酸化シリコン、酸化窒化シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウ
ム、Ga−Zn酸化物等を用いて形成することができる。
第2の絶縁膜57bは、エッチングされる際において、等方的にエッチングされる材料
を用いて形成する。第2の絶縁膜57bは、代表的には窒素を含む絶縁膜を用いて形成す
ることができる。窒素を含む絶縁膜の代表例としては、窒化物絶縁膜がある。窒化物絶縁
膜は、窒化酸化シリコン、または窒化シリコンを用いて形成することができる。
また、トランジスタに含まれる酸化物半導体膜55は、基板51上の絶縁膜53上に形
成される。また、酸化物半導体膜55に含まれる第2の領域55b、55cに接する水素
を含む絶縁膜65が設けられる。
また、水素を含む絶縁膜65に接する絶縁膜67が設けられてもよい。また、水素を含
む絶縁膜65および絶縁膜67の開口部において、酸化物半導体膜55に含まれる第2の
領域55b、55cと接する一対の導電膜68、69が、設けられてもよい。また、絶縁
膜67、一対の導電膜68、69上に絶縁膜79が、設けられてもよい。
本実施の形態に示すトランジスタは、ゲート絶縁膜57が、側面において、凹部を有す
ることを特徴とする。具体的には、第2の絶縁膜57bが、ゲート電極59と比較して、
幅が狭い領域を有する。即ち、第2の絶縁膜57bの側面が、ゲート電極59の側面の一
部より内側である領域を有する。
第1の絶縁膜57aは、第2の領域55b、55cに不純物元素を添加することが可能
な厚さとすることが好ましい。第1の絶縁膜57aの厚さは、代表的には5nm以上10
0nm以下、好ましくは10nm以上30nm以下とすることができる。
第2の絶縁膜57bは、第1の絶縁膜57aと共に、ゲート絶縁膜として機能できる厚
さとすることが好ましい。第2の絶縁膜57bの厚さは、5nm以上400nm以下、よ
り好ましくは10nm以上300nm以下、さらに好ましくは50nm以上250nm以
下とすることができる。
また、本実施の形態に示すトランジスタは、酸化物半導体膜55に含まれる第2の領域
55b、55cが、ゲート電極59の一部と重なる領域を有することを特徴とする。
ここで、図4(B)乃至図4(D)に、図4(A)に示すトランジスタに含まれる酸化
物半導体膜55近傍の拡大断面図を示す。
図4(B)に示すように、第2の絶縁膜57bの側面の一部または全部は、ゲート電極
59の側面より内側に位置する。さらに、第1の絶縁膜57aの幅は、ゲート電極59と
比較して、狭い。また、酸化物半導体膜55に含まれる第2の領域55b、55cは、ゲ
ート電極59の一部と重なる領域を有する。該領域をオーバーラップ領域Lovというこ
とができる。
または、図4(C)に示すように、第2の絶縁膜57bの側面の一部または全部は、ゲ
ート電極59の側面より内側に位置する。さらに、第1の絶縁膜57aの幅は、ゲート電
極59と比較して、広い。また、酸化物半導体膜55に含まれる第2の領域55b、55
cは、ゲート電極59の一部と重なるオーバーラップ領域Lovを有する。
または、図4(D)に示すように、第2の絶縁膜57bの側面の一部または全部は、ゲ
ート電極59の側面より内側に位置する。さらに、第1の絶縁膜57aの幅は、ゲート電
極59の幅と略同一である。また、酸化物半導体膜55に含まれる第2の領域55b、5
5cは、ゲート電極59の一部と重なるオーバーラップ領域Lovを有する。
なお、オーバーラップ領域Lovの長さは、チャネル長Lの20%未満、または10%
未満、または5%未満、または2%未満であることが好ましい。
第1の絶縁膜57aは、酸化物半導体膜55との界面における欠陥準位を形成しにくい
材料を用いて形成される。このため、第1の絶縁膜57aが酸化物半導体膜55と接する
ことから、酸化物半導体膜55およびゲート絶縁膜57の界面における欠陥準位密度を低
くすることができる。また、第2の絶縁膜57bは、等方的にエッチングすることが可能
な材料を用いて形成される。このため、ゲート電極59をマスクとしてエッチングするこ
とで、ゲート電極59より幅の狭い第2の絶縁膜57bを形成することができる。なお、
第2の絶縁膜57bは、エッチング工程におけるエッチング速度が酸化物半導体膜と異な
ってもよい。この場合、酸化物半導体膜が露出した状態において、第2の絶縁膜を選択的
に、且つ等方的に、エッチングすることができる。
また、第1の絶縁膜57aは膜厚が薄いため、第1の絶縁膜57aを介して、第2の領
域55b、55cに不純物元素を添加することが可能である。さらには、水素を含む絶縁
膜65に含まれる水素を第2の領域55b、55cに拡散させることが可能である。この
結果、第1の絶縁膜57aの下に第2の領域55b、55cを形成することが可能である
図4に示すトランジスタは、ゲート絶縁膜57が、側面において、凹部を有する。この
ため、酸素欠損を形成するために酸化物半導体膜55に不純物元素を添加する際に、ゲー
ト絶縁膜の側面の凹部内にも不純物元素が侵入する。さらには、第1の絶縁膜57aは、
膜厚が薄いため、第1の絶縁膜57aを介して、酸化物半導体膜55に不純物元素が添加
される。これらの結果、酸化物半導体膜55であって、ゲート電極59の一部と重なる領
域に、不純物元素が添加されると共に、酸素欠損が形成される。
また、不純物元素が添加された領域に水素を含む絶縁膜65が接することで直接、もし
くは第1の絶縁膜57aを介して、水素を含む絶縁膜65に含まれる水素が、不純物元素
が添加された領域に拡散する。
これらの結果、酸化物半導体膜55において、ゲート電極59の一部と重なる領域に、
酸素欠損及び水素を含む第2の領域55b、55cが形成される。
即ち、本実施の形態は、ゲート絶縁膜57の形状を利用して酸化物半導体膜に選択的に
不純物元素を添加すること、及びゲート絶縁膜57の形状を利用して酸化物半導体膜に選
択的に水素を拡散させること、により、酸化物半導体膜に酸素欠損及び水素を含む第2の
領域55b、55cを選択的に形成する。実施の形態3で後述するが、水素は、酸素欠損
において安定であり、酸素欠損から水素は放出されにくい。このため、第2の領域55b
に含まれる水素は、チャネル領域である第1の領域55aへ拡散しにくく、トランジスタ
の電気特性の劣化を低減することができる。
また、酸素欠損に水素が入り伝導帯近傍にドナー準位が形成され、導電性が高くなる。
このため、第2の領域55b、55cは、ソース領域およびドレイン領域としての機能を
有する。第2の領域55b、55cがゲート電極59の一部と重なる領域は、オーバーラ
ップ領域Lovとなる。本実施の形態に示すトランジスタは、オーバーラップ領域を有す
るため、チャネル領域とソース領域およびドレイン領域との間に、高抵抗領域が形成され
ない。この結果、本実施の形態に示すトランジスタは、オン電流が高い。また、トランジ
スタにおいて、チャネル領域とソース領域およびドレイン領域との間に高抵抗領域を有す
ると、トランジスタの電気特性の劣化が生じやすいが、本実施の形態に示すトランジスタ
は、オーバラップ領域を有するため、電気特性の劣化が少なく、信頼性が高い。
また、本実施の形態に示すトランジスタにおいて、第2の領域55b、55cは、不純
物元素の添加により酸素欠損が形成されると共に、水素を含む。このため、第2の領域5
5b、55cにおける抵抗率を低減することが可能であるとともに、トランジスタごとの
第2の領域55b、55cの抵抗率のばらつきを低減することが可能である。すなわち、
酸化物半導体膜に不純物元素を添加し、酸素欠損を形成することで、第2の領域55b、
55cの抵抗率の制御が可能である。
<半導体装置の作製方法1>
次に、図4に示すトランジスタの作製方法について、図5および図6を用いて説明する
実施の形態1と同様に、図5(A)に示すように、基板51上に、絶縁膜53および酸
化物半導体膜54を形成する。
次に、図5(B)に示すように、第1の絶縁膜56aおよび第2の絶縁膜56bを順に
形成する。次に、第2の絶縁膜56b上に、ゲート電極59を形成する。
次に、図5(C)に示すように、ゲート電極59をマスクとして第2の絶縁膜56bを
エッチングして、第2の絶縁膜57bを形成する。ここでは、第1の絶縁膜56aと比較
して、第2の絶縁膜56bのエッチング速度の速いエッチャントを用いたウエットエッチ
ング法を用いることができる。または、第1の絶縁膜56aと比較して、第2の絶縁膜5
6bのエッチング速度が速く、且つ等方的にエッチングすることが可能なエッチングガス
を用いたドライエッチング法を用いることができる。この結果、側面に凹部を有する第2
の絶縁膜57bを形成することができる。
例えば、第2の絶縁膜56bが窒化シリコン膜の場合、NF、SiF、CF、C
等のフッ素化合物ガス、またはCFおよび酸素の混合ガスを用いたドライエッチ
ング法により、等方的に窒化シリコン膜をエッチングすることが可能であり、側面に凹部
を有する第2の絶縁膜57bを形成することができる。
または、第1の絶縁膜56aが酸化シリコン膜であり、第2の絶縁膜56bが窒化シリ
コン膜の場合、HPOを用いたウエットエッチング法により、窒化シリコン膜を選択
的にエッチングできる。また、ウエットエッチング法は、等方的にエッチングすることが
可能であるため、側面に凹部を有する第2の絶縁膜57bを形成することができる。
次に、図5(D)に示すように、ゲート電極59をマスクとして、第1の絶縁膜56a
をエッチングして、第1の絶縁膜57aを形成する。以上の工程により、第1の絶縁膜5
7aおよび第2の絶縁膜57bが積層されたゲート絶縁膜57を形成すると共に、酸化物
半導体膜54の一部を露出させることができる。ここでは、歩留まりを高めるために、酸
化物半導体膜54をエッチングせず、第1の絶縁膜56aを選択的にエッチングすること
が好ましく、ドライエッチング法を用いることが好ましい。
次に、実施の形態1と同様に、図6(A)に示すように、ゲート電極59をマスクとし
て、酸化物半導体膜54に不純物元素62を添加する。この結果、酸化物半導体膜54の
露出部に不純物元素が添加される。また、第1の絶縁膜57aを介して、酸化物半導体膜
に不純物元素が添加される。なお、不純物元素62の添加によるダメージを受け、酸化物
半導体膜54には、欠陥、代表的には酸素欠損が形成される。
次に、実施の形態1と同様に、図6(B)に示すように、酸化物半導体膜54、ゲート
絶縁膜57、およびゲート電極59上に、水素を含む絶縁膜64を形成する。
水素を含む絶縁膜64には水素が含まれている。このため、酸化物半導体膜54におい
て不純物元素が添加された領域と、水素を含む絶縁膜64とが接することで、水素を含む
絶縁膜64に含まれる水素が、酸化物半導体膜において不純物元素が添加された領域に移
動する。この結果、不純物元素が添加されない第1の領域55aおよび不純物元素および
水素を含む第2の領域55b、55cを有する酸化物半導体膜55が形成される。なお、
絶縁膜64に含まれる水素は、第1の絶縁膜57aを介して酸化物半導体膜55の一部に
拡散する。この結果、第2の領域55b、55cの一部は、第1の絶縁膜57aと重なる
場合がある。以上の工程により、ゲート電極59の一部と重なる第2の領域55b、55
cを形成することができる。
次に、加熱処理を行ってもよい。該加熱処理の温度は、代表的には、150℃以上基板
歪み点未満、好ましくは200℃以上450℃以下、更に好ましくは300℃以上450
℃以下とする。当該工程により、第2の領域55b、55cの導電性がさらに高まる。
次に、実施の形態1と同様に、絶縁膜66を形成してもよい。絶縁膜66を形成するこ
とで、のちに形成される一対の導電膜と、ゲート電極59との間における寄生容量を低減
することができる。
次に、実施の形態1と同様に、水素を含む絶縁膜64および絶縁膜66に開口部を形成
し、第2の領域55b、55cの一部を露出させた後、一対の導電膜68、69を形成す
る。次に、絶縁膜67、一対の導電膜68、69上に絶縁膜79を形成する(図6(C)
参照)。
以上の工程により、トランジスタを作製することができる。
<半導体装置の作製方法2>
第1の絶縁膜57aおよび第2の絶縁膜57bの形成方法の変形例を説明する。
実施の形態1と同様に、図7(A)に示すように、基板51上に、絶縁膜53、酸化物
半導体膜54、第1の絶縁膜56a、第2の絶縁膜56b、およびゲート電極59を形成
する。
次に、図7(B)に示すように、ゲート電極59をマスクとして、第1の絶縁膜56a
および第2の絶縁膜56bをそれぞれエッチングして、第1の絶縁膜57aおよび第2の
絶縁膜57cを形成する。
歩留まりを高めるために、酸化物半導体膜54をエッチングせず、第1の絶縁膜56a
および第2の絶縁膜56bを選択的にエッチングすることが好ましい。このため、ここで
は、ドライエッチング法を用いる。
次に、図7(C)に示すように、第2の絶縁膜57cをエッチングして、側面に凹部を
有する第2の絶縁膜57bを形成する。ここでは、第2の絶縁膜56bとして窒化シリコ
ン膜を用い、NF、SiF、CF、C等のフッ素化合物ガス、またはCF
および酸素の混合ガスを用いたドライエッチング法により、等方的に窒化シリコン膜をエ
ッチングすることが可能であり、側面に凹部を有する第2の絶縁膜57bを形成すること
ができる。
こののち、実施の形態1または実施の形態2と同様の工程を経て、トランジスタを作製
することができる。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと
適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、酸化物半導体膜55に含まれる第2の領域55b、55cが、酸素
欠損及び水素を含むことで、抵抗率が低減することについて説明する。具体的には、酸化
物半導体膜55に含まれる第2の領域55b、55cに形成されるVHについて説明す
る。なお、ここでは、酸素欠損V中に水素原子Hがある状態をVHと表記する。
<(1). VHの形成しやすさおよび安定性>
酸化物半導体膜(以下、IGZOと示す。)が結晶の場合、室温では、Hは、優先的に
ab面に沿って拡散する。また、450℃の加熱処理の際には、Hは、ab面およびc軸
方向それぞれに拡散する。そこで、ここでは、IGZOに酸素欠損Vが存在する場合、
Hは酸素欠損V中に入りやすいか否かについて説明する。
計算には、図8に示すInGaZnO結晶モデルを用いた。ここで、VH中のHが
から出ていき、酸素と結合する反応経路の活性化障壁(E)を、NEB(Nudg
ed Elastic Band)法を用いて計算した。計算条件を表1に示す。
また、InGaZnO結晶モデルにおいて、酸素が結合する金属元素およびその数の
違いから、図8に示すように酸素サイト1乃至酸素サイト4がある。ここでは、酸素欠損
を形成しやすい酸素サイト1および酸素サイト2について計算を行った。
はじめに、酸素欠損Vを形成しやすい酸素サイト1として、3個のInと1個のZn
と結合した酸素サイトについて計算を行った。
初期状態のモデルを図9(A)に示し、最終状態のモデルを図9(B)に示す。また、
初期状態および最終状態において、算出した活性化障壁(E)を図10に示す。なお、
ここでの初期状態とは、酸素欠損V中にHがある状態(VH)であり、最終状態とは
、酸素欠損Vと、1個のGaおよび2個のZnと結合した酸素とHとが結合した状態(
H−O)を有する構造である。
計算の結果、酸素欠損V中のHが他のOと結合するには約1.52eVのエネルギー
が必要であるのに対して、Oと結合したHが酸素欠損V中に入るには約0.46eVの
エネルギーが必要であった。
ここで、計算により得られた活性化障壁(E)と式(1)より、反応頻度(Γ)を算
出した。なお、式(1)において、kはボルツマン定数であり、Tは絶対温度である。
頻度因子ν=1013[1/sec]と仮定して350℃における反応頻度を算出した
。図9(A)に示すモデルから図9(B)に示すモデルへHが移動する頻度は5.52×
10[1/sec]であった。また、図9(B)に示すモデルから図9(A)に示すモ
デルへHが移動する頻度は1.82×10[1/sec]であった。このことから、I
GZO中を拡散するHは、近くに酸素欠損VがあるとVHを形成しやすく、一旦V
Hを形成すると酸素欠損Vから放出されにくいと考えられる。
次に、酸素欠損Vを形成しやすい酸素サイト2として、1個のGaと2個のZnと結
合した酸素サイトについて計算を行った。
初期状態のモデルを図11(A)に示し、最終状態のモデルを図11(B)に示す。ま
た、初期状態および最終状態において、算出した活性化障壁(E)を図12に示す。な
お、ここでの初期状態とは、酸素欠損V中にHがある状態(VH)であり、最終状態
とは、酸素欠損Vと、1個のGaおよび2個のZnと結合した酸素とHとが結合した状
態(H−O)を有する構造である。
計算の結果、酸素欠損V中のHが他のOと結合するには約1.75eVのエネルギー
が必要であるのに対して、Oと結合したHが酸素欠損V中に入るには約0.35eVの
エネルギーが必要であった。
また、計算により得られた活性化障壁(E)と上記の式(1)より、反応頻度(Γ)
を算出した。
頻度因子ν=1013[1/sec]と仮定して350℃における反応頻度を算出した
。図11(A)に示すモデルから図11(B)に示すモデルへHが移動する頻度は7.5
3×10−2[1/sec]であった。また、図11(B)に示すモデルから図11(A
)に示すモデルへHが移動する頻度は1.44×1010[1/sec]であった。この
ことから、一旦VHを形成すると酸素欠損VからHは放出されにくいと考えられる。
以上のことから、加熱処理時にIGZO中のHは拡散し易く、酸素欠損Vがある場合
は酸素欠損Vの中に入ってVHとなりやすいことが分かった。
<(2). VHの遷移レベル>
IGZO中において酸素欠損VとHが存在する場合、<(1). VHの形成しや
すさおよび安定性>で示した、NEB法を用いた計算より、酸素欠損VとHはVHを
形成しやすく、さらにVHは安定であると考えられる。そこで、VHがキャリアトラ
ップに関与するかを調べるため、VHの遷移レベルの算出を行った。
計算にはInGaZnO結晶モデル(112原子)を用いた。図8に示す酸素サイト
1および酸素サイト2に対してVHモデルを作成し、遷移レベルの算出を行った。計算
条件を表2に示す。
実験値に近いバンドギャップが出るよう、交換項の混合比を調整したことで、欠陥のな
いInGaZnO結晶モデルのバンドギャップは3.08eVとなり、実験値の3.1
5eVと近い結果となった。
欠陥Dをもつモデルの遷移レベル(ε(q/q’))は、以下の式(2)により算出さ
れる。なお、ΔE(D)は欠陥Dの電荷qにおける形成エネルギーであり、式(3)よ
り算出される。
式(2)および式(3)において、Etot(D)は欠陥Dを含むモデルの電荷qに
おける全エネルギー、Etot(bulk)は欠陥のないモデルの全エネルギー、Δn
は欠陥に関する原子iの増減数、μは原子iの化学ポテンシャル、εVBMは欠陥のな
いモデルにおける価電子帯上端のエネルギー、ΔVは静電ポテンシャルに関する補正項
、Eはフェルミエネルギーである。
算出したVHの遷移レベルを図13に示す。図13中の数値は伝導帯下端からの深さ
である。図13より、酸素サイト1に対するVHの遷移レベルは伝導帯下端の下0.0
