JP2008306151A - Epoxy resin composition for optical semiconductor, and substrate for loading optical semiconductor element using the same, and optical semiconductor device - Google Patents

Epoxy resin composition for optical semiconductor, and substrate for loading optical semiconductor element using the same, and optical semiconductor device Download PDF

Info

Publication number
JP2008306151A
JP2008306151A JP2007201915A JP2007201915A JP2008306151A JP 2008306151 A JP2008306151 A JP 2008306151A JP 2007201915 A JP2007201915 A JP 2007201915A JP 2007201915 A JP2007201915 A JP 2007201915A JP 2008306151 A JP2008306151 A JP 2008306151A
Authority
JP
Japan
Prior art keywords
optical semiconductor
epoxy resin
resin composition
semiconductor element
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007201915A
Other languages
Japanese (ja)
Inventor
Naoyuki Urasaki
直之 浦崎
Kanako Yuasa
加奈子 湯浅
Isato Kotani
勇人 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007201915A priority Critical patent/JP2008306151A/en
Publication of JP2008306151A publication Critical patent/JP2008306151A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition for an optical semiconductor that does not generate gases at combustion, is superior in light reflecting properties and anti-coloring properties with respect to heat and near-ultraviolet light, and is also superior in fire retardancy, and to provide a substrate for loading an optical semiconductor element using the composition and an optical semiconductor device. <P>SOLUTION: The epoxy resin composition for the optical semiconductor, comprising an epoxy resin (A), a curing agent (B) and a mineral filler (C) wherein the mineral filler (C) contains metal hydride of 10 wt.% or higher, with respect to the mineral filler (C). The substrate for loading the optical semiconductor element that uses this composition and the optical semiconductor device are also provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光半導体用エポキシ樹脂組成物、ならびにこれを用いた光半導体素子搭載用基板および光半導体装置に関する。   The present invention relates to an epoxy resin composition for optical semiconductors, an optical semiconductor element mounting substrate and an optical semiconductor device using the same.

光半導体素子を利用した光半導体装置として、図4に示すような構成のSMD(Surfacemounted device)タイプのLED(Light Emitting Diode)が知られている。このLEDは、通常、マウント基板リフレクターに形成されたカップ状部(凹部)に発光素子が配置され、さらに当該発光素子が配置されたカップ状部に蛍光体を含有する透明封止樹脂が充填されている。リフレクターは、発光素子から側方に放射された光をその表面で拡散反射して軸方向に分配し、これによって軸上強度を高めることを目的として使用されている。   As an optical semiconductor device using an optical semiconductor element, an SMD (Surface Mounted Device) type LED (Light Emitting Diode) configured as shown in FIG. 4 is known. In this LED, a light emitting element is usually arranged in a cup-shaped part (concave part) formed on a mount substrate reflector, and a transparent sealing resin containing a phosphor is filled in the cup-shaped part in which the light emitting element is arranged. ing. The reflector is used for the purpose of increasing the on-axis strength by diffusing and reflecting the light emitted from the light-emitting element to the side and distributing it in the axial direction.

ところで、上記リフレクター等を構成する光半導体装置のパッケージ材料には、難燃性の要求が無く難燃性の付与は義務付けられていなかった。一方、米国のUL規格の強化に表されるように、これらの光半導体装置に対する難燃化の要求が益々強まってきており、光半導体装置のパッケージ材料の難燃化への対応が望まれている。従来、光半導体装置に一般に用いられている樹脂組成物は、ガラス繊維を強化材として含有したアミド系の熱可塑性材料が使用されている。しかしながら、これらの樹脂材料は、難燃化されていないものが用いられている。これらの材料の難燃化手法としては、樹脂骨格に臭素を含有の添加型あるいは反応性難燃材、例えばヘキサブロモベンゼン、デカブロモビフェニル等に難燃助剤として三酸化アンチモンを樹脂と混合する方法やリンまたはリン酸エステルを添加混合する方法、あるいはホウ酸金属塩とシリコーン化合物を併用する方法などが開示されている(特許文献1〜4参照)。
特表2002−506905号公報 特開2004−224000号公報 特開平9−12853号公報 特開2004−115651号公報
By the way, the package material of the optical semiconductor device constituting the reflector or the like has no requirement for flame retardancy, and it has not been obliged to impart flame retardancy. On the other hand, as shown in the strengthening of UL standards in the United States, the demand for flame retardant for these optical semiconductor devices is increasing, and it is desired to cope with the flame retardant of the package material of optical semiconductor devices. Yes. Conventionally, amide-based thermoplastic materials containing glass fibers as reinforcing materials have been used for resin compositions generally used in optical semiconductor devices. However, those resin materials that are not flame retardant are used. As a flame retardant method for these materials, antimony trioxide is mixed with a resin as a flame retardant aid in an additive type or reactive flame retardant containing bromine in the resin skeleton, such as hexabromobenzene, decabromobiphenyl, or the like. A method, a method of adding and mixing phosphorus or phosphate ester, or a method of using a boric acid metal salt and a silicone compound in combination are disclosed (see Patent Documents 1 to 4).
Special table 2002-506905 gazette JP 2004-224000 A Japanese Patent Laid-Open No. 9-12853 JP 2004-115651 A

近年、環境問題に対する意識が高まってきており、難燃材として使用される種々の化合物に対しても問題が指摘されている。例えば、ハロゲン化ポリマ系難燃材は、燃焼時にハロゲン化ガスを発生することが指摘されている。また、難燃材としてアンチモン化合物を含有させた場合、アンチモンの毒性から樹脂材料の廃棄物処理の問題が憂慮されている。また、難燃材としてリン化合物を含有させた場合、埋め立て時にリン成分が土壌へ溶出することが一部で懸念されている。また、難燃材としてホウ酸金属化合物を用いた場合、分解開始温度が290℃付近となるため、300℃以上の融点を持つポリアミド系樹脂と併用すると成型時にボイドなど不具合が生じることがあった。   In recent years, awareness of environmental problems has increased, and problems have been pointed out with respect to various compounds used as flame retardants. For example, it has been pointed out that halogenated polymer flame retardants generate a halogenated gas during combustion. Further, when an antimony compound is contained as a flame retardant, there is a concern about the problem of waste disposal of resin materials due to the toxicity of antimony. Moreover, when a phosphorus compound is contained as a flame retardant, there is some concern that the phosphorus component will elute into the soil during landfill. In addition, when a metal borate compound is used as a flame retardant, the decomposition start temperature is around 290 ° C., and when used in combination with a polyamide-based resin having a melting point of 300 ° C. or higher, defects such as voids may occur during molding. .

上記を鑑みて、本発明は、燃焼時にガスの発生が無く、光反射特性および熱や近紫外光に対する耐着色性に優れ、なおかつ難燃性に優れた光半導体用エポキシ樹脂組成物、ならびにこれを用いた光半導体素子搭載用基板および光半導体装置を提供することを目的とする。   In view of the above, the present invention provides an epoxy resin composition for optical semiconductors that does not generate gas during combustion, is excellent in light reflection characteristics, coloring resistance to heat and near-ultraviolet light, and is excellent in flame retardancy. It is an object of the present invention to provide an optical semiconductor element mounting substrate and an optical semiconductor device using the above-mentioned.

