JP2017005260A - Thermosetting resin composition for light reflection and method for producing the same - Google Patents

Thermosetting resin composition for light reflection and method for producing the same Download PDF

Info

Publication number
JP2017005260A
JP2017005260A JP2016156303A JP2016156303A JP2017005260A JP 2017005260 A JP2017005260 A JP 2017005260A JP 2016156303 A JP2016156303 A JP 2016156303A JP 2016156303 A JP2016156303 A JP 2016156303A JP 2017005260 A JP2017005260 A JP 2017005260A
Authority
JP
Japan
Prior art keywords
resin composition
optical semiconductor
semiconductor element
thermosetting
thermosetting light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016156303A
Other languages
Japanese (ja)
Other versions
JP2017005260A5 (en
Inventor
勇人 小谷
Hayato Kotani
勇人 小谷
直之 浦崎
Naoyuki Urasaki
直之 浦崎
加奈子 湯浅
Kanako Yuasa
加奈子 湯浅
晃 永井
Akira Nagai
永井  晃
光祥 濱田
Mitsuyoshi Hamada
光祥 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39604652&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017005260(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JP2017005260A publication Critical patent/JP2017005260A/en
Publication of JP2017005260A5 publication Critical patent/JP2017005260A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermosetting resin composition for light reflection having a high reflectance ratio from visible light to near-ultraviolet light and an excellent thermal deterioration resistance and an excellent tablet molding property after setting, and by which burrs are less likely generated in transfer molding.SOLUTION: A thermosetting resin composition for light reflection contains (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, (D) an inorganic filler, (D) a white pigment, and (F) a coupling agent. An optical semiconductor element mounting substrate is manufactured by forming a metal wiring 105 from a metal foil, arranging the metal wiring in a metal mold 301 having a predetermined shape, injecting a thermosetting resin composition for light reflection from a resin injection port 300, thermally curing the thermosetting resin composition on conditions that at a metal mold temperature of 170-200°C and a molding pressure of 0.5-20 MPa for 60-120 seconds and at an after cure temperature of 120-180°C for 1-3 hours, and then subjecting a predetermined position of an optical semiconductor element mounting region 200 whose periphery is surrounded by a reflector 103 formed of the cured thermosetting resin composition for light reflection to Ni/silver plating 104.SELECTED DRAWING: Figure 2

Description

本発明は、光半導体素子と蛍光体などの波長変換手段とを組み合わせた光半導体装置に用いる熱硬化性光反射用樹脂組成物、ならびに当該樹脂組成物を用いた光半導体素子搭載用基板、光半導体装置およびこれらの製造方法に関する。   The present invention relates to a thermosetting light reflecting resin composition used in an optical semiconductor device in which an optical semiconductor element and a wavelength conversion means such as a phosphor are combined, an optical semiconductor element mounting substrate using the resin composition, light The present invention relates to a semiconductor device and a manufacturing method thereof.

LED(Light Emitting Diode:発光ダイオード)などの光半導体素子と蛍光体を組み合わせた光半導体装置は、高エネルギー効率、長寿命などの利点を有することから、屋外用ディスプレイ、携帯液晶バックライト、車載用途などその需要を拡大しつつある。これに伴いLEDデバイスの高輝度化が進み、素子の発熱量増大によるジャンクション温度の上昇、あるいは直接的な光エネルギーの増大による材料の耐熱劣化・耐光劣化が課題となっている。特許文献1には、耐熱試験後の光反射特性に優れる光半導体素子搭載用基板が開示されている。   An optical semiconductor device in which an optical semiconductor element such as an LED (Light Emitting Diode) and a phosphor are combined has advantages such as high energy efficiency and long life. Therefore, an outdoor display, a portable liquid crystal backlight, and an in-vehicle application. The demand is expanding. As a result, the brightness of LED devices has increased, and there has been a problem of heat resistance degradation and light resistance degradation of materials due to an increase in junction temperature due to an increase in the amount of heat generated by the element or a direct increase in light energy. Patent Document 1 discloses a substrate for mounting an optical semiconductor element that is excellent in light reflection characteristics after a heat resistance test.

特開2006−140207号公報JP 2006-140207 A

しかし、特許文献1に開示された熱硬化性光反射用樹脂組成物を用いて光半導体素子搭載用基板をトランスファー成形により製造する場合、当該組成物が成形型の上型と下型の隙間に染み出し、樹脂バリが生じ易いという課題があった。バリが発生すると光半導体素子搭載領域の開口部(凹部)にバリが張り出して、光半導体素子を搭載する際の障害になる。さらに、光半導体素子を搭載できたとしても、光半導体素子と金属配線とをボンディングワイヤなどの公知の方法により電気的に接続する際の障害になる。このような障害が発生すると、光半導体素子搭載用基板の製造工程においてバリを除去する工程が必須となりコストや製造時間のロスとなる。   However, when an optical semiconductor element mounting substrate is manufactured by transfer molding using the thermosetting light reflecting resin composition disclosed in Patent Document 1, the composition is placed in the gap between the upper mold and the lower mold of the mold. There was a problem that exudation and resin burr were likely to occur. When a burr | flash generate | occur | produces, a burr | bulb will protrude to the opening part (concave part) of an optical semiconductor element mounting area | region, and will become an obstacle at the time of mounting an optical semiconductor element. Further, even if the optical semiconductor element can be mounted, it becomes an obstacle when the optical semiconductor element and the metal wiring are electrically connected by a known method such as a bonding wire. When such a failure occurs, a step of removing burrs is essential in the manufacturing process of the substrate for mounting an optical semiconductor element, resulting in a loss of cost and manufacturing time.

本発明は、上記に鑑みてなされたものであり、硬化後の、可視光から近紫外光の反射率が高く、耐熱劣化性やタブレット成形性に優れ、なおかつトランスファー成形時にバリが生じ難い熱硬化性光反射用樹脂組成物ならびに当該樹脂組成物を用いた光半導体素子搭載用基板、光半導体装置およびこれらの製造方法を提供することを目的とする。   The present invention has been made in view of the above, and after curing, thermosetting which has high reflectivity from visible light to near ultraviolet light, is excellent in heat deterioration resistance and tablet moldability, and hardly generates burrs during transfer molding. An object of the present invention is to provide a resin composition for reflective light reflection, a substrate for mounting an optical semiconductor element using the resin composition, an optical semiconductor device, and a manufacturing method thereof.

すなわち、本発明は、以下(1)〜(16)に記載の事項をその特徴とするものである。   That is, the present invention is characterized by the following items (1) to (16).

(1)(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)無機充填剤、(E)白色顔料および(F)カップリング剤を含む熱硬化性光反射用樹脂組成物であって、成形温度が100℃〜200℃、成型圧力20MPa以下、60〜120秒の条件でトランスファー成形した時に生じるバリ長さが5mm以下であり、かつ熱硬化後の、波長350nm〜800nmにおける光反射率が80%以上であることを特徴とする熱硬化性光反射用樹脂組成物。   (1) Thermosetting light reflecting resin containing (A) epoxy resin, (B) curing agent, (C) curing accelerator, (D) inorganic filler, (E) white pigment and (F) coupling agent The composition has a molding temperature of 100 ° C. to 200 ° C., a molding pressure of 20 MPa or less, a burr length generated when transfer molding is performed for 60 to 120 seconds, and a wavelength of 350 nm to 350 nm after thermosetting. A thermosetting light reflecting resin composition, wherein the light reflectance at 800 nm is 80% or more.

(2)前記(A)エポキシ樹脂として、少なくとも(A’)エポキシ樹脂と(B’)硬化剤を混練してなり、かつ100〜150℃における粘度が100〜2500mPa・sの範囲である(G)オリゴマーを用いることを特徴とする上記(1)に記載の熱硬化性光反射用樹脂組成物。   (2) As said (A) epoxy resin, at least (A ') epoxy resin and (B') hardening | curing agent are knead | mixed, and the viscosity in 100-150 degreeC is the range of 100-2500 mPa * s (G ) The thermosetting light reflecting resin composition as described in (1) above, wherein an oligomer is used.

(3)前記(A)エポキシ樹脂と前記(B)硬化剤の配合比が、前記(A)エポキシ樹脂中のエポキシ基1当量に対して、該エポキシ基と反応可能な前記(B)硬化剤中の活性基が0.5〜0.7当量となるような比であることを特徴とする上記(1)または(2)に記載の熱硬化性光反射用樹脂組成物。   (3) The (B) curing agent capable of reacting with the epoxy group with respect to 1 equivalent of the epoxy group in the (A) epoxy resin, wherein the blending ratio of the (A) epoxy resin and the (B) curing agent is The thermosetting light-reflecting resin composition as described in (1) or (2) above, wherein the ratio is such that the active groups therein are 0.5 to 0.7 equivalents.

(4)中心粒径が1nm〜1000nmのナノ粒子フィラーを(H)増粘剤としてさらに含むことを特徴とする上記(1)〜(3)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (4) The thermosetting light reflecting resin as described in any one of (1) to (3) above, further comprising (H) a thickener as a nanoparticle filler having a center particle diameter of 1 nm to 1000 nm. Composition.

(5)前記(D)無機充填剤が、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウムからなる群の中から選ばれる少なくとも1種以上であることを特徴とする上記(1)〜(4)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (5) The (D) inorganic filler is selected from the group consisting of silica, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate, and barium carbonate. The thermosetting light reflecting resin composition according to any one of the above (1) to (4), which is at least one selected from the above.

(6)前記(E)白色顔料が、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、無機中空粒子からなる群の中から選ばれる少なくとも1種以上であることを特徴とする上記(1)〜(5)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (6) The (E) white pigment is at least one selected from the group consisting of alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, and inorganic hollow particles. ) To (5) The thermosetting resin composition for light reflection.

(7)前記(E)白色顔料の中心粒径が0.1〜50μmの範囲にあることを特徴とする上記(1)〜(6)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (7) The thermosetting light reflecting resin composition as described in any one of (1) to (6) above, wherein the center particle diameter of the white pigment (E) is in the range of 0.1 to 50 μm. object.