5eVに存在し、酸素サイト2に対するVHの遷移レベルは伝導帯下端の下0.11e
Vに存在するため、それぞれのVHは電子トラップに関与すると考えられる。すなわち
、VHはドナーとして振る舞うことが明らかになった。また、VHを有するIGZO
は抵抗率が低く、導電性を有することが明らかになった。
<(3)抵抗率の温度依存性>
ここで、酸化物導電体で形成される膜(以下、酸化物導電体膜という。)における、抵
抗率の温度依存性について、図14を用いて説明する。
ここでは、酸化物導電体膜を有する試料を作製した。酸化物導電体膜としては、酸化物
半導体膜が窒化シリコン膜に接することで形成された酸化物導電体膜(OC_SiN
、ドーピング装置において酸化物半導体膜にアルゴンが添加され、且つ窒化シリコン膜と
接することで形成された酸化物導電体膜(OC_Ar dope+SiN)、およびプ
ラズマ処理装置において酸化物半導体膜がアルゴンプラズマに曝され、且つ窒化シリコン
膜と接することで形成された酸化物導電体膜(OC_Ar plasma+SiN)を
作製した。なお、窒化シリコン膜は、水素を含む。
酸化物導電体膜(OC_SiN)を含む試料の作製方法を以下に示す。ガラス基板上
に、厚さ400nmの酸化窒化シリコン膜をプラズマCVD法により形成した後、酸素プ
ラズマに曝し、酸素イオンを酸化窒化シリコン膜に添加することで、加熱により酸素を放
出する酸化窒化シリコン膜を形成した。次に、加熱により酸素を放出する酸化窒化シリコ
ン膜上に、原子数比がIn:Ga:Zn=1:1:1.2のスパッタリングターゲットを
用いたスパッタリング法により、厚さ100nmのIn−Ga−Zn酸化物膜を形成し、
450℃の窒素雰囲気で加熱処理した後、450℃の窒素および酸素の混合ガス雰囲気で
加熱処理した。次に、プラズマCVD法で、厚さ100nmの窒化シリコン膜を形成した
。次に、350℃の窒素および酸素の混合ガス雰囲気で加熱処理した。
酸化物導電体膜(OC_Ar dope+SiN)を含む試料の作製方法を以下に示
す。ガラス基板上に、厚さ400nmの酸化窒化シリコン膜をプラズマCVD法により形
成した後、酸素プラズマに曝し、酸素イオンを酸化窒化シリコン膜に添加することで、加
熱により酸素を放出する酸化窒化シリコン膜を形成した。次に、加熱により酸素を放出す
る酸化窒化シリコン膜上に、原子数比がIn:Ga:Zn=1:1:1.2のスパッタリ
ングターゲットを用いたスパッタリング法により、厚さ100nmのIn−Ga−Zn酸
化物膜を形成し、450℃の窒素雰囲気で加熱処理した後、450℃の窒素および酸素の
混合ガス雰囲気で加熱処理した。次に、ドーピング装置を用いて、In−Ga−Zn酸化
物膜に、加速電圧を10kVとし、ドーズ量が5×1014/cmのアルゴンを添加し
て、In−Ga−Zn酸化物膜に酸素欠損を形成した。次に、プラズマCVD法で、厚さ
100nmの窒化シリコン膜を形成した。次に、350℃の窒素および酸素の混合ガス雰
囲気で加熱処理した。
酸化物導電体膜(OC_Ar plasma+SiN)を含む試料の作製方法を以下
に示す。ガラス基板上に、厚さ400nmの酸化窒化シリコン膜をプラズマCVD法によ
り形成した後、酸素プラズマに曝すことで、加熱により酸素を放出する酸化窒化シリコン
膜を形成した。次に、加熱により酸素を放出する酸化窒化シリコン膜上に、原子数比がI
n:Ga:Zn=1:1:1.2のスパッタリングターゲットを用いたスパッタリング法
により、厚さ100nmのIn−Ga−Zn酸化物膜を形成し、450℃の窒素雰囲気で
加熱処理した後、450℃の窒素および酸素の混合ガス雰囲気で加熱処理した。次に、プ
ラズマ処理装置において、アルゴンプラズマを発生させ、加速させたアルゴンイオンをI
n−Ga−Zn酸化物膜に衝突させることで酸素欠損を形成した。次に、プラズマCVD
法で、厚さ100nmの窒化シリコン膜を形成した。次に、350℃の窒素および酸素の
混合ガス雰囲気で加熱処理した。
次に、各試料の抵抗率を測定した結果を図14に示す。ここで、抵抗率の測定は4端子
のvan−der−Pauw法で行った。図14において、横軸は測定温度を示し、縦軸
は抵抗率を示す。また、酸化物導電体膜(OC_SiN)の測定結果を四角印で示し、
酸化物導電体膜(OC_Ar dope+SiN)の測定結果を丸印で示し、酸化物導
電体膜(OC_Ar plasma+SiN)の測定結果を三角印で示す。
なお、図示しないが、窒化シリコン膜と接しない酸化物半導体膜は、抵抗率が高く、抵
抗率の測定が困難であった。このため、酸化物導電体膜は、酸化物半導体膜より抵抗率が
低いことがわかる。
図14からわかるように、酸化物導電体膜(OC_Ar dope+SiN)および
酸化物導電体膜(OC_Ar plasma+SiN)が、酸素欠損および水素を含む
場合、抵抗率の変動が小さい。代表的には、80K以上290K以下において、抵抗率の
変動率は、プラスマイナス20%未満である。または、150K以上250K以下におい
て、抵抗率の変動率は、プラスマイナス10%未満である。即ち、酸化物導電体は、縮退
半導体であり、伝導帯端とフェルミ準位とが一致または略一致していると推定される。こ
のため、酸化物導電体膜をトランジスタのソース領域およびドレイン領域として用いるこ
とで、酸化物導電体膜とソース電極およびドレイン電極として機能する導電膜との接触が
オーミック接触となり、酸化物導電体膜とソース電極およびドレイン電極として機能する
導電膜との接触抵抗を低減できる。また、酸化物導電体の抵抗率は温度依存性が低いため
、酸化物導電体膜とソース電極およびドレイン電極として機能する導電膜との接触抵抗の
変動量が少なく、信頼性の高いトランジスタを作製することが可能である。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと
適宜組み合わせて用いることができる。
(実施の形態4)
実施の形態1乃至実施の形態3に適用可能なゲート電極の構成について、図15を用い
て説明する。
本実施の形態では、酸化物半導体膜55に含まれる第2の領域55b、55cと同様に
、導電性を有する酸化物半導体膜を用いてゲート電極60を形成してもよい(図15参照
。)。導電性を有する酸化物半導体膜は、酸化物半導体膜55と同様に透光性を有するた
め、透光性を有するトランジスタを作製することができる。
なお、導電性を有する酸化物半導体膜は、金属で形成された導電膜と比較すると抵抗率
が高いため、基板51として大面積基板を用いる場合、ゲート電極60に接続する導電膜
77を絶縁膜67上に設けることが好ましい。
図15に示すトランジスタの作製方法を、図2および図3を用いて説明する。
図2(B)の工程において、ゲート電極59の代わりに酸化物半導体膜を形成する。
次に、図2(C)に示すように、ゲート絶縁膜57を形成した後、酸化物半導体膜54
およびゲート絶縁膜57上の酸化物半導体膜に不純物元素62を添加する。
次に、図3(A)に示すように、水素を含む絶縁膜64を形成することで、酸化物半導
体膜55に含まれる第2の領域55b、55cと同様に、導電性を有するゲート電極60
(図15参照。)を形成することができる。
次に、開口部を有する絶縁膜67を形成した後、一対の導電膜68、69を形成する。
次に、開口部を有する絶縁膜79を形成した後、一対の導電膜68、69と同様の方法を
用いて、ゲート電極60に接続する導電膜77(図15参照。)を作製する。
以上の工程により、セルフアライン構造のトランジスタを作製することが可能である。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと
適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、先に示す実施の形態に適用可能な酸化物半導体膜の構造について、
図16を用いて説明する。なお、ここでは、実施の形態1に示すトランジスタを用いて説
明するが、適宜先に示す実施の形態に示すトランジスタに本実施の形態を適用することが
可能である。
図16(A)に示すトランジスタは、実施の形態1の図1に示すトランジスタと同じ構
造であるが、酸化物半導体膜55の構造が異なる。酸化物半導体膜55近傍を囲む領域7
1の拡大図を図16(B)乃至図16(D)に示す。
図16(B)に示すように、酸化物半導体膜55は、絶縁膜53と接する第1の酸化物
半導体膜55_1と、第1の酸化物半導体膜55_1およびゲート絶縁膜57と接する第
2の酸化物半導体膜55_2を有する。
または、図16(C)に示すように、酸化物半導体膜55は、絶縁膜53と接する第2
の酸化物半導体膜55_2と、第2の酸化物半導体膜55_2およびゲート絶縁膜57と
接する第3の酸化物半導体膜55_3を有する。
または、図16(D)に示すように、酸化物半導体膜55は、絶縁膜53と接する第1
の酸化物半導体膜55_1と、第1の酸化物半導体膜55_1と接する第2の酸化物半導
体膜55_2と、第2の酸化物半導体膜55_2およびゲート絶縁膜57と接する第3の
酸化物半導体膜55_3を有する。
第1の酸化物半導体膜55_1、第2の酸化物半導体膜55_2、および第3の酸化物
半導体膜55_3がIn−M−Zn酸化物(MはAl、Ti、Ga、Y、Zr、Sn、L
a、Ce、NdまたはHf)の場合、第1の酸化物半導体膜55_1および第3の酸化物
半導体膜55_3をIn:M:Zn=x:y:z[原子数比]、第2の酸化物半導
体膜55_2をIn:M:Zn=x:y:z[原子数比]とすると、y/x
/xよりも大きく、好ましくは、y/xがy/xよりも1.5倍以上であ
る。さらに好ましくは、y/xがy/xよりも2倍以上大きく、より好ましくは
、y/xがy/xよりも3倍以上大きい。このとき、第1の酸化物半導体膜55
_1および第3の酸化物半導体膜55_3において、yがx以上であると、当該第2
の酸化物半導体膜55_2を用いたトランジスタに安定した電気特性を付与できるため好
ましい。一方、yがxの3倍以上になると、当該第2の酸化物半導体膜55_2を用
いたトランジスタの電界効果移動度が低下してしまうため、yはxの3倍未満である
と好ましい。
第2の酸化物半導体膜55_2がIn−M−Zn酸化物(Mは、Ga、Y、Zr、La
、Ce、またはNd)の場合、第2の酸化物半導体膜55_2を成膜するために用いるタ
ーゲットにおいて、金属元素の原子数比をIn:M:Zn=x:y:zとすると
/yは、1/3以上6以下、さらには1以上6以下であって、z/yは、1/
3以上6以下、さらには1以上6以下であることが好ましい。なお、z/yを1以上
6以下とすることで、第2の酸化物半導体膜55_2としてCAAC−OS膜が形成され
やすくなる。ターゲットの金属元素の原子数比の代表例としては、In:M:Zn=1:
1:1、In:M:Zn=1:1:1.2、In:M:Zn=2:1:1.5、In:M
:Zn=2:1:2.3、In:M:Zn=2:1:3、In:M:Zn=3:1:2等
がある。
第1の酸化物半導体膜55_1および第3の酸化物半導体膜55_3がIn−M−Zn
酸化物(Mは、Ga、Y、Zr、La、Ce、またはNd)の場合、第1の酸化物半導体
膜55_1および第3の酸化物半導体膜55_3を成膜するために用いるターゲットにお
いて、金属元素の原子数比をIn:M:Zn=x:y:zとすると/y
/yであって、z/yは、1/3以上6以下、さらには1以上6以下であるこ
とが好ましい。なお、z/yを1以上6以下とすることで、第1の酸化物半導体膜5
5_1および第3の酸化物半導体膜55_3としてCAAC−OS膜が形成されやすくな
る。ターゲットの金属元素の原子数比の代表例としては、In:M:Zn=1:3:2、
In:M:Zn=1:3:4、In:M:Zn=1:3:6、In:M:Zn=1:3:
8、In:M:Zn=1:4:3、In:M:Zn=1:4:4、In:M:Zn=1:
4:5、In:M:Zn=1:4:6、In:M:Zn=1:6:3、In:M:Zn=
1:6:4、In:M:Zn=1:6:5、In:M:Zn=1:6:6、In:M:Z
n=1:6:7、In:M:Zn=1:6:8、In:M:Zn=1:6:9等がある。
なお、第1の酸化物半導体膜55_1、第2の酸化物半導体膜55_2および第3の酸
化物半導体膜55_3の原子数比はそれぞれ、誤差として上記の原子数比のプラスマイナ
ス40%の変動を含む。
なお、原子数比はこれらに限られず、必要とする半導体特性に応じて適切な原子数比の
ものを用いればよい。
また、第1の酸化物半導体膜55_1または/および第3の酸化物半導体膜55_3と
して、酸化ガリウムを用いて形成することができる。第1の酸化物半導体膜55_1およ
び第3の酸化物半導体膜55_3として、酸化ガリウムを用いることで、トランジスタの
リーク電流を低減することが可能である。
また、図16(D)において、第1の酸化物半導体膜55_1および第3の酸化物半導
体膜55_3は同じ組成でもよい。例えば、第1の酸化物半導体膜55_1および第3の
酸化物半導体膜55_3としてIn:Ga:Zn=1:3:2、1:3:4、または1:
4:5の原子数比のIn−Ga−Zn酸化物を用いてもよい。
または、図16(D)において、第1の酸化物半導体膜55_1および第3の酸化物半
導体膜55_3は異なった組成でもよい。例えば、第1の酸化物半導体膜55_1として
In:Ga:Zn=1:3:2の原子数比のIn−Ga−Zn酸化物を用い、第3の酸化
物半導体膜55_3としてIn:Ga:Zn=1:3:4または1:4:5の原子数比の
In−Ga−Zn酸化物を用いてもよい。
第1の酸化物半導体膜55_1および第3の酸化物半導体膜55_3の厚さは、3nm
以上100nm以下、好ましくは3nm以上50nm以下とする。第2の酸化物半導体膜
55_2の厚さは、3nm以上200nm以下、好ましくは3nm以上100nm以下、
さらに好ましくは3nm以上50nm以下とする。なお、第1の酸化物半導体膜55_1
および第3の酸化物半導体膜55_3はそれぞれ第2の酸化物半導体膜55_2より厚さ
を薄くすることで、トランジスタのしきい値電圧の変動量を低減することが可能である。
また、第3の酸化物半導体膜55_3に含まれる酸素が一対の電極68、69に拡散し、
一対の電極68、69が酸化するのを防ぐため、第3の酸化物半導体膜55_3の膜厚は
薄い方が好ましい。
第1の酸化物半導体膜55_1、第2の酸化物半導体膜55_2、および第3の酸化物
半導体膜55_3それぞれの界面は、STEM(Scanning Transmiss
ion Electron Microscopy)を用いて観察することができる。
第1の酸化物半導体膜55_1、第2の酸化物半導体膜55_2、および第3の酸化物
半導体膜55_3は、実施の形態1に示す酸化物半導体膜55の結晶構造を適宜用いるこ
とができる。
第2の酸化物半導体膜55_2と比較して酸素欠損の生じにくい酸化物半導体膜を第2
の酸化物半導体膜55_2の上または/および下に接して設けることで、第2の酸化物半
導体膜55_2における酸素欠損を低減することができる。また、第2の酸化物半導体膜
55_2は、第2の酸化物半導体膜55_2を構成する金属元素の一以上を有する第1の
酸化物半導体膜55_1または/および第3の酸化物半導体膜55_3と接するため、第
1の酸化物半導体膜55_1と第2の酸化物半導体膜55_2との界面、第2の酸化物半
導体膜55_2と第3の酸化物半導体膜55_3との界面における界面準位密度が極めて
低い。このため、第2の酸化物半導体膜55_2に含まれる酸素欠損を低減することが可
能である。
また、第2の酸化物半導体膜55_2が、構成元素の異なる絶縁膜(例えば、酸化シリ
コン膜を含むゲート絶縁膜)と接する場合、界面準位が形成され、該界面準位はチャネル
を形成することがある。このような場合、しきい値電圧の異なる第2のトランジスタが出
現し、トランジスタの見かけ上のしきい値電圧が変動することがある。しかしながら、第
2の酸化物半導体膜55_2を構成する金属元素を一種以上含む第1の酸化物半導体膜5
5_1が第2の酸化物半導体膜55_2と接するため、第1の酸化物半導体膜55_1と
第2の酸化物半導体膜55_2の界面に界面準位を形成しにくくなる。よって第1の酸化
物半導体膜55_1を設けることにより、トランジスタのしきい値電圧などの電気特性の
ばらつきを低減することができる。
また、ゲート絶縁膜57と第2の酸化物半導体膜55_2との界面にチャネルが形成さ
れる場合、該界面で界面散乱が起こり、トランジスタの電界効果移動度が低くなる。しか
しながら、第2の酸化物半導体膜55_2を構成する金属元素を一種以上含む第3の酸化
物半導体膜55_3が第2の酸化物半導体膜55_2に接して設けられるため、第2の酸
化物半導体膜55_2と第3の酸化物半導体膜55_3との界面ではキャリアの散乱が起
こりにくく、トランジスタの電界効果移動度を高くすることができる。
また、第1の酸化物半導体膜55_1および第3の酸化物半導体膜55_3は、絶縁膜
53およびゲート絶縁膜57の構成元素が第2の酸化物半導体膜55_2へ混入して、不
純物による準位が形成されることを抑制するためのバリア膜としても機能する。
例えば、絶縁膜53およびゲート絶縁膜57として、シリコンを含む絶縁膜53および
ゲート絶縁膜57中のシリコン、または絶縁膜53およびゲート絶縁膜57中に混入され
うる炭素が、第1の酸化物半導体膜55_1または/および第3の酸化物半導体膜55_
3の中へ界面から数nm程度まで混入することがある。シリコン、炭素等の不純物が第2
の酸化物半導体膜55_2中に入ると不純物準位を形成し、不純物準位がドナーとなり電
子を生成することでn型化することがある。
しかしながら、第1の酸化物半導体膜55_1および第3の酸化物半導体膜55_3の
膜厚が、数nmよりも厚ければ、混入したシリコン、炭素等の不純物が第2の酸化物半導
体膜55_2にまで到達しないため、不純物準位の影響は低減される。
以上のことから、本実施の形態に示すトランジスタは、しきい値電圧などの電気特性の
ばらつきが低減されたトランジスタである。
<バンド構造>
次に、本実施の形態に示すトランジスタの代表例として、図17(A)に示すトランジ
スタの任意断面におけるバンド構造について説明する。なお、図17(A)に示す破線で
囲まれた領域71aの拡大図を図17(B)に示し、破線で囲まれた領域71bの拡大図
を図17(C)に示し、破線で囲まれた領域71cの拡大図を図17(D)に示す。即ち
、図17(A)に示すトランジスタは、第1の領域55a、第2の領域55b、55cを
有する酸化物半導体膜55を有する。また、図17(B)に示すように、第1の領域55
aは、第1の領域55_2aおよび第1の領域55_3aが、絶縁膜53およびゲート絶
縁膜57の間に設けられる。また、図17(C)に示すように、第2の領域55bは、第
2の領域55_2bおよび第2の領域55_3bが、絶縁膜53および水素を含む絶縁膜
65の間に設けられる。また、図17(D)に示すように、第2の領域55cは、第2の
領域55_2cおよび第2の領域55_3cが、絶縁膜53および水素を含む絶縁膜65
の間に設けられる。
図17(E)に、図17(A)に示すトランジスタのチャネル領域を含むO−P断面に
おけるバンド構造を示す。なお、第1の領域55_3aは、第1の領域55_2aよりも
エネルギーギャップが少し大きいとする。また、絶縁膜53およびゲート絶縁膜57は、
