WO2012101889A1 - Curable resin composition - Google Patents

Curable resin composition Download PDF

Info

Publication number
WO2012101889A1
WO2012101889A1 PCT/JP2011/075811 JP2011075811W WO2012101889A1 WO 2012101889 A1 WO2012101889 A1 WO 2012101889A1 JP 2011075811 W JP2011075811 W JP 2011075811W WO 2012101889 A1 WO2012101889 A1 WO 2012101889A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
resin composition
acid
light
reflectance
Prior art date
Application number
PCT/JP2011/075811
Other languages
French (fr)
Japanese (ja)
Inventor
俊之 飯島
清田 達也
Original Assignee
株式会社タムラ製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムラ製作所 filed Critical 株式会社タムラ製作所
Publication of WO2012101889A1 publication Critical patent/WO2012101889A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2054Light-reflecting surface, e.g. conductors, substrates, coatings, dielectrics

Definitions

  • the present invention relates to a curable resin composition having an excellent reflectance, particularly a curable resin composition useful as a solder resist film for a circuit board such as a printed wiring board or a reflective film for a reflective sheet, and the curable resin composition.
  • the present invention relates to a printed wiring board having a cured product and a reflection sheet.
  • the printed wiring board is used for forming a conductor circuit pattern on a substrate and soldering and mounting an electronic component on the soldering land of the pattern.
  • the circuit portion excluding the soldering land is covered with a solder resist film as a permanent protective film. This prevents solder from adhering to unnecessary parts when soldering electronic components to a printed wiring board, and prevents circuit conductors from being directly exposed to air and being corroded by oxidation or humidity. To do.
  • the printed wiring board is also used as a substrate for mounting a semiconductor light emitting element such as a light emitting diode element (LED).
  • a semiconductor light emitting element such as a light emitting diode element (LED).
  • LED light emitting diode element
  • a function of improving the reflectance of visible light emitted from the semiconductor light emitting element is provided by blending a white pigment into the solder resist film formed on the mounting surface.
  • the white solder resist film has a problem that the light reflectance is lowered due to discoloration caused by high temperature or light irradiation. Therefore, a solder resist material that is difficult to discolor even when exposed to high temperature conditions or light irradiation and that can suppress a decrease in reflectance has been proposed (Patent Document 1).
  • a printed wiring board having a function of improving the reflectance of visible light emitted from a semiconductor light emitting element using a white resin composition containing a thermosetting resin and a white pigment has been proposed (patent) Reference 2).
  • This printed wiring board has a laminated structure including a base material, a white resin composition layer, and a copper foil.
  • the solder resist film is required to have a function capable of preventing a decrease in reflectance of light in the wavelength band even when exposed to light in the wavelength band.
  • the wavelength band from the short wavelength side of the visible light region to the ultraviolet light region (for example, the wavelength of 300 to 450 nm).
  • the wavelength band from the short wavelength side of the visible light region to the ultraviolet light region (for example, the wavelength of 300 to 450 nm).
  • the present invention has a high reflectance for light in the wavelength band from the short wavelength side of the visible light region to the ultraviolet light region, and even when exposed to light in the wavelength band, It aims at providing the curable resin composition which can prevent the reflectance fall of light.
  • An aspect of the present invention contains (A) a curable resin and (B) a powder filler containing at least two inorganic compounds selected from the group consisting of zirconium oxide, aluminum oxide, barium carbonate, and silicon dioxide. It is a curable resin composition characterized by doing.
  • the powder filler containing at least two kinds of inorganic compounds selected from the group consisting of zirconium oxide, aluminum oxide, barium carbonate and silicon dioxide is a white pigment, and by adding this powder filler, the curable resin composition and The cured product becomes white.
  • the curable resin is a thermosetting and / or photocurable resin.
  • An aspect of the present invention is a curable resin composition in which the powder filler (B) is fired.
  • An aspect of the present invention is a curable resin composition wherein the powder filler (B) further contains titanium oxide.
  • the powder filler in addition to at least two inorganic compounds selected from the group consisting of zirconium oxide, aluminum oxide, barium carbonate, and silicon dioxide, the powder filler also contains titanium oxide powder that is a white pigment.
  • An aspect of the present invention is a curable resin composition characterized in that the (B) powder filler contains 150 to 700 parts by mass with respect to 100 parts by mass of the (A) curable resin.
  • An aspect of the present invention is a curable resin composition wherein the (A) curable resin is (A-1) a compound having two or more unsaturated groups in one molecule.
  • An aspect of the present invention is a curable resin composition further comprising (C) a compound having at least one amino group or imino group in one molecule.