(8)(D)無機充填剤と(E)白色顔料を合計した配合量が、樹脂組成物全体に対して、10体積%〜85体積%の範囲であることを特徴とする上記(1)〜(7)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (8) The above (1), wherein the blended amount of (D) inorganic filler and (E) white pigment is in the range of 10% by volume to 85% by volume with respect to the entire resin composition. The thermosetting light reflecting resin composition according to any one of to (7).

(9)前記樹脂組成物を0〜30℃で1〜72時間にわたってエージングしてなることを特徴とする上記(1)〜(8)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (9) The resin composition for thermosetting light reflection according to any one of (1) to (8) above, wherein the resin composition is aged at 0 to 30 ° C. for 1 to 72 hours. .

(10)前記(A)〜(F)成分を、混練温度20〜100℃、混練時間10〜30分の条件で混練してなることを特徴とする上記(1)〜(9)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (10) Any of (1) to (9) above, wherein the components (A) to (F) are kneaded under conditions of a kneading temperature of 20 to 100 ° C. and a kneading time of 10 to 30 minutes. 2. A thermosetting light reflecting resin composition as described in 1. above.

(11)上記(1)〜(10)のいずれかに記載の熱硬化性光反射用樹脂組成物を製造する方法であって、前記(A)〜(F)成分を混練した後、0〜30℃で1〜72時間にわたって熱エージングする工程を有することを特徴とする熱硬化性光反射用樹脂組成物の製造方法。   (11) A method for producing the thermosetting light reflecting resin composition according to any one of (1) to (10) above, wherein after kneading the components (A) to (F), 0 to A method for producing a thermosetting light reflecting resin composition, comprising a step of heat aging at 30 ° C for 1 to 72 hours.

(12)前記混練を、混練温度20〜100℃、混練時間10〜30分の条件で行うことを特徴とする上記(11)に記載の熱硬化性光反射用樹脂組成物の製造方法。   (12) The method for producing a thermosetting light reflecting resin composition as described in (11) above, wherein the kneading is performed under conditions of a kneading temperature of 20 to 100 ° C. and a kneading time of 10 to 30 minutes.

(13)上記(1)〜(10)のいずれかに記載の熱硬化性光反射用樹脂組成物を用いてなることを特徴とする光半導体素子搭載用基板。
(14)光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板であって、少なくとも前記凹部の内周側面が上記(1)〜(10)のいずれかに記載の光反射用熱硬化性樹脂組成物からなることを特徴とする光半導体素子搭載用基板。
(13) An optical semiconductor element mounting substrate comprising the thermosetting light reflecting resin composition according to any one of (1) to (10).
(14) An optical semiconductor element mounting substrate in which at least one recess serving as an optical semiconductor element mounting region is formed, and at least an inner peripheral side surface of the recess is any one of the above (1) to (10). A substrate for mounting an optical semiconductor element, comprising: a thermosetting resin composition for light reflection.

(15)光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板の製造方法であって、少なくとも前記凹部を上記(1)〜(10)のいずれか1項記載の光反射用熱硬化性樹脂組成物を用いたトランスファー成形により形成することを特徴とする光半導体搭載用基板の製造方法。   (15) A method for manufacturing an optical semiconductor element mounting substrate in which one or more recesses to be an optical semiconductor element mounting region are formed, wherein at least the recesses are any one of the above (1) to (10). A method for producing a substrate for mounting an optical semiconductor, which comprises forming the substrate by transfer molding using the thermosetting resin composition for light reflection.

(16)上記(13)または(14)に記載の光半導体素子搭載用基板または上記(15)に記載の製造方法により製造された光半導体素子搭載用基板と、前記光半導体素子搭載用基板の凹部底面に搭載された光半導体素子と、前記光半導体素子を覆うように前記凹部内に形成された蛍光体含有透明封止樹脂層と、を少なくとも備える光半導体装置。   (16) An optical semiconductor element mounting substrate described in (13) or (14) or an optical semiconductor element mounting substrate manufactured by the manufacturing method described in (15), and the optical semiconductor element mounting substrate. An optical semiconductor device comprising at least an optical semiconductor element mounted on a bottom surface of a recess, and a phosphor-containing transparent sealing resin layer formed in the recess so as to cover the optical semiconductor element.

本発明によれば、硬化後の、可視光から近紫外光の反射率が高く、耐熱劣化性やタブレット成型性に優れ、なおかつトランスファー成形時にバリが生じ難い熱硬化性光反射用樹脂組成物ならびに当該樹脂組成物を用いた光半導体素子搭載用基板、光半導体装置およびこれらの製造方法を提供することが可能となる。   According to the present invention, after curing, a thermosetting light reflecting resin composition having high reflectivity from visible light to near ultraviolet light, excellent in heat deterioration resistance and tablet moldability, and less likely to cause burrs during transfer molding, and It becomes possible to provide a substrate for mounting an optical semiconductor element, an optical semiconductor device, and a manufacturing method thereof using the resin composition.

本発明の光半導体素子搭載用基板の一実施形態を示す斜視図と断面図である。It is the perspective view and sectional drawing which show one Embodiment of the board | substrate for optical semiconductor element mounting of this invention. 本発明の光半導体素子搭載用基板を製造する工程の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the process of manufacturing the board | substrate for optical semiconductor element mounting of this invention. 本発明の光半導体装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the optical semiconductor device of this invention. 実施例で用いたバリ測定用金型と樹脂バリの模式図である。It is a schematic diagram of the mold for burr measurement and the resin burr used in the examples.

以下、本発明の実施の形態を説明する。
本発明の熱硬化性光反射用樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)無機充填剤、(E)白色顔料および(F)カップリング剤を含むものである。
Embodiments of the present invention will be described below.
The thermosetting light reflecting resin composition of the present invention comprises (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, (D) an inorganic filler, (E) a white pigment, and (F) a cup. It contains a ring agent.

上記(A)エポキシ樹脂としては、電子部品封止用エポキシ樹脂成形材料で一般に使用されているものを用いることができ、特に限定されないが、例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換ビフェノール等のジグリシジエーテル、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、及び脂環族エポキシ樹脂等があり、これらは単独でも、2種以上併用してもよい。また、使用するエポキシ樹脂は比較的着色のないものであることが好ましく、そのようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレートを挙げることができる。   As said (A) epoxy resin, what is generally used by the epoxy resin molding material for electronic component sealing can be used, Although it does not specifically limit, For example, a phenol novolak type epoxy resin, an ortho cresol novolak type epoxy resin Obtained by epoxidizing novolak resins of phenols and aldehydes such as bisphenol A, bisphenol A, bisphenol F, bisphenol S, diglycidiethers such as alkyl-substituted biphenols, polyamines such as diaminodiphenylmethane, isocyanuric acid and epichlorohydrin Glycidylamine type epoxy resins, linear aliphatic epoxy resins obtained by oxidizing olefinic bonds with peracids such as peracetic acid, and alicyclic epoxy resins, etc., either alone or in combination of two or more. GoodMoreover, it is preferable that the epoxy resin to be used is relatively uncolored, and examples of such an epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and diglycidyl isocyanate. Examples thereof include nurate and triglycidyl isocyanurate.

また、上記(A)エポキシ樹脂として、少なくとも(A’)エポキシ樹脂および(B’)硬化剤、必要に応じてさらに(C’)硬化促進剤を配合してなり、なおかつ100〜150℃における粘度が100〜2500mPa・sの範囲である(G)オリゴマーを用いることが好ましい。なお、上記(A’)エポキシ樹脂、上記(B’)硬化剤、上記(C’)硬化促進剤は、本発明における(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤と同様のものを用いることができる。   Moreover, as said (A) epoxy resin, (A ') epoxy resin and (B') hardening | curing agent are further mix | blended with (C ') hardening accelerator as needed, and also the viscosity in 100-150 degreeC. It is preferable to use (G) an oligomer having a range of 100 to 2500 mPa · s. The (A ′) epoxy resin, the (B ′) curing agent, and the (C ′) curing accelerator are the (A) epoxy resin, (B) curing agent, and (C) curing accelerator in the present invention. Similar ones can be used.

上記(G)オリゴマーは、例えば、(A’)エポキシ樹脂および(B’)硬化剤を、当該(A’)エポキシ樹脂中のエポキシ基1当量に対して、当該エポキシ基と反応可能な当該(B’)硬化剤中の活性基(酸無水物基や水酸基)が0.3当量以下となるように配合し、粘土状になるまで混練することで得ることができ、好ましくは、さらに、粘土状組成物を温度25〜60℃の範囲で1〜6時間にわたってエージングする。また、(C’)硬化促進剤を配合する場合には、(A’)エポキシ樹脂と(B’)硬化剤の総和100重量部に対し、0.005〜0.05重量部となるように配合する。このように作製された(G)オリゴマーは、本発明の樹脂組成物のバリ発生を抑制する観点から、100〜150℃における粘度が100〜2500mPa・sの範囲にあることが好ましく、100℃における粘度が100〜2500mPa・sの範囲にあることがより好ましい。(G)オリゴマーの粘度が100mPa・s未満であるとトランスファー成形時にバリが発生しやすくなり、2500mPa・sを越えると成形時の流動性が低下し、成形性に乏しくなる。また、(G)オリゴマーは、その粒径が1mm以下になるまで粉砕し、温度0℃以下の環境で保存すると粘度の上昇を抑制または停止させることができる。なお、粉砕方法については陶器製乳鉢等を用いるなど公知のいかなる手法を用いても良い。   For example, the oligomer (G) can react (A ′) an epoxy resin and (B ′) a curing agent with the epoxy group with respect to 1 equivalent of the epoxy group in the (A ′) epoxy resin. B ′) It can be obtained by blending so that the active group (acid anhydride group or hydroxyl group) in the curing agent is 0.3 equivalent or less, and kneading until it becomes a clay, preferably further, clay The composition is aged at a temperature in the range of 25-60 ° C for 1-6 hours. Moreover, when mix | blending (C ') hardening accelerator, it is 0.005-0.05 weight part with respect to 100 weight part of total of (A') epoxy resin and (B ') hardening | curing agent. Blend. The (G) oligomer thus produced preferably has a viscosity at 100 to 150 ° C. in the range of 100 to 2500 mPa · s from the viewpoint of suppressing the occurrence of burrs in the resin composition of the present invention. The viscosity is more preferably in the range of 100 to 2500 mPa · s. (G) If the viscosity of the oligomer is less than 100 mPa · s, burrs are likely to occur during transfer molding, and if it exceeds 2500 mPa · s, the fluidity during molding is lowered and the moldability is poor. In addition, the oligomer (G) can be pulverized until the particle size becomes 1 mm or less, and when stored in an environment at a temperature of 0 ° C. or less, the increase in viscosity can be suppressed or stopped. As for the pulverization method, any known method such as using a ceramic mortar may be used.