第1の領域55_2aおよび第1の領域55_3aよりも十分にエネルギーギャップが大
きいとする。また、第1の領域55_2a、第1の領域55_3a、絶縁膜53およびゲ
ート絶縁膜57のフェルミ準位(Efと表記する。)は、それぞれの真性フェルミ準位(
Eiと表記する。)の位置とする。また、ゲート電極59の仕事関数は、該フェルミ準位
と同じ位置とする。また、伝導帯下端のエネルギーをEcと表記し、価電子帯上端のエネ
ルギーをEvと表記する。
ゲート電圧をトランジスタのしきい値電圧以上としたとき、第1の領域55_2aと第
1の領域55_3aとの間の伝導帯下端のエネルギーの差により、電子は第1の領域55
_2aを優先的に流れる。即ち、第1の領域55_2aに電子が埋め込まれると推定する
ことができる。
したがって、本発明の一態様に係るトランジスタは、電子の埋め込みによって界面散乱
の影響が低減されている。そのため、本発明の一態様に係るトランジスタは、チャネル領
域における抵抗が小さい。
次に、図17(F)に、図17(A)に示すトランジスタのソース領域またはドレイン
領域を含むQ−R断面におけるバンド構造を示す。なお、第2の領域55_2b、55_
2c、第2の領域55_3b、55_3cは、縮退状態とする。また、第2の領域55_
2bにおいて、第2の領域55_2bの伝導帯下端のエネルギーは第1の領域55_2a
のフェルミ準位と同程度とする。また、第2の領域55_3bにおいて、第2の領域55
_3bの伝導帯下端のエネルギーは第1の領域55_3aのフェルミ準位と同程度とする
。第2の領域55_2cおよび第2の領域55_3cも同様である。
このとき、導電膜68と、第2の領域55_3bと、はエネルギー障壁が十分小さいた
め、オーミック接触となる。また、第2の領域55_3bと、第2の領域55_2bと、
はオーミック接触となる。同様に、導電膜69と、第2の領域55_3cと、はエネルギ
ー障壁が十分小さいため、オーミック接触となる。また、第2の領域55_3cと、第2
の領域55_2cと、はオーミック接触となる。したがって、導電膜68および導電膜6
9と、第1の領域55_2aおよび第1の領域55_3aと、の間で、電子の授受がスム
ーズに行われることがわかる。
以上に示したように、本発明の一態様に係るトランジスタは、ソース電極およびドレイ
ン電極と、チャネル領域との間の電子の授受がスムーズに行われるため、チャネル領域に
おける抵抗の小さいトランジスタである。即ち、優れたスイッチング特性を有するトラン
ジスタであることがわかる。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと
適宜組み合わせて用いることができる。
(実施の形態6)
本実施の形態では、先に示す実施の形態に適用可能なトランジスタの構造について、図
18を用いて説明する。なお、ここでは、実施の形態1に示すトランジスタを用いて説明
するが、適宜先に示す実施の形態に示すトランジスタに本実施の形態を適用することが可
能である。図18(A)は、トランジスタのチャネル長方向における断面図であり、図1
8(B)は、トランジスタのチャネル幅方向における断面図である。
本実施の形態に示すトランジスタは、図18に示すように、絶縁膜53を介して酸化物
半導体膜55と重なるゲート電極73を有することを特徴とする。
ゲート電極73の電位をゲート電極59と異なる電位とすることで、トランジスタのし
きい値電圧を制御することが可能であり、ノーマリーオフのトランジスタを作製すること
ができる。または、図18(B)に示すように、絶縁膜53およびゲート絶縁膜57に設
けられる開口部において、ゲート電極59およびゲート電極73が接続されることで、ゲ
ート電極73の電位をゲート電極59と同じ電位とすることが可能であり、トランジスタ
のオン電流を増大させることが可能である。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと
適宜組み合わせて用いることができる。
(実施の形態7)
本実施の形態では、上記実施の形態で説明したトランジスタにおいて、酸化物半導体膜
に適用可能な一態様について説明する。
本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置さ
れている状態をいう。従って、−5°以上5°以下の場合も含まれる。また、「垂直」と
は、二つの直線が80°以上100°以下の角度で配置されている状態をいう。従って、
85°以上95°以下の場合も含まれる。
また、本明細書において、結晶が三方晶または菱面体晶である場合、六方晶系として表す
酸化物半導体膜は、非単結晶酸化物半導体膜と単結晶酸化物半導体膜とに大別される。非
単結晶酸化物半導体膜とは、CAAC−OS(C Axis Aligned Crys
talline Oxide Semiconductor)膜、多結晶酸化物半導体膜
、微結晶酸化物半導体膜、非晶質酸化物半導体膜などをいう。
<CAAC−OS膜>
まずは、CAAC−OS膜について説明する。
CAAC−OS膜は、c軸配向した複数の結晶部を有する酸化物半導体膜の一つである。
透過型電子顕微鏡(TEM:Transmission Electron Micro
scope)によって、CAAC−OS膜の明視野像および回折パターンの複合解析像(
高分解能TEM像ともいう。)を観察することで複数の結晶部を確認することができる。
一方、高分解能TEM像によっても明確な結晶部同士の境界、即ち結晶粒界(グレインバ
ウンダリーともいう。)を確認することができない。そのため、CAAC−OS膜は、結
晶粒界に起因する電子移動度の低下が起こりにくいといえる。
試料面と概略平行な方向から、CAAC−OS膜の断面の高分解能TEM像を観察すると
、結晶部において、金属原子が層状に配列していることを確認できる。金属原子の各層は
、CAAC−OS膜の膜を形成する面(被形成面ともいう。)または上面の凹凸を反映し
た形状であり、CAAC−OS膜の被形成面または上面と平行に配列する。
一方、試料面と概略垂直な方向から、CAAC−OS膜の平面の高分解能TEM像を観察
すると、結晶部において、金属原子が三角形状または六角形状に配列していることを確認
できる。しかしながら、異なる結晶部間で、金属原子の配列に規則性は見られない。
図19(a)は、CAAC−OS膜の断面の高分解能TEM像である。また、図19(b
)は、図19(a)をさらに拡大した断面の高分解能TEM像であり、理解を容易にする
ために原子配列を強調表示している。
図19(c)は、図19(a)のA−O−A’間において、丸で囲んだ領域(直径約4n
m)の局所的なフーリエ変換像である。図19(c)より、各領域においてc軸配向性が
確認できる。また、A−O間とO−A’間とでは、c軸の向きが異なるため、異なるグレ
インであることが示唆される。また、A−O間では、c軸の角度が14.3°、16.6
°、26.4°のように少しずつ連続的に変化していることがわかる。同様に、O−A’
間では、c軸の角度が−18.3°、−17.6°、−15.9°と少しずつ連続的に変
化していることがわかる。
なお、CAAC−OS膜に対し、電子回折を行うと、配向性を示すスポット(輝点)が観
測される。例えば、CAAC−OS膜の上面に対し、例えば1nm以上30nm以下の電
子線を用いる電子回折(ナノビーム電子回折ともいう。)を行うと、スポットが観測され
る(図20(A)参照。)。
断面の高分解能TEM像および平面の高分解能TEM像より、CAAC−OS膜の結晶部
は配向性を有していることがわかる。
なお、CAAC−OS膜に含まれるほとんどの結晶部は、一辺が100nm未満の立方体
内に収まる大きさである。従って、CAAC−OS膜に含まれる結晶部は、一辺が10n
m未満、5nm未満または3nm未満の立方体内に収まる大きさの場合も含まれる。ただ
し、CAAC−OS膜に含まれる複数の結晶部が連結することで、一つの大きな結晶領域
を形成する場合がある。例えば、平面の高分解能TEM像において、2500nm以上
、5μm以上または1000μm以上となる結晶領域が観察される場合がある。
CAAC−OS膜に対し、X線回折(XRD:X−Ray Diffraction)装
置を用いて構造解析を行うと、例えばInGaZnOの結晶を有するCAAC−OS膜
のout−of−plane法による解析では、回折角(2θ)が31°近傍にピークが
現れる場合がある。このピークは、InGaZnOの結晶の(009)面に帰属される
ことから、CAAC−OS膜の結晶がc軸配向性を有し、c軸が被形成面または上面に概
略垂直な方向を向いていることが確認できる。
一方、CAAC−OS膜に対し、c軸に概略垂直な方向からX線を入射させるin−pl
ane法による解析では、2θが56°近傍にピークが現れる場合がある。このピークは
、InGaZnOの結晶の(110)面に帰属される。InGaZnOの単結晶酸化
物半導体膜であれば、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)と
して試料を回転させながら分析(φスキャン)を行うと、(110)面と等価な結晶面に
帰属されるピークが6本観察される。これに対し、CAAC−OS膜の場合は、2θを5
6°近傍に固定してφスキャンした場合でも、明瞭なピークが現れない。
以上のことから、CAAC−OS膜では、異なる結晶部間ではa軸およびb軸の配向は不
規則であるが、c軸配向性を有し、かつc軸が被形成面または上面の法線ベクトルに平行
な方向を向いていることがわかる。従って、前述の断面の高分解能TEM観察で確認され
た層状に配列した金属原子の各層は、結晶のab面に平行な面である。
なお、結晶部は、CAAC−OS膜を成膜した際、または加熱処理などの結晶化処理を行
った際に形成される。上述したように、結晶のc軸は、CAAC−OS膜の被形成面また
は上面の法線ベクトルに平行な方向に配向する。従って、例えば、CAAC−OS膜の形
状をエッチングなどによって変化させた場合、結晶のc軸がCAAC−OS膜の被形成面
または上面の法線ベクトルと平行にならないこともある。
また、CAAC−OS膜中において、c軸配向した結晶部の分布が均一でなくてもよい。
例えば、CAAC−OS膜の結晶部が、CAAC−OS膜の上面近傍からの結晶成長によ
って形成される場合、上面近傍の領域は、被形成面近傍の領域よりもc軸配向した結晶部
の割合が高くなることがある。また、不純物の添加されたCAAC−OS膜は、不純物が
添加された領域が変質し、部分的にc軸配向した結晶部の割合の異なる領域が形成される
こともある。
なお、InGaZnOの結晶を有するCAAC−OS膜のout−of−plane法
による解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れ
る場合がある。2θが36°近傍のピークは、CAAC−OS膜中の一部に、c軸配向性
を有さない結晶が含まれることを示している。CAAC−OS膜は、2θが31°近傍に
ピークを示し、2θが36°近傍にピークを示さないことが好ましい。
CAAC−OS膜は、不純物濃度の低い酸化物半導体膜である。不純物は、水素、炭素、
シリコン、遷移金属元素などの酸化物半導体膜の主成分以外の元素である。特に、シリコ
ンなどの、酸化物半導体膜を構成する金属元素よりも酸素との結合力の強い元素は、酸化
物半導体膜から酸素を奪うことで酸化物半導体膜の原子配列を乱し、結晶性を低下させる
要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径
(または分子半径)が大きいため、酸化物半導体膜内部に含まれると、酸化物半導体膜の
原子配列を乱し、結晶性を低下させる要因となる。なお、酸化物半導体膜に含まれる不純
物は、キャリアトラップやキャリア発生源となる場合がある。
また、CAAC−OS膜は、欠陥準位密度の低い酸化物半導体膜である。例えば、酸化物
半導体膜中の酸素欠損は、キャリアトラップとなることや、水素を捕獲することによって
キャリア発生源となることがある。
不純物濃度が低く、欠陥準位密度が低い(酸素欠損の少ない)ことを、高純度真性または
実質的に高純度真性と呼ぶ。高純度真性または実質的に高純度真性である酸化物半導体膜
は、キャリア発生源が少ないため、キャリア密度を低くすることができる。従って、当該
酸化物半導体膜を用いたトランジスタは、しきい値電圧がマイナスとなる電気特性(ノー
マリーオンともいう。)になることが少ない。また、高純度真性または実質的に高純度真
性である酸化物半導体膜は、キャリアトラップが少ない。そのため、当該酸化物半導体膜
を用いたトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタとなる。
なお、酸化物半導体膜のキャリアトラップに捕獲された電荷は、放出するまでに要する時
間が長く、あたかも固定電荷のように振る舞うことがある。そのため、不純物濃度が高く
、欠陥準位密度が高い酸化物半導体膜を用いたトランジスタは、電気特性が不安定となる
場合がある。
また、CAAC−OS膜を用いたトランジスタは、可視光や紫外光の照射による電気特性
の変動が小さい。
<多結晶酸化物半導体膜>
次に、多結晶酸化物半導体膜について説明する。
多結晶酸化物半導体膜は、高分解能TEM像において結晶粒を確認することができる。多
結晶酸化物半導体膜に含まれる結晶粒は、例えば、高分解能TEM像で、2nm以上30
0nm以下、3nm以上100nm以下または5nm以上50nm以下の粒径であること
が多い。また、多結晶酸化物半導体膜は、高分解能TEM像で、結晶粒界を確認できる場
合がある。
多結晶酸化物半導体膜は、複数の結晶粒を有し、当該複数の結晶粒間において結晶の方位
が異なっている場合がある。また、多結晶酸化物半導体膜に対し、XRD装置を用いて構
造解析を行うと、例えばInGaZnOの結晶を有する多結晶酸化物半導体膜のout
−of−plane法による解析では、2θが31°近傍のピーク、2θが36°近傍の
ピーク、またはそのほかのピークが現れる場合がある。
多結晶酸化物半導体膜は、高い結晶性を有するため、高い電子移動度を有する場合がある
。従って、多結晶酸化物半導体膜を用いたトランジスタは、高い電界効果移動度を有する
。ただし、多結晶酸化物半導体膜は、結晶粒界に不純物が偏析する場合がある。また、多
結晶酸化物半導体膜の結晶粒界は欠陥準位となる。多結晶酸化物半導体膜は、結晶粒界が
キャリアトラップやキャリア発生源となる場合があるため、多結晶酸化物半導体膜を用い
たトランジスタは、CAAC−OS膜を用いたトランジスタと比べて、電気特性の変動が
大きく、信頼性の低いトランジスタとなる場合がある。
<微結晶酸化物半導体膜>
次に、微結晶酸化物半導体膜について説明する。
微結晶酸化物半導体膜は、高分解能TEM像において、結晶部を確認することのできる領
域と、明確な結晶部を確認することのできない領域と、を有する。微結晶酸化物半導体膜
に含まれる結晶部は、1nm以上100nm以下、または1nm以上10nm以下の大き
さであることが多い。特に、1nm以上10nm以下、または1nm以上3nm以下の微
結晶であるナノ結晶(nc:nanocrystal)を有する酸化物半導体膜を、nc
−OS(nanocrystalline Oxide Semiconductor)
膜と呼ぶ。また、nc−OS膜は、例えば、高分解能TEM像では、結晶粒界を明確に確
認できない場合がある。
nc−OS膜は、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上
3nm以下の領域)において原子配列に周期性を有する。また、nc−OS膜は、異なる
結晶部間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。従
って、nc−OS膜は、分析方法によっては、非晶質酸化物半導体膜と区別が付かない場
合がある。例えば、nc−OS膜に対し、結晶部よりも大きい径のX線を用いるXRD装
置を用いて構造解析を行うと、out−of−plane法による解析では、結晶面を示
すピークが検出されない。また、nc−OS膜に対し、結晶部よりも大きいプローブ径(
例えば50nm以上)の電子線を用いる電子回折(制限視野電子回折ともいう。)を行う
と、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、結
晶部の大きさと近いか結晶部より小さいプローブ径の電子線を用いるナノビーム電子回折
を行うと、スポットが観測される。また、nc−OS膜に対しナノビーム電子回折を行う
と、円を描くように(リング状に)輝度の高い領域が観測される場合がある。また、nc
−OS膜に対しナノビーム電子回折を行うと、リング状の領域内に複数のスポットが観測
される場合がある(図20(B)参照。)。
nc−OS膜は、非晶質酸化物半導体膜よりも規則性の高い酸化物半導体膜である。その
ため、nc−OS膜は、非晶質酸化物半導体膜よりも欠陥準位密度が低くなる。ただし、
nc−OS膜は、異なる結晶部間で結晶方位に規則性が見られない。そのため、nc−O
S膜は、CAAC−OS膜と比べて欠陥準位密度が高くなる。
従って、nc−OS膜は、CAAC−OS膜と比べて、キャリア密度が高くなる場合があ
る。キャリア密度が高い酸化物半導体膜は、電子移動度が高くなる場合がある。従って、
nc−OS膜を用いたトランジスタは、高い電界効果移動度を有する場合がある。また、
nc−OS膜は、CAAC−OS膜と比べて、欠陥準位密度が高いため、キャリアトラッ
プが多くなる場合がある。従って、nc−OS膜を用いたトランジスタは、CAAC−O
S膜を用いたトランジスタと比べて、電気特性の変動が大きく、信頼性の低いトランジス
タとなる。ただし、nc−OS膜は、比較的不純物が多く含まれていても形成することが
できるため、CAAC−OS膜よりも形成が容易となり、用途によっては好適に用いるこ
とができる場合がある。そのため、nc−OS膜を用いたトランジスタを有する半導体装
置は、生産性高く作製することができる場合がある。
<非結晶酸化物半導体膜>
次に、非晶質酸化物半導体膜について説明する。
非晶質酸化物半導体膜は、膜中における原子配列が不規則であり、結晶部を有さない酸化
物半導体膜である。石英のような無定形状態を有する酸化物半導体膜が一例である。
非晶質酸化物半導体膜は、高分解能TEM像において結晶部を確認することができない。
非晶質酸化物半導体膜に対し、XRD装置を用いた構造解析を行うと、out−of−p
lane法による解析では、結晶面を示すピークが検出されない。また、非晶質酸化物半
導体膜に対し、電子回折を行うと、ハローパターンが観測される。また、非晶質酸化物半
導体膜に対し、ナノビーム電子回折を行うと、スポットが観測されず、ハローパターンが
観測される。
非晶質酸化物半導体膜は、水素などの不純物を高い濃度で含む酸化物半導体膜である。ま
た、非晶質酸化物半導体膜は、欠陥準位密度の高い酸化物半導体膜である。
不純物濃度が高く、欠陥準位密度が高い酸化物半導体膜は、キャリアトラップやキャリア
発生源が多い酸化物半導体膜である。
従って、非晶質酸化物半導体膜は、nc−OS膜と比べて、さらにキャリア密度が高くな
る場合がある。そのため、非晶質酸化物半導体膜を用いたトランジスタは、ノーマリーオ
ンの電気特性になりやすい。従って、ノーマリーオンの電気特性が求められるトランジス