本発明者らが鋭意検討を重ねた結果、ハロゲンやアンチモン等の従来の難燃材を用いない場合であっても、無機質充填材として金属水酸化物を一定量以上含有させることにより、エポキシ樹脂組成物の難燃性や耐着色性を向上させうることを見出し、本発明を完成するに至った。   As a result of intensive studies by the present inventors, an epoxy resin can be obtained by containing a certain amount or more of a metal hydroxide as an inorganic filler even when a conventional flame retardant such as halogen or antimony is not used. The present inventors have found that the flame retardancy and coloring resistance of the composition can be improved, and have completed the present invention.

すなわち、本発明は、以下(1)〜(13)に記載の事項をその特徴とするものである。   That is, the present invention is characterized by the following items (1) to (13).

(1)エポキシ樹脂(A)、硬化剤(B)、無機質充填材(C)を含有し、上記無機質充填材(C)として、金属水酸化物を該無機質充填材(C)に対して10重量%以上含有する光半導体用エポキシ樹脂組成物。 (1) An epoxy resin (A), a curing agent (B), and an inorganic filler (C) are contained, and as the inorganic filler (C), a metal hydroxide is 10 with respect to the inorganic filler (C). An epoxy resin composition for optical semiconductors containing at least wt%.

(2)上記金属水酸化物の、上記無機質充填材(C)に対する含有量が、10〜30重量%である上記(1)に記載の光半導体用エポキシ樹脂組成物。 (2) The epoxy resin composition for optical semiconductors according to (1), wherein the content of the metal hydroxide with respect to the inorganic filler (C) is 10 to 30% by weight.

(3)上記金属水酸化物が、水酸化アルミニウムおよび水酸化マグネシウムからなる群から選択される1種以上である上記(1)または(2)に記載の光半導体用エポキシ樹脂組成物。 (3) The epoxy resin composition for optical semiconductors according to (1) or (2), wherein the metal hydroxide is at least one selected from the group consisting of aluminum hydroxide and magnesium hydroxide.

(4)上記無機質充填材(C)の含有量が、エポキシ樹脂組成物中、80〜90重量%である上記(1)〜(3)のいずれかに記載の光半導体用エポキシ樹脂組成物。 (4) The epoxy resin composition for optical semiconductors according to any one of (1) to (3), wherein the content of the inorganic filler (C) is 80 to 90% by weight in the epoxy resin composition.

(5)上記無機質充填材(C)として、さらに白色顔料(D)を含有することを特徴とする上記(1)〜(4)のいずれかに記載の光半導体用エポキシ樹脂組成物。 (5) The epoxy resin composition for optical semiconductors according to any one of (1) to (4) above, which further contains a white pigment (D) as the inorganic filler (C).

(6)上記白色顔料(D)が、無機中空粒子、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化亜鉛、硫酸バリウム、炭酸マグネシウムおよび炭酸バリウムからなる群から選択される1種以上である上記(5)に記載の光半導体用エポキシ樹脂組成物。 (6) The above (5), wherein the white pigment (D) is at least one selected from the group consisting of inorganic hollow particles, aluminum oxide, magnesium oxide, titanium oxide, zinc oxide, barium sulfate, magnesium carbonate and barium carbonate. ) Epoxy resin composition for optical semiconductors.

(7)カップリング剤(E)をさらに含有する上記(1)〜(6)のいずれかに記載の光半導体用エポキシ樹脂組成物。 (7) The epoxy resin composition for optical semiconductors according to any one of (1) to (6), further including a coupling agent (E).

(8)上記カップリング剤(E)が、上記エポキシ樹脂(A)および上記硬化剤(B)の少なくとも一方と反応する官能基を有するシラン系カップリング剤である上記(7)に記載の光半導体用エポキシ樹脂組成物。 (8) The light according to (7), wherein the coupling agent (E) is a silane coupling agent having a functional group that reacts with at least one of the epoxy resin (A) and the curing agent (B). Epoxy resin composition for semiconductors.

(9)上記カップリング剤(E)が、エポキシシラン系カップリング剤である上記(7)に記載の光半導体用エポキシ樹脂組成物。 (9) The epoxy resin composition for optical semiconductors according to (7), wherein the coupling agent (E) is an epoxy silane coupling agent.

(10)熱硬化後の組成物の波長400nmにおける光反射率が80%以上であることを特徴とする上記(1)〜(9)のいずれかに記載の光半導体用エポキシ樹脂組成物。 (10) The epoxy resin composition for optical semiconductors according to any one of (1) to (9) above, wherein the light reflectance at a wavelength of 400 nm of the composition after thermosetting is 80% or more.

(11)上記(1)〜(10)のいずれかに記載の光半導体用エポキシ樹脂組成物を用いてなることを特徴とする光半導体素子搭載用基板。 (11) A substrate for mounting an optical semiconductor element, comprising the epoxy resin composition for optical semiconductors according to any one of (1) to (10) above.

(12)光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板であって、少なくとも上記凹部の内周側面が上記(1)〜(10)のいずれかに記載の光半導体用エポキシ樹脂組成物からなることを特徴とする光半導体素子搭載用基板。 (12) An optical semiconductor element mounting substrate in which one or more recesses to be an optical semiconductor element mounting region are formed, and at least an inner peripheral side surface of the recess is described in any one of (1) to (10). A substrate for mounting an optical semiconductor element, comprising an epoxy resin composition for an optical semiconductor.

(13)上記(12)に記載の光半導体素子搭載用基板と、
上記光半導体素子搭載用基板の凹部底面に搭載された光半導体素子と、
上記光半導体素子を覆うように上記凹部内に形成された蛍光体含有透明封止樹脂層と
を少なくとも備える光半導体装置。
(13) The optical semiconductor element mounting substrate according to (12),
An optical semiconductor element mounted on the bottom surface of the recess of the optical semiconductor element mounting substrate;
An optical semiconductor device comprising at least a phosphor-containing transparent sealing resin layer formed in the recess so as to cover the optical semiconductor element.

本発明により、燃焼時にガスの発生が無く、光反射特性および熱や近紫外光に対する耐着色性に優れ、なおかつ難燃性に優れた光半導体用エポキシ樹脂組成物、ならびにこれを用いた光半導体素子搭載用基板および光半導体装置を提供することが可能となる。   According to the present invention, there is no generation of gas at the time of combustion, an epoxy resin composition for optical semiconductors excellent in light reflection characteristics, coloring resistance against heat and near ultraviolet light, and excellent in flame retardancy, and an optical semiconductor using the same It is possible to provide an element mounting substrate and an optical semiconductor device.

本発明において用いるエポキシ樹脂(A)としては、電子部品封止用エポキシ樹脂成形材料で一般に使用されているものを用いることができ、それを例示すればフェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換ビスフェノール等のジグリシジルエーテル、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、脂環族エポキシ樹脂などが挙げられ、これらを適宜何種類でも併用することができる。また、これらのうち比較的着色のないものが好ましく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレートを挙げることができる。   As the epoxy resin (A) used in the present invention, those generally used in an epoxy resin molding material for sealing electronic parts can be used. For example, phenol novolac type epoxy resin, orthocresol novolak type epoxy Resins and other epoxidized novolak resins of phenols and aldehydes, diglycidyl ethers such as bisphenol A, bisphenol F, bisphenol S, alkyl-substituted bisphenol, polyamines such as diaminodiphenylmethane, isocyanuric acid, and the reaction of epichlorohydrin Examples include glycidylamine type epoxy resins obtained, linear aliphatic epoxy resins obtained by oxidizing olefinic bonds with peracids such as peracetic acid, alicyclic epoxy resins, etc. Door can be. Among these, those having relatively little color are preferable, and examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, diglycidyl isocyanurate, and triglycidyl isocyanurate.

