JP2020023699A - Thermosetting resin composition for light reflection and method for producing the same - Google Patents

Thermosetting resin composition for light reflection and method for producing the same Download PDF

Info

Publication number
JP2020023699A
JP2020023699A JP2019165447A JP2019165447A JP2020023699A JP 2020023699 A JP2020023699 A JP 2020023699A JP 2019165447 A JP2019165447 A JP 2019165447A JP 2019165447 A JP2019165447 A JP 2019165447A JP 2020023699 A JP2020023699 A JP 2020023699A
Authority
JP
Japan
Prior art keywords
resin composition
optical semiconductor
light
thermosetting
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019165447A
Other languages
Japanese (ja)
Inventor
勇人 小谷
Hayato Kotani
勇人 小谷
直之 浦崎
Naoyuki Urasaki
直之 浦崎
加奈子 湯浅
Kanako Yuasa
加奈子 湯浅
晃 永井
Akira Nagai
永井  晃
光祥 濱田
Mitsuyoshi Hamada
光祥 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39604652&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2020023699(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JP2020023699A publication Critical patent/JP2020023699A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

To provide a thermosetting resin composition for light reflection which has high reflectance of from visible light to near ultraviolet light, excellent heat deterioration resistance and tablet moldability after curing and hardly causes the generation of burrs during transfer molding.SOLUTION: There is provided a thermosetting resin composition for light reflection which comprises: an oligomer of (A') at least one epoxy resin selected from the group consisting of a bisphenol A type epoxy resin, a bisphenol type F epoxy resin, a bisphenol S type epoxy resin, a diglycidyl isocyanurate and a diglycidyl isocyanurate, (B') a curing agent containing at least one selected from the group consisting of an acid anhydride curing agent, an isocyanuric acid derivative and a phenol-based curing agent; and a white pigment at least one selected from the group consisting of alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide and inorganic hollow particles.SELECTED DRAWING: Figure 1

Description

本発明は、光半導体素子と蛍光体などの波長変換手段とを組み合わせた光半導体装置に用いる熱硬化性光反射用樹脂組成物、ならびに当該樹脂組成物を用いた光半導体素子搭載用基板、光半導体装置およびこれらの製造方法に関する。   The present invention provides a thermosetting light-reflecting resin composition used for an optical semiconductor device in which an optical semiconductor element and a wavelength conversion means such as a phosphor are combined, an optical semiconductor element mounting substrate using the resin composition, The present invention relates to a semiconductor device and a method for manufacturing the same.

LED(Light Emitting Diode:発光ダイオード)などの光半導体素子と蛍光体を組み合わせた光半導体装置は、高エネルギー効率、長寿命などの利点を有することから、屋外用ディスプレイ、携帯液晶バックライト、車載用途などその需要を拡大しつつある。これに伴いLEDデバイスの高輝度化が進み、素子の発熱量増大によるジャンクション温度の上昇、あるいは直接的な光エネルギーの増大による材料の耐熱劣化・耐光劣化が課題となっている。特許文献1には、耐熱試験後の光反射特性に優れる光半導体素子搭載用基板が開示されている。   BACKGROUND ART An optical semiconductor device in which an optical semiconductor element such as an LED (Light Emitting Diode) and a phosphor are combined has advantages such as high energy efficiency and a long life, so that it is used for outdoor displays, portable liquid crystal backlights, and in-vehicle applications. The demand is expanding. As a result, LED devices have become higher in luminance, and there has been a problem that the junction temperature rises due to an increase in the amount of heat generated by the elements, or the heat resistance deterioration and light resistance deterioration of the material due to a direct increase in light energy. Patent Literature 1 discloses an optical semiconductor element mounting substrate having excellent light reflection characteristics after a heat resistance test.

特開2006−140207号公報JP 2006-140207 A

しかし、特許文献1に開示された熱硬化性光反射用樹脂組成物を用いて光半導体素子搭載用基板をトランスファー成形により製造する場合、当該組成物が成形型の上型と下型の隙間に染み出し、樹脂バリが生じ易いという課題があった。バリが発生すると光半導体素子搭載領域の開口部(凹部)にバリが張り出して、光半導体素子を搭載する際の障害になる。さらに、光半導体素子を搭載できたとしても、光半導体素子と金属配線とをボンディングワイヤなどの公知の方法により電気的に接続する際の障害になる。このような障害が発生すると、光半導体素子搭載用基板の製造工程においてバリを除去する工程が必須となりコストや製造時間のロスとなる。   However, when a substrate for mounting an optical semiconductor element is manufactured by transfer molding using the thermosetting light-reflecting resin composition disclosed in Patent Document 1, the composition is placed in a gap between an upper mold and a lower mold of a molding die. There is a problem that bleeding and resin burr are easily generated. When the burrs are generated, the burrs protrude into the openings (recesses) in the optical semiconductor element mounting area, which becomes an obstacle when mounting the optical semiconductor element. Further, even if the optical semiconductor element can be mounted, it becomes an obstacle when the optical semiconductor element and the metal wiring are electrically connected by a known method such as a bonding wire. When such a failure occurs, a step of removing burrs is required in the manufacturing process of the optical semiconductor element mounting substrate, and the cost and the manufacturing time are lost.

本発明は、上記に鑑みてなされたものであり、硬化後の、可視光から近紫外光の反射率が高く、耐熱劣化性やタブレット成形性に優れ、なおかつトランスファー成形時にバリが生じ難い熱硬化性光反射用樹脂組成物ならびに当該樹脂組成物を用いた光半導体素子搭載用基板、光半導体装置およびこれらの製造方法を提供することを目的とする。   The present invention has been made in view of the above, and after curing, has a high reflectance from visible light to near-ultraviolet light, is excellent in heat deterioration resistance and tablet moldability, and is hard to generate burrs during transfer molding. It is an object of the present invention to provide a resin composition for reflective light, a substrate for mounting an optical semiconductor element, an optical semiconductor device using the resin composition, and a method for manufacturing these.

すなわち、本発明は、以下(1)〜(16)に記載の事項をその特徴とするものである。   That is, the present invention is characterized by the following items (1) to (16).

(1)(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)無機充填剤、(E)白色顔料および(F)カップリング剤を含む熱硬化性光反射用樹脂組成物であって、成形温度が100℃〜200℃、成型圧力20MPa以下、60〜120秒の条件でトランスファー成形した時に生じるバリ長さが5mm以下であり、かつ熱硬化後の、波長350nm〜800nmにおける光反射率が80%以上であることを特徴とする熱硬化性光反射用樹脂組成物。   (1) Thermosetting light reflecting resin containing (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, (D) an inorganic filler, (E) a white pigment, and (F) a coupling agent. A composition, wherein the molding temperature is 100 ° C. to 200 ° C., the molding pressure is 20 MPa or less, the burr length generated when performing transfer molding under the conditions of 60 to 120 seconds is 5 mm or less, and the wavelength after thermal curing is 350 nm or more. A thermosetting resin composition for light reflection, having a light reflectance at 800 nm of 80% or more.

(2)前記(A)エポキシ樹脂として、少なくとも(A’)エポキシ樹脂と(B’)硬化剤を混練してなり、かつ100〜150℃における粘度が100〜2500mPa・sの範囲である(G)オリゴマーを用いることを特徴とする上記(1)に記載の熱硬化性光反射用樹脂組成物。   (2) As the epoxy resin (A), at least an epoxy resin (A ′) and a curing agent (B ′) are kneaded, and the viscosity at 100 to 150 ° C. is in the range of 100 to 2500 mPa · s. (4) The thermosetting resin composition for light reflection according to the above (1), wherein an oligomer is used.

(3)前記(A)エポキシ樹脂と前記(B)硬化剤の配合比が、前記(A)エポキシ樹脂中のエポキシ基1当量に対して、該エポキシ基と反応可能な前記(B)硬化剤中の活性基が0.5〜0.7当量となるような比であることを特徴とする上記(1)または(2)に記載の熱硬化性光反射用樹脂組成物。   (3) The compounding ratio of the (A) epoxy resin and the (B) curing agent is such that the (B) curing agent capable of reacting with the epoxy group per one equivalent of the epoxy group in the (A) epoxy resin. The thermosetting light-reflecting resin composition according to the above (1) or (2), wherein the ratio is such that the number of active groups therein is 0.5 to 0.7 equivalent.

(4)中心粒径が1nm〜1000nmのナノ粒子フィラーを(H)増粘剤としてさらに含むことを特徴とする上記(1)〜(3)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (4) The thermosetting light-reflecting resin according to any one of (1) to (3), further including a nanoparticle filler having a center particle diameter of 1 nm to 1000 nm as a thickener (H). Composition.

(5)前記(D)無機充填剤が、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウムからなる群の中から選ばれる少なくとも1種以上であることを特徴とする上記(1)〜(4)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (5) The inorganic filler (D) is selected from the group consisting of silica, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate, and barium carbonate. The thermosetting light-reflecting resin composition according to any one of (1) to (4), which is at least one selected from the group consisting of:

(6)前記(E)白色顔料が、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、無機中空粒子からなる群の中から選ばれる少なくとも1種以上であることを特徴とする上記(1)〜(5)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (6) The above-mentioned (1), wherein the (E) white pigment is at least one selected from the group consisting of alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, and inorganic hollow particles. The thermosetting light-reflecting resin composition according to any one of (1) to (5).

(7)前記(E)白色顔料の中心粒径が0.1〜50μmの範囲にあることを特徴とする上記(1)〜(6)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (7) The thermosetting light-reflecting resin composition according to any of (1) to (6), wherein the (E) white pigment has a center particle diameter in a range of 0.1 to 50 μm. object.

