JP5672318B2 - Manufacturing method of optical semiconductor device - Google Patents

Manufacturing method of optical semiconductor device Download PDF

Info

Publication number
JP5672318B2
JP5672318B2 JP2013010094A JP2013010094A JP5672318B2 JP 5672318 B2 JP5672318 B2 JP 5672318B2 JP 2013010094 A JP2013010094 A JP 2013010094A JP 2013010094 A JP2013010094 A JP 2013010094A JP 5672318 B2 JP5672318 B2 JP 5672318B2
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor element
resin composition
manufacturing
thermosetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013010094A
Other languages
Japanese (ja)
Other versions
JP2013091809A (en
Inventor
勇人 小谷
勇人 小谷
直之 浦崎
直之 浦崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013010094A priority Critical patent/JP5672318B2/en
Publication of JP2013091809A publication Critical patent/JP2013091809A/en
Application granted granted Critical
Publication of JP5672318B2 publication Critical patent/JP5672318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Description

本発明は、光半導体素子と蛍光体などの波長変換手段とを組み合わせた光半導体装置に用いる熱硬化性光反射用樹脂組成物、並びにこれを用いた光半導体素子搭載用基板及び光半導体装置に関するものである。   The present invention relates to a thermosetting light reflecting resin composition used in an optical semiconductor device in which an optical semiconductor element and a wavelength conversion means such as a phosphor are combined, and an optical semiconductor element mounting substrate and an optical semiconductor device using the same. Is.

LED(Light Emitting Diode:発光ダイオード)などの光半導体素子と蛍光体とを組み合わせた光半導体装置は、高エネルギー効率及び長寿命などの利点から、屋外用ディスプレイ、携帯液晶バックライト及び車載用途などの様々な用途に適用され、その需要が拡大しつつある。それに伴って、LEDデバイスの高輝度化が進み、素子の発熱量増大によるジャンクション温度の上昇、あるいは直接的な光エネルギーの増大による素子材料の劣化が問題視されている。そのため当技術分野では、近年、熱劣化及び光劣化に対して耐性を有する素子材料の開発が望まれている。特許文献1では、耐熱試験後の光反射特性に優れる光半導体素子搭載用基板を開示している。   An optical semiconductor device in which an optical semiconductor element such as an LED (Light Emitting Diode) and a phosphor are combined has advantages such as high energy efficiency and long life. It is applied to various uses and its demand is expanding. Along with this, the brightness of LED devices has been increasing, and the rise in junction temperature due to an increase in the amount of heat generated by the elements or the deterioration of element materials due to a direct increase in light energy has been regarded as a problem. Therefore, in this technical field, in recent years, there has been a demand for development of element materials having resistance to thermal degradation and light degradation. Patent Document 1 discloses a substrate for mounting an optical semiconductor element that is excellent in light reflection characteristics after a heat resistance test.

特開2006−140207号公報JP 2006-140207 A

しかし、上記特許文献1で開示された熱硬化性光反射用樹脂組成物を用い、トランスファー成形によって光半導体素子搭載用基板を製造した場合、成形時に成形金型の上型と下型との隙間に樹脂組成物が染み出し、樹脂汚れが発生しやすい傾向がある。加熱成形時に樹脂汚れが発生すると、光半導体素子搭載領域となる開口部(凹部)に樹脂汚れが張り出し、光半導体素子を搭載する際の障害になる。また、開口部に光半導体素子を搭載できたとしても、樹脂汚れは、光半導体素子と金属配線とをボンディングワイヤなど公知の方法によって電気的に接続する際の障害になる。すなわち、樹脂汚れは、素子搭載及びワイヤボンディングといった半導体製造時の作業性を低下させるために望ましくない。一般に、基板の開口部に樹脂汚れが存在する場合には、半導体製造時に上述の障害が起こらないように光半導体素子搭載用基板の製造プロセスに樹脂汚れの除去工程が追加される。しかし、そのような除去工程は、コストや製造時間のロスとなるため、改善が望まれている。   However, when an optical semiconductor element mounting substrate is manufactured by transfer molding using the thermosetting light reflecting resin composition disclosed in Patent Document 1, there is a gap between the upper mold and the lower mold of the molding die during molding. The resin composition tends to ooze out and resin stains tend to occur. If resin stains occur during heat molding, the resin stains over an opening (concave portion) serving as an optical semiconductor element mounting region, which becomes an obstacle when mounting the optical semiconductor element. Even if the optical semiconductor element can be mounted in the opening, the resin stain becomes an obstacle when the optical semiconductor element and the metal wiring are electrically connected by a known method such as a bonding wire. That is, resin contamination is undesirable because it reduces workability during semiconductor manufacturing such as device mounting and wire bonding. Generally, when resin dirt exists in the opening of the substrate, a resin dirt removing step is added to the manufacturing process of the substrate for mounting an optical semiconductor element so that the above-described obstacle does not occur during semiconductor manufacturing. However, such a removal process results in a loss of cost and manufacturing time, and hence improvement is desired.

本発明は、上記の状況に鑑みてなされたものであり、樹脂硬化後の可視光から近紫外光領域における反射率が高く、その一方で、耐熱劣化性に優れ、さらにトランスファー成形時に樹脂汚れが発生し難い硬化性光反射用樹脂組成物を提供することを目的とする。また本発明は、そのような樹脂組成物を用いてワイヤボンディング性に優れ、かつ耐熱劣化性に優れた光半導体素子搭載用基板及び光半導体装置を提供することを目的とする。   The present invention has been made in view of the above situation, and has high reflectivity in the near-ultraviolet region from visible light after resin curing, while it has excellent heat deterioration resistance and further resin stains during transfer molding. An object of the present invention is to provide a curable resin composition for light reflection that hardly occurs. Another object of the present invention is to provide an optical semiconductor element mounting substrate and an optical semiconductor device which are excellent in wire bonding properties and excellent in heat deterioration resistance using such a resin composition.

本発明は以下に示す(1)〜(15)に記載の事項をその特徴とする。
(1)熱硬化性成分と、白色顔料と、添加剤とを含有する熱硬化性光反射用樹脂組成物であって、成形温度180℃、成形圧力6.9MPa、硬化時間90秒の条件下でトランスファー成形した時に生じるバリ長さが5mm以下であり、かつ熱硬化後の上記樹脂組成物の波長350nm〜800nmにおける光反射率が80%以上であることを特徴とする熱硬化性光反射用樹脂組成物。
The present invention is characterized by the following items (1) to (15).
(1) A thermosetting light reflecting resin composition containing a thermosetting component, a white pigment, and an additive, under conditions of a molding temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds. For heat-curing light reflection, characterized in that the burr length produced when transfer-molding is 5 mm or less, and the light reflectance at a wavelength of 350 nm to 800 nm of the resin composition after thermosetting is 80% or more Resin composition.

(2)上記添加剤が、上記熱硬化性成分と反応可能な反応性基を有する(メタ)アクリル酸誘導体の重合体又は共重合体を含むことを特徴とする上記(1)に記載の熱硬化性光反射用樹脂組成物。   (2) The heat according to (1), wherein the additive includes a polymer or copolymer of a (meth) acrylic acid derivative having a reactive group capable of reacting with the thermosetting component. A curable resin composition for light reflection.

(3)上記添加剤が、(メタ)アクリル酸グリシジルと、他のエチレン性不飽和化合物との共重合体を含むことを特徴とする上記(2)に記載の熱硬化性光反射用樹脂組成物。   (3) The thermosetting light reflecting resin composition as described in (2) above, wherein the additive comprises a copolymer of glycidyl (meth) acrylate and another ethylenically unsaturated compound. object.

(4)上記添加剤が、(メタ)アクリル酸グリシジルと、(メタ)アクリル酸メチルとの共重合体を含むことを特徴とする上記(3)に記載の熱硬化性光反射用樹脂組成物。   (4) The additive as described in (3) above, wherein the additive comprises a copolymer of glycidyl (meth) acrylate and methyl (meth) acrylate. .

(5)上記添加剤の重量平均分子量が、1,000〜100,000であることを特徴とする上記(1)〜(4)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (5) The thermosetting light reflecting resin composition as described in any one of (1) to (4) above, wherein the additive has a weight average molecular weight of 1,000 to 100,000.

(6)上記熱硬化性成分が、エポキシ樹脂と、該エポキシ樹脂と硬化可能な硬化剤とを含むことを特徴とする上記(1)〜(5)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (6) The thermosetting light reflection according to any one of (1) to (5), wherein the thermosetting component contains an epoxy resin and the epoxy resin and a curable curing agent. Resin composition.

(7)上記エポキシ樹脂が1分子中に2個以上のエポキシ基を有するエポキシ樹脂であり、上記硬化剤が1分子中に1個以上の酸無水物基を有する化合物であることを特徴とする上記(6)に記載の熱硬化性光反射用樹脂組成物。   (7) The epoxy resin is an epoxy resin having two or more epoxy groups in one molecule, and the curing agent is a compound having one or more acid anhydride groups in one molecule. The thermosetting light reflecting resin composition as described in (6) above.

(8)上記添加剤の添加量が、上記エポキシ樹脂100重量部に対し、5〜30重量部の範囲であることを特徴とする上記(6)または(7)に記載の熱硬化性光反射用樹脂組成物。   (8) The thermosetting light reflection according to (6) or (7) above, wherein the additive is added in an amount of 5 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin. Resin composition.

(9)上記白色顔料が、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、及び無機中空粒子からなる群の中から選ばれる少なくとも1種であることを特徴とする上記(1)〜(8)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (9) The above (1) to (1), wherein the white pigment is at least one selected from the group consisting of alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, and inorganic hollow particles. The thermosetting light reflecting resin composition according to any one of 8).

(10)上記白色顔料の中心粒径が0.1〜50μmの範囲内であることを特徴とする上記(1)〜(9)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (10) The thermosetting light reflecting resin composition as described in any one of (1) to (9) above, wherein the white pigment has a center particle diameter in the range of 0.1 to 50 μm.

(11)上記樹脂組成物が、さらに無機充填剤を含むことを特徴とする上記(1)〜(10)のいずれかに記載の熱硬化性光反射用樹脂組成物。   (11) The resin composition for thermosetting light reflection according to any one of (1) to (10), wherein the resin composition further contains an inorganic filler.

(12)上記無機充填剤と上記白色顔料との合計配合量が、上記樹脂組成物全体に対して、10体積%〜85体積%の範囲であることを特徴とする上記(11)に記載の熱硬化性光反射用樹脂組成物。   (12) The total blending amount of the inorganic filler and the white pigment is in the range of 10% by volume to 85% by volume with respect to the entire resin composition. A thermosetting resin composition for light reflection.