本発明において用いる硬化剤(B)としては、エポキシ樹脂と反応するものであれば、特に制限なく用いることができるが、比較的着色のないものが好ましい。例えば、酸無水物硬化剤、イソシアヌル酸誘導体、フェノール系硬化剤などが挙げられる。酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、無水コハク酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸などが挙げられ、イソシアヌル酸誘導体としては、1,3,5−トリス(1−カルボキシメチル)イソシアヌレート、1,3,5−トリス(2−カルボキシエチル)イソシアヌレート、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレート、1,3−ビス(2−カルボキシエチル)イソシアヌレートなどが挙げられる。これらの硬化剤の中では、無水フタル酸、無水トリメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレートを用いることが好ましい。硬化剤は、その分子量が100〜400程度のものが好ましく、また、無色ないし淡黄色のものが好ましい。   As a hardening | curing agent (B) used in this invention, if it reacts with an epoxy resin, it can use without a restriction | limiting especially, However, The thing without a coloring is preferable. For example, an acid anhydride curing agent, an isocyanuric acid derivative, a phenolic curing agent, and the like can be given. Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride. Acid, dimethylglutaric anhydride, diethylglutaric anhydride, succinic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride and the like. Examples of isocyanuric acid derivatives include 1,3,5-tris (1-carboxyl Methyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5-tris (3-carboxypropyl) isocyanurate, 1,3-bis (2-carboxyethyl) isocyanurate Etc. Among these curing agents, phthalic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, glutaric anhydride, dimethylglutaric anhydride, anhydrous Diethyl glutaric acid and 1,3,5-tris (3-carboxypropyl) isocyanurate are preferably used. The curing agent preferably has a molecular weight of about 100 to 400, and is preferably colorless or light yellow.

また、(A)エポキシ樹脂と(B)硬化剤の配合比は、(A)エポキシ樹脂中のエポキシ基1当量に対して、当該エポキシ基と反応可能な(B)硬化剤中の活性基(酸無水物基や水酸基)が0.5〜1.0当量となるような割合であることが好ましく、0.6〜1.0当量となるような割合であることがより好ましい。上記活性基が0.5当量未満の場合には、エポキシ樹脂組成物の硬化速度が遅くなるとともに、得られる硬化体のガラス転移温度が低くなり、充分な弾性率が得られない場合があり、一方、上記活性基が1.0当量を超える場合には、硬化後の強度が減少する場合がある。   Moreover, the compounding ratio of (A) epoxy resin and (B) hardening | curing agent is the active group (B) hardening agent which can react with the said epoxy group with respect to 1 equivalent of epoxy groups in (A) epoxy resin ( The ratio is such that the acid anhydride group or hydroxyl group is 0.5 to 1.0 equivalent, and more preferably 0.6 to 1.0 equivalent. When the active group is less than 0.5 equivalent, the curing rate of the epoxy resin composition is slowed, the glass transition temperature of the resulting cured product is low, and sufficient elastic modulus may not be obtained, On the other hand, when the active group exceeds 1.0 equivalent, the strength after curing may decrease.

また、本発明の光半導体用エポキシ樹脂組成物は、硬化促進剤を含むことが好ましい。硬化促進剤としては、特に限定されるものではなく、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、トリ−2,4,6−ジメチルアミノメチルフェノールなどの3級アミン類、2−エチル−4メチルイミダゾール、2−メチルイミダゾールなどのイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート、テトラ−n−ブチルホスホニウム−テトラフルオロボレート、テトラ−n−ブチルホスホニウム−テトラフェニルボレートなどのリン化合物、4級アンモニウム塩、有機金属塩類、およびこれらの誘導体などが挙げられる。これらは単独で使用してもよく、あるいは、併用してもよい。これらの硬化促進剤の中では、3級アミン類、イミダゾール類、リン化合物を用いることが好ましい。   Moreover, it is preferable that the epoxy resin composition for optical semiconductors of this invention contains a hardening accelerator. The curing accelerator is not particularly limited, and examples thereof include 1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, tri-2,4,6-dimethylaminomethylphenol and the like. Tertiary amines, 2-ethyl-4methylimidazole, imidazoles such as 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o-diethyl phosphorodithioate And phosphorous compounds such as tetra-n-butylphosphonium-tetrafluoroborate and tetra-n-butylphosphonium-tetraphenylborate, quaternary ammonium salts, organometallic salts, and derivatives thereof. These may be used alone or in combination. Among these curing accelerators, it is preferable to use tertiary amines, imidazoles, and phosphorus compounds.

また、上記硬化促進剤の含有量は、エポキシ樹脂(A)100重量部に対して、0.01〜8重量部であることが好ましく、より好ましくは、0.1〜3重量部である。硬化促進剤の含有量が、0.01重量部未満では、十分な硬化促進効果を得られない場合があり、また、8重量部を超えると、得られる成形体に変色が見られる場合がある。   Moreover, it is preferable that it is 0.01-8 weight part with respect to 100 weight part of epoxy resins (A), More preferably, content of the said hardening accelerator is 0.1-3 weight part. If the content of the curing accelerator is less than 0.01 part by weight, a sufficient curing acceleration effect may not be obtained, and if it exceeds 8 parts by weight, discoloration may be seen in the resulting molded product. .

本発明において用いる無機質充填材(C)としては、特に限定されないが、例えば、シリカ、水酸化アルミニウム、および水酸化マグネシウムからなる群の中から選ばれる少なくとも1種以上を用いることができる。光反射特性、成型性、難燃性の点からシリカ、水酸化アルミニウム、水酸化マグネシウム、またはこれらの混合物を用いることが好ましい。また、難燃効果の観点からは、金属水酸化物を用いることが好ましく、水酸化アルミニウム、水酸化マグネシウムまたはこれらの混合物を用いることが特に好ましい。水酸化アルミニウム、水酸化マグネシウム、またはこれらの混合物は、白色で反射率に与える影響が無い点においても好ましい。なお、耐湿信頼性の観点から、水酸化アルミニウムおよび水酸化マグネシウムとしては、それぞれイオン性不純物の少ないものが好ましい。例えば、半導体封止剤の要求仕様を考慮すると、それら化合物中のNa化合物含有量は0.2重量%以下であることが好ましい。   The inorganic filler (C) used in the present invention is not particularly limited, and for example, at least one selected from the group consisting of silica, aluminum hydroxide, and magnesium hydroxide can be used. Silica, aluminum hydroxide, magnesium hydroxide, or a mixture thereof is preferably used in terms of light reflection characteristics, moldability, and flame retardancy. From the viewpoint of flame retardancy, it is preferable to use a metal hydroxide, and it is particularly preferable to use aluminum hydroxide, magnesium hydroxide or a mixture thereof. Aluminum hydroxide, magnesium hydroxide, or a mixture thereof is preferable in that it is white and does not affect the reflectance. From the viewpoint of moisture resistance reliability, aluminum hydroxide and magnesium hydroxide are preferably those having few ionic impurities, respectively. For example, considering the required specifications of the semiconductor encapsulant, the Na compound content in these compounds is preferably 0.2% by weight or less.