上記(B)硬化剤としては、エポキシ樹脂と反応するものであれば、特に制限なく用いることができるが、比較的着色のないものが好ましい。具体的には、酸無水物硬化剤、イソシアヌル酸誘導体、フェノール系硬化剤などを用いることができる。酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、無水コハク酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸などが挙げられ、イソシアヌル酸誘導体としては、1,3,5−トリス(1−カルボキシメチル)イソシアヌレート、1,3,5−トリス(2−カルボキシエチル)イソシアヌレート、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレート、1,3−ビス(2−カルボキシエチル)イソシアヌレートなどが挙げられ、これらは、単独で用いても二種以上併用しても良い。これらの硬化剤の中では、無水フタル酸、無水トリメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレートを用いることが好ましい。また、(B)硬化剤は、その分子量が100〜400程度のものが好ましく、また、無色ないし淡黄色のものが好ましい。   As said (B) hardening | curing agent, if it reacts with an epoxy resin, it can be used without a restriction | limiting especially, However, The thing without a coloring is preferable. Specifically, acid anhydride curing agents, isocyanuric acid derivatives, phenolic curing agents, and the like can be used. Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride. Acid, dimethylglutaric anhydride, diethylglutaric anhydride, succinic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride and the like. Examples of isocyanuric acid derivatives include 1,3,5-tris (1-carboxyl Methyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5-tris (3-carboxypropyl) isocyanurate, 1,3-bis (2-carboxyethyl) isocyanurate These can be used alone or in combination of two or more And it may be. Among these curing agents, phthalic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, glutaric anhydride, dimethylglutaric anhydride, anhydrous Diethyl glutaric acid and 1,3,5-tris (3-carboxypropyl) isocyanurate are preferably used. The (B) curing agent preferably has a molecular weight of about 100 to 400, and is preferably colorless or light yellow.

また、(A)エポキシ樹脂(もしくは(G)オリゴマー)と(B)硬化剤の配合比は、(A)エポキシ樹脂中のエポキシ基1当量に対して、当該エポキシ基と反応可能な(B)硬化剤中の活性基(酸無水物基や水酸基)が0.5〜0.7当量となるような割合であることが好ましく、0.6〜0.7当量となるような割合であることがより好ましい。上記活性基が0.5当量未満の場合には、エポキシ樹脂組成物の硬化速度が遅くなるとともに、得られる硬化体のガラス転移温度が低くなり、充分な弾性率が得られない場合があり、一方、上記活性基が0.7当量を超える場合には、硬化後の強度が減少する場合がある((G)オリゴマー単独を用いる、または(G)オリゴマーと(A)エポキシ樹脂を併用する場合の(B)硬化剤の当量数の換算は、(G)オリゴマーに含まれる(A’)エポキシ樹脂と(A)エポキシ樹脂のそれぞれに含まれるエポキシ基の総量を1当量とし、それに対して(B’)硬化剤と(B)硬化剤中に含まれる上記エポキシ基と反応可能な活性基の総和を当量数とする。)。   The blending ratio of (A) epoxy resin (or (G) oligomer) and (B) curing agent is such that (A) 1 equivalent of epoxy group in epoxy resin can react with the epoxy group (B) The ratio is preferably such that the active group (acid anhydride group or hydroxyl group) in the curing agent is 0.5 to 0.7 equivalent, and 0.6 to 0.7 equivalent. Is more preferable. When the active group is less than 0.5 equivalent, the curing rate of the epoxy resin composition is slowed, the glass transition temperature of the resulting cured product is low, and sufficient elastic modulus may not be obtained, On the other hand, when the above active group exceeds 0.7 equivalent, the strength after curing may decrease (when (G) oligomer is used alone or (G) oligomer and (A) epoxy resin are used in combination) The equivalent number of (B) curing agent in (G) is (G) The total amount of epoxy groups contained in each of (A ′) epoxy resin and (A) epoxy resin contained in the oligomer is 1 equivalent, B ′) (B) The total number of active groups capable of reacting with the epoxy group contained in the curing agent is defined as the equivalent number).

上記(C)硬化促進剤としては、特に限定されるものではなく、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、トリ−2,4,6−ジメチルアミノメチルフェノールなどの3級アミン類、2−エチル−4メチルイミダゾール、2−メチルイミダゾールなどのイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート、テトラ−n−ブチルホスホニウム−テトラフルオロボレート、テトラ−n−ブチルホスホニウム−テトラフェニルボレートなどのリン化合物、4級アンモニウム塩、有機金属塩類、およびこれらの誘導体などが挙げられる。これらは単独で使用してもよく、あるいは、併用してもよい。これらの硬化促進剤の中では、3級アミン類、イミダゾール類、リン化合物を用いることが好ましい。   The (C) curing accelerator is not particularly limited, and examples thereof include 1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, tri-2,4,6-dimethyl. Tertiary amines such as aminomethylphenol, imidazoles such as 2-ethyl-4methylimidazole and 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o-diethyl Examples thereof include phosphorus compounds such as phosphorodithioate, tetra-n-butylphosphonium-tetrafluoroborate, tetra-n-butylphosphonium-tetraphenylborate, quaternary ammonium salts, organometallic salts, and derivatives thereof. These may be used alone or in combination. Among these curing accelerators, it is preferable to use tertiary amines, imidazoles, and phosphorus compounds.

上記(C)硬化促進剤の含有率は、(A)エポキシ樹脂に対して、0.01〜8.0重量%であることが好ましく、より好ましくは、0.1〜3.0重量%である。硬化促進剤の含有率が、0.01重量%未満では、十分な硬化促進効果を得られない場合があり、また、8.0重量%を超えると、得られる成形体に変色が見られる場合がある。   It is preferable that the content rate of the said (C) hardening accelerator is 0.01 to 8.0 weight% with respect to (A) epoxy resin, More preferably, it is 0.1 to 3.0 weight%. is there. When the content of the curing accelerator is less than 0.01% by weight, a sufficient curing accelerating effect may not be obtained. When the content exceeds 8.0% by weight, discoloration is observed in the resulting molded product. There is.

上記(D)無機充填剤としては、特に限定されないが、例えば、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウムからなる群の中から選ばれる少なくとも1種以上を用いることができるが、熱伝導性、光反射特性、成型性、難燃性の点からシリカ、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウムのうち2種以上の混合物が好ましい。また、(D)無機充填剤の中心粒径は、特に限定されるものではないが、白色顔料とのパッキングが効率良くなるように1〜100μmの範囲のものを用いることが好ましい。   The (D) inorganic filler is not particularly limited, and examples thereof include silica, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate, and barium carbonate. At least one selected from the group consisting of silica, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide can be used from the viewpoint of thermal conductivity, light reflection characteristics, moldability, and flame retardancy. A mixture of two or more of aluminum hydroxide and magnesium hydroxide is preferred. In addition, the center particle diameter of the inorganic filler (D) is not particularly limited, but it is preferable to use one in the range of 1 to 100 μm so that packing with the white pigment is efficient.

上記(E)白色顔料としては、公知のものを使用することができ、特に限定されないが、例えば、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、無機中空粒子などを用いることができ、これらは単独でも併用しても構わない。無機中空粒子は、例えば、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス、シラス等が挙げられる。(E)白色顔料の粒径は、中心粒径が0.1〜50μmの範囲にあることが好ましい。この中心粒径が0.1μm未満であると粒子が凝集しやすく分散性が悪くなる傾向にあり、50μmを超えると硬化物の光反射特性が十分に得られない恐れがある。   As the (E) white pigment, known pigments can be used, and are not particularly limited. For example, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, inorganic hollow particles, and the like can be used. These may be used alone or in combination. Examples of the inorganic hollow particles include sodium silicate glass, aluminum silicate glass, borosilicate soda glass, and shirasu. (E) As for the particle size of a white pigment, it is preferable that a center particle size exists in the range of 0.1-50 micrometers. If the center particle size is less than 0.1 μm, the particles tend to aggregate and the dispersibility tends to deteriorate. If it exceeds 50 μm, the light reflection characteristics of the cured product may not be sufficiently obtained.

上記(D)無機充填剤と上記(E)白色顔料の合計配合量は、特に限定されないが、樹脂組成物全体に対して、10体積%〜85体積%の範囲であることが好ましい。この合計配合量が、10体積%未満であると硬化物の光反射特性が十分に得られない恐れがあり、85体積%を超えると樹脂組成物の成型性が悪くなり、光半導体搭載用基板の作製が困難となる。   Although the total compounding quantity of the said (D) inorganic filler and the said (E) white pigment is not specifically limited, It is preferable that it is the range of 10 volume%-85 volume% with respect to the whole resin composition. If this total blending amount is less than 10% by volume, the light reflection characteristics of the cured product may not be sufficiently obtained, and if it exceeds 85% by volume, the moldability of the resin composition is deteriorated, and the substrate for mounting an optical semiconductor Is difficult to manufacture.