  • An embodiment of the present invention is a curable resin composition further comprising (D) a photopolymerization initiator.
  • a photopolymerization initiator is blended.
  • An aspect of the present invention is a printed wiring board having a cured film of the curable resin composition.
  • the aspect of this invention is a reflective sheet characterized by having the film
  • the curable resin composition of the present invention by containing a powder filler containing at least two inorganic compounds selected from the group consisting of zirconium oxide, aluminum oxide, barium carbonate and silicon dioxide, a visible light region can be obtained. Even when exposed to light in a wavelength band from the short wavelength side to the ultraviolet light region, a cured product capable of suppressing a decrease in reflectance of light in the wavelength band can be obtained. Therefore, the quality stability of the cured product is improved.
  • the reflectivity of the cured product after being exposed to light in the wavelength band from the short wavelength side of the visible light region to the ultraviolet light region is any one of zirconium oxide, aluminum oxide, barium carbonate, or silicon dioxide. It is possible to maintain the same level of reflectance as the above-described reflectance.
  • the reflectance after being exposed to light on the short wavelength side in the visible light region is not impaired, and after being exposed to light in the ultraviolet region. A decrease in reflectance can be further suppressed.
  • titanium oxide not only the light on the short wavelength side in the ultraviolet light region and the visible light region, but also the reduction in reflectance after being exposed to the light in the entire visible light region can be suppressed. Can do.
  • the powder filler is blended in an amount of 150 to 700 parts by mass with respect to 100 parts by mass of the curable resin, so that the discoloration resistance and the coating property are not impaired, and from the short wavelength side in the visible light region. It is possible to suppress a decrease in reflectivity after exposure to light in the wavelength band over the ultraviolet region.
  • the curable resin contains a curable compound having two or more unsaturated groups in one molecule and a compound having at least one amino group or imino group in one molecule.
  • the speed of the polymerization reaction at the time of curing can be increased to the same extent as the speed of the polymerization reaction when the photopolymerization initiator is added and photocured.
  • rate of the polymerization reaction at the time of thermosetting improves, it does not need to harden
  • photocuring with a fast polymerization reaction and a short curing time is possible by blending a photopolymerization initiator.
  • the cured film which can prevent the reflectance fall of the light of this wavelength band can be formed on a printed wiring board even if it is exposed to the light of the wavelength band from the short wavelength side of a visible light region to an ultraviolet light region.
  • the curable resin composition of the present invention is a powder filler comprising (A) a curable resin and (B) at least two inorganic compounds selected from the group consisting of zirconium oxide, aluminum oxide, barium carbonate and silicon dioxide. And each of the above components is as follows.
  • thermosetting resin that is cured by heating
  • photosensitive resin that is cured by ultraviolet rays
  • Examples of the curable resin include (A-1) a compound having two or more unsaturated groups in one molecule.
  • a compound having two or more unsaturated groups in one molecule includes a compound not containing a carboxyl group having two or more ethylenically unsaturated groups in the molecule, and a carboxyl having two or more ethylenically unsaturated groups in the molecule.
  • Examples thereof include a group-containing compound.
  • Examples of the compound not containing a carboxyl group include a reaction product of an alicyclic epoxy resin and a radically polymerizable unsaturated monocarboxylic acid.
  • the carboxyl group-containing compound is reacted with, for example, a reaction product of an alicyclic epoxy resin and a radical polymerizable unsaturated monocarboxylic acid with a saturated or unsaturated polybasic acid or polybasic acid anhydride. There is something that was obtained.
  • the photopolymerization initiator is not included in the curable resin composition, that is, when the curable resin composition is heat-cured without being exposed, from the viewpoint of improving the reactivity of the curable resin composition, as described above.
  • the carboxyl group of the carboxyl group-containing compound obtained by the reaction is further reacted with a glycidyl compound having one or more radically polymerizable unsaturated groups and an epoxy group, and two or more unsaturated groups in one molecule. It is good also as a compound which has. This is because the radically polymerizable unsaturated group is bonded to the side chain of the carboxyl group-containing compound skeleton by the reaction of the glycidyl compound, thereby increasing the degree of unsaturation and improving the reactivity.
  • the alicyclic epoxy resin is a resin having an alicyclic skeleton, and the skeleton is an epoxy resin formed by a chain of aliphatic cyclic compounds.
  • the epoxy equivalent is not particularly limited, and is, for example, 1000 or less, preferably 100 to 500.
  • Examples of the alicyclic skeleton epoxy resin include “EHPE-3150” (1,2-epoxy-4- (2-oxiranyl) of 2,2-bis (hydroxymethyl) -1-butanol) manufactured by Daicel Chemical Industries, Ltd. Cyclohexene adduct).