また、上記無機質充填材(C)の平均粒径は、特に限定されるものではないが、白色顔料(D)とのパッキングが効率良くなるように、1〜100μmの範囲であることが好ましい。また、水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物の平均粒径は、特に制限はないが、難燃性及び流動性の観点から0.1〜50μmの範囲であることが好ましい。   The average particle size of the inorganic filler (C) is not particularly limited, but is preferably in the range of 1 to 100 μm so that packing with the white pigment (D) is efficient. The average particle size of the metal hydroxide such as aluminum hydroxide or magnesium hydroxide is not particularly limited, but is preferably in the range of 0.1 to 50 μm from the viewpoint of flame retardancy and fluidity.

また、上記無機質充填材(C)の含有量は、エポキシ樹脂組成物中、80〜90重量%の範囲であることが好ましい。上記無機質充填材(C)の含有量が、80重量%未満であると樹脂硬化物の光反射特性が十分得られない傾向にあり、90重量%を超えると樹脂組成物の成型性が悪くなる傾向にあり、基板の作製が困難となる。また、上記金属水酸化物は、上記無機質充填材(C)に対して、10重量%以上含まれることが好ましく、10〜30重量%含まれることがより好ましい。上記金属水酸化物の含有量が無機質充填材(C)に対して10重量%未満では、当該金属水酸化物を配合することによる難燃性向上効果を十分に得ることができない傾向にあり、30重量%を超えると樹脂組成物の流動性や硬化性に悪影響を与えることがある。   Moreover, it is preferable that content of the said inorganic filler (C) is the range of 80 to 90 weight% in an epoxy resin composition. If the content of the inorganic filler (C) is less than 80% by weight, sufficient light reflection characteristics of the cured resin product tend not to be obtained, and if it exceeds 90% by weight, the moldability of the resin composition is deteriorated. This tends to make it difficult to produce a substrate. Moreover, it is preferable that the said metal hydroxide is contained 10weight% or more with respect to the said inorganic filler (C), and it is more preferable that 10-30 weight% is contained. If the content of the metal hydroxide is less than 10% by weight with respect to the inorganic filler (C), the flame retardancy improving effect by blending the metal hydroxide tends to be insufficient. If it exceeds 30% by weight, the flowability and curability of the resin composition may be adversely affected.

また、本発明の光半導体用エポキシ樹脂組成物は、上記無機充填剤(C)とは別個に、さらに、白色顔料(D)を含有してもよい。白色顔料(D)としては、特に限定されないが、例えば、無機中空粒子、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化亜鉛、硫酸バリウム、炭酸マグネシウムおよび炭酸バリウム、アルミナ、酸化アンチモン、酸化ジルコニウム等を用いることができる。上記無機中空粒子としては、例えば、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス、シラス等が挙げられる。また、白色顔料(D)の平均粒径は、0.1〜50μmの範囲にあることが好ましい。白色顔料(D)の平均粒径が0.1μm未満であると、白色顔料粒子が凝集しやすく分散性が悪くなる傾向にあり、50μmを超えると樹脂硬化物の反射特性が十分に得られなくなる。   Moreover, the epoxy resin composition for optical semiconductors of this invention may contain a white pigment (D) further separately from the said inorganic filler (C). The white pigment (D) is not particularly limited, and for example, inorganic hollow particles, aluminum oxide, magnesium oxide, titanium oxide, zinc oxide, barium sulfate, magnesium carbonate and barium carbonate, alumina, antimony oxide, zirconium oxide and the like are used. be able to. Examples of the inorganic hollow particles include sodium silicate glass, aluminum silicate glass, borosilicate soda glass, and shirasu. Moreover, it is preferable that the average particle diameter of a white pigment (D) exists in the range of 0.1-50 micrometers. If the average particle size of the white pigment (D) is less than 0.1 μm, the white pigment particles tend to aggregate and the dispersibility tends to deteriorate, and if it exceeds 50 μm, sufficient reflection characteristics of the cured resin cannot be obtained. .

また、本発明の光半導体用エポキシ樹脂組成物は、さらに、カップリング剤(E)を含有していもよい。カップリング剤(E)としては、特に限定されないが、エポキシシラン系、アミノシラン系、カチオニックシラン系、ビニルシラン系、アクリルシラン系、メルカプトシラン系及びこれらの複合系等のシラン系カップリング剤やチタネート系カップリング剤などを用いることができる。着色性の観点からは、一般にエポキシシラン系カップリング剤が優れている。エポキシシラン系カップリング剤としては、例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどが挙げられる。また、エポキシ樹脂(A)および硬化剤(B)の少なくとも一方と反応する官能基を有するシラン系カップリング剤を用いることも好ましい。また、カップリング剤(E)の配合量は、特に限定されないが、エポキシ樹脂組成物中、5重量%以下とすることが好ましい。   Moreover, the epoxy resin composition for optical semiconductors of this invention may contain the coupling agent (E) further. The coupling agent (E) is not particularly limited, but silane coupling agents and titanates such as epoxy silane, amino silane, cationic silane, vinyl silane, acrylic silane, mercapto silane, and composites thereof. A system coupling agent or the like can be used. From the viewpoint of colorability, epoxysilane coupling agents are generally excellent. Examples of the epoxy silane coupling agent include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropylmethyldimethoxy. Examples thereof include silane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. It is also preferable to use a silane coupling agent having a functional group that reacts with at least one of the epoxy resin (A) and the curing agent (B). Moreover, the compounding quantity of a coupling agent (E) is although it does not specifically limit, It is preferable to set it as 5 weight% or less in an epoxy resin composition.

また、本発明の樹脂組成物には、必要に応じて、酸化防止剤、離型剤、イオン補足剤等の添加剤を添加してもよい。   Moreover, you may add additives, such as antioxidant, a mold release agent, and an ion supplement agent, to the resin composition of this invention as needed.

以上のような成分を含有する本発明の光半導体用エポキシ樹脂組成物は、熱硬化前、室温(0〜30℃)において加圧成形(タブレット成形)可能であることが望ましく、また、熱硬化後の、波長350nm〜800nmにおける光反射率が80%以上であることが望まれる。上記光反射率が80%未満であると、光半導体装置の輝度向上に十分寄与できない傾向がある。より好ましい光反射率は90%以上である。なお、上記加圧成形は、例えば、室温において、5〜50MPa、1〜5秒程度の条件下で成形を行うことができればよい。また、加圧成形(タブレット成形)時に用いる金型は、特に限定されないが、例えば、セラミックス系材料やフッ素系樹脂材料などからなる臼と杵の一対または凹部を有する上金型と下金型の一対等で構成されるものを用いることが好ましい。また、タブレット着色の恐れがない白色の材料からなる金型を用いることが好ましい。   It is desirable that the epoxy resin composition for optical semiconductors of the present invention containing the components as described above can be pressure-molded (tablet molding) at room temperature (0 to 30 ° C.) before thermosetting. It is desired that the light reflectance at a wavelength of 350 nm to 800 nm later is 80% or more. If the light reflectance is less than 80%, there is a tendency that the light semiconductor device cannot sufficiently contribute to the improvement in luminance. A more preferable light reflectance is 90% or more. In addition, the said press molding should just be able to perform shaping | molding on the conditions of about 5-50 MPa and about 1-5 second at room temperature, for example. In addition, the mold used at the time of pressure molding (tablet molding) is not particularly limited. For example, an upper mold and a lower mold having a pair of a mortar and a pestle made of a ceramic material or a fluorine resin material or a concave portion are used. It is preferable to use what consists of a pair etc. Moreover, it is preferable to use the metal mold | die consisting of a white material which does not have a fear of tablet coloring.