(8)(D)無機充填剤と(E)白色顔料を合計した配合量が、樹脂組成物全体に対して、10体積%〜85体積%の範囲であることを特徴とする上記(1)〜(7)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (8) The above (1), wherein the combined amount of (D) the inorganic filler and (E) the white pigment is in the range of 10% by volume to 85% by volume based on the whole resin composition. The resin composition for thermosetting light reflection according to any one of (1) to (7).

(9)前記樹脂組成物を0〜30℃で1〜72時間にわたってエージングしてなることを特徴とする上記(1)〜(8)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (9) The thermosetting light-reflecting resin composition according to any of (1) to (8), wherein the resin composition is aged at 0 to 30 ° C. for 1 to 72 hours. .

(10)前記(A)〜(F)成分を、混練温度20〜100℃、混練時間10〜30分の条件で混練してなることを特徴とする上記(1)〜(9)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (10) Any one of the above (1) to (9), wherein the components (A) to (F) are kneaded at a kneading temperature of 20 to 100 ° C. and a kneading time of 10 to 30 minutes. The thermosetting resin composition for light reflection according to 1.

(11)上記(1)〜(10)のいずれかに記載の熱硬化性光反射用樹脂組成物を製造する方法であって、前記(A)〜(F)成分を混練した後、0〜30℃で1〜72時間にわたって熱エージングする工程を有することを特徴とする熱硬化性光反射用樹脂組成物の製造方法。   (11) A method for producing a thermosetting light-reflecting resin composition according to any one of the above (1) to (10), wherein the components (A) to (F) are kneaded, and A method for producing a thermosetting light-reflecting resin composition, comprising a step of thermally aging at 30 ° C. for 1 to 72 hours.

(12)前記混練を、混練温度20〜100℃、混練時間10〜30分の条件で行うことを特徴とする上記(11)に記載の熱硬化性光反射用樹脂組成物の製造方法。   (12) The method for producing a thermosetting light-reflecting resin composition according to the above (11), wherein the kneading is performed at a kneading temperature of 20 to 100 ° C and a kneading time of 10 to 30 minutes.

(13)上記(1)〜(10)のいずれかに記載の熱硬化性光反射用樹脂組成物を用いてなることを特徴とする光半導体素子搭載用基板。
(14)光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板であって、少なくとも前記凹部の内周側面が上記(1)〜(10)のいずれかに記載の光反射用熱硬化性樹脂組成物からなることを特徴とする光半導体素子搭載用基板。
(13) A substrate for mounting an optical semiconductor element, comprising the thermosetting resin composition for light reflection according to any one of the above (1) to (10).
(14) An optical semiconductor element mounting substrate having at least one concave portion serving as an optical semiconductor element mounting region, wherein at least an inner peripheral side surface of the concave portion is any one of the above (1) to (10). A substrate for mounting an optical semiconductor element, comprising a light-reflective thermosetting resin composition.

(15)光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板の製造方法であって、少なくとも前記凹部を上記(1)〜(10)のいずれか1項記載の光反射用熱硬化性樹脂組成物を用いたトランスファー成形により形成することを特徴とする光半導体搭載用基板の製造方法。   (15) A method of manufacturing an optical semiconductor element mounting substrate in which at least one concave portion serving as an optical semiconductor element mounting region is formed, wherein at least the concave portion is any one of the above (1) to (10). A method for producing a substrate for mounting an optical semiconductor, characterized by forming the substrate by transfer molding using the thermosetting resin composition for light reflection of (1).

(16)上記(13)または(14)に記載の光半導体素子搭載用基板または上記(15)に記載の製造方法により製造された光半導体素子搭載用基板と、前記光半導体素子搭載用基板の凹部底面に搭載された光半導体素子と、前記光半導体素子を覆うように前記凹部内に形成された蛍光体含有透明封止樹脂層と、を少なくとも備える光半導体装置。   (16) The substrate for mounting an optical semiconductor element according to (13) or (14) or the substrate for mounting an optical semiconductor element manufactured by the manufacturing method according to (15), and the substrate for mounting an optical semiconductor element. An optical semiconductor device comprising at least an optical semiconductor element mounted on a bottom surface of a concave portion and a phosphor-containing transparent sealing resin layer formed in the concave portion so as to cover the optical semiconductor element.

本発明によれば、硬化後の、可視光から近紫外光の反射率が高く、耐熱劣化性やタブレット成型性に優れ、なおかつトランスファー成形時にバリが生じ難い熱硬化性光反射用樹脂組成物ならびに当該樹脂組成物を用いた光半導体素子搭載用基板、光半導体装置およびこれらの製造方法を提供することが可能となる。   According to the present invention, after curing, the reflectance of visible light to near ultraviolet light is high, excellent in heat deterioration resistance and tablet moldability, and, furthermore, a thermosetting light reflection resin composition in which burrs hardly occur during transfer molding and It is possible to provide a substrate for mounting an optical semiconductor element, an optical semiconductor device, and a method for manufacturing the same using the resin composition.

本発明の光半導体素子搭載用基板の一実施形態を示す斜視図と断面図である。It is a perspective view and a sectional view showing one embodiment of an optical semiconductor element mounting substrate of the present invention. 本発明の光半導体素子搭載用基板を製造する工程の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the process of manufacturing the board | substrate for mounting an optical semiconductor element of this invention. 本発明の光半導体装置の一実施形態を示す断面図である。FIG. 2 is a cross-sectional view showing one embodiment of the optical semiconductor device of the present invention. 実施例で用いたバリ測定用金型と樹脂バリの模式図である。FIG. 4 is a schematic diagram of a mold for burr measurement and resin burr used in an example.

以下、本発明の実施の形態を説明する。
本発明の熱硬化性光反射用樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)無機充填剤、(E)白色顔料および(F)カップリング剤を含むものである。
Hereinafter, embodiments of the present invention will be described.
The thermosetting light-reflecting resin composition of the present invention comprises (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, (D) an inorganic filler, (E) a white pigment, and (F) a cup. It contains a ring agent.

上記(A)エポキシ樹脂としては、電子部品封止用エポキシ樹脂成形材料で一般に使用されているものを用いることができ、特に限定されないが、例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換ビフェノール等のジグリシジエーテル、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、及び脂環族エポキシ樹脂等があり、これらは単独でも、2種以上併用してもよい。また、使用するエポキシ樹脂は比較的着色のないものであることが好ましく、そのようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレートを挙げることができる。   As the epoxy resin (A), those generally used in epoxy resin molding materials for sealing electronic components can be used, and are not particularly limited. Examples thereof include a phenol novolak epoxy resin and an orthocresol novolak epoxy resin. Epoxidized novolak resins of phenols and aldehydes, including bisphenol A, bisphenol F, bisphenol S, diglycidyl ethers such as alkyl-substituted biphenols, diaminodiphenylmethane, and polyamines such as isocyanuric acid and the reaction of epichlorohydrin. Glycidylamine type epoxy resins, linear aliphatic epoxy resins obtained by oxidizing olefin bonds with a peracid such as peracetic acid, and alicyclic epoxy resins. These may be used alone or in combination of two or more. GoodThe epoxy resin used is preferably relatively non-colored. Examples of such an epoxy resin include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, and diglycidyl isocyanate. Nurate and triglycidyl isocyanurate can be mentioned.

また、上記(A)エポキシ樹脂として、少なくとも(A’)エポキシ樹脂および(B’)硬化剤、必要に応じてさらに(C’)硬化促進剤を配合してなり、なおかつ100〜150℃における粘度が100〜2500mPa・sの範囲である(G)オリゴマーを用いることが好ましい。なお、上記(A’)エポキシ樹脂、上記(B’)硬化剤、上記(C’)硬化促進剤は、本発明における(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤と同様のものを用いることができる。   The epoxy resin (A) contains at least (A ') an epoxy resin and (B') a curing agent, and if necessary, further (C ') a curing accelerator, and has a viscosity at 100 to 150 ° C. (G) oligomer having a range of 100 to 2500 mPa · s is preferably used. The (A ′) epoxy resin, the (B ′) curing agent, and the (C ′) curing accelerator are the same as the (A) epoxy resin, (B) curing agent, and (C) curing accelerator in the present invention. Similar ones can be used.

上記(G)オリゴマーは、例えば、(A’)エポキシ樹脂および(B’)硬化剤を、当該(A’)エポキシ樹脂中のエポキシ基1当量に対して、当該エポキシ基と反応可能な当該(B’)硬化剤中の活性基(酸無水物基や水酸基)が0.3当量以下となるように配合し、粘土状になるまで混練することで得ることができ、好ましくは、さらに、粘土状組成物を温度25〜60℃の範囲で1〜6時間にわたってエージングする。また、(C’)硬化促進剤を配合する場合には、(A’)エポキシ樹脂と(B’)硬化剤の総和100重量部に対し、0.005〜0.05重量部となるように配合する。このように作製された(G)オリゴマーは、本発明の樹脂組成物のバリ発生を抑制する観点から、100〜150℃における粘度が100〜2500mPa・sの範囲にあることが好ましく、100℃における粘度が100〜2500mPa・sの範囲にあることがより好ましい。(G)オリゴマーの粘度が100mPa・s未満であるとトランスファー成形時にバリが発生しやすくなり、2500mPa・sを越えると成形時の流動性が低下し、成形性に乏しくなる。また、(G)オリゴマーは、その粒径が1mm以下になるまで粉砕し、温度0℃以下の環境で保存すると粘度の上昇を抑制または停止させることができる。なお、粉砕方法については陶器製乳鉢等を用いるなど公知のいかなる手法を用いても良い。   The (G) oligomer is, for example, the (A ′) epoxy resin and the (B ′) curing agent, which are capable of reacting with the epoxy group with respect to one equivalent of the epoxy group in the (A ′) epoxy resin. B ′) It can be obtained by blending the active group (acid anhydride group or hydroxyl group) in the curing agent so as to be 0.3 equivalent or less and kneading it until it becomes clay-like. The solid composition is aged at a temperature in the range of 25-60 <0> C for 1-6 hours. When (C ′) a curing accelerator is blended, the amount of the curing accelerator should be 0.005 to 0.05 parts by weight based on 100 parts by weight of the total of (A ′) epoxy resin and (B ′) curing agent. Mix. From the viewpoint of suppressing the burr generation of the resin composition of the present invention, the oligomer (G) thus produced preferably has a viscosity at 100 to 150 ° C in the range of 100 to 2500 mPa · s, and at 100 ° C. More preferably, the viscosity is in the range of 100 to 2500 mPa · s. (G) If the viscosity of the oligomer is less than 100 mPa · s, burrs are likely to occur during transfer molding, and if it exceeds 2500 mPa · s, the fluidity during molding is reduced and moldability is poor. Further, the (G) oligomer can be pulverized until its particle diameter becomes 1 mm or less and stored in an environment at a temperature of 0 ° C. or less, whereby the increase in viscosity can be suppressed or stopped. In addition, about a grinding method, you may use any well-known methods, such as using a porcelain mortar.