上記(F)カップリング剤としては、特に限定されないが、例えば、シラン系カップリング剤やチタネート系カップリング剤等を用いることができ、シランカップリング剤としては、例えば、エポキシシラン系、アミノシラン系、カチオニックシラン系、ビニルシラン系、アクリルシラン系、メルカプトシラン系及びこれらの複合系等を用いることができる。(F)カップリング剤の種類や処理条件は特に限定しないが、(F)カップリング剤の配合量は樹脂組成物に対して5重量%以下が好ましい。   Although it does not specifically limit as said (F) coupling agent, For example, a silane coupling agent, a titanate coupling agent, etc. can be used, As an silane coupling agent, an epoxysilane type, an aminosilane type, for example Cationic silane, vinyl silane, acrylic silane, mercapto silane, and composites thereof can be used. (F) The type and processing conditions of the coupling agent are not particularly limited, but the blending amount of (F) coupling agent is preferably 5% by weight or less based on the resin composition.

また、本発明の熱硬化性光反射用樹脂組成物には、溶融粘度調整を目的として(H)増粘剤を添加しても良い。(H)増粘剤としては、特に限定されるものではないが、例えば、トクヤマ(株)で販売されているレオロシールCP−102を用いることができる。(H)増粘剤の添加量としては、樹脂組成物の総体積の0.15体積%以下であることが好ましい。(H)増粘剤を0.15体積%よりも多く添加すると樹脂組成物の溶融時の流動性が損なわれるとともに硬化後に充分な材料強度が得られない恐れがある。また、(H)増粘剤は、中心粒径が1nm〜1000nmであるようなナノ粒子フィラーであることが好ましく、中心粒径が10nm〜1000nmであるようなナノ粒子フィラーであることがより好ましい。中心粒径1nmよりも小さいフィラーは、粒子が凝集しやすく分散性が低下する傾向にあり特性上好ましくない。一方、1000nmよりも大きなフィラーを添加するとバリが低減しない傾向にあり特性上好ましくない。   Moreover, you may add (H) thickener to the thermosetting light reflection resin composition of this invention for the purpose of melt viscosity adjustment. (H) Although it does not specifically limit as a thickener, For example, Reolosil CP-102 currently sold by Tokuyama Co., Ltd. can be used. The amount of (H) thickener added is preferably 0.15% by volume or less of the total volume of the resin composition. When (H) a thickener is added in an amount of more than 0.15% by volume, the fluidity at the time of melting of the resin composition is impaired and sufficient material strength may not be obtained after curing. The (H) thickener is preferably a nanoparticle filler having a center particle diameter of 1 nm to 1000 nm, and more preferably a nanoparticle filler having a center particle diameter of 10 nm to 1000 nm. . A filler having a center particle size of less than 1 nm is not preferred in terms of properties because the particles tend to aggregate and the dispersibility tends to decrease. On the other hand, if a filler larger than 1000 nm is added, burrs tend not to be reduced, which is not preferable in terms of characteristics.

また、本発明の樹脂組成物には、必要に応じて、酸化防止剤、離型剤、イオン補足剤等の添加剤を添加してもよい。   Moreover, you may add additives, such as antioxidant, a mold release agent, and an ion supplement agent, to the resin composition of this invention as needed.

以上のような成分を含有する本発明の熱硬化性光反射用樹脂組成物は、熱硬化前、室温(0〜30℃)において加圧成形可能であることが望ましく、また、熱硬化後の、波長350nm〜800nmにおける光反射率が80%以上であることが望まれる。上記加圧成形は、例えば、室温において、5〜50MPa、1〜5秒程度の条件下で成形を行うことができればよい。また、上記光反射率が80%未満であると、光半導体装置の輝度向上に十分寄与できない傾向がある。より好ましい光反射率は90%以上である。   The thermosetting light-reflecting resin composition of the present invention containing the above components is desirably pressure-moldable at room temperature (0 to 30 ° C.) before thermosetting, and after thermosetting. The light reflectance at a wavelength of 350 nm to 800 nm is desirably 80% or more. The said press molding should just be able to perform shaping | molding on the conditions of about 5-50 MPa and about 1-5 second at room temperature, for example. Further, if the light reflectance is less than 80%, there is a tendency that it cannot sufficiently contribute to the improvement in luminance of the optical semiconductor device. A more preferable light reflectance is 90% or more.

また、本発明の熱硬化性光反射用樹脂組成物は、上記した各種成分を均一に分散混合することで得ることができ、その手段や条件等は特に限定されないが、一般的な手法として、所定配合量の成分をミキサー等によって十分均一に撹拌、混合した後、ミキシングロール、押出機、ニーダー、ロール、エクストルーダー等によって(溶融)混練し、さらに、冷却、粉砕する方法を挙げることができる。(溶融)混練の条件は、成分の種類や配合量により適宜決定すればよく、特に限定されないが、15〜100℃の範囲で5〜40分間(溶融)混練することが好ましく、20〜100℃の範囲で10〜30分間(溶融)混練することがより好ましい。(溶融)混練温度が15℃未満であると、各成分を(溶融)混練させることが困難であり、分散性も低下する傾向にあり、100℃よりも高温であると、樹脂組成物の高分子量化が進行し、樹脂組成物が硬化してしまう恐れがある。また、(溶融)混練時間が5分未満であると、バリの発生を効果的に抑制することができない傾向にあり、40分よりも長いと、樹脂組成物の高分子量化が進行し、樹脂組成物が硬化してしまう恐れがある。   Further, the thermosetting light reflecting resin composition of the present invention can be obtained by uniformly dispersing and mixing the various components described above, and means and conditions thereof are not particularly limited. Examples include a method in which components of a predetermined blending amount are sufficiently uniformly stirred and mixed by a mixer or the like, then (melted) kneaded by a mixing roll, an extruder, a kneader, a roll, an extruder, etc., and further cooled and pulverized. . The conditions for (melting) kneading may be appropriately determined depending on the type and blending amount of the components, and are not particularly limited. It is more preferable to perform kneading (melting) for 10 to 30 minutes within the above range. When the (melting) kneading temperature is less than 15 ° C., it is difficult to (melt) kneading each component, and the dispersibility tends to decrease. When the temperature is higher than 100 ° C., the resin composition has a high temperature. There is a possibility that the molecular weight proceeds and the resin composition is cured. Further, if the (melting) kneading time is less than 5 minutes, there is a tendency that the generation of burrs cannot be effectively suppressed. If it is longer than 40 minutes, the resin composition has a higher molecular weight, and the resin The composition may be cured.

また、本発明の熱硬化性光反射用樹脂組成物は、上記各成分を配合、混練した後、成形時の溶融粘度を上昇させることを目的として熟成放置(エージング)することが好ましく、0℃〜30℃で1〜72時間にわたってエージングすることがより好ましく、15℃〜30℃で12〜72時間にわたって熱エージングすることがさらに好ましく、25℃〜30℃で24〜72時間にわたって熱エージングすることが特に好ましい。1時間よりの短時間のエージングでは、バリの発生を効果的に抑制できない傾向にあり、72時間より長くエージングすると、トランスファー成形時に充分な流動性を確保できない恐れがある。また、0℃未満の温度でエージングした場合には、(C)硬化促進剤が不活性化されて、樹脂組成物の三次元架橋反応が十分に進行せず、溶融時の粘度が上昇しない恐れがあり、30℃よりも高温でエージングした場合には、樹脂組成物が水分を吸収してしまい、硬化物の強度や弾性率などの機械的物性が悪くなる傾向にある。   Further, the thermosetting light reflecting resin composition of the present invention is preferably aged (aged) for the purpose of increasing the melt viscosity at the time of molding after blending and kneading the above-mentioned components. More preferably, aging at -30 ° C for 1 to 72 hours, more preferably thermal aging at 15 ° C to 30 ° C for 12 to 72 hours, and thermal aging at 25 ° C to 30 ° C for 24 to 72 hours. Is particularly preferred. When aging is performed for a short time of 1 hour or less, the generation of burrs tends not to be effectively suppressed. When aging is performed for longer than 72 hours, sufficient fluidity may not be ensured during transfer molding. In addition, when aging is performed at a temperature lower than 0 ° C., (C) the curing accelerator is inactivated, and the three-dimensional crosslinking reaction of the resin composition does not proceed sufficiently, and the viscosity at the time of melting may not increase. In the case of aging at a temperature higher than 30 ° C., the resin composition absorbs moisture, and mechanical properties such as strength and elastic modulus of the cured product tend to be deteriorated.

また、本発明の熱硬化性光反射用樹脂組成物は、成形温度100℃〜200℃、成形圧力20MPa以下、60〜120秒の条件でトランスファー成形した時のバリ長さが5mm以下になることが好ましい。更に好ましくは3mm以下であり、特に好ましくは1mm以下である。バリ長さが5mmよりも多いと、光半導体素子搭載領域の開口部(凹部)にバリが張り出して光半導体素子を搭載する際の障害になる可能性や光半導体素子と金属配線とをボンディングワイヤなど公知の方法により電気的に接続する際の障害になる可能性がある。   Moreover, the thermosetting light reflecting resin composition of the present invention has a burr length of 5 mm or less when transfer molded under conditions of a molding temperature of 100 ° C. to 200 ° C., a molding pressure of 20 MPa or less, and 60 to 120 seconds. Is preferred. More preferably, it is 3 mm or less, Most preferably, it is 1 mm or less. If the burr length is more than 5 mm, the burr may protrude from the opening (recessed portion) of the optical semiconductor element mounting region and become an obstacle when mounting the optical semiconductor element, or the optical semiconductor element and the metal wiring may be bonded to the bonding wire. There is a possibility that it may become an obstacle in electrical connection by a known method.