また、本発明の光半導体用エポキシ樹脂組成物は、上記した各種成分を均一に分散混合することで得ることができ、その手段や条件等は特に限定されないが、一般的な手法として、所定配合量の成分をミキサー等によって十分均一に撹拌、混合した後、ミキシングロール、押出機、ニーダー、ロール、エクストルーダー等によって(溶融)混練し、さらに、冷却、粉砕する方法を挙げることができる。(溶融)混練の条件は、成分の種類や配合量により適宜決定すればよく、特に限定されないが、15〜100℃の範囲で5〜40分間(溶融)混練することが好ましく、20〜100℃の範囲で10〜30分間(溶融)混練することがより好ましい。(溶融)混練温度が15℃未満であると、各成分を(溶融)混練させることが困難であり、分散性も低下する傾向にあり、100℃よりも高温であると、樹脂組成物の高分子量化が進行し、樹脂組成物が硬化してしまう恐れがある。   Moreover, the epoxy resin composition for optical semiconductors of the present invention can be obtained by uniformly dispersing and mixing the various components described above, and means and conditions thereof are not particularly limited. An example is a method in which an amount of components are sufficiently uniformly stirred and mixed by a mixer or the like, then (melted) kneaded by a mixing roll, an extruder, a kneader, a roll, an extruder, or the like, and further cooled and pulverized. The conditions for (melting) kneading may be appropriately determined depending on the type and blending amount of the components, and are not particularly limited. It is more preferable to perform kneading (melting) for 10 to 30 minutes within the above range. When the (melting) kneading temperature is less than 15 ° C., it is difficult to (melt) kneading each component, and the dispersibility tends to decrease. When the temperature is higher than 100 ° C., the resin composition has a high temperature. There is a possibility that the molecular weight proceeds and the resin composition is cured.

本発明の光半導体素子搭載用基板は、本発明の光半導体用エポキシ樹脂組成物を用いてなるものであり、例えば、光半導体素子搭載領域となる凹部が1つ以上形成されており、少なくとも上記凹部の内周側面が本発明の光半導体用エポキシ樹脂組成物からなるものである。図1は、本発明の光半導体素子搭載用基板の一実施形態を示すものであり、(a)は斜視図、(b)は側面断面図である。   The substrate for mounting an optical semiconductor element of the present invention is formed using the epoxy resin composition for an optical semiconductor of the present invention. For example, one or more recesses to be an optical semiconductor element mounting region are formed, and at least the above-mentioned The inner peripheral side surface of the recess is made of the optical resin epoxy resin composition of the present invention. FIG. 1 shows one embodiment of a substrate for mounting an optical semiconductor element of the present invention, in which (a) is a perspective view and (b) is a side sectional view.

本発明の光半導体素子搭載用基板の製造方法は、特に限定されないが、例えば、本発明の光半導体用エポキシ樹脂組成物またはそのタブレット成形体をトランスファーモールドにより成型することで製造することができる。図2は、本発明の光半導体素子搭載用基板の製造方法を説明する概略図であり、図2(a)〜(c)はトランスファーモールド成型により基板を製造する場合の各工程に対応する。より具体的には、光半導体素子搭載用基板は、図2(a)に示すように、金属箔から打ち抜きやエッチング等の公知の方法により金属配線105を形成し、ついで、該金属配線105を所定形状の金型301に配置し(図2(b))、金型301の樹脂注入口300から本発明の光半導体用エポキシ樹脂組成物(タブレット成形体の溶融物)を注入し、これを好ましくは金型温度170〜200℃、成形圧力0.5〜20MPaで60〜120秒、アフターキュア温度120℃〜180℃で1〜3時間の条件で熱硬化させた後、金型301を外し、硬化した光半導体用エポキシ樹脂組成物からなるリフレクター103に周囲を囲まれてなる光半導体素子搭載領域となる凹部200の所定位置に、電気めっきによりNi/銀めっき104を施すことで製造することができる(図2(c))。   Although the manufacturing method of the optical semiconductor element mounting substrate of this invention is not specifically limited, For example, it can manufacture by shape | molding the epoxy resin composition for optical semiconductors of this invention, or its tablet molding by transfer molding. FIG. 2 is a schematic view for explaining a method for manufacturing a substrate for mounting an optical semiconductor element according to the present invention, and FIGS. 2A to 2C correspond to respective steps in manufacturing a substrate by transfer molding. More specifically, as shown in FIG. 2A, the substrate for mounting an optical semiconductor element is formed with a metal wiring 105 by a known method such as punching or etching from a metal foil, and then the metal wiring 105 is formed. It arrange | positions to the metal mold | die 301 of a predetermined shape (FIG.2 (b)), and inject | pours the epoxy resin composition for optical semiconductors (melt of a tablet molding) of this invention from the resin injection port 300 of the metal mold | die 301, Preferably, the mold 301 is removed after thermosetting under conditions of a mold temperature of 170 to 200 ° C., a molding pressure of 0.5 to 20 MPa for 60 to 120 seconds, and an after cure temperature of 120 ° C. to 180 ° C. for 1 to 3 hours. Then, Ni / silver plating 104 is applied by electroplating to a predetermined position of the concave portion 200 which is an optical semiconductor element mounting region surrounded by the reflector 103 made of the cured epoxy resin composition for optical semiconductors. It can be prepared in a (FIG. 2 (c)).

また、本発明の光半導体装置は、本発明の光半導体素子搭載用基板と、光半導体素子搭載用基板の凹部底面に搭載される光半導体素子と、光半導体素子を覆うように凹部内に形成される蛍光体含有透明封止樹脂層と、を少なくとも備えることを特徴とするものである。   The optical semiconductor device of the present invention is formed in the recess so as to cover the optical semiconductor element, the optical semiconductor element mounting substrate of the present invention, the optical semiconductor element mounted on the bottom surface of the recess of the optical semiconductor element mounting substrate. And a phosphor-containing transparent encapsulating resin layer.