上記(B)硬化剤としては、エポキシ樹脂と反応するものであれば、特に制限なく用いることができるが、比較的着色のないものが好ましい。具体的には、酸無水物硬化剤、イソシアヌル酸誘導体、フェノール系硬化剤などを用いることができる。酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、無水コハク酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸などが挙げられ、イソシアヌル酸誘導体としては、1,3,5−トリス(1−カルボキシメチル)イソシアヌレート、1,3,5−トリス(2−カルボキシエチル)イソシアヌレート、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレート、1,3−ビス(2−カルボキシエチル)イソシアヌレートなどが挙げられ、これらは、単独で用いても二種以上併用しても良い。これらの硬化剤の中では、無水フタル酸、無水トリメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレートを用いることが好ましい。また、(B)硬化剤は、その分子量が100〜400程度のものが好ましく、また、無色ないし淡黄色のものが好ましい。   The curing agent (B) can be used without any particular limitation as long as it reacts with the epoxy resin, but is preferably relatively uncolored. Specifically, an acid anhydride curing agent, an isocyanuric acid derivative, a phenolic curing agent, or the like can be used. Examples of the acid anhydride-based curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, glutaric anhydride. Acid, dimethylglutaric anhydride, diethylglutaric anhydride, succinic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and the like. Examples of isocyanuric acid derivatives include 1,3,5-tris (1-carboxy) Methyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5-tris (3-carboxypropyl) isocyanurate, 1,3-bis (2-carboxyethyl) isocyanurate These may be used alone or in combination of two or more. And it may be. Among these curing agents, phthalic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, glutaric anhydride, dimethylglutaric anhydride, It is preferable to use diethylglutaric acid and 1,3,5-tris (3-carboxypropyl) isocyanurate. The curing agent (B) preferably has a molecular weight of about 100 to 400, and more preferably a colorless or pale yellow one.

また、(A)エポキシ樹脂(もしくは(G)オリゴマー)と(B)硬化剤の配合比は、(A)エポキシ樹脂中のエポキシ基1当量に対して、当該エポキシ基と反応可能な(B)硬化剤中の活性基(酸無水物基や水酸基)が0.5〜0.7当量となるような割合であることが好ましく、0.6〜0.7当量となるような割合であることがより好ましい。上記活性基が0.5当量未満の場合には、エポキシ樹脂組成物の硬化速度が遅くなるとともに、得られる硬化体のガラス転移温度が低くなり、充分な弾性率が得られない場合があり、一方、上記活性基が0.7当量を超える場合には、硬化後の強度が減少する場合がある((G)オリゴマー単独を用いる、または(G)オリゴマーと(A)エポキシ樹脂を併用する場合の(B)硬化剤の当量数の換算は、(G)オリゴマーに含まれる(A’)エポキシ樹脂と(A)エポキシ樹脂のそれぞれに含まれるエポキシ基の総量を1当量とし、それに対して(B’)硬化剤と(B)硬化剤中に含まれる上記エポキシ基と反応可能な活性基の総和を当量数とする。)。   The mixing ratio of (A) the epoxy resin (or (G) oligomer) and (B) the curing agent is such that (A) 1 equivalent of epoxy group in the epoxy resin can react with the epoxy group (B). It is preferable that the ratio is such that the active group (acid anhydride group or hydroxyl group) in the curing agent is 0.5 to 0.7 equivalent, and 0.6 to 0.7 equivalent. Is more preferred. When the active group is less than 0.5 equivalent, the curing rate of the epoxy resin composition becomes slow, and the glass transition temperature of the obtained cured product becomes low, and a sufficient elastic modulus may not be obtained, On the other hand, when the above-mentioned active group exceeds 0.7 equivalents, the strength after curing may decrease (when the (G) oligomer is used alone or the (G) oligomer is used in combination with the (A) epoxy resin). The conversion of the equivalent number of (B) the curing agent in (A) is such that the total amount of the epoxy groups contained in each of the (A ′) epoxy resin and the (A) epoxy resin contained in the oligomer (G) is one equivalent, and B ′) The curing agent and (B) the total of active groups capable of reacting with the epoxy group contained in the curing agent are equivalent numbers.)

上記(C)硬化促進剤としては、特に限定されるものではなく、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、トリ−2,4,6−ジメチルアミノメチルフェノールなどの3級アミン類、2−エチル−4メチルイミダゾール、2−メチルイミダゾールなどのイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート、テトラ−n−ブチルホスホニウム−テトラフルオロボレート、テトラ−n−ブチルホスホニウム−テトラフェニルボレートなどのリン化合物、4級アンモニウム塩、有機金属塩類、およびこれらの誘導体などが挙げられる。これらは単独で使用してもよく、あるいは、併用してもよい。これらの硬化促進剤の中では、3級アミン類、イミダゾール類、リン化合物を用いることが好ましい。   The curing accelerator (C) is not particularly limited, and for example, 1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, tri-2,4,6-dimethyl Tertiary amines such as aminomethylphenol, imidazoles such as 2-ethyl-4-methylimidazole and 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o-diethyl Examples include phosphorus compounds such as phosphorodithioate, tetra-n-butylphosphonium-tetrafluoroborate and tetra-n-butylphosphonium-tetraphenylborate, quaternary ammonium salts, organic metal salts, and derivatives thereof. These may be used alone or in combination. Among these curing accelerators, tertiary amines, imidazoles, and phosphorus compounds are preferably used.

上記(C)硬化促進剤の含有率は、(A)エポキシ樹脂に対して、0.01〜8.0重量%であることが好ましく、より好ましくは、0.1〜3.0重量%である。硬化促進剤の含有率が、0.01重量%未満では、十分な硬化促進効果を得られない場合があり、また、8.0重量%を超えると、得られる成形体に変色が見られる場合がある。   The content of the curing accelerator (C) is preferably 0.01 to 8.0% by weight, more preferably 0.1 to 3.0% by weight, based on the epoxy resin (A). is there. When the content of the curing accelerator is less than 0.01% by weight, a sufficient curing promoting effect may not be obtained, and when the content exceeds 8.0% by weight, discoloration is observed in the obtained molded article. There is.

上記(D)無機充填剤としては、特に限定されないが、例えば、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウムからなる群の中から選ばれる少なくとも1種以上を用いることができるが、熱伝導性、光反射特性、成型性、難燃性の点からシリカ、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウムのうち2種以上の混合物が好ましい。また、(D)無機充填剤の中心粒径は、特に限定されるものではないが、白色顔料とのパッキングが効率良くなるように1〜100μmの範囲のものを用いることが好ましい。   The inorganic filler (D) is not particularly limited, and examples thereof include silica, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate, and barium carbonate. At least one member selected from the group consisting of silica, alumina, magnesium oxide, antimony oxide, titanium oxide, and zirconium oxide can be used from the viewpoint of heat conductivity, light reflection characteristics, moldability, and flame retardancy. , Aluminum hydroxide and magnesium hydroxide are preferred. The center particle size of the inorganic filler (D) is not particularly limited, but is preferably in the range of 1 to 100 μm so that packing with the white pigment is efficient.

上記(E)白色顔料としては、公知のものを使用することができ、特に限定されないが、例えば、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、無機中空粒子などを用いることができ、これらは単独でも併用しても構わない。無機中空粒子は、例えば、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス、シラス等が挙げられる。(E)白色顔料の粒径は、中心粒径が0.1〜50μmの範囲にあることが好ましい。この中心粒径が0.1μm未満であると粒子が凝集しやすく分散性が悪くなる傾向にあり、50μmを超えると硬化物の光反射特性が十分に得られない恐れがある。   As the white pigment (E), known pigments can be used and are not particularly limited. For example, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, inorganic hollow particles, and the like can be used. These may be used alone or in combination. Examples of the inorganic hollow particles include sodium silicate glass, aluminum silicate glass, sodium borosilicate glass, and shirasu. (E) The particle diameter of the white pigment preferably has a center particle diameter in the range of 0.1 to 50 μm. If the center particle size is less than 0.1 μm, the particles tend to aggregate and the dispersibility tends to be poor. If the center particle size exceeds 50 μm, the cured product may not have sufficient light reflection properties.