タに好適に用いることができる場合がある。非晶質酸化物半導体膜は、欠陥準位密度が高
いため、キャリアトラップが多くなる場合がある。従って、非晶質酸化物半導体膜を用い
たトランジスタは、CAAC−OS膜やnc−OS膜を用いたトランジスタと比べて、電
気特性の変動が大きく、信頼性の低いトランジスタとなる。
次に、単結晶酸化物半導体膜について説明する。
単結晶酸化物半導体膜は、不純物濃度が低く、欠陥準位密度が低い(酸素欠損が少ない)
酸化物半導体膜である。そのため、キャリア密度を低くすることができる。従って、単結
晶酸化物半導体膜を用いたトランジスタは、ノーマリーオンの電気特性になることが少な
い。また、単結晶酸化物半導体膜は、不純物濃度が低く、欠陥準位密度が低いため、キャ
リアトラップが少なくなる場合がある。従って、単結晶酸化物半導体膜を用いたトランジ
スタは、電気特性の変動が小さく、信頼性の高いトランジスタとなる。
なお、酸化物半導体膜は、欠陥が少ないと密度が高くなる。また、酸化物半導体膜は、結
晶性が高いと密度が高くなる。また、酸化物半導体膜は、水素などの不純物濃度が低いと
密度が高くなる。単結晶酸化物半導体膜は、CAAC−OS膜よりも密度が高い。また、
CAAC−OS膜は、微結晶酸化物半導体膜よりも密度が高い。また、多結晶酸化物半導
体膜は、微結晶酸化物半導体膜よりも密度が高い。また、微結晶酸化物半導体膜は、非晶
質酸化物半導体膜よりも密度が高い。
なお、酸化物半導体膜は、nc−OS膜と非晶質酸化物半導体膜との間の物性を示す構造
を有する場合がある。そのような構造を有する酸化物半導体膜を、特に非晶質ライク酸化
物半導体(amorphous−like OS:amorphous−like Ox
ide Semiconductor)膜と呼ぶ。
amorphous−like OS膜は、高分解能TEM像において鬆(ボイドともい
う。)が観察される場合がある。また、高分解能TEM像において、明確に結晶部を確認
することのできる領域と、結晶部を確認することのできない領域と、を有する。amor
phous−like OS膜は、TEMによる観察程度の微量な電子照射によって、結
晶化が起こり、結晶部の成長が見られる場合がある。一方、良質なnc−OS膜であれば
、TEMによる観察程度の微量な電子照射による結晶化はほとんど見られない。
なお、amorphous−like OS膜およびnc−OS膜の結晶部の大きさの計
測は、高分解能TEM像を用いて行うことができる。例えば、InGaZnOの結晶は
層状構造を有し、In−O層の間に、Ga−Zn−O層を2層有する。InGaZnO
の結晶の単位格子は、In−O層を3層有し、またGa−Zn−O層を6層有する、計9
層がc軸方向に層状に重なった構造を有する。よって、これらの近接する層同士の間隔は
、(009)面の格子面間隔(d値ともいう。)と同程度であり、結晶構造解析からその
値は0.29nmと求められている。そのため、高分解能TEM像における格子縞に着目
し、格子縞の間隔が0.28nm以上0.30nm以下である箇所においては、それぞれ
の格子縞がInGaZnOの結晶のa−b面に対応すると見なした。その格子縞の観察
される領域のおける最大長を、amorphous−like OS膜およびnc−OS
膜の結晶部の大きさとする。なお、結晶部の大きさは、0.8nm以上のものを選択的に
評価する。
図37は、高分解能TEM像により、amorphous−like OS膜およびnc
−OS膜の結晶部(20箇所から40箇所)の平均の大きさの変化を調査した例である。
図37より、amorphous−like OS膜は、電子の累積照射量に応じて結晶
部が大きくなっていくことがわかる。具体的には、TEMによる観察初期においては1.
2nm程度の大きさだった結晶部が、累積照射量が4.2×10/nmにおいて
は2.6nm程度の大きさまで成長していることがわかる。一方、良質なnc−OS膜は
、電子照射開始時から電子の累積照射量が4.2×10/nmになるまでの範囲
で、電子の累積照射量によらず結晶部の大きさに変化が見られないことがわかる。
また、図37に示す、amorphous−like OS膜およびnc−OS膜の結晶
部の大きさの変化を線形近似して、電子の累積照射量0e/nmまで外挿すると、結
晶部の平均の大きさが正の値をとることがわかる。そのため、amorphous−li
ke OS膜およびnc−OS膜の結晶部が、TEMによる観察前から存在していること
がわかる。
なお、酸化物半導体膜は、例えば、非晶質酸化物半導体膜、微結晶酸化物半導体膜、CA
AC−OS膜のうち、二種以上を有する積層膜であってもよい。
酸化物半導体膜が複数の構造を有する場合、ナノビーム電子回折を用いることで構造解析
が可能となる場合がある。
図20(C)に、電子銃室40と、電子銃室40の下の光学系42と、光学系42の下の
試料室44と、試料室44の下の光学系46と、光学系46の下の観察室20と、観察室
20に設置されたカメラ48と、観察室20の下のフィルム室22と、を有する透過電子
回折測定装置を示す。カメラ48は、観察室20内部に向けて設置される。なお、フィル
ム室22を有さなくても構わない。
また、図20(D)に、図20(C)で示した透過電子回折測定装置内部の構造を示す。
透過電子回折測定装置内部では、電子銃室40に設置された電子銃から放出された電子が
、光学系42を介して試料室44に配置された物質28に照射される。物質28を通過し
た電子は、光学系46を介して観察室20内部に設置された蛍光板32に入射する。蛍光
板32では、入射した電子の強度に応じたパターンが現れることで透過電子回折パターン
を測定することができる。
カメラ48は、蛍光板32を向いて設置されており、蛍光板32に現れたパターンを撮影
することが可能である。カメラ48のレンズの中央、および蛍光板32の中央を通る直線
と、蛍光板32の上面と、の為す角度は、例えば、15°以上80°以下、30°以上7
5°以下、または45°以上70°以下とする。該角度が小さいほど、カメラ48で撮影
される透過電子回折パターンは歪みが大きくなる。ただし、あらかじめ該角度がわかって
いれば、得られた透過電子回折パターンの歪みを補正することも可能である。なお、カメ
ラ48をフィルム室22に設置しても構わない場合がある。例えば、カメラ48をフィル
ム室22に、電子24の入射方向と対向するように設置してもよい。この場合、蛍光板3
2の裏面から歪みの少ない透過電子回折パターンを撮影することができる。
試料室44には、試料である物質28を固定するためのホルダが設置されている。ホルダ
は、物質28を通過する電子を透過するような構造をしている。ホルダは、例えば、物質
28をX軸、Y軸、Z軸などに移動させる機能を有していてもよい。ホルダの移動機能は
、例えば、1nm以上10nm以下、5nm以上50nm以下、10nm以上100nm
以下、50nm以上500nm以下、100nm以上1μm以下などの範囲で移動させる
精度を有すればよい。これらの範囲は、物質28の構造によって最適な範囲を設定すれば
よい。
次に、上述した透過電子回折測定装置を用いて、物質の透過電子回折パターンを測定する
方法について説明する。
例えば、図20(D)に示すように物質におけるナノビームである電子24の照射位置を
変化させる(スキャンする)ことで、物質の構造が変化していく様子を確認することがで
きる。このとき、物質28がCAAC−OS膜であれば、図20(A)に示したような回
折パターンが観測される。または、物質28がnc−OS膜であれば、図20(B)に示
したような回折パターンが観測される。
ところで、物質28がCAAC−OS膜であったとしても、部分的にnc−OS膜などと
同様の回折パターンが観測される場合がある。したがって、CAAC−OS膜の良否は、
一定の範囲におけるCAAC−OS膜の回折パターンが観測される領域の割合(CAAC
化率ともいう。)で表すことができる場合がある。例えば、良質なCAAC−OS膜であ
れば、CAAC化率は、50%以上、好ましくは80%以上、さらに好ましくは90%以
上、より好ましくは95%以上となる。なお、CAAC−OS膜と異なる回折パターンが
観測される領域の割合を非CAAC化率と表記する。
一例として、成膜直後(as−sputteredと表記。)、または酸素を含む雰囲気
における450℃加熱処理後のCAAC−OS膜を有する各試料の上面に対し、スキャン
しながら透過電子回折パターンを取得した。ここでは、5nm/秒の速度で60秒間スキ
ャンしながら回折パターンを観測し、観測された回折パターンを0.5秒ごとに静止画に
変換することで、CAAC化率を導出した。なお、電子線としては、プローブ径が1nm
のナノビーム電子線を用いた。なお、同様の測定は6試料に対して行った。そしてCAA
C化率の算出には、6試料における平均値を用いた。
各試料におけるCAAC化率を図21(A)に示す。成膜直後のCAAC−OS膜のCA
AC化率は75.7%(非CAAC化率は24.3%)であった。また、450℃加熱処
理後のCAAC−OS膜のCAAC化率は85.3%(非CAAC化率は14.7%)で
あった。成膜直後と比べて、450℃加熱処理後のCAAC化率が高いことがわかる。即
ち、高い温度(例えば400℃以上)における加熱処理によって、非CAAC化率が低く
なる(CAAC化率が高くなる)ことがわかる。また、500℃未満の加熱処理において
も高いCAAC化率を有するCAAC−OS膜が得られることがわかる。
ここで、CAAC−OS膜と異なる回折パターンのほとんどはnc−OS膜と同様の回折
パターンであった。また、測定領域において非晶質酸化物半導体膜は、確認することがで
きなかった。したがって、加熱処理によって、nc−OS膜と同様の構造を有する領域が
、隣接する領域の構造の影響を受けて再配列し、CAAC化していることが示唆される。
図21(B)および図21(C)は、成膜直後および450℃加熱処理後のCAAC−O
S膜の平面の高分解能TEM像である。図21(B)と図21(C)とを比較することに
より、450℃加熱処理後のCAAC−OS膜は、膜質がより均質であることがわかる。
即ち、高い温度における加熱処理によって、CAAC−OS膜の膜質が向上することがわ
かる。
このような測定方法を用いれば、複数の構造を有する酸化物半導体膜の構造解析が可能と
なる場合がある。
<成膜モデル>
以下では、CAAC−OSおよびnc−OSの成膜モデルについて説明する。
図23(A)は、スパッタリング法によりCAAC−OSが成膜される様子を示した成膜
室内の模式図である。
ターゲット5130は、バッキングプレート上に接着されている。ターゲット5130お
よびバッキングプレート下には、複数のマグネットが配置される。該複数のマグネットに
よって、ターゲット5130上には磁場が生じている。マグネットの磁場を利用して成膜
速度を高めるスパッタリング法は、マグネトロンスパッタリング法と呼ばれる。
ターゲット5130は、多結晶構造を有し、いずれかの結晶粒には劈開面が含まれる。な
お、劈開面の詳細については後述する。
基板5120は、ターゲット5130と向かい合うように配置しており、その距離d(タ
ーゲット−基板間距離(T−S間距離)ともいう。)は0.01m以上1m以下、好まし
くは0.02m以上0.5m以下とする。成膜室内は、ほとんどが成膜ガス(例えば、酸
素、アルゴン、または酸素を50体積%以上の割合で含む混合ガス)で満たされ、0.0
1Pa以上100Pa以下、好ましくは0.1Pa以上10Pa以下に制御される。ここ
で、ターゲット5130に一定以上の電圧を印加することで、放電が始まり、プラズマが
確認される。なお、ターゲット5130上の磁場によって、高密度プラズマ領域が形成さ
れる。高密度プラズマ領域では、成膜ガスがイオン化することで、イオン5101が生じ
る。イオン5101は、例えば、酸素の陽イオン(O)やアルゴンの陽イオン(Ar
)などである。
イオン5101は、電界によってターゲット5130側に加速され、やがてターゲット5
130と衝突する。このとき、劈開面から平板状またはペレット状のスパッタ粒子である
ペレット5100aおよびペレット5100bが剥離し、叩き出される。なお、ペレット
5100aおよびペレット5100bは、イオン5101の衝突の衝撃によって、構造に
歪みが生じる場合がある。
ペレット5100aは、三角形、例えば正三角形の平面を有する平板状またはペレット状
のスパッタ粒子である。また、ペレット5100bは、六角形、例えば正六角形の平面を
有する平板状またはペレット状のスパッタ粒子である。なお、ペレット5100aおよび
ペレット5100bなどの平板状またはペレット状のスパッタ粒子を総称してペレット5
100と呼ぶ。ペレット5100の平面の形状は、三角形、六角形に限定されない、例え
ば、三角形が2個以上6個以下合わさった形状となる場合がある。例えば、三角形(正三
角形)が2個合わさった四角形(ひし形)となる場合もある。
ペレット5100は、成膜ガスの種類などに応じて厚さが決定する。理由は後述するが、
ペレット5100の厚さは、均一にすることが好ましい。また、スパッタ粒子は厚みのな
いペレット状である方が、厚みのあるサイコロ状であるよりも好ましい。
ペレット5100は、プラズマを通過する際に電荷を受け取ることで、側面が負または正
に帯電する場合がある。ペレット5100は、側面に酸素原子を有し、当該酸素原子が負
に帯電する可能性がある。例えば、ペレット5100aが、側面に負に帯電した酸素原子
を有する例を図25に示す。このように、側面が同じ極性の電荷を帯びることにより、電
荷同士の反発が起こり、平板状の形状を維持することが可能となる。なお、CAAC−O
Sが、In−Ga−Zn酸化物である場合、インジウム原子と結合した酸素原子が負に帯
電する可能性がある。または、インジウム原子、ガリウム原子または亜鉛原子と結合した
酸素原子が負に帯電する可能性がある。
図23(A)に示すように、例えば、ペレット5100は、プラズマ中を凧のように飛翔
し、ひらひらと基板5120上まで舞い上がっていく。ペレット5100は電荷を帯びて
いるため、ほかのペレット5100が既に堆積している領域が近づくと、斥力が生じる。
ここで、基板5120の上面では、基板5120の上面に平行な向きの磁場が生じている
。また、基板5120およびターゲット5130間には、電位差が与えられているため、
基板5120からターゲット5130に向けて電流が流れている。したがって、ペレット
5100は、基板5120の上面において、磁場および電流の作用によって、力(ローレ
ンツ力)を受ける(図26参照。)。このことは、フレミングの左手の法則によって理解
できる。なお、ペレット5100に与える力を大きくするためには、基板5120の上面
において、基板5120の上面に平行な向きの磁場が10G以上、好ましくは20G以上
、さらに好ましくは30G以上、より好ましくは50G以上となる領域を設けるとよい。
または、基板5120の上面において、基板5120の上面に平行な向きの磁場が、基板
5120の上面に垂直な向きの磁場の1.5倍以上、好ましくは2倍以上、さらに好まし
くは3倍以上、より好ましくは5倍以上となる領域を設けるとよい。
また、基板5120は加熱されており、ペレット5100と基板5120との間で摩擦な
どの抵抗が小さい状態となっている。その結果、図27(A)に示すように、ペレット5
100は、基板5120の上面を滑空するように移動する。ペレット5100の移動は、
平板面を基板5120に向けた状態で起こる。その後、図27(B)に示すように、既に
堆積しているほかのペレット5100の側面まで到達すると、側面同士が結合する。この
とき、ペレット5100の側面にある酸素原子が脱離する。脱離した酸素原子によって、
CAAC−OS中の酸素欠損が埋まる場合があるため、欠陥準位密度の低いCAAC−O
Sとなる。
また、ペレット5100が基板5120上で加熱されることにより、原子が再配列し、イ
オン5101の衝突で生じた構造の歪みが緩和される。歪みの緩和されたペレット510
0は、ほぼ単結晶となる。ペレット5100がほぼ単結晶となることにより、ペレット5
100同士が結合した後に加熱されたとしても、ペレット5100自体の伸縮はほとんど
起こり得ない。したがって、ペレット5100間の隙間が広がることで結晶粒界などの欠
陥を形成し、クレバス化することがない。また、隙間には、伸縮性のある金属原子などが
敷き詰められ、向きのずれたペレット5100同士の側面を高速道路のように繋いでいる
と考えられる。
以上のようなモデルにより、ペレット5100が基板5120上に堆積していくと考えら
れる。したがって、エピタキシャル成長とは異なり、被形成面が結晶構造を有さない場合
においても、CAAC−OSの成膜が可能であることがわかる。例えば、基板5120の
上面(被形成面)の構造が非晶質構造であっても、CAAC−OSを成膜することは可能
である。
また、CAAC−OSは、平坦面に対してだけでなく、被形成面である基板5120の上
面に凹凸がある場合でも、その形状に沿ってペレット5100が配列することがわかる。
例えば、基板5120の上面が原子レベルで平坦な場合、ペレット5100はab面と平
行な平面である平板面を下に向けて並置するため、厚さが均一で平坦、かつ高い結晶性を
有する層が形成される。そして、当該層がn段(nは自然数。)積み重なることで、CA
AC−OSを得ることができる(図23(B)参照。)。
一方、基板5120の上面が凹凸を有する場合でも、CAAC−OSは、ペレット510
0が凸面に沿って並置した層がn段(nは自然数。)積み重なった構造となる。基板51
20が凹凸を有するため、CAAC−OSは、ペレット5100間に隙間が生じやすい場
合がある。ただし、ペレット5100間で分子間力が働き、凹凸があってもペレット間の
隙間はなるべく小さくなるように配列する。したがって、凹凸があっても高い結晶性を有
するCAAC−OSとすることができる(図23(C)参照。)。
したがって、CAAC−OSは、レーザ結晶化が不要であり、大面積のガラス基板などで
あっても均一な成膜が可能である。
このようなモデルによってCAAC−OSが成膜されるため、スパッタ粒子が厚みのない
ペレット状である方が好ましい。なお、スパッタ粒子が厚みのあるサイコロ状である場合
、基板5120上に向ける面が一定とならず、厚さや結晶の配向を均一にできない場合が
ある。
以上に示した成膜モデルにより、非晶質構造を有する被形成面上であっても、高い結晶性
を有するCAAC−OSを得ることができる。
また、CAAC−OSは、ペレット5100のほかに酸化亜鉛粒子を有する成膜モデルに
よっても説明することができる。
酸化亜鉛粒子は、ペレット5100よりも質量が小さいため、先に基板5120に到達す
る。基板5120の上面において、酸化亜鉛粒子は、水平方向に優先的に結晶成長するこ
とで薄い酸化亜鉛層を形成する。該酸化亜鉛層は、c軸配向性を有する。なお、該酸化亜
鉛層の結晶のc軸は、基板5120の法線ベクトルに平行な方向を向く。該酸化亜鉛層は
、CAAC−OSを成長させるためのシード層の役割を果たすため、CAAC−OSの結
晶性を高める機能を有する。なお、該酸化亜鉛層は、厚さが0.1nm以上5nm以下、
ほとんどが1nm以上3nm以下となる。該酸化亜鉛層は十分薄いため、結晶粒界をほと
んど確認することができない。
したがって、結晶性の高いCAAC−OSを成膜するためには、化学量論的組成よりも高