(13)上記(1)〜(12)のいずれかに記載の熱硬化性光反射用樹脂組成物を用いてなることを特徴とする光半導体素子搭載用基板。   (13) A substrate for mounting an optical semiconductor element, comprising the thermosetting light reflecting resin composition according to any one of (1) to (12).

(14)光半導体素子搭載領域となる凹部が1つ以上形成されてなる光半導体素子搭載用基板であって、少なくとも前記凹部の内周側面が上記(1)〜(12)のいずれかに記載の光反射用熱硬化性樹脂組成物から構成されることを特徴とする光半導体素子搭載用基板。   (14) An optical semiconductor element mounting substrate in which one or more recesses to be an optical semiconductor element mounting region are formed, and at least an inner peripheral side surface of the recess is described in any one of (1) to (12) above. A substrate for mounting an optical semiconductor element, comprising: a thermosetting resin composition for light reflection.

(15)上記(14)に記載の光半導体素子搭載用基板と、上記光半導体素子搭載用基板の凹部底面に搭載された光半導体素子と、上記光半導体素子を覆うように前記凹部内に形成された蛍光体含有透明封止樹脂層とを少なくとも備えることを特徴とする光半導体装置。   (15) The optical semiconductor element mounting substrate according to (14) above, the optical semiconductor element mounted on the bottom surface of the concave portion of the optical semiconductor element mounting substrate, and formed in the concave portion so as to cover the optical semiconductor element An optical semiconductor device comprising at least a phosphor-containing transparent sealing resin layer.

本発明によれば、硬化後の可視光から近紫外光における光反射率が高く、耐熱劣化性やタブレット成形性に優れ、なおかつトランスファー成形時にバリが生じ難い、硬化性光反射用樹脂組成物、ならびにこれを用いた光半導体素子搭載用基板、光半導体装置を提供することが可能となる。   According to the present invention, a curable light reflecting resin composition having a high light reflectivity in visible light to near ultraviolet light after curing, excellent in heat resistance deterioration and tablet moldability, and hardly causing burrs during transfer molding, In addition, an optical semiconductor element mounting substrate and an optical semiconductor device using the same can be provided.

本発明による光半導体搭載用基板の一実施形態を示す図であり、(a)は斜視図、(b)はIb−Ib線に沿った断面図である。It is a figure which shows one Embodiment of the board | substrate for optical semiconductor mounting by this invention, (a) is a perspective view, (b) is sectional drawing along the Ib-Ib line. 本発明による光半導体装置の一実施形態を示す図であり、(a)及び(b)はそれぞれ側面断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows one Embodiment of the optical semiconductor device by this invention, (a) And (b) is side sectional drawing, respectively. 本発明による光半導体装置の一実施形態を示す側面断面図である。It is side surface sectional drawing which shows one Embodiment of the optical semiconductor device by this invention. 実施例において使用したバリ測定用金型を模式的に示した図であり、(a)は側面断面図、(b)は平面図である。It is the figure which showed typically the metal mold | die for a burr | flash measurement used in the Example, (a) is side surface sectional drawing, (b) is a top view. 図4に示したバリ測定用金型を用いた成形時に生じたバリを模式的に示した図であり、(a)は側面断面図、(b)は平面図である。It is the figure which showed typically the burr | flash produced at the time of shaping | molding using the metal mold | die for a burr | flash measurement shown in FIG. 4, (a) is side sectional drawing, (b) is a top view.

以下、本発明の詳細を説明する。本発明の熱硬化性光反射用樹脂組成物は、熱硬化性成分と、白色顔料と、添加剤とを含有し、例えば、成形温度100℃〜200℃、成形圧力20MPa以下、及び硬化時間60〜120秒といった代表的な条件下でトランスファー成形した時にバリの発生が少なく、熱硬化後の可視光から近紫外光における光反射特性に優れていることを特徴とする。より具体的には、本発明の熱硬化性光反射用樹脂組成物は、成形温度180℃、成形圧力6.9MPa、硬化時間90秒の条件下でトランスファー成形した時に生じるバリ長さが5mm以下であり、それらの熱硬化後の波長350nm〜800nmにおける光反射率が80%以上であることを特徴とする。   Details of the present invention will be described below. The thermosetting light reflecting resin composition of the present invention contains a thermosetting component, a white pigment, and an additive. For example, the molding temperature is 100 ° C. to 200 ° C., the molding pressure is 20 MPa or less, and the curing time is 60. It is characterized in that the occurrence of burrs is small when transfer molding is carried out under typical conditions of ˜120 seconds, and the light reflection characteristics from visible light to near ultraviolet light after thermosetting are excellent. More specifically, the thermosetting light reflecting resin composition of the present invention has a burr length of 5 mm or less when formed by transfer molding under conditions of a molding temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds. The light reflectance at a wavelength of 350 nm to 800 nm after thermosetting is 80% or more.

本明細書において使用する用語「成形時のバリ長さ」とは、図4に示したバリ測定用金型を用いてトランスファー成形を行った際に、金型中心部のキャビティから、金型の上型と下型との合せ目の隙間に放射方向にはみ出した樹脂硬化物の最大長さを意味する。このようなバリ長さが5mmを超えると、光半導体素子搭載領域の開口部(凹部)に樹脂汚れが張り出し、光半導体素子を搭載する際の障害となる可能性がある。あるいは、光半導体素子と金属配線とをボンディングワイヤなどの公知の方法によって電気的に接続する際の障害になる可能性がある。半導体装置製造時の作業性の観点から、本発明による樹脂組成物の成形時のバリ長さは、3mm以下がより好ましく、1mm以下であることがさらに好ましい。   The term “burr length at the time of molding” used in this specification means that, when transfer molding is performed using the mold for measuring burrs shown in FIG. 4, from the cavity at the center of the mold, It means the maximum length of the cured resin that protrudes radially in the gap between the upper mold and the lower mold. If the burr length exceeds 5 mm, resin stains may protrude from the opening (concave portion) of the optical semiconductor element mounting region, which may be an obstacle when mounting the optical semiconductor element. Alternatively, there is a possibility that it becomes an obstacle when the optical semiconductor element and the metal wiring are electrically connected by a known method such as a bonding wire. From the viewpoint of workability when manufacturing a semiconductor device, the burr length at the time of molding the resin composition according to the present invention is more preferably 3 mm or less, and further preferably 1 mm or less.

本発明の硬化性光反射用樹脂組成物は、トランスファー成形を行うことを考慮して、熱硬化前は室温下(0〜30℃)で加圧成形可能であることが望ましい。より具体的には、例えば、室温下、5〜50MPa、1〜5秒程度の条件下で成形可能であればよい。熱硬化後は、光半導体装置の用途で使用する観点から、波長350nm〜800nmにおける光反射率が80%以上であることが好ましく、90%以上であることがより好ましい。光反射率が80%未満である場合は、光半導体装置の輝度向上に十分に寄与できない可能性がある。   The curable light reflecting resin composition of the present invention is preferably capable of being pressure-molded at room temperature (0 to 30 ° C.) before thermosetting in consideration of performing transfer molding. More specifically, for example, it may be moldable under conditions of about 5 to 50 MPa and about 1 to 5 seconds at room temperature. After thermosetting, from the viewpoint of use in the application of the optical semiconductor device, the light reflectance at a wavelength of 350 nm to 800 nm is preferably 80% or more, and more preferably 90% or more. When the light reflectance is less than 80%, there is a possibility that it cannot sufficiently contribute to the improvement of the luminance of the optical semiconductor device.

本発明による硬化性光反射用樹脂組成物は、少なくとも、熱硬化性成分と、白色顔料と、添加剤とを含有するものであって、成形時のバリ長さ及び光反射率を上記所定の範囲内に制御することが可能であれば、その配合比は特に限定されない。熱硬化性成分は、主にエポキシ樹脂と硬化剤とから構成され、必要に応じて硬化触媒を含んでもよい。また、本発明による樹脂組成物は、上述の成分の他に、無機充填剤、カップリング剤といった光半導体搭載用基板材料として周知の各種成分を含んでもよい。本発明の一実施態様において、樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤、(C)硬化触媒、(D)無機充填剤、(E)白色顔料、(F)カップリング剤、及び(G)添加剤を含有することが好ましい。特に、樹脂組成物の成形性を高め、成形時の樹脂汚れをより効果的に抑制するために、本発明では(G)添加剤として、熱硬化性成分と反応可能な反応性基を有する(メタ)アクリル酸誘導体の重合体又は共重合体を使用することが好ましい。   The curable light reflecting resin composition according to the present invention contains at least a thermosetting component, a white pigment, and an additive, and has a burr length and a light reflectance at the time of molding as described above. The blending ratio is not particularly limited as long as it can be controlled within the range. The thermosetting component is mainly composed of an epoxy resin and a curing agent, and may contain a curing catalyst as necessary. Moreover, the resin composition according to the present invention may contain various components known as a substrate material for mounting an optical semiconductor such as an inorganic filler and a coupling agent in addition to the above-described components. In one embodiment of the present invention, the resin composition comprises (A) an epoxy resin, (B) a curing agent, (C) a curing catalyst, (D) an inorganic filler, (E) a white pigment, and (F) a coupling agent. And (G) an additive is preferably contained. In particular, in order to enhance the moldability of the resin composition and more effectively suppress resin stains during molding, the present invention has a reactive group capable of reacting with a thermosetting component as an additive (G) ( It is preferable to use a polymer or copolymer of a (meth) acrylic acid derivative.

ここで、「熱硬化性成分と反応可能な反応性基」とは、熱硬化性成分の主成分となるエポキシ樹脂および硬化剤の反応系に関与し得る、例えば、エポキシ基、ヒドロキシル基、イソシアネート基等の官能基を意味する。そのような反応性基を有する(メタ)アクリル酸誘導体の具体例として、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4−エポキシシクロヘキシルエチル、(メタ)アクリル酸2−ヒドロキシエチル、及び(メタ)アクリル酸2−ヒドロキシエチルと多価イソシアネート化合物から得られる(メタ)アクリル酸イソシアネート含有エステルなどが挙げられる。特に限定するものではないが、化合物の反応性および価格面を考慮すると、(メタ)アクリル酸グリシジルが好ましく、メタクリル酸グリシジルがより好ましい。このような反応性基を有する(メタ)アクリル酸誘導体は、本発明では(メタ)アクリル酸アルキルエステル等の反応性基を持たない(メタ)アクリル酸誘導体と区別される。   Here, the “reactive group capable of reacting with the thermosetting component” means that it can participate in the reaction system of the epoxy resin and the curing agent which are the main components of the thermosetting component, for example, an epoxy group, a hydroxyl group, an isocyanate It means a functional group such as a group. Specific examples of (meth) acrylic acid derivatives having such reactive groups include glycidyl (meth) acrylate, 3,4-epoxycyclohexylethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and Examples include (meth) acrylic acid isocyanate-containing esters obtained from 2-hydroxyethyl (meth) acrylate and a polyvalent isocyanate compound. Although not particularly limited, glycidyl (meth) acrylate is preferable and glycidyl methacrylate is more preferable in consideration of the reactivity and price of the compound. A (meth) acrylic acid derivative having such a reactive group is distinguished from a (meth) acrylic acid derivative having no reactive group such as an alkyl (meth) acrylate in the present invention.