上記(D)無機充填剤と上記(E)白色顔料の合計配合量は、特に限定されないが、樹脂組成物全体に対して、10体積%〜85体積%の範囲であることが好ましい。この合計配合量が、10体積%未満であると硬化物の光反射特性が十分に得られない恐れがあり、85体積%を超えると樹脂組成物の成型性が悪くなり、光半導体搭載用基板の作製が困難となる。   The total blending amount of the (D) inorganic filler and the (E) white pigment is not particularly limited, but is preferably in a range of 10% by volume to 85% by volume based on the whole resin composition. If the total compounding amount is less than 10% by volume, the light reflection properties of the cured product may not be sufficiently obtained. If the total amount exceeds 85% by volume, the moldability of the resin composition deteriorates, and the substrate for mounting an optical semiconductor. Is difficult to fabricate.

上記(F)カップリング剤としては、特に限定されないが、例えば、シラン系カップリング剤やチタネート系カップリング剤等を用いることができ、シランカップリング剤としては、例えば、エポキシシラン系、アミノシラン系、カチオニックシラン系、ビニルシラン系、アクリルシラン系、メルカプトシラン系及びこれらの複合系等を用いることができる。(F)カップリング剤の種類や処理条件は特に限定しないが、(F)カップリング剤の配合量は樹脂組成物に対して5重量%以下が好ましい。   The (F) coupling agent is not particularly limited, but for example, a silane coupling agent or a titanate coupling agent can be used. As the silane coupling agent, for example, an epoxysilane-based or aminosilane-based coupling agent can be used. And cationic silanes, vinyl silanes, acryl silanes, mercapto silanes, and composites thereof. The type and processing conditions of (F) the coupling agent are not particularly limited, but the amount of the (F) coupling agent is preferably 5% by weight or less based on the resin composition.

また、本発明の熱硬化性光反射用樹脂組成物には、溶融粘度調整を目的として(H)増粘剤を添加しても良い。(H)増粘剤としては、特に限定されるものではないが、例えば、トクヤマ(株)で販売されているレオロシールCP−102を用いることができる。(H)増粘剤の添加量としては、樹脂組成物の総体積の0.15体積%以下であることが好ましい。(H)増粘剤を0.15体積%よりも多く添加すると樹脂組成物の溶融時の流動性が損なわれるとともに硬化後に充分な材料強度が得られない恐れがある。また、(H)増粘剤は、中心粒径が1nm〜1000nmであるようなナノ粒子フィラーであることが好ましく、中心粒径が10nm〜1000nmであるようなナノ粒子フィラーであることがより好ましい。中心粒径1nmよりも小さいフィラーは、粒子が凝集しやすく分散性が低下する傾向にあり特性上好ましくない。一方、1000nmよりも大きなフィラーを添加するとバリが低減しない傾向にあり特性上好ましくない。   Further, to the thermosetting light reflecting resin composition of the present invention, (H) a thickener may be added for the purpose of adjusting the melt viscosity. (H) The thickener is not particularly limited, but for example, Leoloseal CP-102 sold by Tokuyama Corporation can be used. (H) The amount of the thickener to be added is preferably 0.15% by volume or less of the total volume of the resin composition. (H) If more than 0.15% by volume of the thickener is added, the fluidity of the resin composition at the time of melting is impaired, and sufficient material strength may not be obtained after curing. Further, (H) the thickener is preferably a nanoparticle filler having a center particle size of 1 nm to 1000 nm, and more preferably a nanoparticle filler having a center particle size of 10 nm to 1000 nm. . A filler having a center particle diameter smaller than 1 nm is not preferable in terms of characteristics because the particles tend to aggregate and the dispersibility tends to decrease. On the other hand, if a filler larger than 1000 nm is added, burrs tend not to be reduced, which is not preferable in terms of characteristics.

また、本発明の樹脂組成物には、必要に応じて、酸化防止剤、離型剤、イオン補足剤等の添加剤を添加してもよい。   Further, additives such as an antioxidant, a release agent, and an ion scavenger may be added to the resin composition of the present invention, if necessary.

以上のような成分を含有する本発明の熱硬化性光反射用樹脂組成物は、熱硬化前、室温(0〜30℃)において加圧成形可能であることが望ましく、また、熱硬化後の、波長350nm〜800nmにおける光反射率が80%以上であることが望まれる。上記加圧成形は、例えば、室温において、5〜50MPa、1〜5秒程度の条件下で成形を行うことができればよい。また、上記光反射率が80%未満であると、光半導体装置の輝度向上に十分寄与できない傾向がある。より好ましい光反射率は90%以上である。   It is desirable that the thermosetting light-reflecting resin composition of the present invention containing the above components can be press-molded at room temperature (0 to 30 ° C.) before thermosetting, and after thermosetting. It is desired that the light reflectance at a wavelength of 350 nm to 800 nm is 80% or more. The above pressure molding may be performed, for example, at room temperature as long as the molding can be performed under the conditions of 5 to 50 MPa and about 1 to 5 seconds. On the other hand, if the light reflectance is less than 80%, there is a tendency that the brightness cannot be sufficiently improved in the optical semiconductor device. A more preferable light reflectance is 90% or more.

また、本発明の熱硬化性光反射用樹脂組成物は、上記した各種成分を均一に分散混合することで得ることができ、その手段や条件等は特に限定されないが、一般的な手法として、所定配合量の成分をミキサー等によって十分均一に撹拌、混合した後、ミキシングロール、押出機、ニーダー、ロール、エクストルーダー等によって(溶融)混練し、さらに、冷却、粉砕する方法を挙げることができる。(溶融)混練の条件は、成分の種類や配合量により適宜決定すればよく、特に限定されないが、15〜100℃の範囲で5〜40分間(溶融)混練することが好ましく、20〜100℃の範囲で10〜30分間(溶融)混練することがより好ましい。(溶融)混練温度が15℃未満であると、各成分を(溶融)混練させることが困難であり、分散性も低下する傾向にあり、100℃よりも高温であると、樹脂組成物の高分子量化が進行し、樹脂組成物が硬化してしまう恐れがある。また、(溶融)混練時間が5分未満であると、バリの発生を効果的に抑制することができない傾向にあり、40分よりも長いと、樹脂組成物の高分子量化が進行し、樹脂組成物が硬化してしまう恐れがある。   Moreover, the thermosetting light-reflecting resin composition of the present invention can be obtained by uniformly dispersing and mixing the above-mentioned various components, and the means and conditions are not particularly limited, but as a general method, After sufficiently stirring and mixing components of a predetermined blending amount with a mixer or the like, kneading (melting) with a mixing roll, an extruder, a kneader, a roll, an extruder, etc., and further cooling and pulverizing can be mentioned. . The conditions for (melting) kneading may be appropriately determined depending on the types and amounts of the components, and are not particularly limited. However, it is preferable to perform (melting) kneading in a range of 15 to 100 ° C. for 5 to 40 minutes, and preferably 20 to 100 ° C. It is more preferable to knead (melt) for 10 to 30 minutes in the range described above. If the (melting) kneading temperature is lower than 15 ° C., it is difficult to knead (melt) each component, and the dispersibility tends to decrease. If the temperature is higher than 100 ° C., the resin composition has a high melting point. The molecular weight may progress and the resin composition may be cured. If the (melting) kneading time is less than 5 minutes, the generation of burrs tends to be unable to be effectively suppressed. If the kneading time is more than 40 minutes, the high molecular weight of the resin composition proceeds, The composition may be cured.

また、本発明の熱硬化性光反射用樹脂組成物は、上記各成分を配合、混練した後、成形時の溶融粘度を上昇させることを目的として熟成放置(エージング)することが好ましく、0℃〜30℃で1〜72時間にわたってエージングすることがより好ましく、15℃〜30℃で12〜72時間にわたって熱エージングすることがさらに好ましく、25℃〜30℃で24〜72時間にわたって熱エージングすることが特に好ましい。1時間よりの短時間のエージングでは、バリの発生を効果的に抑制できない傾向にあり、72時間より長くエージングすると、トランスファー成形時に充分な流動性を確保できない恐れがある。また、0℃未満の温度でエージングした場合には、(C)硬化促進剤が不活性化されて、樹脂組成物の三次元架橋反応が十分に進行せず、溶融時の粘度が上昇しない恐れがあり、30℃よりも高温でエージングした場合には、樹脂組成物が水分を吸収してしまい、硬化物の強度や弾性率などの機械的物性が悪くなる傾向にある。   In addition, the thermosetting light-reflecting resin composition of the present invention is preferably aged and left (aged) for the purpose of increasing the melt viscosity at the time of molding after compounding and kneading the above-mentioned components. Aging at -30 ° C. for 1-72 hours is more preferred, thermal aging at 15 ° C.-30 ° C. for 12-72 hours is more preferred, and thermal aging at 25 ° C.-30 ° C. for 24-72 hours. Is particularly preferred. When the aging is performed for a short time of less than 1 hour, the generation of burrs tends to be unable to be effectively suppressed. When the aging is performed for more than 72 hours, sufficient fluidity may not be ensured during transfer molding. When aging is performed at a temperature lower than 0 ° C., (C) the curing accelerator is inactivated, and the three-dimensional crosslinking reaction of the resin composition does not sufficiently proceed, and the viscosity at the time of melting may not increase. When the resin composition is aged at a temperature higher than 30 ° C., the resin composition absorbs moisture, and the mechanical properties such as the strength and elastic modulus of the cured product tend to deteriorate.