い割合で亜鉛を含むターゲットを用いることが好ましい。
同様に、nc−OSは、図24に示す成膜モデルによって理解することができる。なお、
図24と図23(A)との違いは、基板5120の加熱の有無のみである。
したがって、基板5120は加熱されておらず、ペレット5100と基板5120との間
で摩擦などの抵抗が大きい状態となっている。その結果、ペレット5100は、基板51
20の上面を滑空するように移動することができないため、不規則に降り積もっていくこ
とでnc−OSを得ることができる。
<劈開面>
以下では、CAAC−OSの成膜モデルにおいて記載のターゲットの劈開面について説明
する。
まずは、ターゲットの劈開面について図28を用いて説明する。図28に、InGaZn
の結晶の構造を示す。なお、図28(A)は、c軸を上向きとし、b軸に平行な方向
からInGaZnOの結晶を観察した場合の構造を示す。また、図28(B)は、c軸
に平行な方向からInGaZnOの結晶を観察した場合の構造を示す。
InGaZnOの結晶の各結晶面における劈開に必要なエネルギーを、第一原理計算に
より算出する。なお、計算には、擬ポテンシャルと、平面波基底を用いた密度汎関数プロ
グラム(CASTEP)を用いる。なお、擬ポテンシャルには、ウルトラソフト型の擬ポ
テンシャルを用いる。また、汎関数には、GGA PBEを用いる。また、カットオフエ
ネルギーは400eVとする。
初期状態における構造のエネルギーは、セルサイズを含めた構造最適化を行った後に導出
する。また、各面で劈開後の構造のエネルギーは、セルサイズを固定した状態で、原子配
置の構造最適化を行った後に導出する。
図28に示したInGaZnOの結晶の構造をもとに、第1の面、第2の面、第3の面
、第4の面のいずれかで劈開した構造を作製し、セルサイズを固定した構造最適化計算を
行う。ここで、第1の面は、Ga−Zn−O層とIn−O層との間の結晶面であり、(0
01)面(またはab面)に平行な結晶面である(図28(A)参照。)。第2の面は、
Ga−Zn−O層とGa−Zn−O層との間の結晶面であり、(001)面(またはab
面)に平行な結晶面である(図28(A)参照。)。第3の面は、(110)面に平行な
結晶面である(図28(B)参照。)。第4の面は、(100)面(またはbc面)に平
行な結晶面である(図28(B)参照。)。
以上のような条件で、各面で劈開後の構造のエネルギーを算出する。次に、劈開後の構造
のエネルギーと初期状態における構造のエネルギーとの差を、劈開面の面積で除すことで
、各面における劈開しやすさの尺度である劈開エネルギーを算出する。なお、構造のエネ
ルギーは、構造に含まれる原子と電子に対して、電子の運動エネルギーと、原子間、原子
−電子間、および電子間の相互作用と、を考慮したエネルギーである。
計算の結果、第1の面の劈開エネルギーは2.60J/m、第2の面の劈開エネルギー
は0.68J/m、第3の面の劈開エネルギーは2.18J/m、第4の面の劈開エ
ネルギーは2.12J/mであることがわかった(下表参照。)。
この計算により、図28に示したInGaZnOの結晶の構造において、第2の面にお
ける劈開エネルギーが最も低くなる。即ち、Ga−Zn−O層とGa−Zn−O層との間
が最も劈開しやすい面(劈開面)であることがわかる。したがって、本明細書において、
劈開面と記載する場合、最も劈開しやすい面である第2の面のことを示す。
Ga−Zn−O層とGa−Zn−O層との間である第2の面に劈開面を有するため、図2
8(A)に示すInGaZnOの結晶は、二つの第2の面と等価な面で分離することが
できる。したがって、ターゲットにイオンなどを衝突させる場合、もっとも劈開エネルギ
ーの低い面で劈開したウェハース状のユニット(我々はこれをペレットと呼ぶ。)が最小
単位となって飛び出してくると考えられる。その場合、InGaZnOのペレットは、
Ga−Zn−O層、In−O層およびGa−Zn−O層の3層となる。
また、第1の面(Ga−Zn−O層とIn−O層との間の結晶面であり、(001)面(
またはab面)に平行な結晶面)よりも、第3の面(110)面に平行な結晶面)、第4
の面((100)面(またはbc面)に平行な結晶面)の劈開エネルギーが低いことから
、ペレットの平面形状は三角形状または六角形状が多いことが示唆される。
次に、古典分子動力学計算により、ターゲットとしてホモロガス構造を有するInGaZ
nOの結晶を仮定し、当該ターゲットをアルゴン(Ar)または酸素(O)によりスパ
ッタした場合の劈開面について評価する。計算に用いたInGaZnOの結晶(268
8原子)の断面構造を図29(A)に、上面構造を図29(B)に示す。なお、図29(
A)に示す固定層は、位置が変動しないよう原子の配置を固定した層である。また、図2
9(A)に示す温度制御層は、常に一定の温度(300K)とした層である。
古典分子動力学計算には、富士通株式会社製Materials Explorer5.
0を用いる。なお、初期温度を300K、セルサイズを一定、時間刻み幅を0.01フェ
ムト秒、ステップ数を1000万回とする。計算では、当該条件のもと、原子に300e
Vのエネルギーを与え、InGaZnOの結晶のab面に垂直な方向からセルに原子を
入射させる。
図30(A)は、図29に示したInGaZnOの結晶を有するセルにアルゴンが入射
してから99.9ピコ秒(psec)後の原子配列を示す。また、図30(B)は、セル
に酸素が入射してから99.9ピコ秒後の原子配列を示す。なお、図30では、図29(
A)に示した固定層の一部を省略して示す。
図30(A)より、アルゴンがセルに入射してから99.9ピコ秒までに、図28(A)
に示した第2の面に対応する劈開面から亀裂が生じる。したがって、InGaZnO
結晶に、アルゴンが衝突した場合、最上面を第2の面(0番目)とすると、第2の面(2
番目)に大きな亀裂が生じることがわかる。
一方、図30(B)より、酸素がセルに入射してから99.9ピコ秒までに、図28(A
)に示した第2の面に対応する劈開面から亀裂が生じることがわかる。ただし、酸素が衝
突した場合は、InGaZnOの結晶の第2の面(1番目)において大きな亀裂が生じ
ることがわかる。
したがって、ホモロガス構造を有するInGaZnOの結晶を含むターゲットの上面か
ら原子(イオン)が衝突すると、InGaZnOの結晶は第2の面に沿って劈開し、平
板状の粒子(ペレット)が剥離することがわかる。また、このとき、ペレットの大きさは
、アルゴンを衝突させた場合よりも、酸素を衝突させた場合の方が小さくなることがわか
る。
なお、上述の計算から、剥離したペレットは損傷領域を含むことが示唆される。ペレット
に含まれる損傷領域は、損傷によって生じた欠陥に酸素を反応させることで修復できる場
合がある。
そこで、衝突させる原子の違いによって、ペレットの大きさが異なることについて調査す
る。
図31(A)に、図29に示したInGaZnOの結晶を有するセルにアルゴンが入射
した後、0ピコ秒から0.3ピコ秒までにおける各原子の軌跡を示す。したがって、図3
1(A)は、図29から図30(A)の間の期間に対応する。
図31(A)より、アルゴンが第1層(Ga−Zn−O層)のガリウム(Ga)と衝突す
ると、当該ガリウムが第3層(Ga−Zn−O層)の亜鉛(Zn)と衝突した後、当該亜
鉛が第6層(Ga−Zn−O層)の近傍まで到達することがわかる。なお、ガリウムと衝
突したアルゴンは、外に弾き飛ばされる。したがって、InGaZnOの結晶を含むタ
ーゲットにアルゴンを衝突させた場合、図29(A)における第2の面(2番目)に亀裂
が入ると考えられる。
また、図31(B)に、図29に示したInGaZnOの結晶を有するセルに酸素が入
射した後、0ピコ秒から0.3ピコ秒までにおける各原子の軌跡を示す。したがって、図
31(B)は、図29から図30(A)の間の期間に対応する。
一方、図31(B)より、酸素が第1層(Ga−Zn−O層)のガリウム(Ga)と衝突
すると、当該ガリウムが第3層(Ga−Zn−O層)の亜鉛(Zn)と衝突した後、当該
亜鉛が第5層(In−O層)まで到達しないことがわかる。なお、ガリウムと衝突した酸
素は、外に弾き飛ばされる。したがって、InGaZnOの結晶を含むターゲットに酸
素を衝突させた場合、図29(A)における第2の面(1番目)に亀裂が入ると考えられ
る。
本計算からも、InGaZnOの結晶は、原子(イオン)が衝突した場合、劈開面から
剥離することが示唆される。
また、亀裂の深さの違いを保存則の観点から検討する。エネルギー保存則および運動量保
存則は、式(4)および式(5)のように示すことができる。ここで、Eは衝突前のアル
ゴンまたは酸素の持つエネルギー(300eV)、mはアルゴンまたは酸素の質量、v
は衝突前のアルゴンまたは酸素の速度、v’は衝突後のアルゴンまたは酸素の速度、
Gaはガリウムの質量、vGaは衝突前のガリウムの速度、v’Gaは衝突後のガリウ
ムの速度である。
アルゴンまたは酸素の衝突が弾性衝突であると仮定すると、v、v’、vGaおよび
v’Gaの関係は式(6)のように表すことができる。
式(4)、式(5)および式(6)より、vGaを0とすると、アルゴンまたは酸素が衝
突した後のガリウムの速度v’Gaは、式(7)のように表すことができる。
式(7)において、mにアルゴンの質量または酸素の質量を代入し、それぞれの原子が
衝突した後のガリウムの速度を比較する。アルゴンおよび酸素の衝突前に持つエネルギー
が同じである場合、アルゴンが衝突した場合の方が、酸素が衝突した場合よりも1.24
倍ガリウムの速度が高いことがわかる。したがって、ガリウムの持つエネルギーもアルゴ
ンが衝突した場合の方が、酸素が衝突した場合よりも速度の二乗分だけ高くなる。
アルゴンを衝突させた場合の方が、酸素を衝突させた場合よりも、衝突後のガリウムの速
度(エネルギー)が高くなることがわかる。したがって、アルゴンを衝突させた場合の方
が、酸素を衝突させた場合よりも深い位置に亀裂が生じたと考えられる。
以上の計算により、ホモロガス構造を有するInGaZnOの結晶を含むターゲットを
スパッタすると、劈開面から剥離し、ペレットが形成されることがわかる。一方、劈開面
を有さないターゲットの他の構造の領域をスパッタしてもペレットは形成されず、ペレッ
トよりも微細な原子レベルの大きさのスパッタ粒子が形成される。該スパッタ粒子は、ペ
レットと比べて小さいため、スパッタリング装置に接続されている真空ポンプを介して排
気されると考えられる。したがって、ホモロガス構造を有するInGaZnOの結晶を
含むターゲットをスパッタした場合、様々な大きさ、形状の粒子が基板まで飛翔し、堆積
することで成膜されるモデルは考えにくい。スパッタされたペレットが堆積してCAAC
−OSを成膜する図23(A)などに記載のモデルが道理に適っている。
このようにして成膜されたCAAC−OSの密度は、単結晶OSと同程度の密度を有する
。例えば、InGaZnOのホモロガス構造を有する単結晶OSの密度は6.36g/
cmであるのに対し、同程度の原子数比であるCAAC−OSの密度は6.3g/cm
程度となる。
図32に、スパッタリング法で成膜したCAAC−OSであるIn−Ga−Zn酸化物(
図32(A)参照。)、およびそのターゲット(図32(B)参照。)の断面における原
子配列を示す。原子配列の観察には、高角散乱環状暗視野走査透過電子顕微鏡法(HAA
DF−STEM:High−Angle Annular Dark Field Sc
anning Transmission Electron Microscopy)
を用いる。なお、HAADF−STEMでは、各原子の像強度は原子番号の二乗に比例す
る。したがって、原子番号の近いZn(原子番号30)とGa(原子番号31)とは、ほ
とんど区別できない。HAADF−STEMには、日立走査透過電子顕微鏡HD−270
0を用いる。
図32(A)および図32(B)を比較すると、CAAC−OSと、ターゲットは、とも
にホモロガス構造を有しており、それぞれの原子の配置が対応していることがわかる。し
たがって、図23(A)などの成膜モデルに示したように、ターゲットの結晶構造が転写
されることでCAAC−OSが成膜されることがわかる。
なお、本実施の形態に示す構成および方法などは、他の実施の形態に示す構成および方
法などと適宜組み合わせて用いることができる。
(実施の形態8)
本実施の形態では、本発明の一態様の入出力装置の構成について、図33および図34
を参照しながら説明する。なお、入出力装置はタッチパネルということもできる。
図33は本発明の一態様の入出力装置の構成を説明する投影図である。
図33(A)は本発明の一態様の入出力装置500の投影図であり、図33(B)は入
出力装置500が備える検知ユニット10Uの構成を説明する投影図である。
図34は本発明の一態様の入出力装置500の構成を説明する断面図である。
図34(A)は図33に示す本発明の一態様の入出力装置500のZ1−Z2における
断面図である。
<入出力装置の構成例>
本実施の形態で説明する入出力装置500は、可視光を透過する窓部14を具備し且つ
マトリクス状に配設される複数の検知ユニット10U、行方向(図中に矢印Rで示す)に
配置される複数の検知ユニット10Uと電気的に接続する走査線G1、列方向(図中に矢
印Cで示す)に配置される複数の検知ユニット10Uと電気的に接続する信号線DLなら
びに、検知ユニット10U、走査線G1および信号線DLを支持する可撓性の第1の基材
16を備える可撓性の入力装置100と、窓部14に重なり且つマトリクス状に配設され
る複数の画素502および画素502を支持する可撓性の第2の基材510を備える表示
部501と、を有する(図33(A)乃至図33(C)参照)。
検知ユニット10Uは、窓部14に重なる検知素子Cおよび検知素子Cと電気的に接続
される検知回路19を備える(図33(B)参照)。
検知素子Cは、絶縁膜13、絶縁膜13を挟持する第1の電極11および第2の電極1
2を備える(図34(A)参照)。
検知回路19は、選択信号を供給され且つ検知素子Cの容量の変化に基づいて検知信号
DATAを供給する。
走査線G1は、選択信号を供給することができ、信号線DLは、検知信号DATAを供
給することができ、検知回路19は、複数の窓部14の間隙に重なるように配置される。
また、本実施の形態で説明する入出力装置500は、検知ユニット10Uおよび検知ユ
ニット10Uの窓部14と重なる画素502の間に、着色膜を備える。
本実施の形態で説明する入出力装置500は、可視光を透過する窓部14を具備する検
知ユニット10Uを複数備える可撓性の入力装置100と、窓部14に重なる画素502
を複数備える可撓性の表示部501と、を有し、窓部14と画素502の間に着色膜を含
んで構成される。
これにより、入出力装置は容量の変化に基づく検知信号およびそれを供給する検知ユニ
ットの位置情報を供給すること、検知ユニットの位置情報と関連付けられた画像情報を表
示すること、ならびに曲げることができる。その結果、利便性または信頼性に優れた新規
な入出力装置を提供することができる。
また、入出力装置500は、入力装置100が供給する信号を供給されるフレキシブル
基板FPC1または/および画像情報を含む信号を表示部501に供給するフレキシブル
基板FPC2を備えていてもよい。
また、傷の発生を防いで入出力装置500を保護する保護膜17pまたは/および入出
力装置500が反射する外光の強度を弱める反射防止膜567pを備えていてもよい。
また、入出力装置500は、表示部501の操作線に選択信号を供給する走査線駆動回
路503g、信号を供給する配線511およびフレキシブル基板FPC2と電気的に接続
される端子519を有する。
以下に、入出力装置500を構成する個々の要素について説明する。なお、これらの構
成は明確に分離できず、一つの構成が他の構成を兼ねる場合や他の構成の一部を含む場合
がある。
例えば、複数の窓部14に重なる位置に着色膜を備える入力装置100は、入力装置1
00であるとともにカラーフィルタでもある。
また、例えば入力装置100が表示部501に重ねられた入出力装置500は、入力装
置100であるとともに表示部501でもある。
<全体の構成>
入出力装置500は、入力装置100と、表示部501と、を備える(図33(A)参
照)。
<入力装置100>
入力装置100は複数の検知ユニット10Uおよび検知ユニットを支持する可撓性の基
材16を備える。例えば、40行15列のマトリクス状に複数の検知ユニット10Uを可
撓性の基材16に配設する。
<窓部14、着色膜および遮光膜BM>
窓部14は可視光を透過する。
窓部14に重なる位置に所定の色の光を透過する着色膜を備える。例えば、青色の光を
透過する着色膜CFB、着色膜CFGまたは着色膜CFRを備える(図33(B)参照)
なお、青色、緑色または/および赤色に加えて、白色の光を透過する着色膜または黄色
の光を透過する着色膜などさまざまな色の光を透過する着色膜を備えることができる。
着色膜に金属材料、顔料または染料等を用いることができる。
窓部14を囲むように遮光膜BMを備える。遮光膜BMは窓部14より光を透過しにく
い。
カーボンブラック、金属酸化物、複数の金属酸化物の固溶体を含む複合酸化物等を遮光
膜BMに用いることができる。
遮光膜BMと重なる位置に走査線G1、信号線DL、配線VPI、配線RESおよび配
線VRESならびに検知回路19を備える。
なお、着色膜および遮光膜BMを覆う透光性のオーバーコート膜を備えることができる
<検知素子C>
検知素子Cは、第1の電極11、第2の電極12および第1の電極11と第2の電極1
2の間に絶縁膜13を有する(図34(A)参照)。
第1の電極11は他の領域から分離されるように、例えば島状に形成される。特に、入
出力装置500の使用者に第1の電極11が識別されないように、第1の電極11と同一
の工程で作製することができる層を第1の電極11に近接して配置する構成が好ましい。
より好ましくは、第1の電極11および第1の電極11に近接して配置する層の間隙に配
置する窓部14の数をできるだけ少なくするとよい。特に、当該間隙に窓部14を配置し
ない構成が好ましい。
第1の電極11と重なるように第2の電極12を備え、第1の電極11と第2の電極1
2の間に絶縁膜13を備える。
例えば、大気中に置かれた検知素子Cの第1の電極11または第2の電極12に、大気
と異なる誘電率を有するものが近づくと、検知素子Cの容量が変化する。具体的には、指
などのものが検知素子Cに近づくと、検知素子Cの容量が変化する。これにより、近接検
知器に用いることができる。
例えば、変形することができる検知素子Cの容量は、変形に伴い変化する。
具体的には、指などのものが検知素子Cに触れることにより、第1の電極11と第2の
電極12の間隔が狭くなると、検知素子Cの容量は大きくなる。これにより、接触検知器
に用いることができる。
具体的には、検知素子Cを折り曲げることにより、第1の電極11と第2の電極12の
間隔が狭くなる。これにより、検知素子Cの容量は大きくなる。これにより、屈曲検知器
に用いることができる。
第1の電極11および第2の電極12は、導電性の材料を含む。
例えば、無機導電性材料、有機導電性材料、金属または導電性セラミックスなどを第1
の電極11および第2の電極12に用いることができる。