本発明の光半導体素子搭載用基板は、本発明の熱硬化性光反射用樹脂組成物を用いてなるものであり、例えば、光半導体素子搭載領域となる凹部が1つ以上形成されており、少なくとも前記凹部の内周側面が本発明の熱硬化性光反射用樹脂組成物からなるものである。本発明の光半導体素子搭載用基板の一実施形態を図1に示す。   The substrate for mounting an optical semiconductor element of the present invention is formed using the thermosetting light reflecting resin composition of the present invention, and, for example, one or more recesses to be an optical semiconductor element mounting region are formed, At least the inner peripheral side surface of the recess is made of the thermosetting light reflecting resin composition of the present invention. One embodiment of a substrate for mounting an optical semiconductor element of the present invention is shown in FIG.

本発明の光半導体素子搭載用基板の製造方法は、特に限定されないが、例えば、本発明の熱硬化性光反射用樹脂組成物をトランスファー成形により成型し、製造することができる。より具体的には、例えば、図2(a)に示すように、金属箔から打ち抜きやエッチング等の公知の方法により金属配線105を形成し、ついで、該金属配線105を所定形状の金型301に配置し(図2(b))、金型301の樹脂注入口300から本発明の熱硬化性光反射用樹脂組成物を注入し、これを好ましくは金型温度170〜200℃、成形圧力0.5〜20MPaで60〜120秒、アフターキュア温度120℃〜180℃で1〜3時間の条件で熱硬化させた後、金型301を外し、硬化した熱硬化性光反射用樹脂組成物からなるリフレクター103に周囲を囲まれてなる光半導体素子搭載領域(凹部)200の所定位置に、電気めっきによりNi/銀めっき104を施すことで製造することができる(図2(c))。   Although the manufacturing method of the optical semiconductor element mounting substrate of this invention is not specifically limited, For example, the thermosetting light reflection resin composition of this invention can be shape | molded and manufactured by transfer molding. More specifically, for example, as shown in FIG. 2A, a metal wiring 105 is formed from a metal foil by a known method such as punching or etching, and then the metal wiring 105 is formed into a mold 301 having a predetermined shape. (FIG. 2 (b)), the thermosetting light reflecting resin composition of the present invention is injected from the resin injection port 300 of the mold 301, and this is preferably a mold temperature of 170 to 200 ° C. and a molding pressure. After thermosetting under conditions of 0.5 to 20 MPa for 60 to 120 seconds and after-curing temperature of 120 to 180 ° C. for 1 to 3 hours, the mold 301 is removed, and the cured thermosetting light reflecting resin composition. It can be manufactured by applying Ni / silver plating 104 by electroplating to a predetermined position of the optical semiconductor element mounting region (recessed portion) 200 surrounded by the reflector 103 made of (FIG. 2 (c)).

また、本発明の光半導体装置は、本発明の光半導体素子搭載用基板と、光半導体素子搭載用基板の凹部底面に搭載される光半導体素子と、光半導体素子を覆うように凹部内に形成される蛍光体含有透明封止樹脂層と、を少なくとも備えることを特徴とするものである。図3には、本発明の光半導体素子搭載用基板110の光半導体素子搭載領域(凹部)200の底部所定位置に光半導体素子100が搭載され、該光半導体素子100と金属配線105とがボンディングワイヤ102やはんだバンプ107などの公知の方法により電気的に接続され、該光半導体素子100が公知の蛍光体106を含む透明封止樹脂101により覆われている、本発明の光半導体装置の一実施形態を示す。   The optical semiconductor device of the present invention is formed in the recess so as to cover the optical semiconductor element, the optical semiconductor element mounting substrate of the present invention, the optical semiconductor element mounted on the bottom surface of the recess of the optical semiconductor element mounting substrate. And a phosphor-containing transparent encapsulating resin layer. In FIG. 3, the optical semiconductor element 100 is mounted at a predetermined position on the bottom of the optical semiconductor element mounting region (recess) 200 of the optical semiconductor element mounting substrate 110 of the present invention, and the optical semiconductor element 100 and the metal wiring 105 are bonded to each other. One of the optical semiconductor devices of the present invention, which is electrically connected by a known method such as a wire 102 or a solder bump 107, and the optical semiconductor element 100 is covered with a transparent sealing resin 101 containing a known phosphor 106. An embodiment is shown.

以下、本発明を実施例により詳述するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example explains this invention in full detail, this invention is not limited to these.

<熱硬化性光反射用樹脂組成物の作製>
(実施例1〜11、比較例1〜8)
表1および表2に示した配合表に従って各材料を配合し、ミキサーによって十分混練した後、ミキシングロールにより所定条件で溶融混練し、必要に応じて熱エージングを行い、冷却、粉砕を行い、実施例1〜11および比較例1〜8の熱硬化性光反射用樹脂組成物を作製した。なお、表中の各成分の配合量の単位は重量部であり、空欄は配合無しまたは工程無しを表す。また、実施例1〜5はそれぞれ、特定の(G)オリゴマーを使用する手法;(A)エポキシ樹脂中のエポキシ基1当量に対する硬化剤中の活性基を0.5〜0.7当量の範囲とする手法;(H)増粘剤としてナノフィラーを追加する手法;組成物を所定条件で熱エージングする手法;および溶融混練条件を調整する手法(混練時間を15分から30分);を適用した場合であり、実施例6〜11は、上記手法のうちいずれか2つの手法を併用した場合である。また、実施例1、6、7および9において用いたオリゴマーは、下記のようにして作製したものであり、100℃における粘度が1000mPa・sのものである。
<Preparation of thermosetting light reflecting resin composition>
(Examples 1-11, Comparative Examples 1-8)
Each material is blended according to the blending table shown in Table 1 and Table 2, sufficiently kneaded with a mixer, then melt-kneaded under a predetermined condition with a mixing roll, subjected to heat aging as necessary, cooled and ground, and then carried out. Thermosetting light reflecting resin compositions of Examples 1 to 11 and Comparative Examples 1 to 8 were prepared. In addition, the unit of the compounding quantity of each component in a table | surface is a weight part, and a blank represents no compounding or no process. Moreover, Examples 1-5 are the methods which use specific (G) oligomer, respectively; (A) The range of 0.5-0.7 equivalent of the active group in the hardening | curing agent with respect to 1 equivalent of epoxy groups in an epoxy resin (H) A method of adding nanofiller as a thickener; a method of thermally aging the composition under predetermined conditions; and a method of adjusting melt kneading conditions (kneading time from 15 minutes to 30 minutes) were applied. Examples 6 to 11 are cases in which any two of the above methods are used in combination. The oligomers used in Examples 1, 6, 7 and 9 were prepared as follows, and had a viscosity at 100 ° C. of 1000 mPa · s.

(オリゴマーの作製方法)
表1で示した配合表に従って各材料を配合(エポキシ基1当量に対し酸無水物基0.1当量)し、ミキシングロールにより25℃で10分間溶融混練を行った後、得られた粘土状組成物を温度55℃で4時間にわたって熱エージングした。ついで、口径300mmの陶器製乳鉢を用いて、粒径が1mm以下になるまで粉砕し、温度0℃以下の環境で保存した。
(Oligomer production method)
Each material was blended according to the blending table shown in Table 1 (0.1 equivalent of acid anhydride group with respect to 1 equivalent of epoxy group), melt-kneaded at 25 ° C. for 10 minutes with a mixing roll, and then obtained clay The composition was heat aged at a temperature of 55 ° C. for 4 hours. Subsequently, it grind | pulverized until the particle size became 1 mm or less using the earthenware mortar of 300 mm in diameter, and preserve | saved in the environment of temperature 0 degrees C or less.

<熱硬化性光反射用樹脂組成物の評価>
各実施例及び各比較例の樹脂組成物を下記の各種特性試験によりそれぞれ評価した。結果を表1および表2に示す。
<Evaluation of Thermosetting Light Reflecting Resin Composition>
The resin compositions of each Example and each Comparative Example were evaluated by the following various characteristic tests. The results are shown in Tables 1 and 2.

(光反射率)
各実施例及び各比較例の樹脂組成物を、成形型温度180℃、成形圧力6.9MPa、キュア時間90秒の条件でトランスファー成形した後、150℃で2時間ポストキュアすることにより、厚み1.0mmのテストピースを作製した。ついで、積分球型分光光度計V−750型(日本分光株式会社製)にて波長400nmにおける光反射率を測定し、下記の評価基準により各テストピースの光反射率を評価した。
・評価基準
○:光波長400nmにおいて光反射率80%以上
△:光波長400nmにおいて光反射率70%以上80%未満
×:光波長400nmにおいて光反射率70%未満
(Light reflectance)
The resin composition of each example and each comparative example was formed by transfer molding under conditions of a molding die temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds, and then post-cured at 150 ° C. for 2 hours to obtain a thickness of 1 A test piece of 0.0 mm was produced. Next, the light reflectance at a wavelength of 400 nm was measured with an integrating sphere type spectrophotometer V-750 type (manufactured by JASCO Corporation), and the light reflectance of each test piece was evaluated according to the following evaluation criteria.
Evaluation criteria ○: Light reflectance of 80% or more at a light wavelength of 400 nm Δ: Light reflectance of 70% or more and less than 80% at a light wavelength of 400 nm ×: Light reflectance of less than 70% at a light wavelength of 400 nm

(バリ評価)
各実施例及び各比較例の光反射樹脂組成物を、ポットより、深さがそれぞれ75、50、30、20、10、2μmのスリットを設けた成形型に流し込み成形した。その後、成形型の上型と下型の隙間内を流れて生じた樹脂バリの長さの最大値をノギスで求めた。バリ測定用金型と生じた樹脂バリの模式図を図4に示す。なお、バリ長さの最大値が5mm未満である場合を良好とし、5mm以上である場合をNGとした。評価結果を表1に示す。また、評価基準は下記のとおりである。
・評価基準
◎:バリ長さ3mm未満
○:バリ長さ5mm未満
×:バリ長さの最大値が5mm以上
(Bali evaluation)
The light reflecting resin compositions of Examples and Comparative Examples were cast from a pot into a mold provided with slits having a depth of 75, 50, 30, 20, 10, and 2 μm, respectively. Thereafter, the maximum value of the length of the resin burr generated by flowing in the gap between the upper mold and the lower mold of the mold was determined with calipers. A schematic diagram of the mold for measuring burrs and the resulting resin burrs is shown in FIG. In addition, the case where the maximum value of the burr length was less than 5 mm was good, and the case where it was 5 mm or more was judged as NG. The evaluation results are shown in Table 1. The evaluation criteria are as follows.
Evaluation criteria A: Burr length less than 3 mm B: Burr length less than 5 mm X: Maximum burr length is 5 mm or more