  • epoxy resins When these epoxy resins are reacted with radically polymerizable unsaturated monocarboxylic acid, the epoxy group is cleaved by the reaction of the epoxy group and the carboxyl group to form a hydroxyl group and an ester bond.
  • the radically polymerizable unsaturated monocarboxylic acid to be used is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, and at least one of acrylic acid and methacrylic acid is preferable, and acrylic acid is particularly preferable. .
  • the reaction method between the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid is not particularly limited, and for example, the epoxy resin and acrylic acid can be reacted by heating in an appropriate diluent.
  • the diluent include ketones such as methyl ethyl ketone and cyclohexanone, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, isopropanol and cyclohexanol, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, Petroleum solvents such as petroleum ether and petroleum naphtha, cellosolves such as cellosolve and butylcellosolve, carbitols such as carbitol and butylcarbitol, ethyl acetate, butyl acetate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, buty
  • the reaction between the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid is preferably carried out in a heated state, and the reaction temperature is particularly preferably from 80 to 140 ° C. If the reaction temperature exceeds 140 ° C., the radically polymerizable unsaturated monocarboxylic acid may undergo thermal polymerization and may be difficult to synthesize. If the reaction temperature is less than 80 ° C., the reaction rate becomes slow and the production efficiency decreases. .
  • the blending amount of the diluent is preferably 20 to 50% with respect to the total weight of the reaction system. Without isolation of the reaction product of the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid, it can be subjected to the reaction with the following polybasic acids as necessary in the form of a diluent solution.
  • the unsaturated monocarboxylic oxide epoxy resin which is a reaction product of the epoxy resin and the radical polymerizable unsaturated monocarboxylic acid
  • the polybasic acid or its anhydride is reacted.
  • the polybasic acid or polybasic acid anhydride reacts with a hydroxyl group generated by the reaction between the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid to give the curable resin a free carboxyl group.
  • the polybasic acid or its anhydride is not particularly limited, and either saturated or unsaturated can be used.
  • the polybasic acid include succinic acid, maleic acid, adipic acid, citric acid, phthalic acid, tetrahydrophthalic acid, 3-methyltetrahydrophthalic acid, 4-methyltetrahydrophthalic acid, 3-ethyltetrahydrophthalic acid, 4- Ethyltetrahydrophthalic acid, hexahydrophthalic acid, 3-methylhexahydrophthalic acid, 4-methylhexahydrophthalic acid, 3-ethylhexahydrophthalic acid, 4-ethylhexahydrophthalic acid, methyltetrahydrophthalic acid, methylhexahydro Examples include phthalic acid, endomethylenetetrahydrophthalic acid, methylendomethylenetetrahydrophthalic acid, trimellitic acid, pyromellitic acid, and diglycolic acid. Examples of polybas
  • the amount of the polybasic acid or polybasic acid anhydride used is the amino group or imino of the component (C) described later with respect to 1 mol of the hydroxyl group of the reaction product of the epoxy resin and the radical polymerizable unsaturated monocarboxylic acid.
  • the lower limit is 0.3 mol from the viewpoint of preventing the reactivity with the group from being lowered and the solder heat resistance from being lowered, and prevents the deterioration of various properties (for example, water resistance) of the finally obtained cured coating film. From this point, the upper limit is 1.0 mol.
  • the reaction is preferably carried out at a reaction temperature of 70 to 130 ° C.
  • reaction temperature exceeds 130 ° C.
  • synthesis may be difficult due to thermal polymerization of radical-polymerized unsaturated groups of the epoxy resin or unreacted monomers, and the reaction rate is below 70 ° C. This is because the production efficiency is lowered due to the delay.
  • the glycidyl compound having one or more radical polymerizable unsaturated groups and an epoxy group to be reacted with the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin includes, for example, glycidyl.
  • examples include acrylate, glycidyl methacrylate, allyl glycidyl ether, and pentaerythritol triacrylate monoglycidyl ether.
  • the glycidyl compound is added to the solution of the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin and allowed to react.
  • the glycidyl compound is reacted in an amount of 0.05 to 0.5 mol with respect to 1 mol of the carboxyl group introduced into the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin, from the viewpoint of electric characteristics such as electric insulation, 0.1 to It is preferable to carry out 0.5 mol reaction.
  • the reaction temperature is preferably 80 to 120 ° C.
  • the acid value of the glycidyl compound-added polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin thus obtained is preferably 45 to 250 mgKOH / g.