本発明による樹脂組成物では、(G)添加剤として、上述の反応性基を有する(メタ)アクリル酸誘導体の1種から誘導される単独重合体、またはそれら誘導体の2種以上から構成される共重合体を使用することが好ましい。共重合体は、上述の反応性基を有する(メタ)アクリル酸誘導体の1種以上と、他のエチレン性不飽和化合物とから構成されるものであってもよい。共重合に使用される他のエチレン性不飽和化合物は、上述の(メタ)アクリル酸誘導体と共重合可能な化合物であれば特に限定されない。適切な化合物を選択することによって、熱硬化性成分との相溶性の改善、共重合体の粘度の調整、さらにトランスファー成形時の流動性の制御などが可能となるため、本発明では、添加剤として、上述の反応性基を有する(メタ)アクリル酸誘導体と、他のエチレン性不飽和化合物との共重合体を使用することが好ましい。   In the resin composition according to the present invention, the (G) additive is composed of a homopolymer derived from one of the above-mentioned (meth) acrylic acid derivatives having a reactive group, or two or more of these derivatives. It is preferred to use a copolymer. A copolymer may be comprised from 1 or more types of the (meth) acrylic acid derivative which has the above-mentioned reactive group, and another ethylenically unsaturated compound. The other ethylenically unsaturated compound used for copolymerization is not particularly limited as long as it is a compound copolymerizable with the above-mentioned (meth) acrylic acid derivative. By selecting an appropriate compound, it becomes possible to improve compatibility with the thermosetting component, adjust the viscosity of the copolymer, and control fluidity during transfer molding. As above, it is preferable to use a copolymer of a (meth) acrylic acid derivative having the above-mentioned reactive group and another ethylenically unsaturated compound.

共重合可能な化合物としては、例えば、ビニルブチラール、酢酸ビニル、スチレン、オキサゾリン、塩化ビニル、フルオロエチレン、反応性基を持たない(メタ)アクリル酸誘導体といった化合物が挙げられる。これらの化合物を2種以上組み合わせて使用してもよい。高温環境下における着色性の観点から、反応性基を持たない(メタ)アクリル酸誘導体を選択することが好ましい。より好ましくは(メタ)アクリル酸エステルであり、さらに好ましくは(メタ)アクリル酸アルキルエステルである。   Examples of the copolymerizable compound include compounds such as vinyl butyral, vinyl acetate, styrene, oxazoline, vinyl chloride, fluoroethylene, and a (meth) acrylic acid derivative having no reactive group. Two or more of these compounds may be used in combination. From the viewpoint of colorability in a high temperature environment, it is preferable to select a (meth) acrylic acid derivative having no reactive group. More preferred is a (meth) acrylic acid ester, and further preferred is a (meth) acrylic acid alkyl ester.

本発明による樹脂組成物の一実施形態では、添加剤として(メタ)アクリル酸グリシジルの単独重合体を使用することが好ましい。メタクリル酸グリシジルの単独重合体がより好ましい。そのような単独重合体は、(メタ)アクリル酸グリシジルを周知の方法に従って重合させることにより合成することが可能である。また、そのような化合物は市販品として入手することも可能であり、例えば、日油株式会社製のマープルーフ「G−01100(商品名)」が好適である。この化合物は、メタクリル酸グリシジルの単独重合体であり、重量平均分子量12,000、エポキシ当量170である。   In one embodiment of the resin composition according to the present invention, it is preferable to use a homopolymer of glycidyl (meth) acrylate as an additive. A homopolymer of glycidyl methacrylate is more preferred. Such a homopolymer can be synthesized by polymerizing glycidyl (meth) acrylate in accordance with a well-known method. Moreover, such a compound can also be obtained as a commercial product, for example, Marproof "G-01100 (trade name)" manufactured by NOF Corporation is suitable. This compound is a homopolymer of glycidyl methacrylate and has a weight average molecular weight of 12,000 and an epoxy equivalent of 170.

また、別の実施形態では、添加剤として、下式(1)で示される繰り返し単位を有する共重合体を使用することが好ましい。このような共重合体は、例えば(メタ)アクリル酸グリシジルと(メタ)アクリル酸アルキルエステルとを周知の方法に従って共重合させることにより合成することが可能である。

Figure 0005672318
(式中、Rはグリシジル基であり、R及びRはそれぞれ独立して水素原子又はメチル基であり、Rはアルキルオキシカルボニル基であり、n又はmは正の整数を示す。) Moreover, in another embodiment, it is preferable to use the copolymer which has a repeating unit shown by the following Formula (1) as an additive. Such a copolymer can be synthesized, for example, by copolymerizing glycidyl (meth) acrylate and an alkyl (meth) acrylate according to a known method.
Figure 0005672318
(In the formula, R 1 is a glycidyl group, R 2 and R 3 are each independently a hydrogen atom or a methyl group, R 4 is an alkyloxycarbonyl group, and n or m represents a positive integer. )

上式(1)で示される繰り返し単位を有する化合物の中でも、R及びRがそれぞれメチル基であり、Rがメチルオキシカルボニル基である化合物が好ましい。そのような化合物は、メタクリル酸グリシジルと、メタクリル酸メチルと、必要に応じて他の不飽和化合物とを共重合させることによって合成することが可能である。また、そのような化合物は、市販品として入手することも可能であり、例えば、日油株式会社製のマープルーフ「G−0150M(商品名)」が挙げられる。この化合物は、メタクリル酸グリシジルと、アクリル酸メチルとの共重合によって得られる共重合体に該当し、上記一般式(1)において、n=30、m=30であり、重量平均分子量は10,000である。その他、同シリーズのマープルーフ「G−017581(商品名)」なども使用できる。 Among the compounds having a repeating unit represented by the above formula (1), a compound in which R 2 and R 3 are each a methyl group and R 4 is a methyloxycarbonyl group is preferable. Such a compound can be synthesized by copolymerizing glycidyl methacrylate, methyl methacrylate and, if necessary, other unsaturated compounds. Moreover, such a compound can also be obtained as a commercial item, for example, NOF Corporation Marproof "G-0150M (brand name)" is mentioned. This compound corresponds to a copolymer obtained by copolymerization of glycidyl methacrylate and methyl acrylate. In the general formula (1), n = 30, m = 30, and the weight average molecular weight is 10, 000. In addition, the same series of proofs “G-017581 (trade name)” can be used.

なお、上式(1)で示される繰り返し単位を有する化合物は、n/mの比率、式中のRにおける炭素数等によって、エポキシ樹脂などの組成物を構成する他成分との相溶性を調整することも可能である。特に限定するものではないが、n/mは0.1〜10の範囲が好ましい。またRにおける炭素数は1〜12の範囲が好ましい。 The compound having a repeating unit represented by the above formula (1) has compatibility with other components constituting the composition such as an epoxy resin depending on the ratio of n / m, the number of carbons in R 4 in the formula, and the like. It is also possible to adjust. Although it does not specifically limit, n / m has the preferable range of 0.1-10. The number of carbon atoms in R 4 in the range of 1-12 are preferred.

本発明において(G)添加剤として使用する重合体又は共重合体は、特に限定されるものではないが、その重量平均分子量が、1,000〜100,000であることが好ましい。より好ましくは1,000〜50,000であり、さらに好ましくは5,000〜20,000である。重量平均分子量が1,000よりも低分子量であると、トランスファー成形時にバリが低減されない恐れがあり、特性上好ましくない。一方、重量平均分子量が100,000より高分子量であると、樹脂組成物の溶融時の流動性が損なわれるとともに硬化後に充分な材料強度が得られない恐れがある。   The polymer or copolymer used as the additive (G) in the present invention is not particularly limited, but the weight average molecular weight is preferably 1,000 to 100,000. More preferably, it is 1,000-50,000, More preferably, it is 5,000-20,000. If the weight average molecular weight is lower than 1,000, burrs may not be reduced during transfer molding, which is not preferable in terms of characteristics. On the other hand, if the weight average molecular weight is higher than 100,000, the fluidity at the time of melting of the resin composition is impaired and sufficient material strength may not be obtained after curing.

上記(G)添加剤の配合量としては、(A)エポキシ樹脂100重量部に対し、5〜30重量部であることが好ましい。より好ましくは5〜20重量部であり、さらに好ましくは10〜20重量部である。配合量が5重量部よりも小さい場合、トランスファー成形時に樹脂汚れが低減されない恐れがあり、特性上好ましくない。一方、配合量が30重量部よりも多い場合は、樹脂組成物の溶融時の流動性が損なわれるとともに硬化後に充分な材料強度が得られない恐れがある。   As a compounding quantity of the said (G) additive, it is preferable that it is 5-30 weight part with respect to 100 weight part of (A) epoxy resins. More preferably, it is 5-20 weight part, More preferably, it is 10-20 weight part. When the blending amount is less than 5 parts by weight, there is a possibility that resin stains may not be reduced during transfer molding, which is not preferable in terms of characteristics. On the other hand, if the blending amount is more than 30 parts by weight, the fluidity at the time of melting of the resin composition is impaired, and sufficient material strength may not be obtained after curing.