具体的には、アルミニウム、クロム、銅、タンタル、チタン、モリブデン、タングステ
ン、ニッケル、銀またはマンガンから選ばれた金属元素、上述した金属元素を成分とする
合金または上述した金属元素を組み合わせた合金などを用いることができる。なお、光が
透過する厚さとすることが好ましい。
または、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガ
リウムを添加した酸化亜鉛などの導電性酸化物を用いることができる。
または、グラフェンまたはグラファイトを用いることができる。グラフェンを含む膜は
、例えば膜状に形成された酸化グラフェンを含む膜を還元して形成することができる。還
元する方法としては、熱を加える方法や還元剤を用いる方法等を挙げることができる。
または、導電性高分子を用いることができる。
<検知回路19>
検知回路19は例えばトランジスタM1乃至トランジスタM3を含む。また、検知回路
19は電源電位および信号を供給する配線を含む。例えば、信号線DL、配線VPI、配
線CS、走査線G1、配線RES、配線VRESなどを含む。なお、検知回路19の具体
的な構成は実施の形態9で詳細に説明する。
なお、検知回路19を窓部14と重ならない領域に配置してもよい。例えば、窓部14
と重ならない領域に配線を配置することにより、入力装置100の一方の側から他方の側
にあるものを視認し易くできる。
例えば、同一の工程で形成することができるトランジスタをトランジスタM1乃至トラ
ンジスタM3に用いることができる。
トランジスタM1は半導体膜を有する。例えば、4族の元素、化合物半導体または酸化
物半導体を半導体膜に用いることができる。具体的には、シリコンを含む半導体、ガリウ
ムヒ素を含む半導体またはインジウムを含む酸化物半導体などを適用できる。また、トラ
ンジスタM1は、先の実施の形態で説明したトランジスタを適宜用いることができる。
導電性を有する材料を配線に適用できる。
例えば、無機導電性材料、有機導電性材料、金属または導電性セラミックスなどを配線
に用いることができる。具体的には、第1の電極11および第2の電極12に用いること
ができる材料と同一の材料を適用できる。
アルミニウム、金、白金、銀、ニッケル、チタン、タングステン、クロム、モリブデン
、鉄、コバルト、銅、またはパラジウム等の金属材料や、該金属材料を含む合金材料を走
査線G1、信号線DL、配線VPI、配線RESおよび配線VRESに用いることができ
る。
基材16に形成した膜を加工して、基材16に検知回路19を形成してもよい。
または、他の基材に形成された検知回路19を基材16に転置してもよい。
<基材16>
有機材料、無機材料または有機材料と無機材料の複合材料を可撓性の基材16に用いる
ことができる。
5μm以上2500μm以下、好ましくは5μm以上680μm以下、より好ましくは
5μm以上170μm以下、より好ましくは5μm以上45μm以下、より好ましくは8
μm以上25μm以下の厚さを有する材料を、基材16に用いることができる。
また、不純物の透過が抑制された材料を基材16に好適に用いることができる。例えば
、水蒸気の透過率が10−5g/(m・day)以下、好ましくは10−6g/(m
・day)以下である材料を好適に用いることができる。
また、線膨張率がおよそ等しい材料を基材16および基材510に好適に用いることが
できる。例えば、線膨張率が1×10−3/K以下、好ましくは5×10−5/K以下、
より好ましくは1×10−5/K以下である材料を好適に用いることができる。
例えば、樹脂、樹脂フィルムまたはプラスチックフィルム等の有機材料を、基材16に
用いることができる。
例えば、金属板または厚さ10μm以上50μm以下の薄板状のガラス板等の無機材料
を、基材16に用いることができる。
例えば、金属板、薄板状のガラス板または無機材料の膜を、樹脂膜を用いて樹脂フィル
ム等に貼り合せて形成された複合材料を、基材16に用いることができる。
例えば、繊維状または粒子状の金属、ガラスもしくは無機材料を樹脂または樹脂フィル
ムに分散した複合材料を、基材16に用いることができる。
例えば、熱硬化性樹脂や紫外線硬化樹脂を樹脂膜に用いることができる。
具体的には、ポリエステル、ポリオレフィン、ポリアミド、ポリイミド、ポリカーボネ
ート若しくはアクリル樹脂等の樹脂フィルムまたは樹脂板を用いることができる。
具体的には、無アルカリガラス、ソーダ石灰ガラス、カリガラス若しくはクリスタルガ
ラス等を用いることができる。
具体的には、金属酸化物膜、金属窒化物膜若しくは金属酸窒化物膜等を用いることがで
きる。例えば、酸化シリコン、窒化シリコン、酸窒化シリコン、アルミナ膜等を適用でき
る。
具体的には、開口部が設けられたSUSまたはアルミニウム等を用いることができる。
具体的には、アクリル、ウレタン、エポキシ、またはシロキサン結合を有する樹脂など
の樹脂を用いることができる。
例えば、可撓性を有する基材16bと、不純物の拡散を防ぐバリア膜16aと、基材1
6bおよびバリア膜16aを貼り合わせる樹脂膜16cと、が積層された積層体を基材1
6に好適に用いることができる(図34(A)参照)。
具体的には、600nmの酸化窒化シリコン膜および厚さ200nmの窒化シリコン膜
が積層された積層材料を含む膜を、バリア膜16aに用いることができる。
具体的には、厚さ600nmの酸化窒化シリコン膜、厚さ200nmの窒化シリコン膜
、厚さ200nmの酸化窒化シリコン膜、厚さ140nmの窒化酸化シリコン膜および厚
さ100nmの酸化窒化シリコン膜がこの順に積層された積層材料を含む膜を、バリア膜
16aに用いることができる。
ポリエステル、ポリオレフィン、ポリアミド、ポリイミド、ポリカーボネート若しくは
アクリル樹脂等の樹脂フィルム、樹脂板または積層体等を基材16bに用いることができ
る。
例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミド等)、ポリ
イミド、ポリカーボネートまたはアクリル、ウレタン、エポキシもしくはシロキサン結合
を有する樹脂を含む材料を樹脂膜16cに用いることができる。
<保護基材17、保護膜17p>
可撓性の保護基材17または/および保護膜17pを備えることができる。可撓性の保
護基材17または保護膜17pは傷の発生を防いで入力装置100を保護する。
例えば、ポリエステル、ポリオレフィン、ポリアミド、ポリイミド、ポリカーボネート
若しくはアクリル樹脂等の樹脂フィルム、樹脂板または積層体等を保護基材17に用いる
ことができる。
例えば、ハードコート層またはセラミックコート層を保護膜17pに用いることができ
る。具体的には、UV硬化樹脂または酸化アルミニウムを含む層を第2の電極に重なる位
置に形成してもよい。
<表示部501>
表示部501は、マトリクス状に配置された複数の画素502を備える(図33(C)
参照)。
例えば、画素502は副画素502B、副画素502Gおよび副画素502Rを含み、
それぞれの副画素は表示素子と表示素子を駆動する画素回路を備える。
なお、画素502の副画素502Bは着色膜CFBと重なる位置に配置され、副画素5
02Gは着色膜CFGと重なる位置に配置され、副画素502Rは着色膜CFRと重なる
位置に配置される。
本実施の形態では、白色の光を射出する有機エレクトロルミネッセンス素子を表示素子
に適用する場合について説明するが、表示素子はこれに限られない。
例えば、副画素毎に射出する光の色が異なるように、発光色が異なる有機エレクトロル
ミネッセンス素子を副画素毎に適用してもよい。
また、有機エレクトロルミネッセンス素子の他、電気泳動方式やエレクトロウェッティ
ング方式などにより表示を行う表示素子(電子インクともいう)、シャッター方式のME
MS表示素子、光干渉方式のMEMS表示素子、液晶素子など、様々な表示素子を表示素
子に用いることができる。
また液晶素子は、透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶デ
ィスプレイ、直視型液晶ディスプレイなどにも適用できる。なお、半透過型液晶ディスプ
レイや反射型液晶ディスプレイを実現する場合には、画素電極の一部、または、全部が、
反射電極としての機能を有するようにすればよい。例えば、画素電極の一部、または、全
部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極
の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費
電力を低減することができる。また、適用する表示素子に好適な構成を様々な画素回路か
ら選択して用いることができる。
また、表示部において、画素に能動素子を有するアクティブマトリクス方式、または、
画素に能動素子を有しないパッシブマトリクス方式を用いることが出来る。
アクティブマトリクス方式では、能動素子(アクティブ素子、非線形素子)として、ト
ランジスタだけでなく、さまざまな能動素子(アクティブ素子、非線形素子)を用いるこ
とが出来る。例えば、MIM(Metal Insulator Metal)、または
TFD(Thin Film Diode)などを用いることも可能である。これらの素
子は、製造工程が少ないため、製造コストの低減、または歩留まりの向上を図ることがで
きる。または、これらの素子は、素子のサイズが小さいため、開口率を向上させることが
でき、低消費電力化や高輝度化をはかることが出来る。
アクティブマトリクス方式以外のものとして、能動素子(アクティブ素子、非線形素子
)を用いないパッシブマトリクス型を用いることも可能である。能動素子(アクティブ素
子、非線形素子)を用いないため、製造工程が少ないため、製造コストの低減、または歩
留まりの向上を図ることができる。または、能動素子(アクティブ素子、非線形素子)を
用いないため、開口率を向上させることができ、低消費電力化、または高輝度化などを図
ることが出来る。
<基材510>
可撓性を有する材料を基材510に用いることができる。例えば、基材16に用いるこ
とができる材料を基材510に適用することができる。
例えば、可撓性を有する基材510bと、不純物の拡散を防ぐバリア膜510aと、基
材510bおよびバリア膜510aを貼り合わせる樹脂膜510cと、が積層された積層
体を基材510に好適に用いることができる(図34(A)参照)。
<封止材560>
封止材560は基材16と基材510を貼り合わせる。封止材560は空気より大きい
屈折率を備える。また、封止材560側に光を取り出す場合は、封止材560は封止材5
60と接する層との屈折率段差を低減することができる。
画素回路および発光素子(例えば発光素子550R)は基材510と基材16の間にあ
る。
<画素の構成>
副画素502Rは発光モジュール580Rを備える。
副画素502Rは、発光素子550Rおよび発光素子550Rに電力を供給することが
できるトランジスタ502tを含む画素回路を備える。また、発光モジュール580Rは
発光素子550Rおよび光学素子(例えば着色膜CFR)を備える。
発光素子550Rは、下部電極、上部電極、下部電極と上部電極の間に発光性の有機化
合物を含む層を有する。
発光モジュール580Rは、光を取り出す方向に着色膜CFRを有する。着色膜は特定
の波長を有する光を透過するものであればよく、例えば赤色、緑色または青色等を呈する
光を選択的に透過するものを用いることができる。なお、他の副画素を着色膜が設けられ
ていない窓部に重なるように配置して、着色膜を透過しないで発光素子の発する光を射出
させてもよい。
また、封止材560が光を取り出す側に設けられている場合、封止材560は、発光素
子550Rと着色膜CFRに接する。
着色膜CFRは発光素子550Rと重なる位置にある。これにより、発光素子550R
が発する光の一部は着色膜CFRを透過して、図中に示す矢印の方向の発光モジュール5
80Rの外部に射出される。
着色膜(例えば着色膜CFR)を囲むように遮光膜BMがある。
<画素回路の構成>
画素回路に含まれるトランジスタ502tを覆う絶縁膜521を備える。絶縁膜521
は画素回路に起因する凹凸を平坦化するための膜として用いることができる。また、不純
物の拡散を抑制できる層を含む積層膜を、絶縁膜521に適用することができる。これに
より、不純物の拡散によるトランジスタ502t等の信頼性の低下を抑制できる。
絶縁膜521の上に下部電極が配置され、下部電極の端部に重なるように隔壁528が
絶縁膜521の上に配設される。
下部電極は、上部電極との間に発光性の有機化合物を含む層を挟持して発光素子(例え
ば発光素子550R)を構成する。画素回路は発光素子に電力を供給する。
また、隔壁528上に、基材16と基材510の間隔を制御するスペーサを有する。
<走査線駆動回路の構成>
走査線駆動回路503g(1)は、トランジスタ503tおよび容量503cを含む。
なお、画素回路と同一の工程で同一基板上に形成することができるトランジスタを駆動回
路に用いることができる。
<変換器CONV>
検知ユニット10Uが供給する検知信号DATAを変換してフレキシブル基板FPC1
に供給することができるさまざまな回路を、変換器CONVに用いることができる(図3
3(A)および図34(A)参照)。
例えば、トランジスタM4を変換器CONVに用いることができる。
<他の構成>
表示部501は、反射防止膜567pを画素に重なる位置に備える。反射防止膜567
pとして、例えば円偏光板を用いることができる。
表示部501は、信号を供給することができる配線511を備え、端子519が配線5
11に設けられている。なお、画像信号および同期信号等の信号を供給することができる
フレキシブル基板FPC2が端子519に電気的に接続されている。
なお、フレキシブル基板FPC2にはプリント配線基板(PWB)が取り付けられてい
ても良い。
表示部501は、走査線、信号線および電源線等の配線を有する。様々な導電膜を配線
に用いることができる。
具体的には、アルミニウム、クロム、銅、タンタル、チタン、モリブデン、タングステ
ン、ニッケル、イットリウム、ジルコニウム、銀またはマンガンから選ばれた金属元素、
上述した金属元素を成分とする合金または上述した金属元素を組み合わせた合金等を用い
ることができる。とくに、アルミニウム、クロム、銅、タンタル、チタン、モリブデン、
タングステンの中から選択される一以上の元素を含むと好ましい。特に、銅とマンガンの
合金がウエットエッチング法を用いた微細加工に好適である。
または、アルミニウム膜上にチタン、タンタル、タングステン、モリブデン、クロム、
ネオジム、スカンジウムから選ばれた一または複数を組み合わせた合金膜、もしくは窒化
膜を積層する積層構造を用いることができる。
具体的には、アルミニウム膜上にチタン膜を積層する二層構造、窒化チタン膜上にチタ
ン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タ
ンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構造、チタン膜と
、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を形成する三層構
造等を用いることができる。
また、酸化インジウム、酸化錫または酸化亜鉛を含む透光性を有する導電材料を用いて
もよい。
<表示部の変形例>
様々なトランジスタを表示部501に適用できる。
ボトムゲート型のトランジスタを表示部501に適用する場合の構成を図34(A)お
よび図34(B)に図示する。
例えば、酸化物半導体、アモルファスシリコン等を含む半導体膜を図34(A)に図示
するトランジスタ502tおよびトランジスタ503tに適用することができる。
トップゲート型のトランジスタを表示部501に適用する場合の構成を、図34(C)
に図示する。
例えば、多結晶シリコンまたは単結晶シリコン基板等から転置された単結晶シリコン膜
等を含む半導体膜を、図34(C)に図示するトランジスタ502tおよびトランジスタ
503tに適用することができる。または、先の実施の形態に示すトランジスタをトラン
ジスタ502tおよびトランジスタ503tに用いることができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができ
る。
(実施の形態9)
本実施の形態では、本発明の一態様の入出力装置の検知ユニットに用いることができる
検知回路の構成および駆動方法について、図35を参照しながら説明する。
図35は本発明の一態様の検知回路19および変換器CONVの構成および駆動方法を
説明する図である。
図35(A)は本発明の一態様の検知回路19および変換器CONVの構成を説明する
回路図であり、図35(B−1)および図35(B−2)は駆動方法を説明するタイミン
グチャートである。
本発明の一態様の検知回路19は、ゲートが検知素子Cの第1の電極11と電気的に接
続され、第1の電極が例えば接地電位を供給することができる配線VPIと電気的に接続
される第1のトランジスタM1を備える(図35(A)参照)。
また、ゲートが選択信号を供給することができる走査線G1と電気的に接続され、第1
の電極が第1のトランジスタM1の第2の電極と電気的に接続され、第2の電極が例えば
検知信号DATAを供給することができる信号線DLと電気的に接続される第2のトラン
ジスタM2を備える構成であってもよい。
また、ゲートがリセット信号を供給することができる配線RESと電気的に接続され、
第1の電極が検知素子Cの第1の電極11と電気的に接続され、第2の電極が例えば接地
電位を供給することができる配線VRESと電気的に接続される第3のトランジスタM3
を備える構成であってもよい。
検知素子Cの容量は、例えば、第1の電極11または第2の電極12にものが近接する
こと、もしくは第1の電極11および第2の電極12の間隔が変化することにより変化す
る。これにより、検知回路19は検知素子Cの容量の変化に基づく検知信号DATAを供
給することができる。
なお、検知素子Cの第1の電極11、第1のトランジスタM1のゲートおよび第3のト
ランジスタの第1の電極が電気的に接続される結節部をノードAという。
配線VRESおよび配線VPIは例えば接地電位を供給することができ、配線VPOお
よび配線BRは例えば高電源電位を供給することができる。
また、配線RESはリセット信号を供給することができ、走査線G1は選択信号を供給
することができ、配線CSは検知素子の第2の電極12の電位を制御する制御信号を供給
することができる。
また、信号線DLは検知信号DATAを供給することができ、端子OUTは検知信号D
ATAに基づいて変換された信号を供給することができる。
なお、検知信号DATAを変換して端子OUTに供給することができるさまざまな回路
を、変換器CONVに用いることができる。例えば、変換器CONVを検知回路19と電
気的に接続することにより、ソースフォロワ回路またはカレントミラー回路などが構成さ
れるようにしてもよい。
具体的には、トランジスタM4を用いた変換器CONVを用いて、ソースフォロワ回路
を構成できる(図35(A)参照)。なお、第1のトランジスタM1乃至第3のトランジ
スタM3と同一の工程で作製することができるトランジスタをトランジスタM4に用いて
もよい。
また、トランジスタM1乃至トランジスタM3は半導体膜を有する。例えば、4族の元