図3(a)および図3(b)は、それぞれ本発明の光半導体装置の一実施形態を示す側面断面図である。より具体的には、図3に示した光半導体装置は、本発明の光半導体素子搭載用基板110の光半導体素子搭載領域となる凹部(図2中、参照符号200で示される)の底部所定位置に光半導体素子100が搭載され、該光半導体素子100と金属配線105とがボンディングワイヤ102(図3(a)を参照)やはんだバンプ107(図3(b)を参照)などの公知の方法により電気的に接続され、該光半導体素子100が公知の蛍光体106を含む透明封止樹脂101により覆われている。   FIG. 3A and FIG. 3B are side sectional views showing an embodiment of the optical semiconductor device of the present invention. More specifically, the optical semiconductor device shown in FIG. 3 has a predetermined bottom portion of a recess (indicated by reference numeral 200 in FIG. 2) which is an optical semiconductor element mounting region of the optical semiconductor element mounting substrate 110 of the present invention. An optical semiconductor element 100 is mounted at a position, and the optical semiconductor element 100 and the metal wiring 105 are connected to a known wire bonding wire 102 (see FIG. 3A) or solder bump 107 (see FIG. 3B). The optical semiconductor element 100 is electrically connected by a method, and is covered with a transparent sealing resin 101 containing a known phosphor 106.

以下、本発明を実施例により詳述するが、本発明の範囲はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example explains in full detail this invention, the scope of the present invention is not limited to these Examples.

<光半導体用エポキシ樹脂組成物の作製>
(実施例1〜9、比較例1)
表1に示した配合表に従って各材料を配合し、ミキサーによって十分混練した後、ミキシングロールにより所定条件で溶融混練し、冷却、粉砕を行い、実施例1〜9および比較例1の光半導体用エポキシ樹脂組成物を作製した。なお、表中、各成分の配合量の単位は「g」であり、「%」は「重量%」を示し、空欄は配合無しを表す。
<Preparation of epoxy resin composition for optical semiconductor>
(Examples 1-9, Comparative Example 1)
Each material was blended according to the blending table shown in Table 1, sufficiently kneaded by a mixer, then melt-kneaded under a predetermined condition by a mixing roll, cooled and ground, and used for optical semiconductors of Examples 1 to 9 and Comparative Example 1 An epoxy resin composition was prepared. In the table, the unit of the blending amount of each component is “g”, “%” represents “wt%”, and the blank represents no blending.

<光半導体用エポキシ樹脂組成物の評価>
各実施例及び各比較例のエポキシ樹脂組成物について、下記試験方法にしたがって硬化物の難燃性と光反射率を測定した。結果を表1に示す。
<Evaluation of epoxy resin composition for optical semiconductor>
About the epoxy resin composition of each Example and each comparative example, the flame retardance and light reflectance of the hardened | cured material were measured in accordance with the following test method. The results are shown in Table 1.

(難燃性)
各実施例及び各比較例のエポキシ樹脂組成物を、金型温度180℃、成形圧力6.9MPa、キュア時間90秒の条件でトランスファー成形し、厚み1/16インチ(大きさ12.5mm×128.0mm×厚み1.6mm)の試験片を作製し、UL−94V−0規格の方法に従って各試験片の難燃性を測定、評価した。
(Flame retardance)
The epoxy resin composition of each example and each comparative example was transfer molded under the conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds, and a thickness of 1/16 inch (size 12.5 mm × 128). 0.0 mm × thickness 1.6 mm) test pieces were prepared, and the flame retardancy of each test piece was measured and evaluated according to the method of UL-94V-0 standard.

(光反射率)
各実施例及び各比較例の樹脂組成物を、金型温度180℃、成形圧力6.9MPa、キュア時間90秒の条件でトランスファー成形した後、150℃で2時間ポストキュアすることにより、厚み1.0mmのテストピースを作製した。ついで、積分球型分光光度計V−570型(日本分光株式会社製)を用いて、波長400nmにおける各テストピースの光反射率を測定した。

Figure 2008306151
(Light reflectance)
The resin composition of each example and each comparative example was subjected to transfer molding under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds, and then post-cured at 150 ° C. for 2 hours to obtain a thickness of 1 A test piece of 0.0 mm was produced. Next, the light reflectance of each test piece at a wavelength of 400 nm was measured using an integrating sphere spectrophotometer V-570 type (manufactured by JASCO Corporation).
Figure 2008306151

注記:
(1)表1における各成分の詳細は以下の通りである。
トリグリシジルイソシアヌレート(日産化学工業株式会社製、商品名TEPIC−S、エポキシ当量100)
水素添加フタル酸無水物(新日本理化株式会社製、商品名リカシッドHH)
テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート(日本化学工業株式会社製、商品名ヒシコーリンPX−4ET)
エポキシシラン(東レダウコーニング社製、商品名Z−6040)
シリカ(電気化学工業株式会社製、商品名FB−301、平均粒径5.8μm)
中空粒子(3M社製、商品名スコッチライトS60HS、平均粒径27μm)
アルミナ(株式会社アドマテックス製、商品名アドマファインAO−802、平均粒径0.6μm)
(2)着色性に関するYI(黄変度)は、数値が小さいほど変色が少ないことを示す。
Note:
(1) Details of each component in Table 1 are as follows.
Triglycidyl isocyanurate (manufactured by Nissan Chemical Industries, Ltd., trade name TEPIC-S, epoxy equivalent 100)
Hydrogenated phthalic anhydride (made by Shin Nippon Rika Co., Ltd., trade name Ricacid HH)
Tetra-n-butylphosphonium-o, o-diethyl phosphorodithioate (manufactured by Nippon Chemical Industry Co., Ltd., trade name Hishicolin PX-4ET)
Epoxy silane (trade name Z-6040, manufactured by Toray Dow Corning)
Silica (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name FB-301, average particle size 5.8 μm)
Hollow particles (made by 3M, trade name Scotchlite S60HS, average particle size 27 μm)
Alumina (manufactured by Admatechs Co., Ltd., trade name Admafine AO-802, average particle size 0.6 μm)
(2) YI (degree of yellowing) related to colorability indicates that the smaller the value, the less the color change.

表1に示すように、実施例の光半導体用エポキシ樹脂組成物は、その硬化物の難燃性および光反射率が優れていることが分かる。   As shown in Table 1, it can be seen that the epoxy resin compositions for optical semiconductors of the examples are excellent in flame retardancy and light reflectance of the cured product.

(成型性)
トランスファー成形用金型にリードフレームを配置した後、当該金型内に各実施例及び各比較例の樹脂組成物を注入し、金型温度180℃、成形圧力6.9MPa、キュア時間90秒の条件でトランスファー成形し、図1に示すような光半導体素子搭載領域となる凹部を有する光半導体素子搭載用基板(光半導体パッケージ)を作製したが、作製過程および得られた基板に特に不具合は見られなかった。
(Moldability)
After placing the lead frame on the transfer mold, the resin compositions of the examples and comparative examples were injected into the mold, and the mold temperature was 180 ° C., the molding pressure was 6.9 MPa, and the curing time was 90 seconds. An optical semiconductor element mounting substrate (optical semiconductor package) having a concave portion to be an optical semiconductor element mounting region as shown in FIG. 1 was manufactured under conditions of transfer molding, but there were no particular problems with the manufacturing process and the obtained substrate. I couldn't.