(ワイヤボンディング性)
各実施例及び各比較例の樹脂組成物を用い、光反射率評価のために作製したテストピースと同様の成形、硬化条件で、図2の手順に従い光半導体素子搭載用基板を作製した。ついで、当該基板の光半導体素子搭載領域(凹部)に半導体素子を搭載した後、当該光半導体素子と基板の配線を、ワイヤボンダ(HW22U−H、九州松下電器株式会社製、商品名)と直径28μmのボンディングワイヤを用い、ワイヤボンディングし、電気的に接続した。ワイヤボンディング時の基板加熱温度は180℃とした。ついで、ワイヤボンディングした金線の引っ張り強度をプルテスターPTR−01(株式会社レスカ製、商品名)を用いて測定し、下記の評価基準によりワイヤボンディング性を評価した。
・評価基準
◎:10g以上
○:4g以上10g未満
△:4g未満
×:ボンディング不可
(Wire bonding property)
Using the resin compositions of the examples and comparative examples, a substrate for mounting an optical semiconductor element was manufactured according to the procedure of FIG. 2 under the same molding and curing conditions as the test piece prepared for light reflectance evaluation. Next, after mounting the semiconductor element in the optical semiconductor element mounting region (recessed portion) of the substrate, the optical semiconductor element and the wiring of the substrate are connected to a wire bonder (HW22U-H, manufactured by Kyushu Matsushita Electric Co., Ltd., trade name) and a diameter of 28 μm. Using the bonding wire, wire bonding was performed and electrical connection was made. The substrate heating temperature during wire bonding was 180 ° C. Next, the tensile strength of the gold wire bonded by wire bonding was measured using a pull tester PTR-01 (trade name, manufactured by Reska Co., Ltd.), and the wire bonding property was evaluated according to the following evaluation criteria.
Evaluation criteria A: 10 g or more ○: 4 g or more and less than 10 g Δ: Less than 4 g ×: Bonding not possible

*1:トリグリシジルイソシアヌレート
(エポキシ当量100、日産化学社製、商品名TEPIC-S)
*2:ヘキサヒドロ無水フタル酸(和光純薬社製)
*3:テトラヒドロ無水フタル酸(アルドリッチ社製)
*4:メチルヘキサヒドロ無水フタル酸(日立化成工業社製、商品名HN5500)
*5:日本化学工業社製、商品名PX-4ET)
*6:トリメトキシエポキシシラン(東レダウコーニング社製、商品名A-187)
*7:脂肪酸エステル(クラリアント社製、商品名 ヘキストワックスE)
*8:脂肪族エーテル(東洋ペトロライト社製、商品名 ユニトックス420)
*9:溶融シリカ(電気化学工業社製、商品名FB-301)
*10:溶融シリカ(電気化学工業社製、商品名FB-950)
*11:溶融シリカ(アドマテックス社製、商品名SO-25R)
*12:中空粒子(住友3M社製、商品名S60-HS)
*13:アルミナ(アドマテックス社製、商品名AO-25R)
*14:ナノシリカ(トクヤマ社製、商品名 レオロシールCP-102)
* 1: Triglycidyl isocyanurate (epoxy equivalent 100, manufactured by Nissan Chemical Co., Ltd., trade name TEPIC-S)
* 2: Hexahydrophthalic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.)
* 3: Tetrahydrophthalic anhydride (manufactured by Aldrich)
* 4: Methylhexahydrophthalic anhydride (manufactured by Hitachi Chemical Co., Ltd., trade name HN5500)
* 5: Product name PX-4ET, manufactured by Nippon Chemical Industry Co., Ltd.
* 6: Trimethoxyepoxysilane (Toray Dow Corning, product name A-187)
* 7: Fatty acid ester (trade name Hoechst Wax E, manufactured by Clariant)
* 8: Aliphatic ether (Toyo Petrolite, product name Unitox 420)
* 9: Fused silica (trade name FB-301, manufactured by Denki Kagaku Kogyo Co., Ltd.)
* 10: Fused silica (trade name FB-950, manufactured by Denki Kagaku Kogyo Co., Ltd.)
* 11: Fused silica (manufactured by Admatechs, trade name SO-25R)
* 12: Hollow particles (Sumitomo 3M, trade name S60-HS)
* 13: Alumina (manufactured by Admatechs, trade name AO-25R)
* 14: Nanosilica (product name: Leoroseal CP-102, manufactured by Tokuyama Corporation)

表1と表2に示したように、実施例の硬化性光反射用樹脂組成物は、光反射特性に優れ、また、トランスファー成形によるバリの発生を抑制し、ワイヤボンディング性を向上させることが可能である。結果として、本発明の硬化性光反射用樹脂組成物を用いて光半導体素子搭載用基板や光半導体装置の製造する場合、バリを除去する工程が不要となるめ、コストや製造時間など生産性の面で非常に有利となる。   As shown in Tables 1 and 2, the curable light reflecting resin compositions of the examples are excellent in light reflecting properties, can suppress generation of burrs due to transfer molding, and improve wire bonding properties. Is possible. As a result, when manufacturing an optical semiconductor element mounting substrate or an optical semiconductor device using the curable light reflecting resin composition of the present invention, a step of removing burrs is not required, and productivity such as cost and manufacturing time is improved. This is very advantageous.

100・・・・・光半導体素子(LED素子)
101・・・・・透明封止樹脂
102・・・・・ボンディングワイヤ
103・・・・・リフレクター
104・・・・・Ni/Agめっき
105・・・・・金属配線
106・・・・・蛍光体
107・・・・・はんだバンプ
110・・・・・光半導体素子搭載用基板
200・・・・・光半導体素子搭載領域(凹部)
300・・・・・樹脂注入口
301・・・・・金型
400・・・・・バリ測定用金型(上型)
401・・・・・バリ測定用金型(下型)
402・・・・・樹脂注入口
403・・・・・キャビティー
404・・・・・スリット(75μm)
405・・・・・スリット(50μm)
406・・・・・スリット(30μm)
407・・・・・スリット(20μm)
408・・・・・スリット(10μm)
409・・・・・スリット(2μm)
410・・・・・樹脂バリ
100 ... Optical semiconductor element (LED element)
101... Transparent sealing resin 102... Bonding wire 103... Reflector 104... Ni / Ag plating 105. Body 107... Solder bump 110... Optical semiconductor element mounting substrate 200... Optical semiconductor element mounting area (concave portion)
300... Resin injection port 301... Mold 400...
401 ...... Burr measurement mold (lower mold)
402... Resin injection port 403... Cavity 404... Slit (75 .mu.m)
405 ... Slit (50μm)
406 ... Slit (30μm)
407 ... Slit (20μm)
408 ... Slit (10μm)
409 ... Slit (2μm)
410 ... Resin burr

Claims (16)