本発明による熱硬化性光反射用樹脂組成物によって、成形時の樹脂汚れを低減し、優れたパッケージ外観を得るためには、上述の(G)添加剤が、熱硬化性成分となる(A)エポキシ樹脂及び(B)硬化剤の少なくとも一方に対して優れた相溶性を示すことが好ましい。なお、本明細書で使用する用語「相溶性」とは、(G)成分が、その他の成分(A)又は(B)と親和性を示し、均一な溶液または混合物として存在することを意味する。より具体的には、以下の手順に沿って評価する。先ず(A)成分又は(B)成分と、(G)成分とを1/1の重量比で混合し、それら成分を180℃にて完全に溶解した後に攪拌することによって混合液を調製する。次いで、調製した混合液を30分にわたって静置した後に、混合液の一部を取り出して目視によって評価する。混合液を目視した時、成分間の分離がなく透明な液体として確認できる状態を「可溶」と称す。一方、成分が分離し不透明な液体となる場合を「不溶」と称す。すなわち、本発明では(G)添加剤が(A)エポキシ樹脂などの他の成分に対して「可溶」となる状態が好ましい。   In order to reduce the resin stain at the time of molding and obtain an excellent package appearance by the thermosetting light reflecting resin composition according to the present invention, the above-mentioned (G) additive becomes a thermosetting component (A It is preferable to exhibit excellent compatibility with at least one of the epoxy resin and the (B) curing agent. As used herein, the term “compatible” means that the component (G) has an affinity for the other component (A) or (B) and exists as a uniform solution or mixture. . More specifically, the evaluation is performed according to the following procedure. First, the component (A) or the component (B) and the component (G) are mixed at a weight ratio of 1/1, and these components are completely dissolved at 180 ° C. and then stirred to prepare a mixed solution. Next, after the prepared mixed solution is allowed to stand for 30 minutes, a part of the mixed solution is taken out and visually evaluated. A state in which the liquid mixture can be confirmed as a transparent liquid with no separation between the components when viewed visually is referred to as “soluble”. On the other hand, the case where the components are separated to become an opaque liquid is referred to as “insoluble”. That is, in the present invention, it is preferable that the (G) additive is “soluble” in other components such as the (A) epoxy resin.

(G)添加剤が、(A)エポキシ樹脂及び(B)硬化剤に対して難溶である場合、又は(A)エポキシ樹脂及び(B)硬化剤のいずれか一方と難溶である場合、必要に応じて、樹脂組成物の溶融混練を行う前処理として予備加熱混合を実施してもよい。このような予備加熱混合によって、(G)添加剤の相溶性を改善し、(A)エポキシ樹脂及び(B)硬化剤の中に(G)添加剤を均一に分散させ、トランスファー成形時の樹脂汚れを抑制する効果を高めることも可能となる。   (G) When the additive is hardly soluble in (A) epoxy resin and (B) curing agent, or (A) When it is hardly soluble in either one of epoxy resin and (B) curing agent, If necessary, preheating and mixing may be performed as a pretreatment for melt-kneading the resin composition. By such preheating mixing, the compatibility of (G) additive is improved, (G) additive is uniformly dispersed in (A) epoxy resin and (B) curing agent, and resin during transfer molding It is also possible to enhance the effect of suppressing dirt.

予備加熱混合を行う場合、(G)添加剤は室温(0〜35℃)において固体であり、好ましくは中心粒径1mm以下、より好ましくは中心粒径50μm以下になるように粉砕加工されていることが望ましい。(G)添加剤の中心粒径が1mmを超える粉砕状態では、予備混合を実施する際に、(A)エポキシ樹脂及び(B)硬化剤に完全に溶解するまでに時間がかかるため、長時間にわたる加熱により多くの熱エネルギーが必要となり、生産性やコストの面で不利となる。   When preheating and mixing are performed, the additive (G) is a solid at room temperature (0 to 35 ° C.) and is preferably pulverized so as to have a center particle size of 1 mm or less, more preferably a center particle size of 50 μm or less. It is desirable. (G) In the pulverized state where the center particle size of the additive exceeds 1 mm, it takes a long time to completely dissolve in (A) the epoxy resin and (B) the curing agent when performing the premixing. Overheating requires a lot of heat energy, which is disadvantageous in terms of productivity and cost.

予備加熱混合の具体的な方法としては、例えば、(A)エポキシ100重量部、(B)硬化剤120重量部、(G)添加剤10重量部を耐熱ガラス製の混合容器内に秤量し、この混合容器をシリコーンオイルや水などの流体を媒体としたヒーターを用いて、35℃〜180℃の温度範囲で加熱する方法が挙げられる。加熱方法は、先に例示した方法に限定されるものではなく、熱電対、電磁波照射など公知の方法を適用することも可能である。また、予備加熱混合の際には、成分の溶解を促進するために超音波などを照射する方法を追加適用してもよい。   As a specific method of preheating and mixing, for example, (A) 100 parts by weight of epoxy, (B) 120 parts by weight of curing agent, and (G) 10 parts by weight of additive are weighed in a heat-resistant glass mixing container, A method of heating the mixing container in a temperature range of 35 ° C. to 180 ° C. using a heater using a fluid such as silicone oil or water as a medium can be mentioned. The heating method is not limited to the method exemplified above, and a known method such as thermocouple or electromagnetic wave irradiation can also be applied. In the preheating mixing, a method of irradiating ultrasonic waves or the like may be additionally applied in order to promote dissolution of components.

本発明で使用可能な(A)エポキシ樹脂は、特に限定されず、エポキシ樹脂成形材料として一般に使用されている樹脂であればよい。例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの; ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換ビスフェノール等のジグリシジルエーテル; ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンとの反応により得られるグリシジルアミン型エポキシ樹脂; オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂; 及び脂環族エポキシ樹脂等が挙げられる。これらは単独で使用しても、又は2種以上併用してもよい。特に限定するものではないが、使用するエポキシ樹脂は、無色または例えば淡黄色の比較的着色していないものが好ましい。そのようなエポキシ樹脂として、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレートを挙げることができる。   The (A) epoxy resin usable in the present invention is not particularly limited as long as it is a resin generally used as an epoxy resin molding material. For example, epoxidized phenol and aldehyde novolak resins such as phenol novolac type epoxy resin and orthocresol novolak type epoxy resin; diglycidyl ethers such as bisphenol A, bisphenol F, bisphenol S, alkyl substituted bisphenol; Glycidylamine type epoxy resin obtained by reaction of polyamine such as diaminodiphenylmethane and isocyanuric acid with epichlorohydrin; linear aliphatic epoxy resin obtained by oxidizing olefinic bond with peracid such as peracetic acid; and alicyclic epoxy resin Etc. These may be used alone or in combination of two or more. Although it does not specifically limit, the epoxy resin to be used is preferably colorless or, for example, pale yellow and relatively uncolored. Examples of such epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, diglycidyl isocyanurate, and triglycidyl isocyanurate.

本発明で使用可能な(B)硬化剤は、特に限定されず、エポキシ樹脂と反応可能な化合物であればよいが、その分子量は100〜400程度のものが好ましい。また、無色、または例えば淡黄色の比較的着色していないものが好ましい。そのような硬化剤として、例えば、酸無水物系硬化剤、イソシアヌル酸誘導体、フェノール系硬化剤などが挙げられる。   The (B) curing agent that can be used in the present invention is not particularly limited as long as it is a compound that can react with an epoxy resin, but a molecular weight of about 100 to 400 is preferable. Further, colorless or, for example, a light yellow and relatively uncolored one is preferable. Examples of such a curing agent include an acid anhydride curing agent, an isocyanuric acid derivative, and a phenol curing agent.

酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、無水コハク酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸が挙げられる。   Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride. Examples include acid, dimethyl glutaric anhydride, diethyl glutaric anhydride, succinic anhydride, methyl hexahydrophthalic anhydride, and methyl tetrahydrophthalic anhydride.

イソシアヌル酸誘導体としては、1,3,5−トリス(1−カルボキシメチル)イソシアヌレート、1,3,5−トリス(2−カルボキシエチル)イソシアヌレート、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレート、1,3−ビス(2−カルボキシエチル)イソシアヌレートなどが挙げられる。   Isocyanuric acid derivatives include 1,3,5-tris (1-carboxymethyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5-tris (3-carboxypropyl) ) Isocyanurate, 1,3-bis (2-carboxyethyl) isocyanurate and the like.

フェノール系硬化剤としては、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類と、ホルムアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂; フェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルとから合成されるフェノール・アラルキル樹脂; ビフェニレン型フェノール・アラルキル樹脂、ナフトール・アラルキル樹脂等のアラルキル型フェノール樹脂; フェノール類及び/又はナフトール類とジシクロペンタジエンとの共重合によって合成される、ジシクロベンタジエン型フェノールノボラック樹脂、ジシクロペンタジエン型ナフトールノボラック樹脂等のジシクロペンタジエン型フェノール樹脂; トリフェニルメタン型フェノール樹脂; テルペン変性フェノール樹脂; パラキシリレン及び/又はメタキシリレン変性フェノール樹脂; メラミン変性フェノール樹脂; シクロペンタジエン変性フェノール樹脂; 及びこれら2種以上を共重合して得られるフェノール樹脂などが挙げられる。   Examples of phenolic curing agents include phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol and other phenols and / or naphthols such as α-naphthol, β-naphthol and dihydroxynaphthalene, and formaldehyde , A novolac-type phenol resin obtained by condensation or cocondensation with a compound having an aldehyde group such as benzaldehyde or salicylaldehyde under an acidic catalyst; phenols and / or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl; Phenol-aralkyl resins synthesized from aralkyl-type phenol resins such as biphenylene-type phenol-aralkyl resins and naphthol-aralkyl resins; phenols and / or Dicyclopentadiene-type phenolic resins such as dicyclopentadiene-type phenol novolak resins and dicyclopentadiene-type naphthol novolak resins synthesized by copolymerization of naphthols and dicyclopentadiene; triphenylmethane-type phenol resins; terpene-modified phenols Resin; paraxylylene and / or metaxylylene-modified phenol resin; melamine-modified phenol resin; cyclopentadiene-modified phenol resin; and phenol resin obtained by copolymerizing two or more of these.

上述した硬化剤は単独で用いても、2種類以上併用しても良い。なかでも、無水フタル酸、無水トリメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸からなる群から選択される酸無水物、又は1,3,5−トリス(3−カルボキシプロピル)イソシアヌレート等のイソシアヌレート酸誘導体の少なくとも一方を使用することが好ましい。   The above-mentioned curing agents may be used alone or in combination of two or more. Among these, phthalic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, glutaric anhydride, dimethylglutaric anhydride, diethylglutaric anhydride It is preferable to use at least one of an acid anhydride selected from the group or an isocyanurate derivative such as 1,3,5-tris (3-carboxypropyl) isocyanurate.

