JP2005089607A - Epoxy resin composition for optical semiconductor sealing and optical semiconductor device - Google Patents

Epoxy resin composition for optical semiconductor sealing and optical semiconductor device Download PDF

Info

Publication number
JP2005089607A
JP2005089607A JP2003324934A JP2003324934A JP2005089607A JP 2005089607 A JP2005089607 A JP 2005089607A JP 2003324934 A JP2003324934 A JP 2003324934A JP 2003324934 A JP2003324934 A JP 2003324934A JP 2005089607 A JP2005089607 A JP 2005089607A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
optical semiconductor
less
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003324934A
Other languages
Japanese (ja)
Inventor
Shinji Komori
慎司 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003324934A priority Critical patent/JP2005089607A/en
Publication of JP2005089607A publication Critical patent/JP2005089607A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an epoxy resin composition for optical semiconductor sealing excellent in transparency and soldering resistance, and to provide an optical semiconductor device sealed with the cured product of the composition. <P>SOLUTION: The epoxy resin composition for optical semiconductor sealing comprises (A) an epoxy resin having in one molecule two or more epoxy groups, (B) an acid anhydride curing agent, (C) a curing promoter, (D) spherical glass particles 5-100 μm in mean size comprising SiO<SB>2</SB>, CaO and Al<SB>2</SB>O<SB>3</SB>and (E) a benzophenone-based ultraviolet light absorber and also contains (F) 1-5 wt.% of spherical fused silica ≤70μm in the maximum particle size. The cured product of this composition has a water absorption of ≤2 wt.%, a wavelength 400 nm-light transmittance of 40-80% and a wavelength 500 nm-light transmittance of ≥50%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光半導体封止用エポキシ樹脂組成物及びその硬化物で封止された光半導体装置に関する。   The present invention relates to an epoxy resin composition for sealing an optical semiconductor and an optical semiconductor device sealed with a cured product thereof.

近年、通信情報機器の小型化、集積密度の向上及び製造プロセスの簡略化をねらい、半導体産業において従来の実装方法にかわり、表面実装方法の要求が急速に高まっている。さらにオプトエレクトロニクスの分野に着目すると、従来の半導体封止樹脂の機能に加えて、透明性が非常に重要な要因となっている。すなわち、フォトセンサー、LED、発光素子等のオプトデバイスにおいては、表面実装におけるIRリフロー等の実装方式を行っても、透明性が損なわれることなく、その上、熱衝撃によるパッケージクラックの発生や、チップやリードフレームと樹脂間に剥離を生じない、高い信頼性のある封止用樹脂が求められている。   In recent years, with the aim of downsizing communication information devices, improving integration density, and simplifying manufacturing processes, the demand for surface mounting methods in the semiconductor industry has rapidly increased in place of conventional mounting methods. Further, in the field of optoelectronics, transparency is a very important factor in addition to the function of the conventional semiconductor sealing resin. That is, in opto devices such as photosensors, LEDs, and light emitting elements, even if a mounting method such as IR reflow in surface mounting is performed, transparency is not impaired, and further, generation of package cracks due to thermal shock, There is a need for a highly reliable sealing resin that does not cause separation between the chip or lead frame and the resin.

光半導体封止用の樹脂としては、これまでに数多く示されている。例えば、特許文献1では、特定構造のエポキシ樹脂を用いることで耐熱性と透明性が得られることが示されているが、組み合わせる硬化剤に酸無水物を用いている。確かに、硬化剤に酸無水物を用いた場合、高い透明性が得られ、可視光領域でも高い透過率が得られる。しかしながら、酸無水物硬化型のエポキシ樹脂組成物は酸無水物基の親水性が高いため、樹脂組成物の吸水率が高くなり、表面実装型の光半導体パッケージを、IRリフロー等で実装すると、熱衝撃によるパッケージクラックや、チップ又はリードフレームと樹脂との間に剥離が生じる問題があった。   Many resins for encapsulating optical semiconductors have been shown so far. For example, Patent Document 1 shows that heat resistance and transparency can be obtained by using an epoxy resin having a specific structure, but an acid anhydride is used as a curing agent to be combined. Certainly, when an acid anhydride is used as the curing agent, high transparency is obtained, and high transmittance is obtained even in the visible light region. However, since the acid anhydride curable epoxy resin composition has high hydrophilicity of the acid anhydride group, the water absorption rate of the resin composition increases, and when the surface-mount type optical semiconductor package is mounted by IR reflow or the like, There have been problems such as package cracks due to thermal shock and peeling between the chip or lead frame and the resin.

上記の問題点を解決するために、充填材を添加することが代表的な手法であることは当業者間では公知のことである。シリカなどの無機質充填材を、樹脂組成物中に高い比率、例えば、70%から90%といった比率で充填することで、封止樹脂組成物の吸水率、線膨張係数を低下させ、高温時の変形やクラックなどを抑止できるものであるが、このようにして得た樹脂組成物は、シリカ粒子と樹脂の界面で起こる光の反射や屈折の影響により、樹脂硬化物の光透過性は極端に低いものとなる。樹脂組成物の硬化物中を光線が透過する際、樹脂と充填材との界面において反射・屈折する光線の量は、界面前後での屈折率の差に比例する事が知られており、一般的なシリカ粒子の屈折率は、1.4前後であるのに対し、エポキシ樹脂の硬化物は、1.5前後であり、充填材種を変えない限り、この点を解消することは難しい。   It is well known to those skilled in the art that a typical method is to add a filler to solve the above problems. Filling the resin composition with an inorganic filler such as silica at a high ratio, for example, a ratio of 70% to 90%, reduces the water absorption rate and the linear expansion coefficient of the sealing resin composition. Although the resin composition obtained in this way can suppress deformation and cracks, the light transmittance of the cured resin is extremely low due to the effects of light reflection and refraction occurring at the interface between the silica particles and the resin. It will be low. It is known that the amount of light reflected and refracted at the interface between the resin and the filler is proportional to the difference in refractive index before and after the interface when light passes through the cured resin composition. The refractive index of typical silica particles is around 1.4, whereas the cured product of epoxy resin is around 1.5, and it is difficult to eliminate this point unless the filler type is changed.

これを解消するために、特許文献2では、充填材として、SiO2、CaO及びAl23を主成分とするガラス粒子を、光半導体封止用樹脂組成物の充填材として用いる技術が述べられている。この技術によれば、各成分の組成を変化させることや、金属元素類を添加することで、ガラス粒子の屈折率を容易に変化させることができる。しかし、本発明者らが光半導体封止用樹脂組成物の充填材として、該技術によるガラス粒子を用いたところ、確かに透明性は高くなるが、光半導体封止用樹脂組成物としては、未だ不十分な透明性であった。 In order to solve this problem, Patent Document 2 describes a technique in which glass particles mainly composed of SiO 2 , CaO, and Al 2 O 3 are used as fillers for the resin composition for optical semiconductor encapsulation. It has been. According to this technique, the refractive index of glass particles can be easily changed by changing the composition of each component or adding metal elements. However, when the present inventors used the glass particles according to the technique as a filler for the resin composition for optical semiconductor encapsulation, the transparency certainly increases, but as the resin composition for optical semiconductor encapsulation, It was still insufficient transparency.

また、本発明者らが、耐半田性の試験を行ったところ、パッケージクラック等の不良が発生することを確認した。前述の通り該充填材を用いることにより、ある程度の透明な硬化物を得ることは可能であるが、充填材種やその添加量のみで耐半田性を得ることは難しいのが現状である。   Further, when the present inventors conducted a solder resistance test, it was confirmed that defects such as package cracks occurred. As described above, by using the filler, it is possible to obtain a certain degree of transparent cured product. However, it is difficult to obtain solder resistance with only the filler type and its added amount.

一方、外部からの紫外線等や光半導体素子自体から発生する光線や受光する光線により、封止樹脂が着色したり、封止樹脂が脆くなってクラックが生じたりする場合がある。これを解消するために特許文献3では、紫外線吸収剤、ラジカルトラップ剤を光半導体用エポキシ樹脂組成物中に添加する技術が述べられている。この技術によれば、紫外線や光半導体素子自体から発生するエネルギーによる着色を防止することができる。しかし、本発明者らが光半導体封止用樹脂組成物の添加剤として、紫外線吸収剤、特にベンゾトリアゾール化合物と、ラジカルトラップ剤としてヒンダードアミン化合物を用いたところ、確かに、紫外線等による樹脂の着色は少なくなるものの、波長400nm付近の光透過率が低下し、樹脂硬化物に薄黄色の着色があり、紫外線による劣化防止と高い透明性の両立に至るには不十分であった。樹脂硬化物の着色の原因はベンゾトリアゾール化合物の光吸収が波長400nm付近にも影響し、着色したものと考えられる。   On the other hand, the sealing resin may be colored or cracked due to the sealing resin becoming brittle due to ultraviolet rays from the outside, light rays generated from the optical semiconductor element itself, or received light rays. In order to solve this problem, Patent Document 3 describes a technique in which an ultraviolet absorber and a radical trap agent are added to an epoxy resin composition for an optical semiconductor. According to this technique, it is possible to prevent coloring due to ultraviolet rays or energy generated from the optical semiconductor element itself. However, when the present inventors used an ultraviolet absorber, particularly a benzotriazole compound, and a hindered amine compound as a radical trapping agent as an additive for a resin composition for encapsulating an optical semiconductor, it is true that the resin is colored by ultraviolet rays or the like. However, the light transmittance in the vicinity of a wavelength of 400 nm was lowered, and the resin cured product had a pale yellow coloration, which was insufficient to achieve both prevention of deterioration due to ultraviolet rays and high transparency. The cause of coloring of the resin cured product is considered to be that the light absorption of the benzotriazole compound also affects the vicinity of a wavelength of 400 nm and is colored.