(A’)エポキシ樹脂と(B’)硬化剤とのオリゴマー、及び白色顔料を含む、熱硬化性光反射用樹脂組成物。   A thermosetting light reflecting resin composition comprising an oligomer of (A ′) an epoxy resin and (B ′) a curing agent, and a white pigment. 前記(A’)エポキシ樹脂が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジグリシジルイソシアヌレート、及びトリグリシジルイソシアヌレートからなる群の中から選ばれる少なくとも1種を含む、請求項1に記載の熱硬化性光反射用樹脂組成物。   The (A ′) epoxy resin contains at least one selected from the group consisting of bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, diglycidyl isocyanurate, and triglycidyl isocyanurate. The thermosetting light reflecting resin composition according to claim 1. 前記(B’)硬化剤が、酸無水物硬化剤、イソシアヌル酸誘導体、及びフェノール系硬化剤からなる群の中から選ばれる少なくとも1種を含む、請求項1又は2に記載の熱硬化性光反射用樹脂組成物。   The thermosetting light according to claim 1 or 2, wherein the (B ') curing agent includes at least one selected from the group consisting of an acid anhydride curing agent, an isocyanuric acid derivative, and a phenolic curing agent. Reflective resin composition. 前記白色顔料が、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、及び無機中空粒子からなる群の中から選ばれる少なくとも1種を含む、請求項1〜3のいずれか一項に記載の熱硬化性光反射用樹脂組成物。   The said white pigment contains at least 1 sort (s) chosen from the group which consists of an alumina, magnesium oxide, an antimony oxide, a titanium oxide, a zirconium oxide, and an inorganic hollow particle as described in any one of Claims 1-3. A thermosetting resin composition for light reflection. 前記(A’)エポキシ樹脂と前記(B’)硬化剤との配合比が、前記(A’)エポキシ樹脂中のエポキシ基1当量に対して、該エポキシ基と反応可能な前記(B’)硬化剤中の活性基が0.3当量以下となる比である、請求項1〜4のいずれか一項に記載の熱硬化性光反射用樹脂組成物。   Said (B ') which can react with this epoxy group with respect to 1 equivalent of epoxy groups in said (A') epoxy resin, the compounding ratio of said (A ') epoxy resin and said (B') hardening | curing agent The thermosetting light-reflecting resin composition according to any one of claims 1 to 4, wherein the active group in the curing agent is in a ratio of 0.3 equivalent or less. さらに無機充填剤として、シリカ、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム、及び炭酸バリウムからなる群の中から選ばれる少なくとも1種を含む、請求項1〜5のいずれか一項に記載の熱硬化性光反射用樹脂組成物。   Furthermore, as an inorganic filler, it contains at least 1 sort (s) chosen from the group which consists of silica, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate, and barium carbonate. The thermosetting light reflecting resin composition as described. 前記無機充填剤と前記白色顔料との合計配合量が、樹脂組成物全体に対して、10体積%〜85体積%の範囲である、請求項6に記載の熱硬化性光反射用樹脂組成物。   The thermosetting light reflecting resin composition according to claim 6, wherein the total amount of the inorganic filler and the white pigment is in the range of 10% by volume to 85% by volume with respect to the entire resin composition. . 請求項1〜7のいずれか一項に記載の熱硬化性光反射用樹脂組成物を含有する、熱硬化性光反射用樹脂タブレット。   A thermosetting light reflecting resin tablet comprising the thermosetting light reflecting resin composition according to any one of claims 1 to 7. (A’)エポキシ樹脂および(B’)硬化剤を混練してオリゴマーを得る工程を含む、請求項1〜7のいずれかに一項記載の熱硬化性光反射用樹脂組成物の製造方法。   The method for producing a thermosetting light reflecting resin composition according to claim 1, comprising a step of kneading (A ′) an epoxy resin and (B ′) a curing agent to obtain an oligomer. さらに、前記オリゴマーを温度25〜60℃の範囲で1〜6時間にわたってエージングする工程を含む、請求項9に記載の熱硬化性光反射用樹脂組成物の製造方法。   Furthermore, the manufacturing method of the resin composition for thermosetting light reflections of Claim 9 including the process of aging the said oligomer at the temperature of 25-60 degreeC over 1 to 6 hours. (A’)エポキシ樹脂および(B’)硬化剤を混練してなる熱硬化性光反射用樹脂組成物用オリゴマーの保存方法であって、オリゴマーを粒径が1mm以下になるまで粉砕し、温度0℃以下の環境で保存する、保存方法。   (A ′) A method for storing an oligomer for a thermosetting light-reflecting resin composition obtained by kneading an epoxy resin and (B ′) a curing agent, wherein the oligomer is pulverized until the particle size becomes 1 mm or less, and the temperature A storage method for storing in an environment of 0 ° C or lower. 請求項1〜7のいずれかに記載の熱硬化性光反射用樹脂組成物の製造方法であって、少なくともオリゴマー及び白色顔料を、混練温度20〜100℃、及び混練時間10〜30分の条件下で混練して混練物を形成する工程を含む、熱硬化性光反射用樹脂組成物の製造方法。   It is a manufacturing method of the resin composition for thermosetting light reflections in any one of Claims 1-7, Comprising: At least an oligomer and a white pigment, kneading | mixing temperature 20-100 degreeC, and kneading | mixing time 10-30 minute conditions The manufacturing method of the resin composition for thermosetting light reflections including the process of kneading below and forming a kneaded material. さらに、前記混練物を0〜30℃で1〜72時間にわたってエージングする工程を含む、請求項12に記載の熱硬化性光反射用樹脂組成物の製造方法。   Furthermore, the manufacturing method of the resin composition for thermosetting light reflections of Claim 12 including the process of aging the said kneaded material at 0-30 degreeC over 1 to 72 hours. 光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板であって、少なくとも前記凹部の内周側面が請求項1〜7のいずれか一項に記載の熱硬化性光反射用樹脂組成物から構成される、光半導体素子搭載用基板。   An optical semiconductor element mounting substrate in which one or more recesses serving as an optical semiconductor element mounting region are formed, and at least an inner peripheral side surface of the recess is a thermosetting according to any one of claims 1 to 7. A substrate for mounting an optical semiconductor element, comprising a resin composition for reflecting light. 光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板の製造方法であって、少なくとも前記凹部を請求項1〜7のいずれか一項に記載の光反射用熱硬化性樹脂組成物を用いたトランスファー成型によって形成する工程を含む、光半導体搭載用基板の製造方法。   8. A method for manufacturing a substrate for mounting an optical semiconductor element, wherein at least one recess serving as an optical semiconductor element mounting region is formed, wherein at least the recess is a heat for reflecting light according to claim 1. The manufacturing method of the board | substrate for optical semiconductor mounting including the process formed by transfer molding using a curable resin composition. 請求項14に記載の光半導体素子搭載用基板と、前記光半導体素子搭載用基板の凹部底面に搭載された光半導体素子と、前記光半導体素子を覆うように前記凹部内に形成された蛍光体含有透明封止樹脂層と、を少なくとも備える光半導体装置。   15. The substrate for mounting an optical semiconductor element according to claim 14, an optical semiconductor element mounted on a bottom surface of the recess of the substrate for mounting an optical semiconductor element, and a phosphor formed in the recess so as to cover the optical semiconductor element. An optical semiconductor device comprising at least a transparent encapsulating resin layer.
JP2016156303A 2006-11-15 2016-08-09 Thermosetting resin composition for light reflection and method for producing the same Pending JP2017005260A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006309052 2006-11-15
JP2006309052 2006-11-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014103155A Division JP2014195106A (en) 2006-11-15 2014-05-19 Led device manufacturing method and led device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017165729A Division JP2017214599A (en) 2006-11-15 2017-08-30 Resin composition for thermosetting light reflection and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2017005260A true JP2017005260A (en) 2017-01-05
JP2017005260A5 JP2017005260A5 (en) 2017-02-09

Family

ID=39604652

Family Applications (8)

Application Number Title Priority Date Filing Date
JP2007114227A Withdrawn JP2008144127A (en) 2006-11-15 2007-04-24 Thermosetting resin composition for light reflection, photosemiconductor element-loading substrate using the same, photosemiconductor device, and manufacturing process for the articles
JP2012060714A Active JP5778605B2 (en) 2006-11-15 2012-03-16 Thermosetting light-reflective resin composition, optical semiconductor element mounting substrate using the same, optical semiconductor device, and methods for producing them
JP2014103155A Pending JP2014195106A (en) 2006-11-15 2014-05-19 Led device manufacturing method and led device
JP2016156303A Pending JP2017005260A (en) 2006-11-15 2016-08-09 Thermosetting resin composition for light reflection and method for producing the same
JP2016156302A Active JP6306652B2 (en) 2006-11-15 2016-08-09 Thermosetting light reflecting resin composition and method for producing the same
JP2016156301A Active JP6322237B2 (en) 2006-11-15 2016-08-09 Thermosetting light reflecting resin composition and method for producing the same
JP2017165729A Withdrawn JP2017214599A (en) 2006-11-15 2017-08-30 Resin composition for thermosetting light reflection and manufacturing method therefor
JP2019165447A Pending JP2020023699A (en) 2006-11-15 2019-09-11 Thermosetting resin composition for light reflection and method for producing the same

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2007114227A Withdrawn JP2008144127A (en) 2006-11-15 2007-04-24 Thermosetting resin composition for light reflection, photosemiconductor element-loading substrate using the same, photosemiconductor device, and manufacturing process for the articles
JP2012060714A Active JP5778605B2 (en) 2006-11-15 2012-03-16 Thermosetting light-reflective resin composition, optical semiconductor element mounting substrate using the same, optical semiconductor device, and methods for producing them
JP2014103155A Pending JP2014195106A (en) 2006-11-15 2014-05-19 Led device manufacturing method and led device

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2016156302A Active JP6306652B2 (en) 2006-11-15 2016-08-09 Thermosetting light reflecting resin composition and method for producing the same
JP2016156301A Active JP6322237B2 (en) 2006-11-15 2016-08-09 Thermosetting light reflecting resin composition and method for producing the same
JP2017165729A Withdrawn JP2017214599A (en) 2006-11-15 2017-08-30 Resin composition for thermosetting light reflection and manufacturing method therefor
JP2019165447A Pending JP2020023699A (en) 2006-11-15 2019-09-11 Thermosetting resin composition for light reflection and method for producing the same

Country Status (2)