本発明による熱硬化性光反射用樹脂組成物において、(A)エポキシ樹脂と(B)硬化剤との配合比は、(A)エポキシ樹脂中のエポキシ基1当量に対して、当該エポキシ基との反応可能な(B)硬化剤中の活性基(酸無水物基または水酸基)が0.5〜0.8当量となるように配合することが好ましく、0.7〜0.8当量とすることがより好ましい。上記活性基が0.5当量未満の場合には、樹脂組成物の硬化速度が遅くなるとともに、得られる硬化体のガラス転移温度が低くなる場合があり、充分な弾性率が得られない場合がある。一方、上記活性基が0.8当量を超える場合には硬化後の強度が減少する場合がある。   In the thermosetting light reflecting resin composition according to the present invention, the blending ratio of (A) the epoxy resin and (B) the curing agent is the same as that of the epoxy group with respect to 1 equivalent of the epoxy group in the epoxy resin (A). It is preferable that the active group (acid anhydride group or hydroxyl group) in the reactable (B) curing agent is 0.5 to 0.8 equivalent, and 0.7 to 0.8 equivalent. It is more preferable. When the active group is less than 0.5 equivalent, the curing rate of the resin composition becomes slow and the glass transition temperature of the obtained cured product may be lowered, and a sufficient elastic modulus may not be obtained. is there. On the other hand, when the active group exceeds 0.8 equivalent, the strength after curing may decrease.

本発明で使用可能な(C)硬化触媒(硬化促進剤)は、特に限定されず、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、トリ−2,4,6−ジメチルアミノメチルフェノールなどの3級アミン類; 2−エチル−4メチルイミダゾール、2−メチルイミダゾールなどのイミダゾール類; トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート、テトラ−n−ブチルホスホニウム−テトラフルオロボレート、テトラ−n−ブチルホスホニウム−テトラフェニルボレートなどのリン化合物; 4級アンモニウム塩; 有機金属塩類; 及びこれらの誘導体などであってよい。これらは単独で使用してもよく、あるいは、併用してもよい。これらの硬化促進剤の中では、3級アミン類、イミダゾール類、リン化合物を用いることが好ましい。   The (C) curing catalyst (curing accelerator) that can be used in the present invention is not particularly limited. For example, 1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, tri-2, Tertiary amines such as 4,6-dimethylaminomethylphenol; imidazoles such as 2-ethyl-4methylimidazole and 2-methylimidazole; triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium- Phosphorus compounds such as o, o-diethyl phosphorodithioate, tetra-n-butylphosphonium-tetrafluoroborate, tetra-n-butylphosphonium-tetraphenylborate; quaternary ammonium salts; organometallic salts; and derivatives thereof It may be. These may be used alone or in combination. Among these curing accelerators, it is preferable to use tertiary amines, imidazoles, and phosphorus compounds.

上記(C)硬化触媒(硬化促進剤)の含有率は、エポキシ樹脂に対して、0.01〜8.0重量%であることが好ましく、より好ましくは、0.1〜3.0重量%である。硬化促進剤の含有率が0.01%重量%未満となると、十分な硬化促進効果が得られない場合がある。また8.0重量%を超えると、硬化によって得られる成形体に変色が見られる場合がある。   The content of the (C) curing catalyst (curing accelerator) is preferably 0.01 to 8.0% by weight, more preferably 0.1 to 3.0% by weight, based on the epoxy resin. It is. If the content of the curing accelerator is less than 0.01% by weight, a sufficient curing acceleration effect may not be obtained. On the other hand, if it exceeds 8.0% by weight, discoloration may be observed in the molded product obtained by curing.

本発明で使用可能な(D)無機充填剤は、特に限定されず、例えば、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウムからなる群の中から選ばれる1種以上を用いることができる。熱伝導性、光反射特性、成形性、難燃性の点からは、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウムのうち2種以上を組合せて使用することが好ましい。また、(D)無機充填剤の中心粒径は、特に限定されるものではないが、白色顔料とのパッキングが効率良くなるように1〜100μmの範囲のものを用いることが好ましい。   The inorganic filler (D) that can be used in the present invention is not particularly limited, and examples thereof include silica, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, aluminum hydroxide, magnesium hydroxide, barium sulfate, and magnesium carbonate. One or more selected from the group consisting of barium carbonate can be used. From the viewpoint of thermal conductivity, light reflection characteristics, moldability, and flame retardancy, two or more of silica, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, aluminum hydroxide, and magnesium hydroxide are combined. It is preferable to use it. In addition, the center particle diameter of the inorganic filler (D) is not particularly limited, but it is preferable to use one in the range of 1 to 100 μm so that packing with the white pigment is efficient.

本発明で使用可能な(E)白色顔料は、公知のものであってよく、特に限定されないが、例えば、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、無機中空粒子を用いることができ、これらは単独でも2種類以上併用してもかまわない。無機中空粒子は、例えば、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス、シラスなどが挙げられる。白色顔料の粒径は、中心粒径が0.1〜50μmの範囲にあることが好ましい、この中心粒径が0.1μm未満であると粒子が凝集しやすく分散性が悪くなる傾向があり、50μmを超えると硬化物の反射特性が十分に得られない恐れがある。   The (E) white pigment that can be used in the present invention may be a known one and is not particularly limited. For example, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, and inorganic hollow particles can be used. These may be used alone or in combination of two or more. Examples of the inorganic hollow particles include sodium silicate glass, aluminum silicate glass, borosilicate soda glass, and shirasu. The white pigment preferably has a central particle size in the range of 0.1 to 50 μm. If the central particle size is less than 0.1 μm, the particles tend to aggregate and the dispersibility tends to deteriorate. When it exceeds 50 μm, there is a possibility that the reflective properties of the cured product cannot be obtained sufficiently.

上記(D)無機充填剤と上記(E)白色顔料との合計配合量は、特に限定されないが、樹脂組成物全体に対して、10体積%〜85体積%の範囲であることが好ましい、この合計配合量が10体積%未満であると硬化物の光反射特性が十分に得られない恐れがあり、85体積%を超えると樹脂組成物の成形性が悪くなり基板の作製が困難となる。   The total amount of the (D) inorganic filler and the (E) white pigment is not particularly limited, but is preferably in the range of 10% by volume to 85% by volume with respect to the entire resin composition. If the total blending amount is less than 10% by volume, the light reflection characteristics of the cured product may not be sufficiently obtained, and if it exceeds 85% by volume, the moldability of the resin composition is deteriorated and it becomes difficult to produce a substrate.

本発明で使用可能な(F)カップリング剤は、特に限定されず、シランカップリング剤やチタネート系カップリング剤等であってよい。より具体的には、シランカップリング剤としては、一般にエポキシシラン系、アミノシラン系、カチオニックシラン系、ビニルシラン系、アクリルシラン系、メルカプトシラン系及びこれらの複合系等が挙げられる。使用量は、無機充填材に対する表面被覆量を考慮して、適宜調整することが可能である。本発明において使用する(F)カップリング剤の種類及びその処理方法について、特に制限はないが、本発明の一実施形態ではそれらの配合量を樹脂組成物に対して5重量%以下とすることが好ましい。   The (F) coupling agent that can be used in the present invention is not particularly limited, and may be a silane coupling agent or a titanate coupling agent. More specifically, examples of the silane coupling agent generally include epoxy silane, amino silane, cationic silane, vinyl silane, acrylic silane, mercapto silane, and composites thereof. The amount used can be appropriately adjusted in consideration of the surface coating amount on the inorganic filler. Although there is no restriction | limiting in particular about the kind of (F) coupling agent used in this invention, and its processing method, In one embodiment of this invention, those compounding quantities shall be 5 weight% or less with respect to a resin composition. Is preferred.

本発明による熱硬化性光反射用樹脂組成物では、上述の成分(A)〜(F)に加えて、必要に応じて、酸化防止剤、離型剤、イオン捕捉剤等の公知の各種添加剤を添加してもよい。   In the thermosetting light reflecting resin composition according to the present invention, in addition to the components (A) to (F) described above, various known additions such as an antioxidant, a release agent, and an ion scavenger are added as necessary. An agent may be added.

本発明による熱硬化性光反射用樹脂組成物は、上記した各成分を均一に分散混合することによって得ることができ、その調製手段や条件等は特に限定されない。一般的な手法として、所定配合量の各種成分をミキサー等によって十分に均一に撹拌及び混合した後、ミキシングロール、押出機、ニーダー、ロール及びエクストルーダー等を用いて混練し、さらに得られた混練物を冷却及び粉砕する方法を挙げることができる。なお、混練形式についても特に限定されるものではないが、溶融混練が好ましい。溶融混練の条件は、使用した成分の種類や配合量によって適宜決定すればよく、特に限定されない。例えば、15〜100℃の範囲で5〜40分間にわたって溶融混練することが好ましく、20〜100℃の範囲で10〜30分間にわたって溶融混練することがより好ましい。溶融混練時の温度が15℃未満であると、各成分を溶融混練させることが困難であり、分散性も低下する傾向にある。一方、100℃よりも高温であると、樹脂組成物の高分子量化が進行し、樹脂組成物が硬化してしまう恐れがある。また、溶融混練の時間が5分未満であると、樹脂汚れを効果的に抑制することができない傾向にあり、40分よりも長いと、樹脂組成物の高分子量化が進行し、成形前に樹脂組成物が硬化してしまう恐れがある。   The thermosetting light reflecting resin composition according to the present invention can be obtained by uniformly dispersing and mixing the above-described components, and the preparation means and conditions thereof are not particularly limited. As a general method, various components of a predetermined blending amount are sufficiently uniformly stirred and mixed by a mixer or the like, and then kneaded using a mixing roll, an extruder, a kneader, a roll, an extruder, etc., and further obtained kneading. The method of cooling and pulverizing an object can be mentioned. The kneading type is not particularly limited, but melt kneading is preferable. The conditions for melt-kneading may be appropriately determined according to the type and amount of components used, and are not particularly limited. For example, it is preferable to melt knead in the range of 15 to 100 ° C. for 5 to 40 minutes, and more preferably in the range of 20 to 100 ° C. for 10 to 30 minutes. If the temperature at the time of melt kneading is less than 15 ° C., it is difficult to melt and knead each component, and the dispersibility tends to decrease. On the other hand, when the temperature is higher than 100 ° C., the resin composition has a high molecular weight and the resin composition may be cured. Further, if the melt kneading time is less than 5 minutes, there is a tendency that the resin stain cannot be effectively suppressed. If the melt kneading time is longer than 40 minutes, the resin composition increases in molecular weight, and before molding. The resin composition may be cured.