さて、光半導体封止用エポキシ樹脂組成物で封止された光半導体デバイスパッケージを、ガラス基板といった基板に実装する際、近年は生産性の観点から、自動化がみ、光デバイスパッケージは自動搬送され、基板上に実装される。自動搬送では、CCDカメラといった画像認識装置を用い、光デバイスパッケージの正確な位置を判定し、光デバイスパッケージを搬送するが、光半導体封止用エポキシ樹脂組成物の透明性が高すぎると画像認識装置の位置決めの焦点が合わず、光デバイスパッケージを搬送することができないといった不具合がある。   Now, when mounting an optical semiconductor device package encapsulated with an epoxy resin composition for optical semiconductor encapsulation on a substrate such as a glass substrate, in recent years, from the viewpoint of productivity, automation has been seen, and the optical device package is automatically transported. Mounted on the substrate. In automatic transport, an image recognition device such as a CCD camera is used to determine the exact position of the optical device package and transport the optical device package. However, if the transparency of the epoxy resin composition for optical semiconductor encapsulation is too high, image recognition is performed. There is a problem that the positioning of the apparatus is not focused and the optical device package cannot be transported.

したがって、光半導体封止用エポキシ樹脂組成物の光透過性は、低すぎる場合は、発光素子や受光素子としての機能を果たすことができず、さらに、光透過性が高すぎると、光デバイスパッケージの実装時に、パッケージを搬送できないという不具合があり生産性が極めて低くなり、これら相反する特性を満足する光半導体用エポキシ樹脂組成物はない。   Accordingly, if the light transmittance of the epoxy resin composition for sealing an optical semiconductor is too low, it cannot function as a light emitting element or a light receiving element, and if the light transmittance is too high, the optical device package However, there is a problem that the package cannot be transported at the time of mounting, the productivity becomes extremely low, and there is no epoxy resin composition for optical semiconductors that satisfies these contradictory characteristics.

特許第2970214号公報(第1〜4頁)Japanese Patent No. 2970214 (pages 1 to 4) 特開平6−65473号公報(第2〜7頁)JP-A-6-65473 (pages 2-7) 特開2001−123048号公報(第2〜7頁)JP 2001-123048 (pages 2-7)

本発明は、透明性及び耐半田性に優れた光半導体封止用エポキシ樹脂組成物及びその硬化物で封止された光半導体装置を提供する。   The present invention provides an optical semiconductor sealing epoxy resin composition excellent in transparency and solder resistance, and an optical semiconductor device sealed with a cured product thereof.

本発明は、
[1]1分子内に2個以上のエポキシ基を有するエポキシ樹脂(A)、酸無水物硬化剤(B)、硬化促進剤(C)、SiO2、CaO、及びAl23を含む、平均粒径5μm以上、100μm以下の球状のガラス粒子(D)及びベンゾフェノン系紫外線吸収剤(E)を主成分とし、最大粒径70μm以下の球状溶融シリカ(F)を全エポキシ樹脂組成物中に1重量%以上、5重量%以下含有し、当該エポキシ樹脂組成物が硬化物において2%以下の吸水率、40%以上80%以下の波長400nm光透過率、及び50%以上の波長500nm光透過率を有することを特徴とする光半導体封止用エポキシ樹脂組成物、
[2]上記1分子内に2個以上のエポキシ基を有するエポキシ樹脂(A)が、ビスフェノール型エポキシ樹脂、及び複素環式エポキシ樹脂からなる群より選ばれる少なくとも1つである、第[1]項記載の光半導体封止用エポキシ樹脂組成物、
[3]上記ビスフェノール型エポキシ樹脂が、一般式(1)で表されるエポキシ樹脂である、第[2]項記載の光半導体封止用エポキシ樹脂組成物、
The present invention
[1] An epoxy resin (A) having two or more epoxy groups in one molecule, an acid anhydride curing agent (B), a curing accelerator (C), SiO 2 , CaO, and Al 2 O 3 , Spherical glass particles (D) having an average particle size of 5 μm or more and 100 μm or less and benzophenone ultraviolet absorber (E) as main components and spherical fused silica (F) having a maximum particle size of 70 μm or less are contained in all epoxy resin compositions. 1% by weight or more and 5% by weight or less, and the epoxy resin composition has a water absorption of 2% or less, a light transmittance of 40% or more and 80% or less at a wavelength of 400 nm, and a light transmittance of 50% or more at a wavelength of 500 nm. An epoxy resin composition for sealing an optical semiconductor,
[2] The first [1], wherein the epoxy resin (A) having two or more epoxy groups in one molecule is at least one selected from the group consisting of a bisphenol type epoxy resin and a heterocyclic epoxy resin. The epoxy resin composition for optical semiconductor encapsulation according to Item,
[3] The epoxy resin composition for optical semiconductor encapsulation according to item [2], wherein the bisphenol-type epoxy resin is an epoxy resin represented by the general formula (1),

Figure 2005089607
(但し、式中、R1はC(CH32又はCH2を表し、それぞれを少なくとも1個以上有する。R2は水素又は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。nは1以上、7以下の整数である。)
Figure 2005089607
(In the formula, R1 represents C (CH 3 ) 2 or CH 2 and has at least one of each. R2 is hydrogen or an alkyl group having 1 to 4 carbon atoms, which may be the same as or different from each other. N is an integer from 1 to 7.

[4]上記複素環式エポキシ樹脂が、トリグリシジルイソシアヌレートである、第[2]項記載の光半導体封止用エポキシ樹脂組成物、
[5]上記1分子内に2個以上のエポキシ基を有するエポキシ樹脂(A)が、一般式(1)で表されるエポキシ樹脂、及びトリグリシジルイソシアヌレートである、第[1]項記載の光半導体封止用エポキシ樹脂組成物、

Figure 2005089607
(但し、式中、R1はC(CH32又はCH2を表し、それぞれを少なくとも1個以上有する。R2は水素又は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。nは1以上、7以下の整数である。)
[6]上記硬化促進剤(C)が、双環式アミジン類、及びイミダゾール類からなる群より選ばれる少なくとも1つである、第[1]、[2]、[3]、[4]又は[5]項のいずれかに記載の光半導体封止用エポキシ樹脂組成物、
[7]上記ガラス粒子(D)が1mmの光路長で波長400nmにおいて80%以上の光透過率を有し、且つ、該ガラス粒子(D)が、それ以外の成分からなる組成物の硬化物と0.01以下の光屈折率差を有し、また、全エポキシ樹脂組成物中に5重量%以上、70重量%以下の割合で配合された、第[1]、[2]、[3]、[4]、[5]又は[6]項のいずれかに記載の光半導体封止用エポキシ樹脂組成物、
[8]上記球状溶融シリカ(F)の最大粒径が、20μm以下である、第[1]、[2]、[3]、[4]、[5]、[6]又は[7]項のいずれかに記載の光半導体封止用エポキシ樹脂組成物、
[9]第[1]乃至[8]項のいずれかに記載の光半導体封止用エポキシ樹脂組成物の硬化物で封止された光半導体装置、
である。 [4] The epoxy resin composition for optical semiconductor encapsulation according to item [2], wherein the heterocyclic epoxy resin is triglycidyl isocyanurate,
[5] The epoxy resin (A) having two or more epoxy groups in one molecule is an epoxy resin represented by the general formula (1) and triglycidyl isocyanurate. Epoxy resin composition for optical semiconductor encapsulation,
Figure 2005089607
(In the formula, R1 represents C (CH 3 ) 2 or CH 2 and has at least one of each. R2 is hydrogen or an alkyl group having 1 to 4 carbon atoms, which may be the same as or different from each other. N is an integer from 1 to 7.
[6] The [1], [2], [3], [4] or [4], wherein the curing accelerator (C) is at least one selected from the group consisting of bicyclic amidines and imidazoles. [5] The epoxy resin composition for sealing an optical semiconductor according to any one of items
[7] A cured product of the composition in which the glass particles (D) have an optical path length of 1 mm and a light transmittance of 80% or more at a wavelength of 400 nm, and the glass particles (D) are composed of other components. [1], [2], [3] having a difference in photorefractive index of 0.01 or less and blended in a proportion of 5 wt% or more and 70 wt% or less in the total epoxy resin composition. ], [4], [5] or an epoxy resin composition for encapsulating an optical semiconductor according to any one of items [6],
[8] Item [1], [2], [3], [4], [5], [6] or [7], wherein the maximum particle size of the spherical fused silica (F) is 20 μm or less. An epoxy resin composition for optical semiconductor encapsulation according to any one of
[9] An optical semiconductor device encapsulated with a cured product of the epoxy resin composition for encapsulating an optical semiconductor according to any one of [1] to [8],
It is.