素、化合物半導体または酸化物半導体を半導体膜に用いることができる。具体的には、シ
リコンを含む半導体、ガリウムヒ素を含む半導体またはインジウムを含む酸化物半導体な
どを適用できる。また、トランジスタM1乃至トランジスタM3として、先の実施の形態
に示すトランジスタを用いることができる。
<検知回路19の駆動方法>
検知回路19の駆動方法について説明する。
<第1のステップ>
第1のステップにおいて、第3のトランジスタを導通状態にした後に非導通状態にする
リセット信号をゲートに供給し、検知素子Cの第1の電極の電位を所定の電位にする(図
35(B−1)期間T1参照)。
具体的には、リセット信号を配線RESに供給させる。リセット信号が供給された第3
のトランジスタは、ノードAの電位を例えば接地電位にする(図35(A)参照)。
<第2のステップ>
第2のステップにおいて、第2のトランジスタM2を導通状態にする選択信号をゲート
に供給し、第1のトランジスタの第2の電極を信号線DLに電気的に接続する。
具体的には、走査線G1に選択信号を供給させる。選択信号が供給された第2のトラン
ジスタM2は、第1のトランジスタの第2の電極を信号線DLに電気的に接続する(図3
5(B−1)期間T2参照)。
<第3のステップ>
第3のステップにおいて、制御信号を検知素子の第2の電極に供給し、制御信号および
検知素子Cの容量に基づいて変化する電位を第1のトランジスタM1のゲートに供給する
具体的には、配線CSに矩形の制御信号を供給させる。矩形の制御信号を第2の電極1
2に供給された検知素子Cでは、検知素子Cの容量に基づいてノードAの電位が上昇する
(図35(B−1)期間T2の後半を参照)。
例えば、検知素子が大気中に置かれている場合、大気より誘電率の高いものが、検知素
子Cの第2の電極12に近接して配置された場合、検知素子Cの容量は見かけ上大きくな
る。
これにより、矩形の制御信号がもたらすノードAの電位の変化は、大気より誘電率の高
いものが近接して配置されていない場合に比べて小さくなる(図35(B−2)実線参照
)。
<第4のステップ>
第4のステップにおいて、第1のトランジスタM1のゲートの電位の変化がもたらす信
号を信号線DLに供給する。
例えば、第1のトランジスタM1のゲートの電位の変化がもたらす電流の変化を信号線
DLに供給する。
変換器CONVは、信号線DLを流れる電流の変化を電圧の変化に変換して供給する。
<第5のステップ>
第5のステップにおいて、第2のトランジスタを非導通状態にする選択信号をゲートに
供給する。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができ
る。
(実施の形態10)
本実施の形態では、本発明の一態様の半導体装置を用いることができる電子機器につい
て、図36を用いて説明を行う。
図36(A)乃至図36(D)は、電子機器を示す図である。これらの電子機器は、筐
体600、表示部601、スピーカ603、LEDランプ604、操作キー605(電源
スイッチ、または操作スイッチを含む)、接続端子606、センサ607(力、変位、位
置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間
、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外
線を測定する機能を含むもの)、マイクロフォン608、等を有することができる。
図36(A)はモバイルコンピュータであり、上述したものの他に、スイッチ609、
赤外線ポート620、等を有することができる。図36(B)は記録媒体を備えた携帯型
の画像再生装置(たとえば、DVD再生装置)であり、上述したものの他に、第2表示部
602、記録媒体読込部621、等を有することができる。図36(C)はテレビ受像器
であり、上述したものの他に、チューナ、画像処理部、等を有することができる。図36
(D)は持ち運び型テレビ受像器であり、上述したものの他に、信号の送受信が可能な充
電器627等を有することができる。
図36(E)乃至図36(G)に、折りたたみ可能な携帯情報端末610を示す。図3
6(E)に展開した状態の携帯情報端末610を示す。図36(F)に展開した状態また
は折りたたんだ状態の一方から他方に変化する途中の状態の携帯情報端末610を示す。
図36(G)に折りたたんだ状態の携帯情報端末610を示す。携帯情報端末610は、
折りたたんだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域によ
り表示の一覧性に優れる。
表示部612はヒンジ613によって連結された3つの筐体615に支持されている。
ヒンジ613を介して2つの筐体615間を屈曲させることにより、携帯情報端末610
を展開した状態から折りたたんだ状態に可逆的に変形させることができる。本発明の一態
様を適用して作製された表示装置を表示部612に用いることができる。例えば、曲率半
径1mm以上150mm以下で曲げることができる表示装置を適用できる。
図36(A)乃至図36(G)に示す電子機器は、様々な機能を有することができる。
例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッ
チパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(
プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々な
コンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信ま
たは受信を行う機能、記録媒体に記録されているプログラムまたはデータを読み出して表
示部に表示する機能、等を有することができる。さらに、複数の表示部を有する電子機器
においては、一つの表示部を主として画像情報を表示し、別の一つの表示部を主として文
字情報を表示する機能、または、複数の表示部に視差を考慮した画像を表示することで立
体的な画像を表示する機能、等を有することができる。さらに、受像部を有する電子機器
においては、静止画を撮影する機能、動画を撮影する機能、撮影した画像を自動または手
動で補正する機能、撮影した画像を記録媒体(外部またはカメラに内蔵)に保存する機能
、撮影した画像を表示部に表示する機能、等を有することができる。なお、図36(A)
乃至図36(G)に示す電子機器が有することのできる機能はこれらに限定されず、様々
な機能を有することができる。
本実施の形態において述べた電子機器は、何らかの情報を表示するための表示部を有す
ることを特徴とする。なお、本発明の一態様の半導体装置は、表示部を有さない電子機器
にも適用することができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いること
ができる。
なお、明細書の中の図面や文章において規定されていない内容について、その内容を除
くことを規定した発明の一態様を構成することが出来る。または、ある値について、上限
値と下限値などで示される数値範囲が記載されている場合、その範囲を任意に狭めること
で、または、その範囲の中の一点を除くことで、その範囲を一部除いた発明の一態様を規
定することができる。これらにより、例えば、従来技術が本発明の一態様の技術的範囲内
に入らないことを規定することができる。
具体例としては、ある回路において、第1乃至第5のトランジスタを用いている回路図
が記載されているとする。その場合、その回路が、第6のトランジスタを有していないこ
とを発明として規定することが可能である。または、その回路が、容量素子を有していな
いことを規定することが可能である。さらに、その回路が、ある特定の接続構造をとって
いるような第6のトランジスタを有していない、と規定して発明を構成することができる
。または、その回路が、ある特定の接続構造をとっている容量素子を有していない、と規
定して発明を構成することができる。例えば、ゲートが第3のトランジスタのゲートと接
続されている第6のトランジスタを有していない、と発明を規定することが可能である。
または、例えば、第1の電極が第3のトランジスタのゲートと接続されている容量素子を
有していない、と発明を規定することが可能である。
別の具体例としては、ある値について、例えば、「ある電圧が、3V以上10V以下で
あることが好適である」と記載されているとする。その場合、例えば、ある電圧が、−2
V以上1V以下である場合を除く、と発明の一態様を規定することが可能である。または
、例えば、ある電圧が、13V以上である場合を除く、と発明の一態様を規定することが
可能である。なお、例えば、その電圧が、5V以上8V以下であると発明を規定すること
も可能である。なお、例えば、その電圧が、概略9Vであると発明を規定することも可能
である。なお、例えば、その電圧が、3V以上10V以下であるが、9Vである場合を除
くと発明を規定することも可能である。なお、ある値について、「このような範囲である
ことが好ましい」、「これらを満たすことが好適である」となどと記載されていたとして
も、ある値は、それらの記載に限定されない。つまり、「好ましい」、「好適である」な
どと記載されていたとしても、必ずしも、それらの記載には、限定されない。
別の具体例としては、ある値について、例えば、「ある電圧が、10Vであることが好
適である」と記載されているとする。その場合、例えば、ある電圧が、−2V以上1V以
下である場合を除く、と発明の一態様を規定することが可能である。または、例えば、あ
る電圧が、13V以上である場合を除く、と発明の一態様を規定することが可能である。
別の具体例としては、ある物質の性質について、例えば、「ある膜は、絶縁膜である」
と記載されているとする。その場合、例えば、その絶縁膜が、有機絶縁膜である場合を除
く、と発明の一態様を規定することが可能である。または、例えば、その絶縁膜が、無機
絶縁膜である場合を除く、と発明の一態様を規定することが可能である。または、例えば
、その膜が、導電膜である場合を除く、と発明の一態様を規定することが可能である。ま
たは、例えば、その膜が、半導体膜である場合を除く、と発明の一態様を規定することが
可能である。
別の具体例としては、ある積層構造について、例えば、「A膜とB膜との間に、ある膜
が設けられている」と記載されているとする。その場合、例えば、その膜が、4層以上の
積層膜である場合を除く、と発明を規定することが可能である。または、例えば、A膜と
その膜との間に、導電膜が設けられている場合を除く、と発明を規定することが可能であ
る。
なお、本明細書等において記載されている発明の一態様は、さまざまな人が実施するこ
とが出来る。しかしながら、その実施は、複数の人にまたがって実施される場合がある。
例えば、送受信システムの場合において、A社が送信機を製造および販売し、B社が受信
機を製造および販売する場合がある。別の例としては、トランジスタおよび発光素子を有
する発光装置の場合において、トランジスタが形成された半導体装置は、A社が製造およ
び販売する。そして、B社がその半導体装置を購入して、その半導体装置に発光素子を成
膜して、発光装置として完成させる、という場合がある。
このような場合、A社またはB社のいずれに対しても、特許侵害を主張できるような発
明の一態様を、構成することが出来る。つまり、A社のみが実施するような発明の一態様
を構成することが可能であり、別の発明の一態様として、B社のみが実施するような発明
の一態様を構成することが可能である。また、A社またはB社に対して、特許侵害を主張
できるような発明の一態様は、明確であり、本明細書等に記載されていると判断する事が
出来る。例えば、送受信システムの場合において、送信機のみの場合の記載や、受信機の
みの場合の記載が本明細書等になかったとしても、送信機のみで発明の一態様を構成する
ことができ、受信機のみで別の発明の一態様を構成することができ、それらの発明の一態
様は、明確であり、本明細書等に記載されていると判断することが出来る。別の例として
は、トランジスタおよび発光素子を有する発光装置の場合において、トランジスタが形成
された半導体装置のみの場合の記載や、発光素子を有する発光装置のみの場合の記載が本
明細書等になかったとしても、トランジスタが形成された半導体装置のみで発明の一態様
を構成することができ、発光素子を有する発光装置のみで発明の一態様を構成することが
でき、それらの発明の一態様は、明確であり、本明細書等に記載されていると判断するこ
とが出来る。
なお、本明細書等においては、能動素子(トランジスタ、ダイオードなど)、受動素子
(容量素子、抵抗素子など)などが有するすべての端子について、その接続先を特定しな
くても、当業者であれば、発明の一態様を構成することは可能な場合がある。つまり、接
続先を特定しなくても、発明の一態様が明確であると言える。そして、接続先が特定され
た内容が、本明細書等に記載されている場合、接続先を特定しない発明の一態様が、本明
細書等に記載されていると判断することが可能な場合がある。特に、端子の接続先が複数
のケース考えられる場合には、その端子の接続先を特定の箇所に限定する必要はない。し
たがって、能動素子(トランジスタ、ダイオードなど)、受動素子(容量素子、抵抗素子
など)などが有する一部の端子についてのみ、その接続先を特定することによって、発明
の一態様を構成することが可能な場合がある。
なお、本明細書等においては、ある回路について、少なくとも接続先を特定すれば、当
業者であれば、発明を特定することが可能な場合がある。または、ある回路について、少
なくとも機能を特定すれば、当業者であれば、発明を特定することが可能な場合がある。
つまり、機能を特定すれば、発明の一態様が明確であると言える。そして、機能が特定さ
れた発明の一態様が、本明細書等に記載されていると判断することが可能な場合がある。
したがって、ある回路について、機能を特定しなくても、接続先を特定すれば、発明の一
態様として開示されているものであり、発明の一態様を構成することが可能である。また
は、ある回路について、接続先を特定しなくても、機能を特定すれば、発明の一態様とし
て開示されているものであり、発明の一態様を構成することが可能である。
なお、本明細書等においては、ある一つの実施の形態において述べる図または文章にお
いて、その一部分を取り出して、発明の一態様を構成することは可能である。したがって
、ある部分を述べる図または文章が記載されている場合、その一部分の図または文章を取
り出した内容も、発明の一態様として開示されているものであり、発明の一態様を構成す
ることが可能であるものとする。そして、その発明の一態様は明確であると言える。その
ため、例えば、能動素子(トランジスタ、ダイオードなど)、配線、受動素子(容量素子
、抵抗素子など)、導電膜、絶縁膜、半導体膜、有機材料、無機材料、部品、装置、動作
方法、製造方法などが単数もしくは複数記載された図面または文章において、その一部分
を取り出して、発明の一態様を構成することが可能であるものとする。例えば、N個(N
は整数)の回路素子(トランジスタ、容量素子等)を有して構成される回路図から、M個
(Mは整数で、M<N)の回路素子(トランジスタ、容量素子等)を抜き出して、発明の
一態様を構成することは可能である。別の例としては、N個(Nは整数)の層を有して構
成される断面図から、M個(Mは整数で、M<N)の層を抜き出して、発明の一態様を構
成することは可能である。さらに別の例としては、N個(Nは整数)の要素を有して構成
されるフローチャートから、M個(Mは整数で、M<N)の要素を抜き出して、発明の一
態様を構成することは可能である。さらに別の例としては、「Aは、B、C、D、E、ま
たは、Fを有する」と記載されている文章から、一部の要素を任意に抜き出して、「Aは
、BとEとを有する」、「Aは、EとFとを有する」、「Aは、CとEとFとを有する」
、または、「Aは、BとCとDとEとを有する」などの発明の一態様を構成することは可
能である。
なお、本明細書等においては、ある一つの実施の形態において述べる図または文章にお
いて、少なくとも一つの具体例が記載される場合、その具体例の上位概念を導き出すこと
は、当業者であれば容易に理解される。したがって、ある一つの実施の形態において述べ
る図または文章において、少なくとも一つの具体例が記載される場合、その具体例の上位
概念も、発明の一態様として開示されているものであり、発明の一態様を構成することが
可能である。そして、その発明の一態様は、明確であると言える。
なお、本明細書等においては、少なくとも図に記載した内容(図の中の一部でもよい)
は、発明の一態様として開示されているものであり、発明の一態様を構成することが可能
である。したがって、ある内容について、図に記載されていれば、文章を用いて述べてい
なくても、その内容は、発明の一態様として開示されているものであり、発明の一態様を
構成することが可能である。同様に、図の一部を取り出した図についても、発明の一態様
として開示されているものであり、発明の一態様を構成することが可能である。そして、
その発明の一態様は明確であると言える。
10U 検知ユニット
11 電極
12 電極
13 絶縁膜
14 窓部
16 基材
16a バリア膜
16b 基材
16c 樹脂膜
17 保護基材
17p 保護膜
19 検知回路
20 観察室
22 フィルム室
24 電子
28 物質
32 蛍光板
40 電子銃室
42 光学系
44 試料室
46 光学系
48 カメラ
51 基板
53 絶縁膜
54 酸化物半導体膜
55 酸化物半導体膜
55_1 酸化物半導体膜
55_2 酸化物半導体膜
55_2a 領域
55_2b 領域
55_2c 領域
55_3 酸化物半導体膜
55_3a 領域
55_3b 領域
55_3c 領域
55a 領域
55b 領域
55c 領域
56 絶縁膜
56a 絶縁膜
56b 絶縁膜
57 ゲート絶縁膜
57a 絶縁膜
57b 絶縁膜
59 ゲート電極
59a 導電膜
59b 導電膜
60 ゲート電極
62 不純物元素
64 絶縁膜
65 絶縁膜
66 絶縁膜
67 絶縁膜
68 導電膜
69 導電膜
71 領域
71a 領域
71b 領域
71c 領域
73 ゲート電極
77 導電膜
79 絶縁膜
100 入力装置
500 入出力装置
501 表示部
502 画素
502B 副画素
502G 副画素
502R 副画素
502t トランジスタ
503c 容量
503g 走査線駆動回路
503t トランジスタ
510 基材
510a バリア膜
510b 基材
510c 樹脂膜
511 配線
519 端子
521 絶縁膜
528 隔壁
550R 発光素子
560 封止材
567p 反射防止膜
580R 発光モジュール
600 筐体
601 表示部
602 表示部
603 スピーカ
604 LEDランプ
605 操作キー
606 接続端子
607 センサ
608 マイクロフォン
609 スイッチ
610 携帯情報端末
612 表示部
613 ヒンジ
615 筐体
620 赤外線ポート
621 記録媒体読込部
627 充電器
5100 ペレット
5100a ペレット
5100b ペレット
5101 イオン
5120 基板
5130 ターゲット

Claims (8)

  1. 基板上の酸化物半導体膜と、
    前記酸化物半導体膜上のゲート絶縁膜と、