本発明による光半導体素子搭載用基板は、本発明の熱硬化性光反射用樹脂組成物を使用して構成されることを特徴とする。具体的には、光半導体素子搭載領域となる1つ以上の凹部を有し、少なくとも上記凹部の内周側面が本発明の熱硬化性光反射用樹脂組成物から構成される基板が挙げられる。図1は、本発明の光半導体素子搭載用基板の一実施形態を示すものであり、(a)は斜視図、(b)はIb−Ib線に沿った断面図である。図1に示したように、本発明の光半導体素子搭載用基板110は、リフレクター103と、Ni/Agメッキ104及び金属配線105を含む配線パターン(リードフレーム)とが一体化され、光半導体素子搭載領域となる凹部200が形成された構造を有し、少なくとも上記凹部の内周側面は本発明の熱硬化性光反射用樹脂組成物から構成されていることを特徴とする。   The substrate for mounting an optical semiconductor element according to the present invention is constituted by using the thermosetting light reflecting resin composition of the present invention. Specifically, a substrate having one or more recesses to be an optical semiconductor element mounting region, and at least an inner peripheral side surface of the recess is made of the thermosetting light reflecting resin composition of the present invention. 1A and 1B show an embodiment of a substrate for mounting an optical semiconductor element of the present invention. FIG. 1A is a perspective view, and FIG. 1B is a cross-sectional view taken along line Ib-Ib. As shown in FIG. 1, the substrate for mounting an optical semiconductor element 110 of the present invention includes a reflector 103 and a wiring pattern (lead frame) including a Ni / Ag plating 104 and a metal wiring 105, which are integrated into an optical semiconductor element. It has the structure in which the recessed part 200 used as a mounting area | region was formed, The inner peripheral side surface of the said recessed part is comprised from the thermosetting light reflection resin composition of this invention, It is characterized by the above-mentioned.

本発明の光半導体素子搭載用基板の製造方法は、特に限定されないが、例えば、本発明の熱硬化性光反射用樹脂組成物またはそのタブレット成形体をトランスファー成形によって製造することができる。より具体的には、以下の手順に従って製造することが可能である。最初に光半導体素子搭載用基板は、金属箔から打ち抜きやエッチング等の公知の方法によって金属配線を形成する。次に、該金属配線を所定形状の金型に配置し、金型の樹脂注入口から本発明の熱硬化性光反射用樹脂組成物(タブレット成形体の溶融物)を注入する。次に、注入した樹脂組成物を、好ましくは金型温度170〜190℃、成形圧力2〜8MPaで60〜120秒にわたって硬化させた後に金型を外し、アフターキュア温度120℃〜180℃で1〜3時間にわたって熱硬化させる。そして、硬化した熱硬化性光反射用樹脂組成物から構成されるリフレクターに周囲を囲まれた光半導体素子搭載領域となる凹部の所定位置に、Ni/銀メッキを施す。   Although the manufacturing method of the board | substrate for optical semiconductor element mounting of this invention is not specifically limited, For example, the thermosetting light reflection resin composition of this invention or its tablet molding can be manufactured by transfer molding. More specifically, it can be produced according to the following procedure. First, a substrate for mounting an optical semiconductor element is formed with a metal wiring by a known method such as punching or etching from a metal foil. Next, the metal wiring is placed in a mold having a predetermined shape, and the thermosetting light reflecting resin composition of the present invention (melt of a tablet molding) is injected from a resin injection port of the mold. Next, the injected resin composition is preferably cured at a mold temperature of 170 to 190 ° C. and a molding pressure of 2 to 8 MPa for 60 to 120 seconds, then the mold is removed, and the after cure temperature is 120 to 180 ° C. Heat cure for ~ 3 hours. And Ni / silver plating is given to the predetermined position of the recessed part used as the optical-semiconductor element mounting area | region enclosed by the reflector comprised from the cured thermosetting light reflecting resin composition.

本発明による光半導体装置は、先に説明した本発明による光半導体素子搭載用基板と、光半導体素子搭載用基板の凹部底面に搭載される光半導体素子と、光半導体素子を覆うように凹部内に形成される蛍光体含有透明封止樹脂層とを少なくとも備えることを特徴とする。図2(a)及び(b)は、それぞれ本発明による光半導体装置の一実施形態を示す側面断面図である。より具体的には、図2に示した光半導体装置では、本発明の光半導体素子搭載用基板110の光半導体素子搭載領域となる凹部(図1の参照符号200)の底部所定位置に光半導体素子100が搭載され、該光半導体素子100と金属配線105とが、ボンディングワイヤ102やはんだバンプ107などの公知の方法により、Ni/銀メッキ104を介して電気的に接続されている。そして、光半導体素子100は公知の蛍光体106を含む透明封止樹脂101によって覆われている。図3は、本発明による光半導体装置の別の実施形態を示す側面断面図である。図中、参照符号300はLED素子、301はワイヤボンド、302は透明封止樹脂、303はリフレクター、304はリード、305は蛍光体、306はダイボンド材を示しており、リフレクター303の少なくとも凹部表面が本発明による熱硬化性光反射用樹脂組成物から構成されている。   An optical semiconductor device according to the present invention includes an optical semiconductor element mounting substrate according to the present invention described above, an optical semiconductor element mounted on the bottom surface of the concave portion of the optical semiconductor element mounting substrate, and a recess in the optical semiconductor element so as to cover the optical semiconductor element. And a phosphor-containing transparent encapsulating resin layer formed at least. 2A and 2B are side sectional views showing an embodiment of the optical semiconductor device according to the present invention. More specifically, in the optical semiconductor device shown in FIG. 2, the optical semiconductor is located at a predetermined position on the bottom of a recess (reference numeral 200 in FIG. 1) which is an optical semiconductor element mounting region of the optical semiconductor element mounting substrate 110 of the present invention. The element 100 is mounted, and the optical semiconductor element 100 and the metal wiring 105 are electrically connected via the Ni / silver plating 104 by a known method such as a bonding wire 102 or a solder bump 107. The optical semiconductor element 100 is covered with a transparent sealing resin 101 containing a known phosphor 106. FIG. 3 is a side sectional view showing another embodiment of the optical semiconductor device according to the present invention. In the figure, reference numeral 300 is an LED element, 301 is a wire bond, 302 is a transparent sealing resin, 303 is a reflector, 304 is a lead, 305 is a phosphor, and 306 is a die bond material. Is composed of the thermosetting light reflecting resin composition according to the present invention.

以下、本発明を実施例により詳述するが、本発明はこれらに限定されるものではない。
(実施例1〜12、比較例1〜4)
1.熱硬化性光反射用樹脂組成物の調製
下記表1及び表2に示した配合割合に従って各成分を配合し、ミキサーによって十分に混練した後にミキシングロールによって所定条件下で溶融混練して混練物を得た。さらに、得られた混練物を粉砕することによって、実施例1〜12及び比較例1〜4の熱硬化性光反射用樹脂組成物を各々調製した。なお、表1及び2に示した各成分の配合量の単位は重量部である。表における空欄は該当する成分の配合が無いことを意味する。
EXAMPLES Hereinafter, although an Example explains this invention in full detail, this invention is not limited to these.
(Examples 1-12, Comparative Examples 1-4)
1. Preparation of Thermosetting Light Reflecting Resin Composition Each component is blended according to the blending ratios shown in Tables 1 and 2 below, kneaded sufficiently with a mixer, and then melt-kneaded under a predetermined condition with a mixing roll. Obtained. Furthermore, the obtained kneaded material was pulverized to prepare thermosetting light reflecting resin compositions of Examples 1 to 12 and Comparative Examples 1 to 4, respectively. In addition, the unit of the compounding quantity of each component shown in Table 1 and 2 is a weight part. A blank in the table means that the corresponding component is not blended.

2.熱硬化性光反射用樹脂組成物の評価
先に調製した実施例1〜12及び比較例1〜4の各々の樹脂組成物について、以下の手順に従って、光反射率及びバリ長さを測定した。また、各々の樹脂組成物を成形して得られる基板のワイヤボンディング性について検討し、評価した。それらの結果を下記表1及び表2に示す。
2. Evaluation of Thermosetting Light Reflective Resin Composition For each of the resin compositions prepared in Examples 1 to 12 and Comparative Examples 1 to 4, light reflectance and burr length were measured according to the following procedure. Moreover, the wire bonding property of the board | substrate obtained by shape | molding each resin composition was examined and evaluated. The results are shown in Tables 1 and 2 below.

(光反射率)
先に調製した各々の熱硬化性光反射用樹脂組成物を、成形金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件下でトランスファー成形した後、150℃で2時間にわたって後硬化することによって、厚み1.0mmの試験片をそれぞれ作製した。次いで、積分球型分光光度計V−750型(日本分光株式会社製)を用いて、波長400nmにおける各試験片の光反射率を測定した。
(Light reflectance)
Each of the previously prepared thermosetting light reflecting resin compositions was transfer molded under conditions of a molding die temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds, and then after 150 hours at 150 ° C. for 2 hours. By curing, test pieces each having a thickness of 1.0 mm were produced. Subsequently, the light reflectance of each test piece at a wavelength of 400 nm was measured using an integrating sphere spectrophotometer V-750 type (manufactured by JASCO Corporation).

(バリ長さ)
先に調製した各々の熱硬化性光反射用樹脂組成物を、ポットを用いて、バリ測定用金型(図4を参照)に流し込み、次いで硬化させることによって樹脂組成物を成形した。なお、成形時の金型温度は180℃、成形圧力は6.9MPa、樹脂の流し込み時間(トランスファー時間)は10秒であり、硬化温度は180℃、硬化時間は90秒とした。成形後、バリ測定用金型の上型を外し、成形時に金型の上型と下型との隙間を流れて生じたバリの長さの最大値を、ノギスを使用して測定した。
(Burr length)
Each of the thermosetting light reflecting resin compositions prepared above was poured into a burr measurement mold (see FIG. 4) using a pot, and then cured to form a resin composition. The mold temperature during molding was 180 ° C., the molding pressure was 6.9 MPa, the resin pouring time (transfer time) was 10 seconds, the curing temperature was 180 ° C., and the curing time was 90 seconds. After molding, the upper mold of the mold for measuring burrs was removed, and the maximum value of the length of burrs generated by flowing through the gap between the upper mold and the lower mold of the mold was measured using calipers.