また、本発明の熱硬化性光反射用樹脂組成物は、成形温度100℃〜200℃、成形圧力20MPa以下、60〜120秒の条件でトランスファー成形した時のバリ長さが5mm以下になることが好ましい。更に好ましくは3mm以下であり、特に好ましくは1mm以下である。バリ長さが5mmよりも多いと、光半導体素子搭載領域の開口部(凹部)にバリが張り出して光半導体素子を搭載する際の障害になる可能性や光半導体素子と金属配線とをボンディングワイヤなど公知の方法により電気的に接続する際の障害になる可能性がある。   The thermosetting light-reflecting resin composition of the present invention has a molding temperature of 100 ° C. to 200 ° C., a molding pressure of 20 MPa or less, and a burr length of 5 mm or less when subjected to transfer molding under the conditions of 60 to 120 seconds. Is preferred. More preferably, it is 3 mm or less, particularly preferably 1 mm or less. If the burr length is longer than 5 mm, the burr may protrude into the opening (recess) of the optical semiconductor element mounting area and may become an obstacle when mounting the optical semiconductor element, or a bonding wire may be formed between the optical semiconductor element and the metal wiring. For example, there is a possibility that it may become an obstacle when electrically connecting by a known method.

本発明の光半導体素子搭載用基板は、本発明の熱硬化性光反射用樹脂組成物を用いてなるものであり、例えば、光半導体素子搭載領域となる凹部が1つ以上形成されており、少なくとも前記凹部の内周側面が本発明の熱硬化性光反射用樹脂組成物からなるものである。本発明の光半導体素子搭載用基板の一実施形態を図1に示す。   The optical semiconductor element mounting substrate of the present invention is formed using the thermosetting light-reflecting resin composition of the present invention. For example, one or more concave portions serving as an optical semiconductor element mounting region are formed, At least the inner peripheral side surface of the concave portion is made of the thermosetting light reflecting resin composition of the present invention. One embodiment of the substrate for mounting an optical semiconductor element of the present invention is shown in FIG.

本発明の光半導体素子搭載用基板の製造方法は、特に限定されないが、例えば、本発明の熱硬化性光反射用樹脂組成物をトランスファー成形により成型し、製造することができる。より具体的には、例えば、図2(a)に示すように、金属箔から打ち抜きやエッチング等の公知の方法により金属配線105を形成し、ついで、該金属配線105を所定形状の金型301に配置し(図2(b))、金型301の樹脂注入口300から本発明の熱硬化性光反射用樹脂組成物を注入し、これを好ましくは金型温度170〜200℃、成形圧力0.5〜20MPaで60〜120秒、アフターキュア温度120℃〜180℃で1〜3時間の条件で熱硬化させた後、金型301を外し、硬化した熱硬化性光反射用樹脂組成物からなるリフレクター103に周囲を囲まれてなる光半導体素子搭載領域(凹部)200の所定位置に、電気めっきによりNi/銀めっき104を施すことで製造することができる(図2(c))。   The method for producing the substrate for mounting an optical semiconductor element of the present invention is not particularly limited. For example, the resin composition for thermosetting light reflection of the present invention can be formed by transfer molding. More specifically, for example, as shown in FIG. 2A, a metal wiring 105 is formed from a metal foil by a known method such as punching or etching, and then the metal wiring 105 is formed into a mold 301 having a predetermined shape. (FIG. 2 (b)), and the thermosetting light-reflecting resin composition of the present invention is injected from the resin injection port 300 of the mold 301, and this is preferably performed at a mold temperature of 170 to 200 ° C. and a molding pressure. After thermosetting at 0.5 to 20 MPa for 60 to 120 seconds and at an after-curing temperature of 120 ° C. to 180 ° C. for 1 to 3 hours, the mold 301 is removed and the cured thermosetting light reflecting resin composition is used. It can be manufactured by applying Ni / silver plating 104 by electroplating to a predetermined position of an optical semiconductor element mounting region (concave portion) 200 surrounded by a reflector 103 made of (FIG. 2C).

また、本発明の光半導体装置は、本発明の光半導体素子搭載用基板と、光半導体素子搭載用基板の凹部底面に搭載される光半導体素子と、光半導体素子を覆うように凹部内に形成される蛍光体含有透明封止樹脂層と、を少なくとも備えることを特徴とするものである。図3には、本発明の光半導体素子搭載用基板110の光半導体素子搭載領域(凹部)200の底部所定位置に光半導体素子100が搭載され、該光半導体素子100と金属配線105とがボンディングワイヤ102やはんだバンプ107などの公知の方法により電気的に接続され、該光半導体素子100が公知の蛍光体106を含む透明封止樹脂101により覆われている、本発明の光半導体装置の一実施形態を示す。   Further, the optical semiconductor device of the present invention is provided with the optical semiconductor element mounting substrate of the present invention, an optical semiconductor element mounted on the bottom of the concave portion of the optical semiconductor element mounting substrate, and formed in the concave portion so as to cover the optical semiconductor element. And a phosphor-containing transparent sealing resin layer to be formed. In FIG. 3, an optical semiconductor element 100 is mounted at a predetermined position at the bottom of an optical semiconductor element mounting area (recess) 200 of an optical semiconductor element mounting substrate 110 of the present invention, and the optical semiconductor element 100 and metal wiring 105 are bonded. One of the optical semiconductor devices of the present invention in which the optical semiconductor element 100 is electrically connected by a known method such as a wire 102 or a solder bump 107 and the optical semiconductor element 100 is covered with a transparent sealing resin 101 including a known phosphor 106. 1 shows an embodiment.

以下、本発明を実施例により詳述するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

<熱硬化性光反射用樹脂組成物の作製>
(実施例1〜11、比較例1〜8)
表1および表2に示した配合表に従って各材料を配合し、ミキサーによって十分混練した後、ミキシングロールにより所定条件で溶融混練し、必要に応じて熱エージングを行い、冷却、粉砕を行い、実施例1〜11および比較例1〜8の熱硬化性光反射用樹脂組成物を作製した。なお、表中の各成分の配合量の単位は重量部であり、空欄は配合無しまたは工程無しを表す。また、実施例1〜5はそれぞれ、特定の(G)オリゴマーを使用する手法;(A)エポキシ樹脂中のエポキシ基1当量に対する硬化剤中の活性基を0.5〜0.7当量の範囲とする手法;(H)増粘剤としてナノフィラーを追加する手法;組成物を所定条件で熱エージングする手法;および溶融混練条件を調整する手法(混練時間を15分から30分);を適用した場合であり、実施例6〜11は、上記手法のうちいずれか2つの手法を併用した場合である。また、実施例1、6、7および9において用いたオリゴマーは、下記のようにして作製したものであり、100℃における粘度が1000mPa・sのものである。
<Preparation of thermosetting resin composition for light reflection>
(Examples 1 to 11, Comparative Examples 1 to 8)
After blending the respective materials according to the blending tables shown in Tables 1 and 2 and sufficiently kneading them by a mixer, they are melt-kneaded under predetermined conditions by a mixing roll, heat-aged if necessary, and cooled and pulverized. The thermosetting light-reflecting resin compositions of Examples 1 to 11 and Comparative Examples 1 to 8 were produced. In addition, the unit of the compounding amount of each component in the table is part by weight, and a blank column indicates no compounding or no process. Examples 1 to 5 are each a method using a specific (G) oligomer; (A) a range of 0.5 to 0.7 equivalent of an active group in a curing agent per 1 equivalent of an epoxy group in an epoxy resin. (H) a technique of adding a nanofiller as a thickener; a technique of heat-aging the composition under predetermined conditions; and a technique of adjusting the melt-kneading conditions (kneading time from 15 minutes to 30 minutes). Examples 6 to 11 are cases where any two of the above methods are used in combination. The oligomers used in Examples 1, 6, 7, and 9 were produced as described below, and had a viscosity at 100 ° C. of 1000 mPa · s.

(オリゴマーの作製方法)
表1で示した配合表に従って各材料を配合(エポキシ基1当量に対し酸無水物基0.1当量)し、ミキシングロールにより25℃で10分間溶融混練を行った後、得られた粘土状組成物を温度55℃で4時間にわたって熱エージングした。ついで、口径300mmの陶器製乳鉢を用いて、粒径が1mm以下になるまで粉砕し、温度0℃以下の環境で保存した。
(Method for producing oligomer)
The respective materials were blended according to the blending table shown in Table 1 (0.1 equivalent of acid anhydride group to 1 equivalent of epoxy group), melt-kneaded at 25 ° C. for 10 minutes with a mixing roll, and then the obtained clay-like mixture was obtained. The composition was heat aged at a temperature of 55 ° C. for 4 hours. Then, it was crushed using a ceramic mortar having a diameter of 300 mm until the particle diameter became 1 mm or less, and stored in an environment at a temperature of 0 ° C. or less.

<熱硬化性光反射用樹脂組成物の評価>
各実施例及び各比較例の樹脂組成物を下記の各種特性試験によりそれぞれ評価した。結果を表1および表2に示す。
<Evaluation of thermosetting resin composition for light reflection>
The resin compositions of Examples and Comparative Examples were evaluated by the following various property tests. The results are shown in Tables 1 and 2.