本発明の光半導体素子搭載用基板の一実施形態を示す図であり、(a)は斜視図、(b)は側面断面図である。It is a figure which shows one Embodiment of the board | substrate for optical semiconductor element mounting of this invention, (a) is a perspective view, (b) is side sectional drawing. 本発明の光半導体素子搭載用基板の製造方法を説明する概略図であり、(a)〜(c)はトランスファーモールド成型により基板を製造する場合の各工程に対応する。It is the schematic explaining the manufacturing method of the board | substrate for optical semiconductor element mounting of this invention, (a)-(c) respond | corresponds to each process in the case of manufacturing a board | substrate by transfer mold molding. 本発明の光半導体装置の一実施形態を示す図であり、(a)および(b)はそれぞれ装置の構造を模式的に示す側面断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows one Embodiment of the optical semiconductor device of this invention, (a) And (b) is side sectional drawing which shows the structure of an apparatus typically, respectively. 一般的なSMDタイプのLED(光半導体装置)を示す側面断面図である。It is side surface sectional drawing which shows a general SMD type LED (optical semiconductor device).

符号の説明Explanation of symbols

100・・・・・光半導体素子(LED素子)
101・・・・・透明封止樹脂
102・・・・・ボンディングワイヤ
103・・・・・樹脂組成物からなるリフレクター
104・・・・・Ni/Agめっき
105・・・・・金属配線
106・・・・・蛍光体
107・・・・・はんだバンプ
110・・・・・光半導体素子搭載用基板
200・・・・・光半導体素子搭載領域となる凹部
300・・・・・樹脂注入口
301・・・・・トランスファーモールド用金型
400・・・・・LED素子
401・・・・・ボンディングワイヤ
402・・・・・透明封止樹脂
403・・・・・リフレクター
404・・・・・リード
405・・・・・蛍光体
406・・・・・ダイボンド材
100 ... Optical semiconductor element (LED element)
DESCRIPTION OF SYMBOLS 101 ... Transparent sealing resin 102 ... Bonding wire 103 ... Reflector 104 which consists of resin composition ... Ni / Ag plating 105 ... Metal wiring 106- ... Phosphor 107... Solder bump 110... Optical semiconductor element mounting substrate 200... Recessed portion 300 serving as an optical semiconductor element mounting region. Transfer mold 400 LED element 401 Bonding wire 402 Transparent sealing resin 403 Reflector 404 Lead 405... Phosphor 406... Die bond material

Claims (13)

エポキシ樹脂(A)、硬化剤(B)、無機質充填材(C)を含有し、前記無機質充填材(C)として、金属水酸化物を該無機質充填材(C)に対して10重量%以上含有する光半導体用エポキシ樹脂組成物。   An epoxy resin (A), a curing agent (B), and an inorganic filler (C) are contained. As the inorganic filler (C), a metal hydroxide is 10% by weight or more based on the inorganic filler (C). The epoxy resin composition for optical semiconductors to contain. 前記金属水酸化物の、前記無機質充填材(C)に対する含有量が、10〜30重量%である請求項1に記載の光半導体用エポキシ樹脂組成物。   2. The epoxy resin composition for an optical semiconductor according to claim 1, wherein a content of the metal hydroxide with respect to the inorganic filler (C) is 10 to 30% by weight. 前記金属水酸化物が、水酸化アルミニウムおよび水酸化マグネシウムからなる群から選択される1種以上である請求項1または2に記載の光半導体用エポキシ樹脂組成物。   The epoxy resin composition for optical semiconductors according to claim 1 or 2, wherein the metal hydroxide is one or more selected from the group consisting of aluminum hydroxide and magnesium hydroxide. 前記無機質充填材(C)の含有量が、エポキシ樹脂組成物中、80〜90重量%である請求項1〜3のいずれかに記載の光半導体用エポキシ樹脂組成物。   Content of the said inorganic filler (C) is 80 to 90 weight% in an epoxy resin composition, The epoxy resin composition for optical semiconductors in any one of Claims 1-3. 前記無機質充填材(C)として、さらに白色顔料(D)を含有することを特徴とする請求項1〜4のいずれかに記載の光半導体用エポキシ樹脂組成物。   The epoxy resin composition for optical semiconductors according to any one of claims 1 to 4, further comprising a white pigment (D) as the inorganic filler (C). 前記白色顔料(D)が、無機中空粒子、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化亜鉛、硫酸バリウム、炭酸マグネシウムおよび炭酸バリウムからなる群から選択される1種以上である請求項5に記載の光半導体用エポキシ樹脂組成物。   6. The white pigment (D) according to claim 5, wherein the white pigment (D) is at least one selected from the group consisting of inorganic hollow particles, aluminum oxide, magnesium oxide, titanium oxide, zinc oxide, barium sulfate, magnesium carbonate and barium carbonate. Epoxy resin composition for optical semiconductors. カップリング剤(E)をさらに含有する請求項1〜6のいずれかに記載の光半導体用エポキシ樹脂組成物。   The epoxy resin composition for optical semiconductors according to any one of claims 1 to 6, further comprising a coupling agent (E). 前記カップリング剤(E)が、前記エポキシ樹脂(A)および前記硬化剤(B)の少なくとも一方と反応する官能基を有するシラン系カップリング剤である請求項7に記載の光半導体用エポキシ樹脂組成物。   The epoxy resin for optical semiconductors according to claim 7, wherein the coupling agent (E) is a silane coupling agent having a functional group that reacts with at least one of the epoxy resin (A) and the curing agent (B). Composition. 前記カップリング剤(E)が、エポキシシラン系カップリング剤である請求項7に記載の光半導体用エポキシ樹脂組成物。   The epoxy resin composition for an optical semiconductor according to claim 7, wherein the coupling agent (E) is an epoxy silane coupling agent. 熱硬化後の組成物の波長400nmにおける光反射率が80%以上であることを特徴とする請求項1〜9のいずれかに記載の光半導体用エポキシ樹脂組成物。   The epoxy resin composition for optical semiconductors according to any one of claims 1 to 9, wherein a light reflectance at a wavelength of 400 nm of the composition after thermosetting is 80% or more. 請求項1〜10のいずれかに記載の光半導体用エポキシ樹脂組成物を用いてなることを特徴とする光半導体素子搭載用基板。   A substrate for mounting an optical semiconductor element, comprising the epoxy resin composition for an optical semiconductor according to any one of claims 1 to 10. 光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板であって、少なくとも前記凹部の内周側面が請求項1〜10のいずれかに記載の光半導体用エポキシ樹脂組成物からなることを特徴とする光半導体素子搭載用基板。   11. An optical semiconductor element mounting substrate in which at least one recess serving as an optical semiconductor element mounting region is formed, and at least an inner peripheral side surface of the recess is an epoxy resin for an optical semiconductor according to claim 1 A substrate for mounting an optical semiconductor element, comprising the composition. 請求項12に記載の光半導体素子搭載用基板と、
前記光半導体素子搭載用基板の凹部底面に搭載された光半導体素子と、
前記光半導体素子を覆うように前記凹部内に形成された蛍光体含有透明封止樹脂層と
を少なくとも備える光半導体装置。
The substrate for mounting an optical semiconductor element according to claim 12,
An optical semiconductor element mounted on the bottom of the recess of the optical semiconductor element mounting substrate;
An optical semiconductor device comprising at least a phosphor-containing transparent sealing resin layer formed in the recess so as to cover the optical semiconductor element.
JP2007201915A 2007-05-09 2007-08-02 Epoxy resin composition for optical semiconductor, and substrate for loading optical semiconductor element using the same, and optical semiconductor device Pending JP2008306151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007201915A JP2008306151A (en) 2007-05-09 2007-08-02 Epoxy resin composition for optical semiconductor, and substrate for loading optical semiconductor element using the same, and optical semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007124437 2007-05-09
JP2007201915A JP2008306151A (en) 2007-05-09 2007-08-02 Epoxy resin composition for optical semiconductor, and substrate for loading optical semiconductor element using the same, and optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2008306151A true JP2008306151A (en) 2008-12-18