図4は、先のバリ長さの測定時に使用するバリ測定用金型の構造を模式的に示した図であり、(a)は側面断面図、(b)は平面図である。図4に示したように、バリ測定用金型は、一対の上型400と下型401とから構成され、上型400は樹脂注入口402を有する。また、下型401は、樹脂注入口402に対向するキャビティ403と、キャビティ403から金型外周部に向かって伸びる6本のスリット404、405、406、407、408及び409を有する。実際に使用したバリ測定用金型の寸法は、図4に示したように上型400及び下型401の外形が140mm×140mm、樹脂注入口402の上径が7mm及び下径が4mm、キャビティ403の径が30mm及び深さが4mmである。また、キャビティ403から延びる6本のスリット404から409の幅はそれぞれ5mmであり、深さは順に75、50、30、20、10及び2μmであった。図5は、図4に示したバリ測定用金型を用いた成形時に生じたバリを模式的に示す図であり、(a)は側面断面図、(b)は平面図である。バリは、図5に示したように、樹脂組成物がキャビティ403の外延から各スリットに沿って流れ込み硬化した部分410を意味する。本発明で規定する「バリ長さ」は、参照符号410で示されるバリの最大値を、ノギスで測定した値である。   4A and 4B are diagrams schematically showing the structure of a mold for measuring burrs used at the time of measuring the burr length, wherein FIG. 4A is a side sectional view and FIG. 4B is a plan view. As shown in FIG. 4, the burr measurement mold is composed of a pair of an upper mold 400 and a lower mold 401, and the upper mold 400 has a resin injection port 402. The lower mold 401 has a cavity 403 facing the resin injection port 402 and six slits 404, 405, 406, 407, 408, and 409 extending from the cavity 403 toward the outer periphery of the mold. As shown in FIG. 4, the actual molds for burr measurement were as follows: the outer shape of the upper mold 400 and the lower mold 401 was 140 mm × 140 mm, the upper diameter of the resin injection port 402 was 7 mm, and the lower diameter was 4 mm. The diameter of 403 is 30 mm and the depth is 4 mm. The widths of the six slits 404 to 409 extending from the cavity 403 were 5 mm, and the depths were 75, 50, 30, 20, 10 and 2 μm in order. FIGS. 5A and 5B are diagrams schematically showing burrs generated during molding using the mold for measuring burrs shown in FIG. 4, wherein FIG. 5A is a side sectional view and FIG. 5B is a plan view. As shown in FIG. 5, the burr means a portion 410 in which the resin composition flows from the outer extension of the cavity 403 along each slit and is cured. The “burr length” defined in the present invention is a value obtained by measuring the maximum burr value indicated by reference numeral 410 with a caliper.

(ワイヤボンディング性の評価)
最初に、成形金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件下でトランスファー成形した後、150℃で2時間にわたって後硬化することによって、光半導体素子搭載用基板をそれぞれ作製した。
次に、作製した上記基板の光半導体素子搭載領域となる凹部に光半導体素子を搭載した後、ワイヤボンダ(HW22U−H、九州松下電器株式会社製、商品名)及び直径28μmのボンディングワイヤを使用して、光半導体素子と基板とをワイヤボンディングすることによって、電気的に接続した。ワイヤボンディング時の基板の加熱温度は180℃とした。ワイヤボンディング性は、光半導体素子と基板とを電気的に接続するワイヤボンディングのワイヤ引っ張り強度を、プルテスターPTR−01(株式会社レスカ製、商品名)を使用して測定し、その値について下記の評価基準に従って評価した。
(Evaluation of wire bonding)
First, transfer molding was performed under conditions of a molding die temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds, followed by post-curing at 150 ° C. for 2 hours, thereby producing an optical semiconductor element mounting substrate. did.
Next, after mounting the optical semiconductor element in the concave portion to be the optical semiconductor element mounting region of the substrate produced, a wire bonder (HW22U-H, manufactured by Kyushu Matsushita Electric Co., Ltd., product name) and a bonding wire having a diameter of 28 μm were used. The optical semiconductor element and the substrate were electrically connected by wire bonding. The heating temperature of the substrate during wire bonding was 180 ° C. For wire bonding, the wire tensile strength of wire bonding for electrically connecting the optical semiconductor element and the substrate is measured using a pull tester PTR-01 (trade name, manufactured by Reska Co., Ltd.). Evaluation was performed according to the evaluation criteria.

ワイヤボンディング性の評価基準
◎:引っ張り強度10g以上
○:引っ張り強度4g以上10g未満
△:引っ張り強度4g未満
×:ボンディング不可
Evaluation criteria for wire bonding property ◎: Tensile strength 10 g or more ○: Tensile strength 4 g or more and less than 10 g △: Tensile strength less than 4 g ×: Unbondable

Figure 0005672318
Figure 0005672318

Figure 0005672318
Figure 0005672318

Figure 0005672318
Figure 0005672318

*1:トリグリシジルイソシアヌレート(エポキシ当量100、日産化学社製、商品名TEPIC−S)
*2:ヘキサヒドロ無水フタル酸(和光純薬社製)
*3:メチルヘキサヒドロ無水フタル酸(日立化成工業社製、商品名HN5500)
*4:日本化学工業社製、商品名PX−4ET
*5:トリメトキシエポキシシラン(東レダウコーニング社製、商品名A−187)
* 1: Triglycidyl isocyanurate (epoxy equivalent 100, manufactured by Nissan Chemical Co., Ltd., trade name TEPIC-S)
* 2: Hexahydrophthalic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.)
* 3: Methylhexahydrophthalic anhydride (manufactured by Hitachi Chemical Co., Ltd., trade name HN5500)
* 4: Product name PX-4ET, manufactured by Nippon Chemical Industry Co., Ltd.
* 5: Trimethoxyepoxysilane (manufactured by Toray Dow Corning, trade name A-187)

*6:脂肪酸エステル(クラリアント社製、商品名 ヘキストワックスE)
*7:脂肪族エーテル(東洋ペトロライト社製、商品名 ユニトックス420)
*8:溶融シリカ(電気化学工業社製、商品名FB−301)
*9:中空粒子(住友3M社製、商品名S60−HS)
*10:アルミナ(アドマテックス社製、商品名AO−25R)
* 6: Fatty acid ester (trade name Hoechst E, manufactured by Clariant)
* 7: Aliphatic ether (Toyo Petrolite, trade name: Unitox 420)
* 8: Fused silica (manufactured by Denki Kagaku Kogyo, trade name FB-301)
* 9: Hollow particles (manufactured by Sumitomo 3M, trade name S60-HS)
* 10: Alumina (manufactured by Admatechs, trade name AO-25R)

*11:添加剤(日油株式会社製、商品名マープルーフG−0150M、重量平均分子量10,000、エポキシ当量370、メタクリル酸グリシジルとメタクリル酸メチルとの共重合体)
*12:添加剤(日油株式会社製、商品名マープルーフG−017581、重量平均分子量10,000、エポキシ当量240、メタクリル酸グリシジルとメタクリル酸メチルとの共重合体)
*13:添加剤(日油株式会社製、商品名マープルーフG−01100、重量平均分子量12,000、エポキシ当量170、メタクリル酸グリシジルの単独重合体)
* 11: Additive (manufactured by NOF Corporation, trade name Marproof G-0150M, weight average molecular weight 10,000, epoxy equivalent 370, copolymer of glycidyl methacrylate and methyl methacrylate)
* 12: Additive (manufactured by NOF Corporation, trade name Marproof G-017581, weight average molecular weight 10,000, epoxy equivalent 240, copolymer of glycidyl methacrylate and methyl methacrylate)
* 13: Additive (manufactured by NOF Corporation, trade name Marproof G-01100, weight average molecular weight 12,000, epoxy equivalent 170, glycidyl methacrylate homopolymer)

表1及び表2に示したように、本発明による熱硬化性光反射用樹脂組成物は、光反射特性に優れ、バリの発生を低減することが可能である。本発明による熱硬化性光反射用樹脂組成物を用いてトランスファー成形を行うことによって、光半導体素子搭載領域の開口部に樹脂汚れが発生せず、光半導体素子を効率良く搭載することが可能になる。また、ボンディングワイヤなどの公知の方法によって、光半導体素子と金属配線とを電気的に確実に接続することが可能である。その結果、光半導体搭載用基板及び光半導体素子搭載用基板の製造工程において、バリを除去する工程が不要となり、コストや製造時間など生産性の面で非常に有利となる。   As shown in Tables 1 and 2, the thermosetting light reflecting resin composition according to the present invention is excellent in light reflecting properties and can reduce the occurrence of burrs. By performing transfer molding using the thermosetting light reflecting resin composition according to the present invention, it is possible to efficiently mount an optical semiconductor element without causing resin contamination in the opening of the optical semiconductor element mounting region. Become. In addition, the optical semiconductor element and the metal wiring can be electrically and reliably connected by a known method such as a bonding wire. As a result, in the manufacturing process of the optical semiconductor mounting substrate and the optical semiconductor element mounting substrate, a step of removing burrs is not required, which is very advantageous in terms of productivity such as cost and manufacturing time.

100 光半導体素子
101 透明封止樹脂
102 ボンディングワイヤ
103 熱硬化性反射用樹脂(リフレクター)
104 Ni/Agめっき
105 金属配線
106 蛍光体
107 はんだバンプ
110 光半導体素子搭載用基板
200 光半導体素子搭載領域
300 LED素子
301 ワイヤボンド
302 透明封止樹脂
303 リフレクター
304 リード
305 蛍光体
306 ダイボンド材
400 バリ測定用金型(上型)
401 バリ測定用金型(下型)
402 樹脂注入口
403 キャビティ
404 スリット(75μm)
405 スリット(50μm)
406 スリット(30μm)
407 スリット(20μm)
408 スリット(10μm)
409 スリット(2μm)
410 樹脂バリ
100 optical semiconductor element 101 transparent sealing resin 102 bonding wire 103 thermosetting reflective resin (reflector)
104 Ni / Ag plating 105 Metal wiring 106 Phosphor 107 Solder bump 110 Optical semiconductor element mounting substrate 200 Optical semiconductor element mounting area 300 LED element 301 Wire bond 302 Transparent sealing resin 303 Reflector 304 Lead 305 Phosphor 306 Die bond material 400 Bali Measurement mold (upper mold)
401 Mold for burr measurement (lower mold)
402 Resin injection port 403 Cavity 404 Slit (75 μm)
405 slit (50μm)
406 Slit (30μm)
407 Slit (20μm)
408 Slit (10μm)
409 slit (2μm)
410 Resin burr

Claims (11)