(光反射率)
各実施例及び各比較例の樹脂組成物を、成形型温度180℃、成形圧力6.9MPa、キュア時間90秒の条件でトランスファー成形した後、150℃で2時間ポストキュアすることにより、厚み1.0mmのテストピースを作製した。ついで、積分球型分光光度計V−750型(日本分光株式会社製)にて波長400nmにおける光反射率を測定し、下記の評価基準により各テストピースの光反射率を評価した。
・評価基準
○:光波長400nmにおいて光反射率80%以上
△:光波長400nmにおいて光反射率70%以上80%未満
×:光波長400nmにおいて光反射率70%未満
(Light reflectance)
The resin composition of each Example and each Comparative Example was transfer-molded under the conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a cure time of 90 seconds, and was post-cured at 150 ° C. for 2 hours to obtain a thickness of 1 A test piece of 0.0 mm was produced. Next, the light reflectance at a wavelength of 400 nm was measured using an integrating sphere spectrophotometer V-750 (manufactured by JASCO Corporation), and the light reflectance of each test piece was evaluated according to the following evaluation criteria.
Evaluation criteria ○: light reflectance of 80% or more at a light wavelength of 400 nm Δ: light reflectance of 70% or more and less than 80% at a light wavelength of 400 nm ×: light reflectance of less than 70% at a light wavelength of 400 nm

(バリ評価)
各実施例及び各比較例の光反射樹脂組成物を、ポットより、深さがそれぞれ75、50、30、20、10、2μmのスリットを設けた成形型に流し込み成形した。その後、成形型の上型と下型の隙間内を流れて生じた樹脂バリの長さの最大値をノギスで求めた。バリ測定用金型と生じた樹脂バリの模式図を図4に示す。なお、バリ長さの最大値が5mm未満である場合を良好とし、5mm以上である場合をNGとした。評価結果を表1に示す。また、評価基準は下記のとおりである。
・評価基準
◎:バリ長さ3mm未満
○:バリ長さ5mm未満
×:バリ長さの最大値が5mm以上
(Burr evaluation)
The light-reflective resin compositions of Examples and Comparative Examples were cast from a pot into a mold provided with slits having depths of 75, 50, 30, 20, 10, and 2 μm, respectively. Thereafter, the maximum value of the length of the resin burr generated by flowing in the gap between the upper die and the lower die of the molding die was obtained with a caliper. FIG. 4 is a schematic view of a mold for burr measurement and resin burr generated. In addition, the case where the maximum value of the burr length was less than 5 mm was good, and the case where it was 5 mm or more was NG. Table 1 shows the evaluation results. The evaluation criteria are as follows.
・ Evaluation criteria ◎: Burr length less than 3 mm ○: Burr length less than 5 mm ×: Maximum value of burr length is 5 mm or more

(ワイヤボンディング性)
各実施例及び各比較例の樹脂組成物を用い、光反射率評価のために作製したテストピースと同様の成形、硬化条件で、図2の手順に従い光半導体素子搭載用基板を作製した。ついで、当該基板の光半導体素子搭載領域(凹部)に半導体素子を搭載した後、当該光半導体素子と基板の配線を、ワイヤボンダ(HW22U−H、九州松下電器株式会社製、商品名)と直径28μmのボンディングワイヤを用い、ワイヤボンディングし、電気的に接続した。ワイヤボンディング時の基板加熱温度は180℃とした。ついで、ワイヤボンディングした金線の引っ張り強度をプルテスターPTR−01(株式会社レスカ製、商品名)を用いて測定し、下記の評価基準によりワイヤボンディング性を評価した。
・評価基準
◎:10g以上
○:4g以上10g未満
△:4g未満
×:ボンディング不可
(Wire bonding)
Using the resin compositions of Examples and Comparative Examples, a substrate for mounting an optical semiconductor element was produced in accordance with the procedure of FIG. 2 under the same molding and curing conditions as those of a test piece produced for evaluating light reflectance. Next, after mounting the semiconductor element in the optical semiconductor element mounting area (recess) of the substrate, the wiring between the optical semiconductor element and the substrate is connected to a wire bonder (HW22U-H, manufactured by Kyushu Matsushita Electric Co., Ltd., trade name) with a diameter of 28 μm. The wire was wire-bonded and electrically connected. The substrate heating temperature during wire bonding was 180 ° C. Then, the tensile strength of the gold wire subjected to wire bonding was measured using a pull tester PTR-01 (trade name, manufactured by Resca Corporation), and the wire bonding property was evaluated according to the following evaluation criteria.
-Evaluation criteria :: 10 g or more :: 4 g or more and less than 10 g △: less than 4 g x: bonding not possible

*1:トリグリシジルイソシアヌレート
(エポキシ当量100、日産化学社製、商品名TEPIC-S)
*2:ヘキサヒドロ無水フタル酸(和光純薬社製)
*3:テトラヒドロ無水フタル酸(アルドリッチ社製)
*4:メチルヘキサヒドロ無水フタル酸(日立化成工業社製、商品名HN5500)
*5:日本化学工業社製、商品名PX-4ET)
*6:トリメトキシエポキシシラン(東レダウコーニング社製、商品名A-187)
*7:脂肪酸エステル(クラリアント社製、商品名 ヘキストワックスE)
*8:脂肪族エーテル(東洋ペトロライト社製、商品名 ユニトックス420)
*9:溶融シリカ(電気化学工業社製、商品名FB-301)
*10:溶融シリカ(電気化学工業社製、商品名FB-950)
*11:溶融シリカ(アドマテックス社製、商品名SO-25R)
*12:中空粒子(住友3M社製、商品名S60-HS)
*13:アルミナ(アドマテックス社製、商品名AO-25R)
*14:ナノシリカ(トクヤマ社製、商品名 レオロシールCP-102)
* 1: Triglycidyl isocyanurate (epoxy equivalent: 100, manufactured by Nissan Chemical Industries, trade name: TEPIC-S)
* 2: Hexahydrophthalic anhydride (Wako Pure Chemical Industries, Ltd.)
* 3: Tetrahydrophthalic anhydride (Aldrich)
* 4: Methyl hexahydrophthalic anhydride (HN5500, manufactured by Hitachi Chemical Co., Ltd.)
* 5: PX-4ET, manufactured by Nippon Chemical Industry Co., Ltd.)
* 6: Trimethoxy epoxy silane (A-187, manufactured by Dow Corning Toray)
* 7: Fatty acid ester (manufactured by Clariant, trade name Hoechst Wax E)
* 8: Aliphatic ether (Toyo Petrolite Co., Ltd., product name: Unitox 420)
* 9: Fused silica (FB-301, manufactured by Denki Kagaku Kogyo Co., Ltd.)
* 10: Fused silica (FB-950, manufactured by Denki Kagaku Kogyo Co., Ltd.)
* 11: Fused silica (AD-25, manufactured by SO-25R)
* 12: Hollow particles (Sumitomo 3M, product name S60-HS)
* 13: Alumina (Amatex, AO-25R)
* 14: Nano silica (Tokuyama Corporation, trade name: Reolosil CP-102)

表1と表2に示したように、実施例の硬化性光反射用樹脂組成物は、光反射特性に優れ、また、トランスファー成形によるバリの発生を抑制し、ワイヤボンディング性を向上させることが可能である。結果として、本発明の硬化性光反射用樹脂組成物を用いて光半導体素子搭載用基板や光半導体装置の製造する場合、バリを除去する工程が不要となるめ、コストや製造時間など生産性の面で非常に有利となる。   As shown in Tables 1 and 2, the curable light-reflecting resin compositions of the examples have excellent light-reflecting properties, can suppress the occurrence of burrs due to transfer molding, and can improve wire bonding properties. It is possible. As a result, when an optical semiconductor element mounting substrate or an optical semiconductor device is manufactured using the curable light-reflecting resin composition of the present invention, a step of removing burrs is not required, and productivity such as cost and manufacturing time is reduced. It is very advantageous in terms of.

100・・・・・光半導体素子(LED素子)
101・・・・・透明封止樹脂
102・・・・・ボンディングワイヤ
103・・・・・リフレクター
104・・・・・Ni/Agめっき
105・・・・・金属配線
106・・・・・蛍光体
107・・・・・はんだバンプ
110・・・・・光半導体素子搭載用基板
200・・・・・光半導体素子搭載領域(凹部)
300・・・・・樹脂注入口
301・・・・・金型
400・・・・・バリ測定用金型(上型)
401・・・・・バリ測定用金型(下型)
402・・・・・樹脂注入口
403・・・・・キャビティー
404・・・・・スリット(75μm)
405・・・・・スリット(50μm)
406・・・・・スリット(30μm)
407・・・・・スリット(20μm)
408・・・・・スリット(10μm)
409・・・・・スリット(2μm)
410・・・・・樹脂バリ

100 ····· Optical semiconductor element (LED element)
101 Transparent sealing resin 102 Bonding wire 103 Reflector 104 Ni / Ag plating 105 Metal wiring 106 Fluorescence Body 107: solder bump 110: optical semiconductor element mounting substrate 200: optical semiconductor element mounting area (recess)
300 resin injection port 301 mold 400 mold for burr measurement (upper mold)
401 ····· Die for measuring burr (lower mold)
402 resin inlet 403 cavity 404 slit (75 μm)
405 ····· Slit (50 μm)
406 ····· Slit (30μm)
407: Slit (20 μm)
408 ····· Slit (10 μm)
409 ... Slit (2μm)
410 ···· Resin burrs

Claims (16)