Country Link
JP (8) JP2008144127A (en)
CN (1) CN101535366B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102408541B (en) 2006-11-15 2016-10-05 日立化成株式会社 Luminous reflectance hot curing resin composition and employ optical semiconductor board for mounting electronic and the optical semiconductor device of described resin combination
JP2008144127A (en) * 2006-11-15 2008-06-26 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, photosemiconductor element-loading substrate using the same, photosemiconductor device, and manufacturing process for the articles
JP5421546B2 (en) * 2007-07-05 2014-02-19 日立化成株式会社 Thermosetting light reflecting resin composition, optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
JP6133004B2 (en) * 2009-03-31 2017-05-24 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
CN103249480B (en) * 2010-12-06 2015-07-08 阿尔卑斯电气株式会社 Method for manufacturing microchip
JP5919903B2 (en) * 2011-03-31 2016-05-18 三菱化学株式会社 Package for semiconductor light emitting device, semiconductor light emitting device having the package, and method for manufacturing the same
JP5775408B2 (en) * 2011-09-29 2015-09-09 積水化学工業株式会社 White curable material for optical semiconductor device, method for producing white curable material for optical semiconductor device, molded article for optical semiconductor device, and optical semiconductor device
JP5902823B2 (en) 2011-11-17 2016-04-13 ルーメンス カンパニー リミテッド Light emitting device package and backlight unit including the same
JP2013153144A (en) * 2011-12-27 2013-08-08 Panasonic Corp Unsaturated polyester resin composition for led reflector, and particulate, tablet, led reflector, surface-mount type led light-emitting device, and led luminaire
CN103325889A (en) * 2012-03-19 2013-09-25 展晶科技(深圳)有限公司 LED encapsulating method
JP2013206895A (en) * 2012-03-27 2013-10-07 Shin Etsu Chem Co Ltd Substrate for optical semiconductor device, manufacturing method of substrate for optical semiconductor device, optical semiconductor device, and manufacturing method of optical semiconductor device
JP6021416B2 (en) * 2012-05-01 2016-11-09 日東電工株式会社 Lead frame with reflector for optical semiconductor device, optical semiconductor device using the same, and manufacturing method thereof
JP5831424B2 (en) * 2012-10-17 2015-12-09 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP2014095051A (en) * 2012-11-12 2014-05-22 Shin Etsu Chem Co Ltd Thermosetting epoxy resin composition, reflector for led using the composition, and led device
JP5864031B1 (en) * 2014-07-24 2016-02-17 日本化薬株式会社 Polyvalent carboxylic acid and polyvalent carboxylic acid composition, epoxy resin composition, thermosetting resin composition, cured product thereof, and optical semiconductor device containing the same
JP6038236B2 (en) * 2015-06-17 2016-12-07 積水化学工業株式会社 White curable material for optical semiconductor device and method for producing white curable material for optical semiconductor device
JP6580948B2 (en) * 2015-11-04 2019-09-25 旭化成株式会社 Reflector and optical semiconductor device
JP7121620B2 (en) 2018-09-27 2022-08-18 ダイハツ工業株式会社 Assembly equipment
CN112391034B (en) * 2019-08-13 2022-12-09 北京科化新材料科技有限公司 Epoxy resin composite material and preparation method and application thereof
CN111211209B (en) * 2020-01-16 2021-09-28 江西新正耀光学研究院有限公司 Ultraviolet light-emitting diode and manufacturing method thereof
CN111380814A (en) * 2020-04-26 2020-07-07 天津德高化成新材料股份有限公司 Optical epoxy plastic packaging material for LED packaging and ink color measuring method thereof
CN115011967B (en) * 2022-08-05 2022-11-04 山东祺裕新材料有限公司 Low-ammonia-nitrogen acid pickling corrosion inhibitor and use method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459863A (en) * 1990-06-28 1992-02-26 Hitachi Chem Co Ltd Preparation of epoxy resin material for sealing semiconductor
JPH0685325A (en) * 1992-08-28 1994-03-25 Stanley Electric Co Ltd Manufacture of led
JPH06209024A (en) * 1993-01-11 1994-07-26 Hitachi Chem Co Ltd Manufacture of resin sealed semiconductor device
JPH10292094A (en) * 1997-02-20 1998-11-04 Toshiba Corp Epoxy resin composition, resin-sealed semiconductor device prepared by using the sane, epoxy resin molding material, and composite epoxy resin tablet
JPH1145958A (en) * 1997-07-24 1999-02-16 Kyowa Kasei Kk Surface-mount parts and manufacture thereof
JPH1143546A (en) * 1997-07-30 1999-02-16 Toray Ind Inc Cloth prepreg and honeycomb structure
JP2000319633A (en) * 1999-05-12 2000-11-21 C I Kasei Co Ltd Silica filter for epoxy resin sealing material
JP2001118969A (en) * 1999-10-22 2001-04-27 Hitachi Chem Co Ltd Molding material for sealing, its manufacturing method, and electronic part device
JP2002212396A (en) * 2001-01-17 2002-07-31 Matsushita Electric Works Ltd Epoxy resin composition for optical semiconductor and optical semiconductor device
WO2002059982A1 (en) * 2001-01-24 2002-08-01 Nichia Corporation Light emitting diode, optical semiconductor elemet and epoxy resin composition suitable for optical semiconductor element and production methods therefor
JP2005089607A (en) * 2003-09-17 2005-04-07 Sumitomo Bakelite Co Ltd Epoxy resin composition for optical semiconductor sealing and optical semiconductor device
JP2006140207A (en) * 2004-11-10 2006-06-01 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, optical semiconductor loading substrate using the same, its manufacturing method and optical semiconductor device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1246761B (en) * 1990-07-02 1994-11-26 Pirelli Cavi Spa OPTICAL FIBER CABLES AND RELATED COMPONENTS CONTAINING A HOMOGENEOUS MIXTURE TO PROTECT OPTICAL FIBERS FROM HYDROGEN AND RELATED HOMOGENEOUS BARRIER MIXTURE
JPH05239321A (en) * 1992-02-28 1993-09-17 Toshiba Chem Corp Epoxy resin composition and semiconductor-sealing arrangement
JPH08104796A (en) * 1994-10-05 1996-04-23 Hitachi Ltd Semiconductor-sealing resin composition and semiconductor device sealed with the composition
JP3618133B2 (en) * 1995-01-18 2005-02-09 日東電工株式会社 Optical semiconductor device
JPH08245214A (en) * 1995-03-07 1996-09-24 Denki Kagaku Kogyo Kk Silica fine powder, its production, and epoxy resin composition for sealing semiconductor
JP3294803B2 (en) * 1997-08-18 2002-06-24 株式会社日本触媒 Thermosetting resin sealing material
JP4606530B2 (en) * 1999-05-14 2011-01-05 株式会社朝日ラバー Sheet member and light emitting device using the same
JP3632507B2 (en) * 1999-07-06 2005-03-23 日亜化学工業株式会社 Light emitting device
JP3627592B2 (en) * 1999-10-08 2005-03-09 日亜化学工業株式会社 Method for manufacturing light emitting device
JP3483817B2 (en) * 1999-12-01 2004-01-06 電気化学工業株式会社 Spherical inorganic powder and its use
JP3417415B1 (en) * 2001-01-24 2003-06-16 日亜化学工業株式会社 Epoxy resin composition, method for producing the same, and optical semiconductor device using the same
JP2003124523A (en) * 2001-10-19 2003-04-25 Rohm Co Ltd Light emitting semiconductor chip device
JP4250949B2 (en) * 2001-11-01 2009-04-08 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
US7145182B2 (en) * 2003-09-12 2006-12-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Integrated emitter devices having beam divergence reducing encapsulation layer
JP4774201B2 (en) * 2003-10-08 2011-09-14 日亜化学工業株式会社 Package molded body and semiconductor device
JP4460968B2 (en) * 2004-07-27 2010-05-12 株式会社アドマテックス Method for producing resin composition
CN101283016B (en) * 2005-08-04 2011-05-11 信越化学工业株式会社 Thermosetting epoxy resin composition and semiconductor device
WO2007015426A1 (en) * 2005-08-04 2007-02-08 Nichia Corporation Light-emitting device, method for manufacturing same, molded body and sealing member
JP2007114227A (en) * 2005-10-17 2007-05-10 Seiko Epson Corp Liquid developer and method for manufacturing the liquid developer
JP2008144127A (en) * 2006-11-15 2008-06-26 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, photosemiconductor element-loading substrate using the same, photosemiconductor device, and manufacturing process for the articles

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459863A (en) * 1990-06-28 1992-02-26 Hitachi Chem Co Ltd Preparation of epoxy resin material for sealing semiconductor
JPH0685325A (en) * 1992-08-28 1994-03-25 Stanley Electric Co Ltd Manufacture of led
JPH06209024A (en) * 1993-01-11 1994-07-26 Hitachi Chem Co Ltd Manufacture of resin sealed semiconductor device
JPH10292094A (en) * 1997-02-20 1998-11-04 Toshiba Corp Epoxy resin composition, resin-sealed semiconductor device prepared by using the sane, epoxy resin molding material, and composite epoxy resin tablet
JPH1145958A (en) * 1997-07-24 1999-02-16 Kyowa Kasei Kk Surface-mount parts and manufacture thereof
JPH1143546A (en) * 1997-07-30 1999-02-16 Toray Ind Inc Cloth prepreg and honeycomb structure
JP2000319633A (en) * 1999-05-12 2000-11-21 C I Kasei Co Ltd Silica filter for epoxy resin sealing material
JP2001118969A (en) * 1999-10-22 2001-04-27 Hitachi Chem Co Ltd Molding material for sealing, its manufacturing method, and electronic part device
JP2002212396A (en) * 2001-01-17 2002-07-31 Matsushita Electric Works Ltd Epoxy resin composition for optical semiconductor and optical semiconductor device
WO2002059982A1 (en) * 2001-01-24 2002-08-01 Nichia Corporation Light emitting diode, optical semiconductor elemet and epoxy resin composition suitable for optical semiconductor element and production methods therefor
JP2005089607A (en) * 2003-09-17 2005-04-07 Sumitomo Bakelite Co Ltd Epoxy resin composition for optical semiconductor sealing and optical semiconductor device
JP2006140207A (en) * 2004-11-10 2006-06-01 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, optical semiconductor loading substrate using the same, its manufacturing method and optical semiconductor device

Also Published As

Publication number Publication date
JP2008144127A (en) 2008-06-26
JP5778605B2 (en) 2015-09-16
JP6322237B2 (en) 2018-05-09
JP6306652B2 (en) 2018-04-04
JP2017214599A (en) 2017-12-07
CN101535366A (en) 2009-09-16
JP2014195106A (en) 2014-10-09
JP2012138610A (en) 2012-07-19
JP2017020036A (en) 2017-01-26
JP2017002316A (en) 2017-01-05
JP2020023699A (en) 2020-02-13
CN101535366B (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP6306652B2 (en) Thermosetting light reflecting resin composition and method for producing the same
JP6365606B2 (en) Thermosetting light reflecting resin composition, optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
JP5298468B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP2007297601A (en) Thermosetting resin composition for light reflection, substrate for loading photosemiconductor device using the same, method for producing the same, and photosemiconductor device
JP5672318B2 (en) Manufacturing method of optical semiconductor device
JP5233186B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP2008306151A (en) Epoxy resin composition for optical semiconductor, and substrate for loading optical semiconductor element using the same, and optical semiconductor device
JP2009246334A (en) Thermosetting resin composition for light reflection, substrate for loading photosemiconductor device and manufacturing method therefor, and photosemiconductor device
JP5401907B2 (en) Method for manufacturing thermosetting resin composition, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP7459878B2 (en) Light-reflecting thermosetting resin composition, optical semiconductor element mounting substrate, and optical semiconductor device
JP2012178567A (en) Thermosetting resin composition for reflecting light, substrate for mounting optical semiconductor element using the same and method for manufacturing the same, and optical semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161121

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161121

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170830

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171013

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20171110