リードフレームとリフレクターとが一体化され、光半導体素子搭載領域となる凹部を1つ以上有する光半導体素子搭載用基板と、
前記光半導体素子搭載用基板の前記凹部底面に搭載された光半導体素子と、
前記光半導体素子を覆うように前記凹部内に形成された蛍光体含有透明封止樹脂と、
を少なくとも備える光半導体装置の製造方法であって、
ードフレームに熱硬化性光反射用樹脂組成物を用いて、光半導体素子搭載領域となる凹部を1つ以上有する光半導体素子搭載用基板の少なくとも前記凹部の内周側面を形成する工程、
前記凹部底面に前記光半導体素子を搭載する工程、及び
前記凹部内を蛍光体含有透明封止樹脂で封止する工程
を順次有し
前記熱硬化性光反射用樹脂組成物が、熱硬化性成分と、白色顔料と、添加剤とを含有し、
前記熱硬化性成分が、エポキシ樹脂及び該エポキシ樹脂と硬化可能な硬化剤を含み、
前記添加剤が、(メタ)アクリル酸グリシジルの単独重合体、又は(メタ)アクリル酸グリシジルと(メタ)アクリル酸アルキルエステルとの共重合体を含み、前記添加剤の添加量が、前記エポキシ樹脂100重量部に対し、5〜30重量部の範囲であり、
成形温度180℃、成形圧力6.9MPa、硬化時間90秒の条件下でトランスファー成形した時に生じるバリ長さが5mm以下であり、かつ熱硬化後の前記熱硬化性光反射用樹脂組成物の波長350nm〜800nmにおける光反射率が80%以上であることを特徴とする光半導体装置の製造方法。
An optical semiconductor element mounting substrate in which a lead frame and a reflector are integrated and has at least one recess serving as an optical semiconductor element mounting region;
An optical semiconductor element mounted on the bottom surface of the recess of the optical semiconductor element mounting substrate;
A phosphor-containing transparent sealing resin layer formed in the recess so as to cover the optical semiconductor element;
An optical semiconductor device manufacturing method comprising at least
Step to rie de frame, using a thermosetting light-reflecting resin composition to form at least the inner peripheral side surface of the recess of the photosemiconductor element mounting board having a recess to serve as the optical semiconductor element mounting region of one or more,
A step of mounting the optical semiconductor element to the bottom surface of the recess, and a step of sealing the said recess in the fluorescent substance-containing transparent encapsulant resin sequentially,
The thermosetting light reflecting resin composition contains a thermosetting component, a white pigment, and an additive,
The thermosetting component includes an epoxy resin and a curing agent curable with the epoxy resin,
The additive includes a homopolymer of glycidyl (meth) acrylate, or a copolymer of glycidyl (meth) acrylate and (meth) acrylic acid alkyl ester, and the additive amount of the additive is the epoxy resin. The range is 5 to 30 parts by weight with respect to 100 parts by weight.
The burr length generated when transfer molding is performed under conditions of a molding temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds, and the wavelength of the thermosetting light reflecting resin composition after thermosetting. A method for manufacturing an optical semiconductor device, wherein the light reflectance at 350 nm to 800 nm is 80% or more .
前記(メタ)アクリル酸アルキルエステルが、(メタ)アクリル酸メチルであることを特徴とする請求項に記載の製造方法。 The process according to claim 1 wherein the (meth) acrylic acid alkyl ester, which is a (meth) acrylate. 前記添加剤の重量平均分子量が、1,000〜100,000であることを特徴とする請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2 , wherein the additive has a weight average molecular weight of 1,000 to 100,000. 前記エポキシ樹脂が1分子中に2個以上のエポキシ基を有するエポキシ樹脂であり、前記硬化剤が1分子中に1個以上の酸無水物基を有する化合物であることを特徴とする請求項1〜のいずれか1項に記載の製造方法。 2. The epoxy resin is an epoxy resin having two or more epoxy groups in one molecule, and the curing agent is a compound having one or more acid anhydride groups in one molecule. The manufacturing method of any one of -3 . 前記白色顔料が、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、及び無機中空粒子からなる群の中から選ばれる少なくとも1種であることを特徴とする請求項1〜のいずれか1項に記載の製造方法。 The white pigment, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, and any one of claims 1-4, characterized in that at least one selected from the group consisting of inorganic hollow particles The production method according to item. 前記白色顔料の中心粒径が0.1〜50μmの範囲内であることを特徴とする請求項1〜のいずれか1項に記載の製造方法。 The process according to any one of claims 1 to 5, the center particle size of the white pigment, characterized in that in the range of 0.1 to 50 [mu] m. 前記樹脂組成物が、さらに無機充填剤を含むことを特徴とする請求項1〜のいずれか1項に記載の製造方法。 The said resin composition contains an inorganic filler further, The manufacturing method of any one of Claims 1-6 characterized by the above-mentioned. 前記無機充填剤と前記白色顔料との合計配合量が、前記樹脂組成物全体に対して、10体積%〜85体積%の範囲であることを特徴とする請求項に記載の製造方法。 The manufacturing method according to claim 7 , wherein the total amount of the inorganic filler and the white pigment is in the range of 10% by volume to 85% by volume with respect to the entire resin composition. 前記凹部の内周側面を形成する工程を、前記リードフレームを金型に配置した後、前記金型に前記熱硬化性光反射用樹脂組成物を注入するトランスファー成形によって実施することを特徴とする請求項1〜のいずれか1項に記載の製造方法。 The step of forming the inner peripheral side surface of the recess is performed by transfer molding in which the lead frame is placed in a mold and then the thermosetting light reflecting resin composition is injected into the mold. The manufacturing method of any one of Claims 1-8 . 前記光半導体素子を搭載する工程において、前記光半導体素子搭載用基板のリードフレームと前記光半導体素子とを、ボンディングワイヤ又ははんだバンプによって電気的に接続することを特徴とする請求項1〜のいずれか1項に記載の製造方法。 In the step of mounting the optical semiconductor element, and said optical semiconductor element and the lead frame of the optical element mounting substrate, by bonding wires or solder bumps according to claim 1-9, characterized in that electrical connection The manufacturing method of any one of Claims. 前記光半導体素子が、発光ダイオードであることを特徴とする請求項1〜10のいずれか1項に記載の製造方法。 The said optical semiconductor element is a light emitting diode, The manufacturing method of any one of Claims 1-10 characterized by the above-mentioned.
JP2013010094A 2007-07-05 2013-01-23 Manufacturing method of optical semiconductor device Active JP5672318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013010094A JP5672318B2 (en) 2007-07-05 2013-01-23 Manufacturing method of optical semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007177227 2007-07-05
JP2007177227 2007-07-05
JP2013010094A JP5672318B2 (en) 2007-07-05 2013-01-23 Manufacturing method of optical semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008122014A Division JP5421546B2 (en) 2007-07-05 2008-05-08 Thermosetting light reflecting resin composition, optical semiconductor element mounting substrate and optical semiconductor device using the resin composition

Publications (2)

Publication Number Publication Date
JP2013091809A JP2013091809A (en) 2013-05-16
JP5672318B2 true JP5672318B2 (en) 2015-02-18

Family

ID=40400872

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008122014A Expired - Fee Related JP5421546B2 (en) 2007-07-05 2008-05-08 Thermosetting light reflecting resin composition, optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
JP2013010094A Active JP5672318B2 (en) 2007-07-05 2013-01-23 Manufacturing method of optical semiconductor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008122014A Expired - Fee Related JP5421546B2 (en) 2007-07-05 2008-05-08 Thermosetting light reflecting resin composition, optical semiconductor element mounting substrate and optical semiconductor device using the resin composition

Country Status (1)

Country Link
JP (2) JP5421546B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5421546B2 (en) * 2007-07-05 2014-02-19 日立化成株式会社 Thermosetting light reflecting resin composition, optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
JP6133004B2 (en) * 2009-03-31 2017-05-24 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
US9178120B2 (en) 2010-04-02 2015-11-03 Kaneka Corporation Curable resin composition, curable resin composition tablet, molded body, semiconductor package, semiconductor component and light emitting diode
JP2012084810A (en) * 2010-10-14 2012-04-26 Toppan Printing Co Ltd Lead frame substrate for led element and light emitting element
JP5831424B2 (en) * 2012-10-17 2015-12-09 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
CN105122484A (en) * 2013-06-13 2015-12-02 日东电工株式会社 Epoxy resin composition for optical semiconductor reflectors, thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using said thermosetting resin composition for optical semiconductor devices, sealed optical semiconductor element, and optical semiconductor device
JP5670534B1 (en) * 2013-10-16 2015-02-18 台湾太陽油▲墨▼股▲分▼有限公司 White thermosetting resin composition, cured product thereof, and display member using the same
KR20160100943A (en) 2013-12-18 2016-08-24 닛뽄 가야쿠 가부시키가이샤 Thermosetting resin composition, method for manufacturing reflective member for optical semiconductor device using same, and optical semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060707B2 (en) * 2004-11-10 2012-10-31 日立化成工業株式会社 Thermosetting resin composition for light reflection
JP4634856B2 (en) * 2005-05-12 2011-02-16 利昌工業株式会社 White prepreg, white laminate, and metal foil-clad white laminate
JP5303097B2 (en) * 2005-10-07 2013-10-02 日立化成株式会社 Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.
CN102516712B (en) * 2006-11-15 2015-04-22 日立化成株式会社 Heat curable resin composition for light reflection, optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
JP2008144127A (en) * 2006-11-15 2008-06-26 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, photosemiconductor element-loading substrate using the same, photosemiconductor device, and manufacturing process for the articles
JP5421546B2 (en) * 2007-07-05 2014-02-19 日立化成株式会社 Thermosetting light reflecting resin composition, optical semiconductor element mounting substrate and optical semiconductor device using the resin composition

Also Published As

Publication number Publication date
JP5421546B2 (en) 2014-02-19
JP2009030019A (en) 2009-02-12
JP2013091809A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP6365606B2 (en) Thermosetting light reflecting resin composition, optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
JP6306652B2 (en) Thermosetting light reflecting resin composition and method for producing the same
JP5672318B2 (en) Manufacturing method of optical semiconductor device
KR101506361B1 (en) Thermosetting resin composition for light reflection, substrate made therefrom for photosemiconductor element mounting, process for producing the same, and photosemiconductor device
JP5176144B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor using the same, method for manufacturing the same, and optical semiconductor device
JP2009097005A (en) Thermosetting resin composition for light reflection, substrate made therefrom for photosemiconductor element mounting, method for producing the same, and photosemiconductor device
JP2008050573A (en) Thermosetting resin composition for reflecting light, substrate for loading optical semiconductor element using the same, method for producing the same and optical semiconductor device
JP2010254919A (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element using the same and manufacturing method thereof, and optical semiconductor device
JP2009246334A (en) Thermosetting resin composition for light reflection, substrate for loading photosemiconductor device and manufacturing method therefor, and photosemiconductor device
JP5239688B2 (en) Thermosetting light reflecting resin composition, optical semiconductor element mounting substrate using the same, method for producing the same, and optical semiconductor device
JP5401907B2 (en) Method for manufacturing thermosetting resin composition, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP2012162729A (en) Thermosetting resin composition for optical reflection, substrate for mounting optical semiconductor element using the same and production method therefor, and optical semiconductor device
JP2016028426A (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element arranged by use thereof, manufacturing method thereof, and optical semiconductor device
JP2017147454A (en) Method of manufacturing thermosetting resin composition for light reflection and method of manufacturing optical semiconductor element-mounting substrate
JP2014195081A (en) Thermosetting resin composition for optical reflection, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R151 Written notification of patent or utility model registration

Ref document number: 5672318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350