  • the powdery filler of the component (B) is a white pigment mixture in which two or more kinds of white pigments are mixed.
  • the component (B) is a cured product of the curable resin composition, and in order to obtain a predetermined reflectance, in particular, light in a wavelength band from the short wavelength side of the visible light region to the ultraviolet light region (hereinafter referred to as “wavelength 300 to In some cases, it is also referred to as “450 nm light”.
  • a predetermined reflectance in particular, light in a wavelength band from the short wavelength side of the visible light region to the ultraviolet light region (hereinafter referred to as “wavelength 300 to In some cases, it is also referred to as “450 nm light”.
  • the average primary particle size of the powder filler of component (B) is preferably 5.0 ⁇ m or less from the viewpoint of coatability, and particularly preferably from 0.1 to 3.0 ⁇ m from the viewpoint of light reflectance characteristics and dispersibility.
  • the powder filler preferably contains at least zirconium oxide from the viewpoint of increasing the reflectance of light having a wavelength of 300 to 450 nm, and suppresses a decrease in the reflectance of light even when exposed to light having a wavelength of 300 to 450 nm.
  • zirconium oxide, aluminum oxide, barium carbonate and silicon dioxide from the viewpoint of maintaining the reflectance at the beginning of the curing process, and reflectivity of light having a wavelength of 300 to 450 nm and reflection of light having a wavelength of 300 to 450 nm. More preferably, zirconium oxide, aluminum oxide, and barium carbonate are blended from the viewpoint of balance with reduction in rate.
  • the powder filler can be used whether fired or unfired, but is preferably fired from the viewpoint of more stably suppressing a decrease in reflectance of light having a wavelength of 300 to 450 nm.
  • the blending ratio of two or more inorganic compounds blended in the powder filler can be appropriately selected.
  • ZrO 2 is 1, Al 2 O 3 is 0.1 to 10
  • BaCO 3 is 0.1 to 10
  • SiO 2 is 0 to 10
  • the short wavelength in the visible light region From the viewpoint of improving the reflectance of light in the wavelength band from the side to the ultraviolet region, ZrO 2 is 1, Al 2 O 3 is 0.5 to 1.5, and BaCO 3 is 0.5 to 1.5.
  • SiO 2 is preferably 0 to 1.5, and an equal molar ratio is particularly preferable in that the change in reflectance of light in the wavelength band is surely suppressed before and after ultraviolet irradiation.
  • the lower limit of the blending amount of the powder filler is 150 from the viewpoint of maintaining the reflectivity at the end of the curing process by suppressing the decrease in reflectivity after irradiation with light having a wavelength of 300 to 450 nm with respect to 100 parts by mass of the curable resin.
  • 200 parts by mass is preferable from the viewpoint of further improving discoloration resistance, and 250 parts by mass is particularly preferable from the viewpoint of reliably improving discoloration resistance.
  • the upper limit is 700 parts by mass from the point of kneadability of the powder filler to the curable resin with respect to 100 parts by mass of the curable resin, and 600 parts by mass is preferable from the viewpoint of further improving the coatability.
  • 500 parts by mass is particularly preferable from the viewpoint of leveling speed after printing.
  • titanium oxide is also a pigment for whitening the cured product.
  • titanium oxide is also a pigment for whitening the cured product.
  • titanium oxide include anatase type titanium oxide and rutile type titanium oxide. Either anatase-type titanium oxide or rutile-type titanium oxide can be used, but anatase-type titanium oxide has higher whiteness than rutile-type titanium oxide, but has photocatalytic activity, so that the resin in the curable resin composition May cause discoloration. Since rutile type titanium oxide has almost no photocatalytic activity, it can prevent discoloration of the cured product.
  • the average particle diameter of the rutile type titanium oxide and anatase type titanium oxide particles is not particularly limited, but is, for example, 0.01 to 1 ⁇ m.
  • the surface treating agent for rutile type titanium oxide particles is not particularly limited.
  • the rutile titanium oxide include “TR-600”, “TR-700”, “TR-750”, “TR-840” manufactured by Fuji Titanium Industry Co., Ltd., and “R-550” manufactured by Ishihara Sangyo Co., Ltd. ”,“ R-580 ”,“ R-630 ”,“ R-820 ”,“ CR-50 ”,“ CR-60 ”,“ CR-90 ”,“ CR-93 ”, manufactured by Titanium Industry Co., Ltd. “KR-270”, “KR-310”, “KR-380”, “JR-1000”, “JR-805”, “JR-806” manufactured by Teika Co., Ltd. can be used.