本発明の光半導体封止用エポキシ樹脂組成物は、透明性及び耐半田性、耐紫外線劣化性に優れており、高い信頼性を有し保存性良好なオプトデバイスを提供することができる。   The epoxy resin composition for optical semiconductor encapsulation of the present invention is excellent in transparency, solder resistance, and UV resistance, and can provide an optical device with high reliability and good storage stability.

本発明者らは、特定の無機充填材を用い、また特定の紫外線吸収剤を添加することにより、吸水率を低減し、さらには、発光素子、受光素子といった光デバイス機能を満足し、かつ光デバイスパッケージの自動搬送時に不具合無く画像認識できる程度の光透過性のバランスのとれた特性を有し、耐半田性に優れ、さらに耐紫外線劣化性に優れた樹脂組成物が得られることを見いだし、本発明を完成するに至った。
以下、本発明について詳細に説明する。
The inventors of the present invention use a specific inorganic filler and add a specific ultraviolet absorber to reduce the water absorption rate, further satisfy optical device functions such as a light emitting element and a light receiving element, and It has been found that a resin composition having a balanced property of light transmission that can recognize an image without any trouble during automatic transport of a device package, having excellent solder resistance, and excellent UV resistance is obtained. The present invention has been completed.
Hereinafter, the present invention will be described in detail.

本発明に用いる、1分子内に2個以上のエポキシ基を有するエポキシ樹脂(A)は、1分子内に2個以上のエポキシ基を有していれば、何ら制限されなるものではなく、具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂、及びビフェニル型エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂等の2個のエポキシ基を有するエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリグリシジルイソシアヌレートのなどの多官能複素環式エポキシ樹脂、ポリ(エポキシ化シクロヘキセンオキサイド)などの多官能脂環式エポキシ樹脂等の3個以上のエポキシ基を有するエポキシ樹脂などが好ましく挙げられる。これらのうち、透明性の観点から着色の少ない、ビスフェノール型エポキシ樹脂や複素環式エポキシ樹脂を用いることが好ましく、複素環式エポキシ樹脂の中でもトリグリシジルイソシアヌレートがより好ましい。これらエポキシ樹脂は、単独もしくは2種以上用いても何ら差し支えない。   The epoxy resin (A) having two or more epoxy groups in one molecule used in the present invention is not limited as long as it has two or more epoxy groups in one molecule. Specifically, it has two epoxy groups such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol type epoxy resin such as bisphenol S type epoxy resin, and biphenyl type epoxy resin, hydrogenated bisphenol A type epoxy resin. Polyfunctional heterocyclic epoxy resin such as epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, triglycidyl isocyanurate, polyfunctionality such as poly (epoxidized cyclohexene oxide) Such as alicyclic epoxy resin Epoxy resin having a number or more epoxy groups are preferred. Among these, from the viewpoint of transparency, it is preferable to use a bisphenol type epoxy resin or a heterocyclic epoxy resin with little coloration, and among the heterocyclic epoxy resins, triglycidyl isocyanurate is more preferable. These epoxy resins may be used alone or in combination of two or more.

本発明の樹脂組成物には、ビスフェノール型エポキシ樹脂として、一般式(1)で示されるエポキシ樹脂を用いることもできる。該エポキシ樹脂は、ビスフェノールF型エポキシ樹脂の溶融粘度の低い特長と、ビスフェノールA型エポキシ樹脂の色調安定性の両者の特長を兼ね備えるためより好ましい。このエポキシ樹脂が、十分に優れた流動性を発揮するためには、nは1以上、7以下であることが好ましい。
また、一般式(1)で表されるエポキシ樹脂とトリグリシジルイソシアヌレートを併用しても良い。
In the resin composition of the present invention, an epoxy resin represented by the general formula (1) can also be used as a bisphenol type epoxy resin. The epoxy resin is more preferable because it has both the low melt viscosity feature of the bisphenol F type epoxy resin and the color tone stability of the bisphenol A type epoxy resin. In order for this epoxy resin to exhibit sufficiently excellent fluidity, n is preferably 1 or more and 7 or less.
Moreover, you may use together the epoxy resin represented by General formula (1), and a triglycidyl isocyanurate.

Figure 2005089607
(但し、式中、R1はC(CH32又はCH2を表し、それぞれを少なくとも1個以上有する。R2は水素又は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。nは1以上、7以下の整数である。)
Figure 2005089607
(In the formula, R1 represents C (CH 3 ) 2 or CH 2 and has at least one of each. R2 is hydrogen or an alkyl group having 1 to 4 carbon atoms, which may be the same as or different from each other. N is an integer from 1 to 7.

本発明に用いる酸無水物硬化剤(B)としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3−メチル−ヘキサヒドロ無水フタル酸、4−メチル−ヘキサヒドロ無水フタル酸、あるいは3−メチル−ヘキサヒドロ無水フタル酸と4−メチル−ヘキサヒドロ無水フタル酸との混合物、テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸などが例示されるが、特にこれらに限定されるものではなく、単独もしくは2種以上用いても差し支えない。   Examples of the acid anhydride curing agent (B) used in the present invention include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, and 4-methyl. -Hexahydrophthalic anhydride, or a mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, methyl nadic anhydride, etc. It is not limited to these, and they may be used alone or in combination of two or more.

本発明に用いる硬化促進剤(C)としては、通常、エポキシ樹脂のアニオン硬化に用いられるものは、すべて使用可能であるが、例示するならば、3級アミン、4級アンモニウム塩、1,8−ジアザビシクロ(5,4,0)ウンデセン−7などの双環式アミジン類とその誘導体、2−メチルイミダゾール、2−フェニル−4−メチルイミダゾールなどのイミダゾール類、ホスフィン、ホスホニウム塩などが一般的であるが、硬化性がよく、着色がないものであれば、何ら限定されるものではなく、単独でも2種以上用いても差し支えない。特に1,8−ジアザビシクロ(5,4,0)ウンデセン−7などの双環式アミジン類、及びイミダゾール類は、少量の添加量でもエポキシ樹脂に対して高い活性を示し、比較的低い硬化温度でも短時間で、例えば、150℃程度でも90秒位で硬化することができ、より好ましい。   As the curing accelerator (C) used in the present invention, all those usually used for anionic curing of epoxy resins can be used. For example, tertiary amines, quaternary ammonium salts, 1,8 -Bicyclic amidines such as diazabicyclo (5,4,0) undecene-7 and derivatives thereof, imidazoles such as 2-methylimidazole and 2-phenyl-4-methylimidazole, phosphines, phosphonium salts, etc. However, there is no limitation as long as it has good curability and no coloration, and it may be used alone or in combination of two or more. In particular, bicyclic amidines such as 1,8-diazabicyclo (5,4,0) undecene-7 and imidazoles exhibit high activity against epoxy resins even with a small addition amount, and even at relatively low curing temperatures. It can be cured in a short time, for example, at about 150 ° C. in about 90 seconds, and is more preferable.

本発明には充填材として、SiO2、CaO、及びAl23を含む、平均粒径5μm以上、100μm以下の球状のガラス粒子(D)を用いる。形状を球状とすることにより、比表面積が最小になり、光の散乱損失が小さく抑えることができる。また、平均粒径が下限値未満の場合、ガラス粒子が凝集して透明性を低下し、平均粒径が上限値を越える場合、成形時の成形不良が生じる。ここで、成形不良とは金型のゲート部で樹脂詰まりが発生し、未充填となることなどである。また、ガラス粒子(D)の粒径測定には、公知の方法を用いればよいが、レーザー光散乱法で粒子の体積粒径分布を測定し、粒子の真密度の値を用いて重量粒径分布に換算する方法を用いるのが好適である。 In the present invention, spherical glass particles (D) containing SiO 2 , CaO, and Al 2 O 3 and having an average particle diameter of 5 μm or more and 100 μm or less are used as the filler. By making the shape spherical, the specific surface area is minimized, and the light scattering loss can be kept small. Further, when the average particle size is less than the lower limit value, the glass particles are aggregated to lower the transparency, and when the average particle size exceeds the upper limit value, molding defects occur during molding. Here, molding failure means that resin clogging occurs at the gate portion of the mold and the resin is not filled. A known method may be used to measure the particle size of the glass particles (D). The volume particle size distribution of the particles is measured by a laser light scattering method, and the weight particle size is calculated using the true density value of the particles. It is preferable to use a method for converting to a distribution.