(A’)エポキシ樹脂と(B’)硬化剤とのオリゴマー、及び白色顔料を含む、熱硬化性光反射用樹脂組成物。   (A ′) A thermosetting light reflecting resin composition comprising an oligomer of an epoxy resin and a (B ′) curing agent, and a white pigment. 前記(A’)エポキシ樹脂が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジグリシジルイソシアヌレート、及びトリグリシジルイソシアヌレートからなる群の中から選ばれる少なくとも1種を含む、請求項1に記載の熱硬化性光反射用樹脂組成物。   The (A ′) epoxy resin contains at least one selected from the group consisting of bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, diglycidyl isocyanurate, and triglycidyl isocyanurate. The thermosetting resin composition for light reflection according to claim 1. 前記(B’)硬化剤が、酸無水物硬化剤、イソシアヌル酸誘導体、及びフェノール系硬化剤からなる群の中から選ばれる少なくとも1種を含む、請求項1又は2に記載の熱硬化性光反射用樹脂組成物。   The thermosetting light according to claim 1, wherein the (B ′) curing agent contains at least one selected from the group consisting of an acid anhydride curing agent, an isocyanuric acid derivative, and a phenolic curing agent. Reflective resin composition. 前記白色顔料が、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、及び無機中空粒子からなる群の中から選ばれる少なくとも1種を含む、請求項1〜3のいずれか一項に記載の熱硬化性光反射用樹脂組成物。   The white pigment according to any one of claims 1 to 3, wherein the white pigment contains at least one selected from the group consisting of alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, and inorganic hollow particles. Thermosetting resin composition for light reflection. 前記(A’)エポキシ樹脂と前記(B’)硬化剤との配合比が、前記(A’)エポキシ樹脂中のエポキシ基1当量に対して、該エポキシ基と反応可能な前記(B’)硬化剤中の活性基が0.3当量以下となる比である、請求項1〜4のいずれか一項に記載の熱硬化性光反射用樹脂組成物。   The mixing ratio of the (A ′) epoxy resin and the (B ′) curing agent is such that the epoxy group in the (A ′) epoxy resin is equivalent to 1 equivalent of the epoxy group and the (B ′) is capable of reacting with the epoxy group. The thermosetting light-reflecting resin composition according to any one of claims 1 to 4, wherein the ratio of the active groups in the curing agent is 0.3 equivalent or less. さらに無機充填剤として、シリカ、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム、及び炭酸バリウムからなる群の中から選ばれる少なくとも1種を含む、請求項1〜5のいずれか一項に記載の熱硬化性光反射用樹脂組成物。   The inorganic filler further comprises at least one selected from the group consisting of silica, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate, and barium carbonate, according to any one of claims 1 to 5, The thermosetting resin composition for light reflection according to the above. 前記無機充填剤と前記白色顔料との合計配合量が、樹脂組成物全体に対して、10体積%〜85体積%の範囲である、請求項6に記載の熱硬化性光反射用樹脂組成物。   The thermosetting light-reflecting resin composition according to claim 6, wherein a total blending amount of the inorganic filler and the white pigment is in a range of 10% by volume to 85% by volume based on the whole resin composition. . 請求項1〜7のいずれか一項に記載の熱硬化性光反射用樹脂組成物を含有する、熱硬化性光反射用樹脂タブレット。   A thermosetting light-reflecting resin tablet, comprising the thermosetting light-reflecting resin composition according to claim 1. (A’)エポキシ樹脂および(B’)硬化剤を混練してオリゴマーを得る工程を含む、請求項1〜7のいずれかに一項記載の熱硬化性光反射用樹脂組成物の製造方法。   The method for producing a thermosetting light-reflecting resin composition according to any one of claims 1 to 7, comprising a step of kneading (A ') an epoxy resin and (B') a curing agent to obtain an oligomer. さらに、前記オリゴマーを温度25〜60℃の範囲で1〜6時間にわたってエージングする工程を含む、請求項9に記載の熱硬化性光反射用樹脂組成物の製造方法。   The method for producing a thermosetting light-reflecting resin composition according to claim 9, further comprising a step of aging the oligomer at a temperature of 25 to 60 ° C for 1 to 6 hours. (A’)エポキシ樹脂および(B’)硬化剤を混練してなる熱硬化性光反射用樹脂組成物用オリゴマーの保存方法であって、オリゴマーを粒径が1mm以下になるまで粉砕し、温度0℃以下の環境で保存する、保存方法。   (A ′) A method for preserving an oligomer for a thermosetting light-reflecting resin composition obtained by kneading an epoxy resin and a (B ′) curing agent, wherein the oligomer is pulverized until the particle size becomes 1 mm or less, and the temperature is reduced. A storage method that stores in an environment of 0 ° C or less. 請求項1〜7のいずれかに記載の熱硬化性光反射用樹脂組成物の製造方法であって、少なくともオリゴマー及び白色顔料を、混練温度20〜100℃、及び混練時間10〜30分の条件下で混練して混練物を形成する工程を含む、熱硬化性光反射用樹脂組成物の製造方法。   The method for producing a thermosetting light-reflecting resin composition according to any one of claims 1 to 7, wherein at least an oligomer and a white pigment are kneaded at a kneading temperature of 20 to 100 ° C and a kneading time of 10 to 30 minutes. A method for producing a thermosetting light-reflecting resin composition, comprising a step of forming a kneaded material by kneading under the following conditions. さらに、前記混練物を0〜30℃で1〜72時間にわたってエージングする工程を含む、請求項12に記載の熱硬化性光反射用樹脂組成物の製造方法。   The method for producing a thermosetting light-reflecting resin composition according to claim 12, further comprising a step of aging the kneaded material at 0 to 30 ° C for 1 to 72 hours. 光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板であって、少なくとも前記凹部の内周側面が請求項1〜7のいずれか一項に記載の熱硬化性光反射用樹脂組成物から構成される、光半導体素子搭載用基板。   8. An optical semiconductor device mounting substrate having at least one concave portion serving as an optical semiconductor element mounting region, wherein at least the inner peripheral side surface of the concave portion is the thermosetting resin according to claim 1. A substrate for mounting an optical semiconductor element, comprising a resin composition for light reflection. 光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板の製造方法であって、少なくとも前記凹部を請求項1〜7のいずれか一項に記載の光反射用熱硬化性樹脂組成物を用いたトランスファー成型によって形成する工程を含む、光半導体搭載用基板の製造方法。   A method for manufacturing an optical semiconductor element mounting substrate in which at least one concave portion serving as an optical semiconductor element mounting region is formed, wherein at least the concave portion is a light reflecting heat according to any one of claims 1 to 7. A method for producing a substrate for mounting an optical semiconductor, comprising a step of forming the substrate by transfer molding using a curable resin composition. 請求項14に記載の光半導体素子搭載用基板と、前記光半導体素子搭載用基板の凹部底面に搭載された光半導体素子と、前記光半導体素子を覆うように前記凹部内に形成された蛍光体含有透明封止樹脂層と、を少なくとも備える光半導体装置。   15. The substrate for mounting an optical semiconductor element according to claim 14, an optical semiconductor element mounted on a bottom surface of the concave part of the substrate for mounting an optical semiconductor element, and a phosphor formed in the concave part so as to cover the optical semiconductor element. An optical semiconductor device comprising at least a transparent sealing resin layer.
JP2019165447A 2006-11-15 2019-09-11 Thermosetting resin composition for light reflection and method for producing the same Pending JP2020023699A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006309052 2006-11-15
JP2006309052 2006-11-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017165729A Division JP2017214599A (en) 2006-11-15 2017-08-30 Resin composition for thermosetting light reflection and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2020023699A true JP2020023699A (en) 2020-02-13

Family

ID=39604652

Family Applications (8)

Application Number Title Priority Date Filing Date
JP2007114227A Withdrawn JP2008144127A (en) 2006-11-15 2007-04-24 Thermosetting resin composition for light reflection, photosemiconductor element-loading substrate using the same, photosemiconductor device, and manufacturing process for the articles
JP2012060714A Active JP5778605B2 (en) 2006-11-15 2012-03-16 Thermosetting light-reflective resin composition, optical semiconductor element mounting substrate using the same, optical semiconductor device, and methods for producing them
JP2014103155A Pending JP2014195106A (en) 2006-11-15 2014-05-19 Led device manufacturing method and led device
JP2016156302A Active JP6306652B2 (en) 2006-11-15 2016-08-09 Thermosetting light reflecting resin composition and method for producing the same
JP2016156301A Active JP6322237B2 (en) 2006-11-15 2016-08-09 Thermosetting light reflecting resin composition and method for producing the same
JP2016156303A Pending JP2017005260A (en) 2006-11-15 2016-08-09 Thermosetting resin composition for light reflection and method for producing the same
JP2017165729A Withdrawn JP2017214599A (en) 2006-11-15 2017-08-30 Resin composition for thermosetting light reflection and manufacturing method therefor
JP2019165447A Pending JP2020023699A (en) 2006-11-15 2019-09-11 Thermosetting resin composition for light reflection and method for producing the same

Family Applications Before (7)

Application Number Title Priority Date Filing Date
JP2007114227A Withdrawn JP2008144127A (en) 2006-11-15 2007-04-24 Thermosetting resin composition for light reflection, photosemiconductor element-loading substrate using the same, photosemiconductor device, and manufacturing process for the articles
JP2012060714A Active JP5778605B2 (en) 2006-11-15 2012-03-16 Thermosetting light-reflective resin composition, optical semiconductor element mounting substrate using the same, optical semiconductor device, and methods for producing them
JP2014103155A Pending JP2014195106A (en) 2006-11-15 2014-05-19 Led device manufacturing method and led device
JP2016156302A Active JP6306652B2 (en) 2006-11-15 2016-08-09 Thermosetting light reflecting resin composition and method for producing the same
JP2016156301A Active JP6322237B2 (en) 2006-11-15 2016-08-09 Thermosetting light reflecting resin composition and method for producing the same
JP2016156303A Pending JP2017005260A (en) 2006-11-15 2016-08-09 Thermosetting resin composition for light reflection and method for producing the same
JP2017165729A Withdrawn JP2017214599A (en) 2006-11-15 2017-08-30 Resin composition for thermosetting light reflection and manufacturing method therefor

Country Status (2)