Family

ID=40234560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007201915A Pending JP2008306151A (en) 2007-05-09 2007-08-02 Epoxy resin composition for optical semiconductor, and substrate for loading optical semiconductor element using the same, and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2008306151A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177626A (en) * 2009-02-02 2010-08-12 Denki Kagaku Kogyo Kk Circuit board
JP2010235753A (en) * 2009-03-31 2010-10-21 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and method of producing the substrate, and optical semiconductor device
JP2010235756A (en) * 2009-03-31 2010-10-21 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and method of producing the substrate, and optical semiconductor device
JP2011009519A (en) * 2009-06-26 2011-01-13 Hitachi Chem Co Ltd Optical semiconductor device and method for manufacturing the optical semiconductor device
JP2011060819A (en) * 2009-09-07 2011-03-24 Nitto Denko Corp Resin composition for optical semiconductor element housing package, and optical semiconductor light emitting device obtained using the same
JP2011129901A (en) * 2009-11-19 2011-06-30 Mitsubishi Chemicals Corp Method of manufacturing semiconductor light emitting device
WO2012101889A1 (en) * 2011-01-27 2012-08-02 株式会社タムラ製作所 Curable resin composition
JP2013032539A (en) * 2012-10-17 2013-02-14 Hitachi Chemical Co Ltd Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and method of producing the substrate, and optical semiconductor device
JP2013526047A (en) * 2010-04-30 2013-06-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic device and method of manufacturing optoelectronic device
JP2013135119A (en) * 2011-12-27 2013-07-08 Kaneka Corp Resin molding for surface-mount light-emitting device and light-emitting divice using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241483A (en) * 1996-03-13 1997-09-16 Toray Ind Inc Epoxy resin composition
JPH10152547A (en) * 1996-11-21 1998-06-09 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor
JP2004175842A (en) * 2002-11-25 2004-06-24 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2005281623A (en) * 2004-03-30 2005-10-13 Kyocera Chemical Corp Epoxy resin composition and semiconductor device
JP2006140207A (en) * 2004-11-10 2006-06-01 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, optical semiconductor loading substrate using the same, its manufacturing method and optical semiconductor device
JP2006324307A (en) * 2005-05-17 2006-11-30 Hitachi Chem Co Ltd Prepreg for printed wiring board and metal-clad laminated plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241483A (en) * 1996-03-13 1997-09-16 Toray Ind Inc Epoxy resin composition
JPH10152547A (en) * 1996-11-21 1998-06-09 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor
JP2004175842A (en) * 2002-11-25 2004-06-24 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2005281623A (en) * 2004-03-30 2005-10-13 Kyocera Chemical Corp Epoxy resin composition and semiconductor device
JP2006140207A (en) * 2004-11-10 2006-06-01 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, optical semiconductor loading substrate using the same, its manufacturing method and optical semiconductor device
JP2006324307A (en) * 2005-05-17 2006-11-30 Hitachi Chem Co Ltd Prepreg for printed wiring board and metal-clad laminated plate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177626A (en) * 2009-02-02 2010-08-12 Denki Kagaku Kogyo Kk Circuit board
JP2010235753A (en) * 2009-03-31 2010-10-21 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and method of producing the substrate, and optical semiconductor device
JP2010235756A (en) * 2009-03-31 2010-10-21 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and method of producing the substrate, and optical semiconductor device
JP2011009519A (en) * 2009-06-26 2011-01-13 Hitachi Chem Co Ltd Optical semiconductor device and method for manufacturing the optical semiconductor device
JP2011060819A (en) * 2009-09-07 2011-03-24 Nitto Denko Corp Resin composition for optical semiconductor element housing package, and optical semiconductor light emitting device obtained using the same
US8664685B2 (en) 2009-09-07 2014-03-04 Nitto Denko Corporation Resin composition for optical semiconductor element housing package, and optical semiconductor light-emitting device obtained using the same
JP2011129901A (en) * 2009-11-19 2011-06-30 Mitsubishi Chemicals Corp Method of manufacturing semiconductor light emitting device
JP2013526047A (en) * 2010-04-30 2013-06-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic device and method of manufacturing optoelectronic device
US9293671B2 (en) 2010-04-30 2016-03-22 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
JP2012153830A (en) * 2011-01-27 2012-08-16 Tamura Seisakusho Co Ltd Curable resin composition
WO2012101889A1 (en) * 2011-01-27 2012-08-02 株式会社タムラ製作所 Curable resin composition
JP2013135119A (en) * 2011-12-27 2013-07-08 Kaneka Corp Resin molding for surface-mount light-emitting device and light-emitting divice using the same
JP2013032539A (en) * 2012-10-17 2013-02-14 Hitachi Chemical Co Ltd Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and method of producing the substrate, and optical semiconductor device

Similar Documents

Publication Publication Date Title
JP5303097B2 (en) Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.
JP6306652B2 (en) Thermosetting light reflecting resin composition and method for producing the same
JP5298468B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP2008306151A (en) Epoxy resin composition for optical semiconductor, and substrate for loading optical semiconductor element using the same, and optical semiconductor device
KR101308173B1 (en) Heat curable resin composition for light reflection, process for producing the resin composition, and optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
JP5060707B2 (en) Thermosetting resin composition for light reflection
JP2007297601A (en) Thermosetting resin composition for light reflection, substrate for loading photosemiconductor device using the same, method for producing the same, and photosemiconductor device
JP5233186B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP2009246334A (en) Thermosetting resin composition for light reflection, substrate for loading photosemiconductor device and manufacturing method therefor, and photosemiconductor device
JP6133004B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP5967135B2 (en) Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.
JP5775408B2 (en) White curable material for optical semiconductor device, method for producing white curable material for optical semiconductor device, molded article for optical semiconductor device, and optical semiconductor device
JP6191705B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP6038236B2 (en) White curable material for optical semiconductor device and method for producing white curable material for optical semiconductor device
JP6209928B2 (en) Optical semiconductor device, substrate for mounting optical semiconductor element, and thermosetting resin composition for light reflection
JP7459878B2 (en) Light-reflecting thermosetting resin composition, optical semiconductor element mounting substrate, and optical semiconductor device
JP2012178567A (en) Thermosetting resin composition for reflecting light, substrate for mounting optical semiconductor element using the same and method for manufacturing the same, and optical semiconductor device
JP5831424B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP6740997B2 (en) Substrate for mounting optical semiconductor element and optical semiconductor device
JP6337996B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP2009242772A (en) Method for producing thermosetting resin composition, substrate for mounting optical semiconductor element mounting substrate, method for producing the substrate, and optical semiconductor device
JP2024045302A (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor elements, and optical semiconductor devices
TW202307059A (en) Heat-curable resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211