また、樹脂組成物の高い透明性を得るために、ガラス粒子が、1mmの光路長で波長400nmにおいて80%以上の光透過率を有することが必須である。光透過率の測定は、分光光度計等の光透過率を測定できる装置によるものであれば何ら制限されるものではない。分光光度計としては、島津自記分光光度計UV−3100(積分球装置設置型)で測定することが簡便でより好ましい。測定サンプルは、ガラスの塊状のものを用いれば良く、例えば、10×30×1mmの直方体の板を作り、表面を平滑にして1mmの厚みで光透過率を測定すればよい。ガラスの波長400nmの光透過率が80%未満の場合、エポキシ樹脂組成物に配合しても高い透明性を得ることができない。   In order to obtain high transparency of the resin composition, it is essential that the glass particles have a light transmittance of 80% or more at a wavelength of 400 nm with an optical path length of 1 mm. The measurement of light transmittance is not limited as long as it is performed by a device capable of measuring light transmittance such as a spectrophotometer. As a spectrophotometer, it is simple and more preferable to measure with Shimadzu self-recording spectrophotometer UV-3100 (integral sphere apparatus installation type). The measurement sample may be a glass lump. For example, a rectangular parallelepiped plate of 10 × 30 × 1 mm may be prepared, the surface may be smoothed, and the light transmittance may be measured with a thickness of 1 mm. When the light transmittance at a wavelength of 400 nm of the glass is less than 80%, high transparency cannot be obtained even if blended in the epoxy resin composition.

更に本発明では、ガラス粒子(D)が、それ以外の成分からなる樹脂組成物の硬化物との屈折率差の絶対値が、0.01以下のものを用いる。屈折率差の絶対値が0.01を越えると、ガラス粒子(D)の表面で光の散乱損失が生じ、透明性が低下する。屈折率の差の調整方法としては、前記ガラスの3成分の成分比を調整することで、屈折率を変化させることができる。屈折率を上げるにはAl23成分を増やせばよく、逆に屈折率を下げるにはSiO2成分を増やせばよい。本発明の樹脂組成物に、ガラス粒子(D)の屈折率を整合させるためには、ガラス粒子(D)の成分を、SiO2を30〜70重量%、CaOを1〜50重量%、Al23を5〜40重量%、合計で100重量%となるように調整するのが好ましい。また、調整において、ガラス粒子(D)の特性を損ねない範囲で、他の成分を加えても良い。更に、ガラス粒子(D)を製造する方法は、通常の長石、珪石、硼砂を調し、加熱溶融混合を行い、冷却後、乾燥工程を経て粉砕する方法が適用できるが、更に、ガラスの製造工程中に、減圧脱泡する方法や、ガラスの溶融時に空気や窒素などのガスを吹き込んでバブリングし、微細な気泡を大きな気泡に吸着させることで、気泡が容易に除去できるようにする方法が利用でき、また、必要に応じて消泡材などの添加剤を利用することもできる。 Furthermore, in this invention, the absolute value of the refractive index difference with the hardened | cured material of the resin composition which consists of a glass particle (D) other than that is 0.01 or less is used. When the absolute value of the refractive index difference exceeds 0.01, light scattering loss occurs on the surface of the glass particles (D), and transparency is lowered. As a method for adjusting the difference in refractive index, the refractive index can be changed by adjusting the component ratio of the three components of the glass. In order to increase the refractive index, the Al 2 O 3 component may be increased. Conversely, to decrease the refractive index, the SiO 2 component may be increased. In order to match the refractive index of the glass particles (D) to the resin composition of the present invention, the components of the glass particles (D) are 30 to 70% by weight of SiO 2 , 1 to 50% by weight of CaO, Al It is preferable to adjust 2 O 3 to 5 to 40% by weight, so that the total is 100% by weight. In the adjustment, other components may be added as long as the characteristics of the glass particles (D) are not impaired. Further, as a method for producing glass particles (D), a method of preparing ordinary feldspar, silica and borax, heating and mixing with mixing, cooling and pulverizing through a drying step can be applied. During the process, there are a method of degassing under reduced pressure, a method of bubbling by blowing a gas such as air or nitrogen when the glass is melted, and allowing bubbles to be easily removed by adsorbing fine bubbles to large bubbles. In addition, additives such as an antifoaming material can be used as necessary.

またガラス粒子(D)の配合量は、エポキシ樹脂組成物中に5重量%以上、70重量%以下であることがより好ましい。配合量が、下限値未満の場合、吸水率の低減効果が僅かであり、耐半田性が向上しない場合がある。一方、上限値を超える場合、流動性や透明性が低下し、成形時に成形不良が生じる場合がある。   Moreover, it is more preferable that the compounding quantity of glass particle (D) is 5 to 70 weight% in an epoxy resin composition. If the blending amount is less than the lower limit, the effect of reducing the water absorption rate is slight, and the solder resistance may not be improved. On the other hand, when the upper limit is exceeded, fluidity and transparency are lowered, and molding defects may occur during molding.

本発明で用いるベンゾフェノン系紫外線吸収剤(E)としては、波長400nmよりも長波長側に吸収のないものであれば、すべて使用可能であるが、例示するならば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクチロキシベンゾフェノン、4−ドデキロキシ−2−オクチロキシベンゾフェノン、4−ベンゾイルオキシ−2−ヒドロキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノンなどが例示されるが、特にこれらに限定されるものではなく、単独もしくは2種以上用いても差し支えない。また、樹脂硬化物の光透過率、つまり透明性の低下に影響のない程度に、ベンゾエート系紫外線吸収剤、サリシレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤あるいは酸化チタン、酸化亜鉛などの無機系紫外線吸収剤を添加することは何ら差し支えない。ベンゾフェノン系紫外線吸収剤の添加量としては、エポキシ樹脂組成物中に0.01〜3重量%となるように添加することが好ましい。下限値未満の場合、添加量が少なく耐紫外線劣化の効果を有することができず、上限値を超える場合は、樹脂硬化物が黄色に着色し光透過率の低下につながり好ましくない。   As the benzophenone-based ultraviolet absorber (E) used in the present invention, any benzophenone-based ultraviolet absorber (E) having no absorption on the longer wavelength side than the wavelength of 400 nm can be used, but for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octyloxybenzophenone, 4-dodecyloxy-2-octyloxybenzophenone, 4-benzoyloxy-2-hydroxybenzophenone, 2,2 ′, 4,4′-tetra Although hydroxybenzophenone etc. are illustrated, it is not specifically limited to these, Even if it uses individually or 2 types or more, it does not interfere. In addition, light transmittance of the cured resin, that is, an inorganic system such as benzoate UV absorber, salicylate UV absorber, cyanoacrylate UV absorber, titanium oxide, zinc oxide, etc. It is safe to add a UV absorber. The addition amount of the benzophenone-based ultraviolet absorber is preferably added so as to be 0.01 to 3% by weight in the epoxy resin composition. If the amount is less than the lower limit, the addition amount is small and the effect of UV resistance cannot be deteriorated. If the amount exceeds the upper limit, the cured resin is colored yellow, leading to a decrease in light transmittance.

本発明では、最大粒径70μm以下の球状溶融シリカ(F)が、全エポキシ樹脂組成物中に1重量%以上、5重量%以下の割合で配合されていることを特徴とする。最大粒径が、上限値を超えた場合、パッケージ充填性、特にゲート詰まりに不具合が生じ好ましくない。効率的に光散乱の効果を得るためには、球状溶融シリカの最大粒径は20μm以下であることが好ましい。   The present invention is characterized in that spherical fused silica (F) having a maximum particle size of 70 μm or less is blended in a proportion of 1% by weight or more and 5% by weight or less in the total epoxy resin composition. When the maximum particle size exceeds the upper limit value, defects in package fillability, particularly gate clogging, are undesirable. In order to efficiently obtain the light scattering effect, the maximum particle size of the spherical fused silica is preferably 20 μm or less.