    前記ゲート絶縁膜上のゲート電極と、を有し、
    前記酸化物半導体膜は、チャネル領域と、前記チャネル領域を挟むソース領域及びドレイン領域と、を有し、
    前記酸化物半導体膜のチャネル長方向において、前記ゲート絶縁膜の幅は、前記ゲート電極の幅より内側に位置する領域を有し、
    前記ゲート電極は、前記ソース領域と重なる領域と、前記ドレイン領域と重なる領域と、を有することを特徴とする半導体装置。
  2. 請求項1において、
    前記ゲート絶縁膜は、前記ソース領域と接する領域と、前記ドレイン領域と接する領域と、を有することを特徴とする半導体装置。
  3. 請求項1または請求項2において、
    前記ソース領域と接する領域における前記ゲート絶縁膜の厚さ、及び前記ドレイン領域と接する領域における前記ゲート絶縁膜の厚さの各々は、10nm以上30nm以下であることを特徴する半導体装置。
  4. 基板上の酸化物半導体膜と、
    前記酸化物半導体膜上の第1の絶縁膜と、
    前記第1の絶縁膜上の第2の絶縁膜と、
    前記第2の絶縁膜上のゲート電極と、を有し、
    前記酸化物半導体膜は、チャネル領域と、前記チャネル領域を挟むソース領域及びドレイン領域と、を有し、
    前記第1の絶縁膜は、酸素を含み、
    前記第2の絶縁膜は、窒素を含み、
    前記第1の絶縁膜は、前記ソース領域と接する領域と、前記ドレイン領域と接する領域と、を有し、
    前記酸化物半導体膜のチャネル長方向において、前記第2の絶縁膜の幅は、前記ゲート電極の幅より内側に位置する領域を有し、
    前記ゲート電極は、前記ソース領域と重なる領域と、前記ドレイン領域と重なる領域と、を有することを特徴とする半導体装置。
  5. 請求項4において、
    前記第1の絶縁膜の厚さは、10nm以上30nm以下であることを特徴する半導体装置。
  6. 請求項1乃至請求項5のいずれか一項において、
    前記ソース領域及び前記ドレイン領域の各々は、水素を含む絶縁膜と接する領域を有することを特徴とする半導体装置。
  7. 請求項6において、
    前記水素を含む絶縁膜は、窒化物絶縁膜であることを特徴とする半導体装置。
  8. 請求項1乃至請求項7のいずれか一項において、
    前記ゲート電極は、前記ゲート絶縁膜上に接する第1の導電膜と、前記第1の導電膜上に接する第2の導電膜と、を有し、
    前記第1の導電膜の幅は、前記第2の導電膜の幅より大きいことを特徴とする半導体装置。
JP2019161649A 2014-03-07 2019-09-05 半導体装置 Withdrawn JP2020074360A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014045365 2014-03-07
JP2014045365 2014-03-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015041341A Division JP6585354B2 (ja) 2014-03-07 2015-03-03 半導体装置

Publications (1)

Publication Number Publication Date
JP2020074360A true JP2020074360A (ja) 2020-05-14

Family

ID=54018227

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015041341A Expired - Fee Related JP6585354B2 (ja) 2014-03-07 2015-03-03 半導体装置
JP2019161649A Withdrawn JP2020074360A (ja) 2014-03-07 2019-09-05 半導体装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015041341A Expired - Fee Related JP6585354B2 (ja) 2014-03-07 2015-03-03 半導体装置

Country Status (2)

Country Link
US (2) US9634150B2 (ja)
JP (2) JP6585354B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673426B2 (en) * 2011-06-29 2014-03-18 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, method of manufacturing the driver circuit, and display device including the driver circuit
US8969154B2 (en) * 2011-08-23 2015-03-03 Micron Technology, Inc. Methods for fabricating semiconductor device structures and arrays of vertical transistor devices
JP6585354B2 (ja) * 2014-03-07 2019-10-02 株式会社半導体エネルギー研究所 半導体装置
JP6851166B2 (ja) 2015-10-12 2021-03-31 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP6662038B2 (ja) * 2015-12-28 2020-03-11 株式会社リコー 電界効果型トランジスタ及びその製造方法、表示素子、表示装置、システム
JP6561366B2 (ja) * 2016-03-16 2019-08-21 株式会社Joled 半導体装置とその製造方法
TWI726026B (zh) * 2016-06-27 2021-05-01 日商半導體能源硏究所股份有限公司 電晶體以及半導體裝置
KR20180066848A (ko) 2016-12-09 2018-06-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 및 반도체 장치의 제작 방법
JP7315136B2 (ja) * 2018-12-26 2023-07-26 株式会社Flosfia 結晶性酸化物半導体
US11107817B2 (en) * 2019-03-11 2021-08-31 Micron Technology, Inc. Integrated assemblies comprising hydrogen diffused within two or more different semiconductor materials, and methods of forming integrated assemblies
JP7492410B2 (ja) 2020-09-03 2024-05-29 日本放送協会 画素回路及びその製造方法
CN114122012A (zh) * 2021-11-10 2022-03-01 Tcl华星光电技术有限公司 阵列基板的制备方法及阵列基板

Family Cites Families (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
KR100394896B1 (ko) 1995-08-03 2003-11-28 코닌클리케 필립스 일렉트로닉스 엔.브이. 투명스위칭소자를포함하는반도체장치
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
US6127251A (en) * 1998-09-08 2000-10-03 Advanced Micro Devices, Inc. Semiconductor device with a reduced width gate dielectric and method of making same
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
SG116443A1 (en) * 2001-03-27 2005-11-28 Semiconductor Energy Lab Wiring and method of manufacturing the same, and wiring board and method of manufacturing the same.
JP4338934B2 (ja) * 2001-03-27 2009-10-07 株式会社半導体エネルギー研究所 配線の作製方法
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
EP1443130B1 (en) 2001-11-05 2011-09-28 Japan Science and Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
EP1524699B1 (en) * 2003-10-17 2012-12-26 Imec Method for forming CMOS semiconductor devices having a notched gate insulator and devices thus obtained
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
EP1737044B1 (en) 2004-03-12 2014-12-10 Japan Science and Technology Agency Amorphous oxide and thin film transistor
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
EP1812969B1 (en) 2004-11-10 2015-05-06 Canon Kabushiki Kaisha Field effect transistor comprising an amorphous oxide
CN101057333B (zh) 2004-11-10 2011-11-16 佳能株式会社 发光器件
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7868326B2 (en) 2004-11-10 2011-01-11 Canon Kabushiki Kaisha Field effect transistor
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
US7608531B2 (en) 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI562380B (en) 2005-01-28 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
EP3614442A3 (en) 2005-09-29 2020-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufactoring method thereof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101117948B1 (ko) 2005-11-15 2012-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 디스플레이 장치 제조 방법
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
JP2007220818A (ja) 2006-02-15 2007-08-30 Kochi Prefecture Sangyo Shinko Center 薄膜トランジスタ及びその製法
JP5015471B2 (ja) * 2006-02-15 2012-08-29 財団法人高知県産業振興センター 薄膜トランジスタ及びその製法
JP5110803B2 (ja) 2006-03-17 2012-12-26 キヤノン株式会社 酸化物膜をチャネルに用いた電界効果型トランジスタ及びその製造方法
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP5128792B2 (ja) * 2006-08-31 2013-01-23 財団法人高知県産業振興センター 薄膜トランジスタの製法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
US8274078B2 (en) 2007-04-25 2012-09-25 Canon Kabushiki Kaisha Metal oxynitride semiconductor containing zinc
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
KR101496148B1 (ko) 2008-05-15 2015-02-27 삼성전자주식회사 반도체소자 및 그 제조방법
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5430113B2 (ja) 2008-10-08 2014-02-26 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
EP2202802B1 (en) 2008-12-24 2012-09-26 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and semiconductor device
WO2011043163A1 (en) 2009-10-05 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR20120093864A (ko) 2009-10-09 2012-08-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2011043194A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5708910B2 (ja) 2010-03-30 2015-04-30 ソニー株式会社 薄膜トランジスタおよびその製造方法、並びに表示装置
JP2012015436A (ja) * 2010-07-05 2012-01-19 Sony Corp 薄膜トランジスタおよび表示装置
JP2012033836A (ja) 2010-08-03 2012-02-16 Canon Inc トップゲート型薄膜トランジスタ及びこれを備えた表示装置
WO2012090973A1 (en) 2010-12-28 2012-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9112036B2 (en) 2011-06-10 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP6005401B2 (ja) * 2011-06-10 2016-10-12 株式会社半導体エネルギー研究所 半導体装置の作製方法
US9240491B2 (en) * 2011-07-07 2016-01-19 Sharp Kabushiki Kaisha Semiconductor device and method for manufacturing same
JP6016532B2 (ja) 2011-09-07 2016-10-26 株式会社半導体エネルギー研究所 半導体装置
US9082663B2 (en) 2011-09-16 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8952379B2 (en) 2011-09-16 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2013039126A1 (en) 2011-09-16 2013-03-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8916424B2 (en) * 2012-02-07 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP6168795B2 (ja) * 2012-03-14 2017-07-26 株式会社半導体エネルギー研究所 半導体装置の作製方法
US8941113B2 (en) * 2012-03-30 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, semiconductor device, and manufacturing method of semiconductor element
KR102099445B1 (ko) 2012-06-29 2020-04-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
JP2016027597A (ja) 2013-12-06 2016-02-18 株式会社半導体エネルギー研究所 半導体装置
JP6585354B2 (ja) * 2014-03-07 2019-10-02 株式会社半導体エネルギー研究所 半導体装置

Also Published As

Publication number Publication date
US9859444B2 (en) 2018-01-02
US20150255612A1 (en) 2015-09-10
JP6585354B2 (ja) 2019-10-02
US20170222057A1 (en) 2017-08-03
US9634150B2 (en) 2017-04-25
JP2015181158A (ja) 2015-10-15

Similar Documents

Publication Publication Date Title
JP7394938B2 (ja) 半導体装置の作製方法
JP2020074360A (ja) 半導体装置
JP7490845B2 (ja) 発光装置
JP6790198B2 (ja) タッチセンサ
KR102323203B1 (ko) 반도체 장치, 상기 반도체 장치를 가지는 표시 장치, 상기 표시 장치를 가지는 표시 모듈, 및 상기 반도체 장치, 상기 표시 장치, 및 상기 표시 모듈을 가지는 전자기기
TWI688084B (zh) 顯示裝置
CN107111985B (zh) 半导体装置以及包括该半导体装置的显示装置
JP6625796B2 (ja) 表示装置
JP7302067B2 (ja) 表示装置
JP2019197935A (ja) 半導体装置
JP2019165251A (ja) 半導体装置
JP2015188077A (ja) 撮像装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200805