Country Link
JP (8) JP2008144127A (en)
CN (1) CN101535366B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008059856A1 (en) 2006-11-15 2010-03-04 日立化成工業株式会社 Thermosetting light reflecting resin composition, method for producing the same, optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
JP2008144127A (en) * 2006-11-15 2008-06-26 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, photosemiconductor element-loading substrate using the same, photosemiconductor device, and manufacturing process for the articles
JP5421546B2 (en) * 2007-07-05 2014-02-19 日立化成株式会社 Thermosetting light reflecting resin composition, optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
JP6133004B2 (en) * 2009-03-31 2017-05-24 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP5570616B2 (en) * 2010-12-06 2014-08-13 アルプス電気株式会社 Microchip manufacturing method
JP5919903B2 (en) * 2011-03-31 2016-05-18 三菱化学株式会社 Package for semiconductor light emitting device, semiconductor light emitting device having the package, and method for manufacturing the same
JP5775408B2 (en) * 2011-09-29 2015-09-09 積水化学工業株式会社 White curable material for optical semiconductor device, method for producing white curable material for optical semiconductor device, molded article for optical semiconductor device, and optical semiconductor device
EP2782150B1 (en) 2011-11-17 2018-08-15 Lumens Co., Ltd. Light emitting device package and backlight including same
JP2013153144A (en) * 2011-12-27 2013-08-08 Panasonic Corp Unsaturated polyester resin composition for led reflector, and particulate, tablet, led reflector, surface-mount type led light-emitting device, and led luminaire
CN103325889A (en) * 2012-03-19 2013-09-25 展晶科技(深圳)有限公司 LED encapsulating method
JP2013206895A (en) * 2012-03-27 2013-10-07 Shin Etsu Chem Co Ltd Substrate for optical semiconductor device, manufacturing method of substrate for optical semiconductor device, optical semiconductor device, and manufacturing method of optical semiconductor device
JP6021416B2 (en) * 2012-05-01 2016-11-09 日東電工株式会社 Lead frame with reflector for optical semiconductor device, optical semiconductor device using the same, and manufacturing method thereof
JP5831424B2 (en) * 2012-10-17 2015-12-09 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP2014095051A (en) * 2012-11-12 2014-05-22 Shin Etsu Chem Co Ltd Thermosetting epoxy resin composition, reflector for led using the composition, and led device
CN107074785A (en) * 2014-07-24 2017-08-18 日本化药株式会社 Polybasic carboxylic acid and polycarboxylic acid compositions, composition epoxy resin, hot curing resin composition, their solidfied material and optical semiconductor device containing it
JP6038236B2 (en) * 2015-06-17 2016-12-07 積水化学工業株式会社 White curable material for optical semiconductor device and method for producing white curable material for optical semiconductor device
JP6580948B2 (en) * 2015-11-04 2019-09-25 旭化成株式会社 Reflector and optical semiconductor device
JP7121620B2 (en) 2018-09-27 2022-08-18 ダイハツ工業株式会社 Assembly equipment
CN112391034B (en) * 2019-08-13 2022-12-09 北京科化新材料科技有限公司 Epoxy resin composite material and preparation method and application thereof
CN111211209B (en) * 2020-01-16 2021-09-28 江西新正耀光学研究院有限公司 Ultraviolet light-emitting diode and manufacturing method thereof
CN111380814A (en) * 2020-04-26 2020-07-07 天津德高化成新材料股份有限公司 Optical epoxy plastic packaging material for LED packaging and ink color measuring method thereof
CN115011967B (en) * 2022-08-05 2022-11-04 山东祺裕新材料有限公司 Low-ammonia-nitrogen acid pickling corrosion inhibitor and use method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176334A (en) * 2001-01-24 2003-06-24 Nichia Chem Ind Ltd Epoxy resin composition, method for producing the same and optical semiconductor element using the same
JP2006140207A (en) * 2004-11-10 2006-06-01 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, optical semiconductor loading substrate using the same, its manufacturing method and optical semiconductor device
JP2008144127A (en) * 2006-11-15 2008-06-26 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, photosemiconductor element-loading substrate using the same, photosemiconductor device, and manufacturing process for the articles

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2780449B2 (en) * 1990-06-28 1998-07-30 日立化成工業株式会社 Manufacturing method of epoxy resin molding material for semiconductor encapsulation
IT1246761B (en) * 1990-07-02 1994-11-26 Pirelli Cavi Spa OPTICAL FIBER CABLES AND RELATED COMPONENTS CONTAINING A HOMOGENEOUS MIXTURE TO PROTECT OPTICAL FIBERS FROM HYDROGEN AND RELATED HOMOGENEOUS BARRIER MIXTURE
JPH05239321A (en) * 1992-02-28 1993-09-17 Toshiba Chem Corp Epoxy resin composition and semiconductor-sealing arrangement
JPH0685325A (en) * 1992-08-28 1994-03-25 Stanley Electric Co Ltd Manufacture of led
JPH06209024A (en) * 1993-01-11 1994-07-26 Hitachi Chem Co Ltd Manufacture of resin sealed semiconductor device
JPH08104796A (en) * 1994-10-05 1996-04-23 Hitachi Ltd Semiconductor-sealing resin composition and semiconductor device sealed with the composition
JP3618133B2 (en) * 1995-01-18 2005-02-09 日東電工株式会社 Optical semiconductor device
JPH08245214A (en) * 1995-03-07 1996-09-24 Denki Kagaku Kogyo Kk Silica fine powder, its production, and epoxy resin composition for sealing semiconductor
JPH10292094A (en) * 1997-02-20 1998-11-04 Toshiba Corp Epoxy resin composition, resin-sealed semiconductor device prepared by using the sane, epoxy resin molding material, and composite epoxy resin tablet
JP3165078B2 (en) * 1997-07-24 2001-05-14 協和化成株式会社 Method for manufacturing surface mount components
JPH1143546A (en) * 1997-07-30 1999-02-16 Toray Ind Inc Cloth prepreg and honeycomb structure
JP3294803B2 (en) * 1997-08-18 2002-06-24 株式会社日本触媒 Thermosetting resin sealing material
JP2000319633A (en) * 1999-05-12 2000-11-21 C I Kasei Co Ltd Silica filter for epoxy resin sealing material
JP4606530B2 (en) * 1999-05-14 2011-01-05 株式会社朝日ラバー Sheet member and light emitting device using the same
JP3632507B2 (en) * 1999-07-06 2005-03-23 日亜化学工業株式会社 Light emitting device
JP3627592B2 (en) * 1999-10-08 2005-03-09 日亜化学工業株式会社 Method for manufacturing light emitting device
JP2001118969A (en) * 1999-10-22 2001-04-27 Hitachi Chem Co Ltd Molding material for sealing, its manufacturing method, and electronic part device
JP3483817B2 (en) * 1999-12-01 2004-01-06 電気化学工業株式会社 Spherical inorganic powder and its use
JP3820886B2 (en) * 2001-01-17 2006-09-13 松下電工株式会社 Epoxy resin composition for optical semiconductor and optical semiconductor device
MY145695A (en) * 2001-01-24 2012-03-30 Nichia Corp Light emitting diode, optical semiconductor device, epoxy resin composition suited for optical semiconductor device, and method for manufacturing the same
JP2003124523A (en) * 2001-10-19 2003-04-25 Rohm Co Ltd Light emitting semiconductor chip device
JP4250949B2 (en) * 2001-11-01 2009-04-08 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
US7145182B2 (en) * 2003-09-12 2006-12-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Integrated emitter devices having beam divergence reducing encapsulation layer
JP2005089607A (en) * 2003-09-17 2005-04-07 Sumitomo Bakelite Co Ltd Epoxy resin composition for optical semiconductor sealing and optical semiconductor device
JP4774201B2 (en) * 2003-10-08 2011-09-14 日亜化学工業株式会社 Package molded body and semiconductor device
JP4460968B2 (en) * 2004-07-27 2010-05-12 株式会社アドマテックス Method for producing resin composition
JP4837664B2 (en) * 2005-08-04 2011-12-14 信越化学工業株式会社 Thermosetting epoxy resin composition and semiconductor device
EP2323178B1 (en) * 2005-08-04 2015-08-19 Nichia Corporation Light-emitting device, method for manufacturing same, molded body and sealing member
JP2007114227A (en) * 2005-10-17 2007-05-10 Seiko Epson Corp Liquid developer and method for manufacturing the liquid developer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176334A (en) * 2001-01-24 2003-06-24 Nichia Chem Ind Ltd Epoxy resin composition, method for producing the same and optical semiconductor element using the same
JP2006140207A (en) * 2004-11-10 2006-06-01 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, optical semiconductor loading substrate using the same, its manufacturing method and optical semiconductor device
JP2008144127A (en) * 2006-11-15 2008-06-26 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, photosemiconductor element-loading substrate using the same, photosemiconductor device, and manufacturing process for the articles

Also Published As

Publication number Publication date
JP2017214599A (en) 2017-12-07
CN101535366B (en) 2012-08-08
JP5778605B2 (en) 2015-09-16
JP6306652B2 (en) 2018-04-04
JP2017020036A (en) 2017-01-26
JP2017005260A (en) 2017-01-05
CN101535366A (en) 2009-09-16
JP2014195106A (en) 2014-10-09
JP6322237B2 (en) 2018-05-09
JP2012138610A (en) 2012-07-19
JP2017002316A (en) 2017-01-05
JP2008144127A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP2020023699A (en) Thermosetting resin composition for light reflection and method for producing the same
JP6365606B2 (en) Thermosetting light reflecting resin composition, optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
JP5298468B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP5672318B2 (en) Manufacturing method of optical semiconductor device
JP5233186B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP2009246334A (en) Thermosetting resin composition for light reflection, substrate for loading photosemiconductor device and manufacturing method therefor, and photosemiconductor device
JP5401907B2 (en) Method for manufacturing thermosetting resin composition, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210810