本発明において、最大粒径70μm以下の球状溶融シリカ(F)は、光散乱剤として作用する。本発明者らは、光散乱剤を添加することにより、波長400nmでの光透過率を選択的に低下させることができることを見出した。光散乱剤である球状溶融シリカの添加量を調整することで、波長400nmでの光透過率を40%以上80%以下とすることにより、CCDカメラといった画像認識装置を用いて、パッケージの正確な位置を判定することが可能になる。光透過率が40%を下回ると、光デバイスとしての機能を果たさなくなり好ましくなく、80%を超えた場合、CCDカメラといった画像認識装置を用いて、パッケージの正確な位置を判定することができない場合がある。さらに、光散乱剤が全エポキシ樹脂組成物中に1重量%以下であると、CCDカメラといった画像認識装置を用いて、パッケージの正確な位置を判定することができない場合がある。5重量%を超えて添加された場合、波長400nmの光透過率が大きく低下し、光デバイスの機能を果たさなくなるといった不具合が生じる場合がある。   In the present invention, spherical fused silica (F) having a maximum particle size of 70 μm or less acts as a light scattering agent. The present inventors have found that the light transmittance at a wavelength of 400 nm can be selectively reduced by adding a light scattering agent. By adjusting the amount of spherical fused silica that is a light scattering agent to adjust the light transmittance at a wavelength of 400 nm to 40% or more and 80% or less, an image recognition device such as a CCD camera can be used to accurately detect the package. The position can be determined. If the light transmittance is less than 40%, the function as an optical device is not achieved, and if it exceeds 80%, it is not possible to determine the exact position of the package using an image recognition device such as a CCD camera. There is. Furthermore, if the light scattering agent is 1% by weight or less in the total epoxy resin composition, the accurate position of the package may not be determined using an image recognition device such as a CCD camera. When added in excess of 5% by weight, the light transmittance at a wavelength of 400 nm is greatly reduced, which may cause a problem that the optical device does not function.

本発明の光半導体封止用エポキシ樹脂組成物には、上記成分以外に、必要に応じて、他のエポキシ樹脂、酸化防止剤、離型剤、カップリング剤、ガラス粒子及び球状溶融シリカ以外の無機充填材等の当業者にて公知の添加剤、副資材を組み合わせることは何らさしつかえない。   In the epoxy resin composition for optical semiconductor encapsulation of the present invention, in addition to the above components, if necessary, other epoxy resins, antioxidants, mold release agents, coupling agents, glass particles, and spherical fused silica. Combining additives and sub-materials known to those skilled in the art, such as inorganic fillers, is no problem.

本発明の光半導体封止用エポキシ樹脂組成物は、上記の各成分を適宜配合するが、例えば、エポキシ樹脂と硬化剤の当量比、すなわち、エポキシ樹脂のエポキシ基と酸無水物硬化剤の酸無水物基のモル比を、0.8〜1.4、より好ましくは1.0〜1.2とし、エポキシ樹脂及び硬化剤の総重量を100重量部とした時、硬化促進剤の添加量を0.5〜2重量部とするのが好ましい。   The epoxy resin composition for optical semiconductor encapsulation according to the present invention contains the above components as appropriate. For example, the equivalent ratio of the epoxy resin and the curing agent, that is, the epoxy group of the epoxy resin and the acid of the acid anhydride curing agent. When the molar ratio of the anhydride group is 0.8 to 1.4, more preferably 1.0 to 1.2, and the total weight of the epoxy resin and the curing agent is 100 parts by weight, the addition amount of the curing accelerator Is preferably 0.5 to 2 parts by weight.

本発明の樹脂組成物は、成分(A)〜(F)、及びその他の添加剤を、ミキサー等を用いて混合後、加熱ニーダや加熱ロール、押し出し機等を用いて加熱混練し、続いて冷却、粉砕することで得られる。また、成分(A)、(B)を予め反応釜等で加熱混合し、Bステージ状態の樹脂組成物を得た後に、前述工程を経ることでも得られる。   In the resin composition of the present invention, the components (A) to (F) and other additives are mixed using a mixer or the like, and then heated and kneaded using a heating kneader, a heating roll, an extruder, or the like. Obtained by cooling and grinding. Alternatively, the components (A) and (B) may be preliminarily heated and mixed in a reaction kettle or the like to obtain a resin composition in a B-stage state, and then obtained through the aforementioned steps.

本発明のエポキ樹脂組成物は、硬化物において、特定量の充填材を添加することにより2%以下の吸水率とし、特定の無機充填材を添加することにより80%以上の波長500nm光透過率とすることで、高い透明性と耐半田性を示す。吸水率が上限値を越えると、樹脂自体の膨潤や界面の劣化から、耐半田性の試験で剥離やクラックが発生する。吸水率の試験方法としては、直径50mm、厚み3mmの円板状の試験片を、85℃、湿度85%に設定した高温高湿槽に168時間放置し、吸湿処理前後の硬化物の重量変化率から算出して得られる。また、光透過率が下限値を下回ると、一般的な形状の半導体装置を封止した際に、その発光効率を著しく損なう。   The epoxy resin composition of the present invention has a water absorption of 2% or less by adding a specific amount of filler in a cured product, and a light transmittance of a wavelength of 500 nm or more of 80% or more by adding a specific inorganic filler. Therefore, high transparency and solder resistance are exhibited. If the water absorption exceeds the upper limit, peeling or cracking occurs in the solder resistance test due to swelling of the resin itself or deterioration of the interface. As a water absorption test method, a disc-shaped test piece having a diameter of 50 mm and a thickness of 3 mm is left in a high-temperature and high-humidity tank set at 85 ° C. and a humidity of 85% for 168 hours. It is obtained by calculating from the rate. On the other hand, if the light transmittance is lower than the lower limit, the luminous efficiency of the semiconductor device having a general shape is significantly impaired when the semiconductor device is sealed.

このようにして得られた光半導体封止用エポキシ樹脂組成物を用いての封止は、一般的な方法でできるが、例えば、トランスファー成形法等により、光半導体素子を封止して、エポキシ樹脂組成物の硬化物で封止された光半導体装置を得ることができる。   Sealing using the epoxy resin composition for optical semiconductor sealing thus obtained can be performed by a general method. For example, the optical semiconductor element is sealed by a transfer molding method or the like, An optical semiconductor device sealed with a cured product of the resin composition can be obtained.

以下に、本発明について更に詳細に説明するため実施例を示すが、これらに本発明が限定されるものではない。
(実施例1〜16、比較例1〜7)
成分(A)〜(F)に相当する成分、及びその他添加剤を、表1、2及び3に示した配合割合で混合し、2本ロールを用いて50〜90℃で5分間混練し、得られた混練物シートを冷却後粉砕して樹脂組成物を得た。
なお、本実施例、比較例において用いたガラス粒子は、すべてSiO2、CaO、及びAl23からなる球状ガラスであり、且つ、ガラス粒子とガラス以外の成分からなる組成物の硬化物の屈折率差の絶対値については、予め、ガラス粒子以外の成分からなる組成物の硬化物の屈折率を確認し、表1、2及び3の値になるように前記ガラスの成分比を調整した。
EXAMPLES Examples will be shown below to describe the present invention in more detail, but the present invention is not limited to these examples.
(Examples 1-16, Comparative Examples 1-7)
Components corresponding to the components (A) to (F) and other additives are mixed at the blending ratios shown in Tables 1, 2 and 3, and kneaded at 50 to 90 ° C. for 5 minutes using two rolls. The obtained kneaded material sheet was cooled and pulverized to obtain a resin composition.
The glass particles used in the present examples and comparative examples are all spherical glass composed of SiO 2 , CaO, and Al 2 O 3 , and a cured product of a composition composed of components other than glass particles and glass. About the absolute value of the refractive index difference, the refractive index of the cured product of the composition comprising components other than the glass particles was confirmed in advance, and the component ratio of the glass was adjusted to the values shown in Tables 1, 2 and 3. .

評価方法は以下の通りであり、結果は表1、2及び3にまとめて示す。
[吸水率の評価]
上記の樹脂組成物タブレットを、金型温度150℃、注入圧力6.86MPa、硬化時間90秒の条件でトランスファー成形し、直径50mm、厚み3mmの円板状の成形品を得た。この成形品を、温度150℃の熱風オーブンで2時間ポストキュアした後、温度85℃、相対湿度85%に設定した恒温恒湿槽に168時間放置し、保管前後の重量変化率を吸水率として測定した。
The evaluation method is as follows, and the results are summarized in Tables 1, 2 and 3.
[Evaluation of water absorption rate]
The above resin composition tablet was transfer molded under the conditions of a mold temperature of 150 ° C., an injection pressure of 6.86 MPa, and a curing time of 90 seconds to obtain a disk-shaped molded product having a diameter of 50 mm and a thickness of 3 mm. This molded product was post-cured in a hot air oven at a temperature of 150 ° C. for 2 hours and then left in a constant temperature and humidity chamber set at a temperature of 85 ° C. and a relative humidity of 85% for 168 hours. It was measured.

[光透過率の測定]
上記の樹脂組成物タブレットを、金型温度150℃、注入圧力6.86MPa、硬化時間90秒の条件でトランスファー成形し、30×10×1mmの成形品を得た。この成形品を、積分球を搭載した分光光度計(島津製作所製自記分光光度計UV−3100)を用いて、波長400nm及び500nm、厚み1mmの光透過率を測定した。
[Measurement of light transmittance]
The resin composition tablet was transfer molded under the conditions of a mold temperature of 150 ° C., an injection pressure of 6.86 MPa, and a curing time of 90 seconds to obtain a molded product of 30 × 10 × 1 mm. The molded product was measured for light transmittance at wavelengths of 400 nm and 500 nm and a thickness of 1 mm using a spectrophotometer equipped with an integrating sphere (manufactured by Shimadzu Corporation, spectrophotometer UV-3100).

[流動性の評価]
成形前の樹脂組成物を、EMMI−I−66に準じたスパイラルフロー測定用の金型を用い、成形温度175℃、注入圧力6.86MPa、硬化時間120秒の条件で成形し、充填した長さが60cmを上回るものを○、そうでないものを×として評価した。
[Evaluation of fluidity]
The resin composition before molding was molded and filled under the conditions of a molding temperature of 175 ° C., an injection pressure of 6.86 MPa, and a curing time of 120 seconds using a mold for spiral flow measurement according to EMMI-I-66. Those having a length exceeding 60 cm were evaluated as ◯, and those not being evaluated as ×.

[パッケージ充填性の評価]
上記の樹脂組成物タブレットを、表面実装用パッケージ(12ピンSOP、4×5mm、厚み1.2mm、チップサイズは1.5mm×2.0mm、リードフレームは42アロイ製、ゲートサイズは、0.5mm×0.05mm)金型を用いて、金型温度150℃、注入圧力6.86MPa、硬化時間90秒でトランスファー成形した。成形時にゲート詰まりが無いか、確認し、ゲート詰まりが無い場合を○、ある場合を×として評価した。
[Evaluation of package fillability]
The above resin composition tablet is packaged in a surface mounting package (12-pin SOP, 4 × 5 mm, thickness 1.2 mm, chip size 1.5 mm × 2.0 mm, lead frame 42 made of alloy, and gate size 0. (5 mm × 0.05 mm) using a mold, transfer molding was performed at a mold temperature of 150 ° C., an injection pressure of 6.86 MPa, and a curing time of 90 seconds. It was confirmed whether there was no gate clogging at the time of molding.

[耐半田性の評価]
上記の樹脂組成物タブレットを、表面実装用パッケージ(12ピンSOP、4×5mm、厚み1.2mm、チップサイズは1.5mm×2.0mm、リードフレームは42アロイ製)金型を用いて、金型温度150℃、注入圧力6.86MPa、硬化時間90秒でトランスファー成形し、温度150℃の熱風オーブンで、2時間後硬化させた。得られた光半導体パッケージを、温度85℃、相対湿度60%の環境下で、168時間放置し、その後240℃のIRリフロー処理(10秒、3回)を行った。処理したパッケージを顕微鏡及び超音波探傷装置で観察し、クラック、チップと樹脂との剥離の有無を確認した。
[Evaluation of solder resistance]
Using the above resin composition tablet, a mold for surface mounting (12-pin SOP, 4 × 5 mm, thickness 1.2 mm, chip size 1.5 mm × 2.0 mm, lead frame made of 42 alloy) mold, Transfer molding was performed at a mold temperature of 150 ° C., an injection pressure of 6.86 MPa, and a curing time of 90 seconds, followed by post-curing in a hot air oven at a temperature of 150 ° C. for 2 hours. The obtained optical semiconductor package was allowed to stand for 168 hours in an environment of a temperature of 85 ° C. and a relative humidity of 60%, and then IR reflow treatment (10 seconds, 3 times) at 240 ° C. was performed. The treated package was observed with a microscope and an ultrasonic flaw detector to confirm the presence or absence of cracks and separation between the chip and the resin.

[耐紫外線劣化性の評価]
上記の樹脂組成物タブレットを、金型温度150℃、注入圧力6.86MPa、硬化時間90秒の条件でトランスファー成形し、30×10×1mmの成形品を得た。この成形品を、温度150℃の熱風オーブンで2時間ポストキュアした後、紫外線照射装置(ウシオ電機製 電源部HB−25103BY−C、本体ML−251A/B、レンズPM25C−75、超高圧水銀ランプUSH−250BY)を用いて成形品に紫外線を照射した。紫外線の強度は、照度計を用いて波長365nmで40mW/cm2に設定した。照度計はUIT101、センサーはUVD−365PDを使用した。紫外線を2時間照射した後、上記の光透過率の測定方法と同様に、波長400nmの光透過率を測定し、初期値に対する割合を算出し、90%を上回るものを○、そうでないものを×として評価した。
[Evaluation of UV resistance]
The resin composition tablet was transfer molded under the conditions of a mold temperature of 150 ° C., an injection pressure of 6.86 MPa, and a curing time of 90 seconds to obtain a molded product of 30 × 10 × 1 mm. This molded product was post-cured in a hot air oven at a temperature of 150 ° C. for 2 hours, and then irradiated with an ultraviolet ray irradiation device (USHIO power source HB-25103BY-C, main body ML-251A / B, lens PM25C-75, ultra-high pressure mercury lamp. The molded product was irradiated with ultraviolet rays using USH-250BY. The intensity of the ultraviolet rays was set to 40 mW / cm 2 at a wavelength of 365 nm using an illuminometer. The illuminometer used was UIT101, and the sensor used was UVD-365PD. After irradiating with ultraviolet rays for 2 hours, the light transmittance at a wavelength of 400 nm is measured in the same manner as the light transmittance measurement method described above, and the ratio to the initial value is calculated. It evaluated as x.

尚、表1、表2に記載された配合、商品名、及び各種ガラス粒子等の内容は、下記の通りである。   In addition, the contents described in Tables 1 and 2 such as the composition, product names, and various glass particles are as follows.

式(1)で表されるエポキシ樹脂:R=C(CH32を70%、CH2を30%含み、n=6、エポキシ当量950、軟化点100℃

Figure 2005089607
Epoxy resins of formula (1): R = C ( CH 3) 2 to 70%, the CH 2 comprises 30% n = 6, epoxy equivalent 950, softening point 100 ° C.
Figure 2005089607

トリグリシジルイソシアヌレート:エポキシ当量100、軟化点100℃
セロキサイド2021P:ダイセル化学製脂肪族環状エポキシ樹脂(エポキシ当量120)
ビスフェノールA型エポキシ樹脂:エポキシ当量475、軟化点60℃
オルソクレゾールノボラック型エポキシ樹脂:エポキシ当量210、軟化点62℃
4−メチルヘキサヒドロ無水フタル酸(酸無水物当量168)
テトラヒドロ無水フタル酸(酸無水物当量152)
フェノールノボラック樹脂:水酸基当量105、軟化点90℃
2−メチルイミダゾール
1,8−ジアザビシクロ−(5,4,0)−ウンデセン−7
ガラスA1:SiO2:CaO:Al23:添加剤=54:24:17:5の比率で調合、添加剤はMgO、平均粒径25μm、1mmの光路長で波長400nmにおいて95%の光透過率を有する球状ガラス(脱泡処理あり)
ガラスA2:ガラスA1と同じ組成で、平均粒径5μm、1mmの光路長で波長400nmにおいて95%の光透過率を有する球状ガラス(脱泡処理あり)
ガラスA3:ガラスA1と同じ組成で、平均粒径100μm、1mmの光路長で波長400nmにおいて95%の光透過率を有する球状ガラス(脱泡処理あり)
ガラスB:SiO2:CaO:Al23:添加剤=36:26:28:10の比率で調合、添加剤はMgO、平均粒径25μm、1mmの光路長で波長400nmにおいて95%の光透過率を有する球状ガラス(脱泡処理あり)
ガラスC:SiO2:CaO:Al23:添加剤=44:25:22:9の比率で調合、添加剤はMgO、平均粒径25μm、1mmの光路長で波長400nmにおいて95%の光透過率を有する球状ガラス(脱泡処理あり)
ガラスD:SiO2:CaO:Al23:添加剤=50:43:2:5の比率で調合、添加剤はMgO、平均粒径25μm、1mmの光路長で波長400nmにおいて80%の透過率を有する、屈折率を整合していない球状ガラス(脱泡処理あり)
ガラスE:SiO2:CaO:Al23:添加剤=60:10:25:5の比率で調合、添加剤はMgO、平均粒径25μmの、1mmの光路長で波長400nmにおいて90%の透過率を有する球状ガラス(脱泡処理なし)
2−ヒドロキシ−4−メトキシベンゾフェノン
4−ドデシロキシ−2−ヒドロキシベンゾフェノン
シリカA1:最大粒径20μm、平均粒径11μmの球状溶融シリカ
シリカA2:最大粒径55μm、平均粒径15μmの球状溶融シリカ
シリカA3:最大粒径70μm、平均粒径23μmの球状溶融シリカ
シリカA4:最大粒径5μm、平均粒径1μmの球状溶融シリカ
シリカA5:最大粒径100μm、平均粒径33μmの球状溶融シリカ
結晶シリカ:最大粒径33μm、平均粒径13μmの結晶シリカ
カルナバワックス
酸化防止剤:2,6−ジ−t−ブチル−メチルフェノール
Triglycidyl isocyanurate: epoxy equivalent 100, softening point 100 ° C
Celoxide 2021P: Alicyclic epoxy resin made by Daicel Chemical Industries (epoxy equivalent 120)
Bisphenol A type epoxy resin: epoxy equivalent 475, softening point 60 ° C
Orthocresol novolac type epoxy resin: epoxy equivalent 210, softening point 62 ° C
4-methylhexahydrophthalic anhydride (acid anhydride equivalent 168)
Tetrahydrophthalic anhydride (acid anhydride equivalent 152)
Phenol novolac resin: hydroxyl group equivalent 105, softening point 90 ° C
2-Methylimidazole 1,8-diazabicyclo- (5,4,0) -undecene-7
Glass A1: SiO 2: CaO: Al 2 O 3: additive = 54: 24: 17: Formulation in a ratio of 5, the additive is MgO, average particle size 25 [mu] m, 95% of light at a wavelength of 400nm in the optical path length of 1mm Spherical glass with transmittance (with defoaming treatment)
Glass A2: Spherical glass having the same composition as glass A1, an average particle diameter of 5 μm, an optical path length of 1 mm, and a light transmittance of 95% at a wavelength of 400 nm (with defoaming treatment)
Glass A3: Spherical glass having the same composition as glass A1, an average particle diameter of 100 μm, an optical path length of 1 mm, and a light transmittance of 95% at a wavelength of 400 nm (with defoaming treatment)
Glass B: SiO 2 : CaO: Al 2 O 3 : Additive = prepared at a ratio of 36: 26: 28: 10, additive is MgO, average particle size 25 μm, optical path length of 1 mm, 95% light at a wavelength of 400 nm Spherical glass with transmittance (with defoaming treatment)
Glass C: SiO 2 : CaO: Al 2 O 3 : additive = 44: 25: 22: 9 ratio, additive is MgO, average particle size 25 μm, light path length of 1 mm, 95% light at 400 nm wavelength Spherical glass with transmittance (with defoaming treatment)
Glass D: SiO 2 : CaO: Al 2 O 3 : Additive = 50: 43: 2: 5 ratio, additive is MgO, average particle size 25 μm, 1 mm optical path length, 80% transmission at 400 nm wavelength Spherical glass with refractive index not matching (with defoaming treatment)
Glass E: SiO 2 : CaO: Al 2 O 3 : Additive = 60: 10: 25: 5 The ratio is 60: 10: 25: 5, the additive is MgO, the average particle diameter is 25 μm, the optical path length is 1 mm, and the wavelength is 400%. Spherical glass with transmittance (no defoaming treatment)
2-hydroxy-4-methoxybenzophenone 4-dodecyloxy-2-hydroxybenzophenone silica A1: spherical fused silica with a maximum particle size of 20 μm and average particle size of 11 μm silica A2: spherical fused silica with a maximum particle size of 55 μm and average particle size of 15 μm silica A3 : Spherical fused silica with a maximum particle size of 70 μm and average particle size of 23 μm Silica A4: Spherical fused silica with a maximum particle size of 5 μm and average particle size of 1 μm Silica A5: Spherical fused silica with a maximum particle size of 100 μm and average particle size of 33 μm Crystalline silica: Maximum Crystalline silica Carnauba wax with a particle size of 33 μm and an average particle size of 13 μm Antioxidant: 2,6-di-t-butyl-methylphenol

Figure 2005089607
Figure 2005089607

Figure 2005089607
Figure 2005089607

Figure 2005089607
Figure 2005089607

表に示された結果から明らかなように、本発明の樹脂組成物は透明性に優れ、良好な耐半田性かつ耐紫外線劣化性に優れる特性を有していることがわかる。   As is apparent from the results shown in the table, it can be seen that the resin composition of the present invention has excellent transparency and excellent solder resistance and UV resistance.

本発明の光半導体封止用エポキシ樹脂組成物は、それを用いて光半導体素子を封止してなる光半導体装置が、透明性及び耐半田性、耐紫外線劣化性に優れており、高い信頼性を有し保存性も良好であるため、フォトセンサー、LED、発光素子等のオプトデバイス用に好適に用いることができる。   In the epoxy resin composition for sealing an optical semiconductor of the present invention, an optical semiconductor device obtained by sealing an optical semiconductor element using the epoxy resin composition is excellent in transparency, solder resistance, and UV resistance, and has high reliability. Therefore, it can be suitably used for optical devices such as photosensors, LEDs, and light-emitting elements.

Claims (9)

1分子内に2個以上のエポキシ基を有するエポキシ樹脂(A)、酸無水物硬化剤(B)、硬化促進剤(C)、SiO2、CaO、及びAl23を含む、平均粒径5μm以上、100μm以下の球状のガラス粒子(D)及びベンゾフェノン系紫外線吸収剤(E)を主成分とし、最大粒径70μm以下の球状溶融シリカ(F)を全エポキシ樹脂組成物中に1重量%以上、5重量%以下含有し、当該エポキシ樹脂組成物が硬化物において2%以下の吸水率、40%以上80%以下の波長400nm光透過率、及び50%以上の波長500nm光透過率を有することを特徴とする光半導体封止用エポキシ樹脂組成物。 Average particle diameter including epoxy resin (A) having two or more epoxy groups in one molecule, acid anhydride curing agent (B), curing accelerator (C), SiO 2 , CaO, and Al 2 O 3 1% by weight of spherical fused silica (F) having a maximum particle diameter of 70 μm or less in the total epoxy resin composition is composed mainly of spherical glass particles (D) of 5 μm or more and 100 μm or less and benzophenone ultraviolet absorber (E). 5% by weight or less, and the epoxy resin composition has a water absorption of 2% or less, a light transmittance of 40 nm or more and 80% or less in a wavelength of 400 nm, and a light transmittance of 50 nm or more in a wavelength of 500 nm. An epoxy resin composition for sealing an optical semiconductor. 上記1分子内に2個以上のエポキシ基を有するエポキシ樹脂(A)が、ビスフェノール型エポキシ樹脂、及び複素環式エポキシ樹脂からなる群より選ばれる少なくとも1つである、請求項1記載の光半導体封止用エポキシ樹脂組成物。 The optical semiconductor according to claim 1, wherein the epoxy resin (A) having two or more epoxy groups in one molecule is at least one selected from the group consisting of a bisphenol type epoxy resin and a heterocyclic epoxy resin. An epoxy resin composition for sealing. 上記ビスフェノール型エポキシ樹脂が、一般式(1)で表されるエポキシ樹脂である、請求項2記載の光半導体封止用エポキシ樹脂組成物。
Figure 2005089607
(但し、式中、R1はC(CH32又はCH2を表し、それぞれを少なくとも1個以上有する。R2は水素又は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。nは1以上、7以下の整数である。)
The epoxy resin composition for optical semiconductor encapsulation according to claim 2, wherein the bisphenol-type epoxy resin is an epoxy resin represented by the general formula (1).
Figure 2005089607
(In the formula, R1 represents C (CH 3 ) 2 or CH 2 and has at least one of each. R2 is hydrogen or an alkyl group having 1 to 4 carbon atoms, which may be the same as or different from each other. N is an integer from 1 to 7.
上記複素環式エポキシ樹脂が、トリグリシジルイソシアヌレートである、請求項2記載の光半導体封止用エポキシ樹脂組成物。 The epoxy resin composition for optical semiconductor encapsulation according to claim 2, wherein the heterocyclic epoxy resin is triglycidyl isocyanurate. 上記1分子内に2個以上のエポキシ基を有するエポキシ樹脂(A)が、一般式(1)で表されるエポキシ樹脂、及びトリグリシジルイソシアヌレートである、請求項1記載の光半導体封止用エポキシ樹脂組成物。
Figure 2005089607
(但し、式中、R1はC(CH32又はCH2を表し、それぞれを少なくとも1個以上有する。R2は水素又は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。nは1以上、7以下の整数である。)
2. The optical semiconductor encapsulation according to claim 1, wherein the epoxy resin (A) having two or more epoxy groups in one molecule is an epoxy resin represented by the general formula (1) and triglycidyl isocyanurate. Epoxy resin composition.
Figure 2005089607
(In the formula, R1 represents C (CH 3 ) 2 or CH 2 and has at least one of each. R2 is hydrogen or an alkyl group having 1 to 4 carbon atoms, which may be the same as or different from each other. N is an integer from 1 to 7.
上記硬化促進剤(C)が、双環式アミジン類、及びイミダゾール類からなる群より選ばれる少なくとも1つである、請求項1、2、3、4又は5のいずれかに記載の光半導体封止用エポキシ樹脂組成物。 The photosemiconductor encapsulation according to any one of claims 1, 2, 3, 4 and 5, wherein the curing accelerator (C) is at least one selected from the group consisting of bicyclic amidines and imidazoles. Stopping epoxy resin composition. 上記ガラス粒子(D)が1mmの光路長で波長400nmにおいて80%以上の光透過率を有し、且つ、該ガラス粒子(D)が、それ以外の成分からなる組成物の硬化物と0.01以下の光屈折率差を有し、また、全エポキシ樹脂組成物中に5重量%以上、70重量%以下の割合で配合された、請求項1、2、3、4、5又は6のいずれかに記載の光半導体封止用エポキシ樹脂組成物 The glass particle (D) has an optical path length of 1 mm, a light transmittance of 80% or more at a wavelength of 400 nm, and the glass particle (D) is a cured product of a composition comprising the other components. The photorefractive index difference of not more than 01, and blended in a proportion of not less than 5% by weight and not more than 70% by weight in the total epoxy resin composition. The epoxy resin composition for optical semiconductor encapsulation according to any one of 上記球状溶融シリカ(F)の最大粒径が、20μm以下である、請求項1、2、3、4、5、6又は7のいずれかに記載の光半導体封止用エポキシ樹脂組成物。 The epoxy resin composition for optical semiconductor encapsulation according to any one of claims 1, 2, 3, 4, 5, 6 and 7, wherein the spherical fused silica (F) has a maximum particle size of 20 µm or less. 請求項1乃至8のいずれかに記載の光半導体封止用エポキシ樹脂組成物の硬化物で封止された光半導体装置。
The optical semiconductor device sealed with the hardened | cured material of the epoxy resin composition for optical semiconductor sealing in any one of Claims 1 thru | or 8.
JP2003324934A 2003-09-17 2003-09-17 Epoxy resin composition for optical semiconductor sealing and optical semiconductor device Pending JP2005089607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324934A JP2005089607A (en) 2003-09-17 2003-09-17 Epoxy resin composition for optical semiconductor sealing and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324934A JP2005089607A (en) 2003-09-17 2003-09-17 Epoxy resin composition for optical semiconductor sealing and optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2005089607A true JP2005089607A (en) 2005-04-07

Family

ID=34455539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324934A Pending JP2005089607A (en) 2003-09-17 2003-09-17 Epoxy resin composition for optical semiconductor sealing and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2005089607A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031618A1 (en) * 2007-09-06 2009-03-12 Nikon Corporation Light-emitting diode device and method for manufacturing the same
JP2011256243A (en) * 2010-06-07 2011-12-22 Nitto Denko Corp Epoxy resin composition for optical use, optical component using the same, and optical semiconductor device obtained using the same
JP2012025935A (en) * 2010-06-25 2012-02-09 Sumitomo Bakelite Co Ltd Resin composition, transparent composite substrate, and display element substrate
JP2012124495A (en) * 2011-12-22 2012-06-28 Toshiba Corp Semiconductor light-emitting element
KR20120080128A (en) * 2011-01-06 2012-07-16 히다치 가세고교 가부시끼가이샤 Epoxy resin composition for encapsulation and electronic component device
US20130158167A1 (en) * 2010-12-20 2013-06-20 Daicel Corporation Curable epoxy resin composition and optical semiconductor device using said resin composition
US9130098B2 (en) 2010-12-08 2015-09-08 Kabushiki Kaisha Toshiba Semiconductor light emitting device
JP2016115947A (en) * 2014-07-30 2016-06-23 高玉宇 Fluorescent composite resin substrate white light emitting diode
EP2308909A4 (en) * 2008-07-31 2016-08-03 Daicel Chem Optical semiconductor sealing resin composition and optical semiconductor device using same
JP2017005260A (en) * 2006-11-15 2017-01-05 日立化成株式会社 Thermosetting resin composition for light reflection and method for producing the same
US10381533B2 (en) 2006-11-15 2019-08-13 Hitachi Chemical Company, Ltd. Optical semiconductor element mounting substrate and optical semiconductor device using thermosetting resin composition for light reflection

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381533B2 (en) 2006-11-15 2019-08-13 Hitachi Chemical Company, Ltd. Optical semiconductor element mounting substrate and optical semiconductor device using thermosetting resin composition for light reflection
JP2017020036A (en) * 2006-11-15 2017-01-26 日立化成株式会社 Thermosetting resin composition for light reflection and manufacturing method therefor
JP2017005260A (en) * 2006-11-15 2017-01-05 日立化成株式会社 Thermosetting resin composition for light reflection and method for producing the same
WO2009031618A1 (en) * 2007-09-06 2009-03-12 Nikon Corporation Light-emitting diode device and method for manufacturing the same
JP5392084B2 (en) * 2007-09-06 2014-01-22 株式会社ニコン Light emitting diode element and method for manufacturing the same
EP2308909A4 (en) * 2008-07-31 2016-08-03 Daicel Chem Optical semiconductor sealing resin composition and optical semiconductor device using same
JP2011256243A (en) * 2010-06-07 2011-12-22 Nitto Denko Corp Epoxy resin composition for optical use, optical component using the same, and optical semiconductor device obtained using the same
JP2012025935A (en) * 2010-06-25 2012-02-09 Sumitomo Bakelite Co Ltd Resin composition, transparent composite substrate, and display element substrate
US9130098B2 (en) 2010-12-08 2015-09-08 Kabushiki Kaisha Toshiba Semiconductor light emitting device
US20130158167A1 (en) * 2010-12-20 2013-06-20 Daicel Corporation Curable epoxy resin composition and optical semiconductor device using said resin composition
CN102585438A (en) * 2011-01-06 2012-07-18 日立化成工业株式会社 Epoxy resin composition for encapsulation and electronic component device
TWI554538B (en) * 2011-01-06 2016-10-21 日立化成股份有限公司 Epoxy resin composition for sealing and electronic component device
CN106085316A (en) * 2011-01-06 2016-11-09 日立化成工业株式会社 Encapsulating epoxy resin composition and electronic part apparatus
JP2012140566A (en) * 2011-01-06 2012-07-26 Hitachi Chemical Co Ltd Epoxy resin molding material for sealing and electronic part device
KR20120080128A (en) * 2011-01-06 2012-07-16 히다치 가세고교 가부시끼가이샤 Epoxy resin composition for encapsulation and electronic component device
KR101924233B1 (en) * 2011-01-06 2018-11-30 히타치가세이가부시끼가이샤 Epoxy resin composition for encapsulation and electronic component device
KR20180131517A (en) * 2011-01-06 2018-12-10 히타치가세이가부시끼가이샤 Epoxy resin composition for encapsulation and electronic component device
KR102013533B1 (en) * 2011-01-06 2019-08-22 히타치가세이가부시끼가이샤 Epoxy resin composition for encapsulation and electronic component device
JP2012124495A (en) * 2011-12-22 2012-06-28 Toshiba Corp Semiconductor light-emitting element
JP2016115947A (en) * 2014-07-30 2016-06-23 高玉宇 Fluorescent composite resin substrate white light emitting diode

Similar Documents

Publication Publication Date Title
US7307286B2 (en) Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same
JP3891554B2 (en) Epoxy resin composition for optical semiconductor encapsulation and optical semiconductor device
JP2005089607A (en) Epoxy resin composition for optical semiconductor sealing and optical semiconductor device
JP2001261933A (en) Epoxy resin for sealing optical semiconductor element and optical semiconductor device
JP2012041403A (en) Thermosetting epoxy resin composition and semiconductor device
JP4722686B2 (en) Manufacturing method of resin composition for encapsulating optical semiconductor element, resin composition for encapsulating optical semiconductor element and optical semiconductor device obtained thereby
JP5557770B2 (en) Thermosetting epoxy resin composition, reflecting member for optical semiconductor device, and optical semiconductor device
JP2002080698A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP2001323135A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
KR102125023B1 (en) Epoxy resin composition for photosemiconductor element molding and method for preparation of the same
JP5242530B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device
JP3973138B2 (en) Epoxy resin composition for optical semiconductor encapsulation and optical semiconductor device
JP2005015622A (en) Epoxy resin composition for photosemiconductor encapsulation and photosemiconductor device
JP2002105291A (en) Epoxy resin composition for sealing photosemiconductor and photosemiconductor device
JP2005272543A (en) Epoxy resin composition for encapsulating optical semiconductor and optical semiconductor device
KR101543821B1 (en) Epoxy resin composition for optical-semiconductor element encapsulation and optical-semiconductor device using the same
JP2005239912A (en) Epoxy resin composition for photosemiconductor sealing and photosemiconductor device
JP2010209181A (en) Epoxy resin composition for sealing optical semiconductor light receiving element, process for producing the same, and optical semiconductor device
JP3897282B2 (en) Epoxy resin composition for optical semiconductor encapsulation and optical semiconductor device
JP2002234990A (en) Sealing epoxy resin composition for optical semiconductor and optical semiconductor
JP2005330338A (en) Optical semiconductor sealing epoxy resin composition and optical semiconductor device
JP2004269754A (en) Epoxy resin composition for optical semiconductor sealing, and optical semiconductor device
JP2001342325A (en) Epoxy resin composition for photosemiconductor sealing and optical semiconductor device
JP2015227390A (en) Resin composition for encapsulating optical semiconductor and optical semiconductor device
JP6864639B2 (en) High-strength cured product of white thermosetting epoxy resin, reflector substrate for optical semiconductor element, manufacturing method of these, and high-strength method of cured product