  • Either one of rutile titanium oxide and anatase titanium oxide may be used, or a mixture of rutile titanium oxide and anatase titanium oxide may be used.
  • the total amount of rutile-type titanium oxide and anatase-type titanium oxide prevents a decrease in the reflectance of not only light with a wavelength of 300 to 450 nm but also light in the visible light region with respect to 100 parts by mass of the curable resin. From the point of view, it is 10 to 500 parts by weight, and from the viewpoint of coatability, 10 to 400 parts by weight are preferable.
  • the polymerization reaction rate during heating of the curable resin composition is increased. This is based on the knowledge that the polymerization reaction rate of the photocurable resin composition is increased to the same level.
  • the polymerization reaction rate by heating increases because the amino group or imino group of component (C) becomes carboxyl of component (A-1) by heating. This is considered to react with the group.
  • any conventionally known compounds can be used as the compound having at least one amino group or imino group in one molecule.
  • Specific examples include melamine and melamine derivatives.
  • the melamine derivative include an alkylated melamine containing a functional group such as an imino group, a methylol group, and a methoxymethyl group.
  • the alkylated melamine include the following general formula (i):
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 each independently represents hydrogen, a methylol group, or a methoxymethyl group).
  • Examples of commercially available melamine derivatives include “Nicarak MW-30HM”, “Nicarak MW-390”, “Nicarac MW-100LM”, “Nicarac MX-750LM” manufactured by Sanwa Chemical Co., Ltd. Can do.
  • the lower limit of the compounding amount of the compound having one or more amino groups or imino groups in one molecule is 0 from the viewpoint of ensuring the curing speed with respect to 100 parts by mass of the compound having two or more unsaturated groups in one molecule. 1.2 parts by mass from the viewpoint of further improving discoloration resistance, and 1.5 parts by mass is particularly preferable from the viewpoint of further improving the heat resistance of the solder. Moreover, the upper limit of the amount is 10 parts by mass from the viewpoint of water resistance, 5 parts by mass is preferable from the viewpoint of improving electrical characteristics in humidity, and 3 parts by mass is particularly preferable from the viewpoint of high insulation resistance.
  • Photoinitiator A photoinitiator is mix
  • the photopolymerization initiator is not particularly limited as long as it is generally used.
  • an oxime initiator benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-butyl ether, benzoin isobutyl ether Acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl Phenylketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 4- (2-hydroxyethoxy) phenyl-2- (hydroxy-2-propyl) ketone, ben Zophenone, p-phen
  • the curable resin composition of the present invention may contain the following components as necessary.
  • the diluent is, for example, a polymerizable monomer that is a reactive diluent, and is used to obtain a cured product having sufficient acid resistance, heat resistance, alkali resistance, etc., by sufficiently curing the curable resin.
  • polymerizable monomer examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, neo Pentyl glycol adipate di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone-modified dicyclopentenyl di (meth) acrylate, ethylene oxide-modified phosphate di (meth) Acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol tri (meth) acrylate Propionate modified dipenta
  • the amount of the reactive diluent described above is 2.0 to 100 parts by mass, preferably 10 to 60 parts by mass, and particularly preferably 20 to 50 parts by mass with respect to 100 parts by mass of the curable resin.
  • Epoxy compound The epoxy compound is for obtaining a cured coating film having sufficient mechanical strength by increasing the crosslinking density of the cured product.
  • the epoxy compound include an epoxy resin.
  • the epoxy resin include bisphenol A type epoxy resin, novolak type epoxy resin (phenol novolak type epoxy resin, o-cresol novolak type epoxy resin, p-tert-butylphenol novolak type, etc.), bisphenol F and bisphenol S with epichlorohydrin.
  • Bisphenol F type and bisphenol S type epoxy resins obtained by reaction, alicyclic epoxy resins having cyclohexene oxide groups, tricyclodecane oxide groups, cyclopentene oxide groups, and the like, tris (2,3-epoxypropyl) isocyanurate , Triglycidyl isocyanurate having a triazine ring such as triglycidyl tris (2-hydroxyethyl) isocyanurate, dicyclopentadiene type epoxy resin, Adama It can be exemplified Tan type epoxy resin or the like. These compounds may be used alone or in combination of two or more.
  • the compounding amount of the epoxy compound is 1 to 75 parts by mass with respect to 100 parts by mass of the curable resin from the viewpoint of obtaining a sufficient coating film after curing and improving the solder heat resistance. From the viewpoint of balance of properties, 10 to 30 parts by mass is preferable.
  • Solvent A non-reactive organic solvent may be used to adjust the viscosity and drying properties of the curable resin composition.
  • the organic solvent include ketones such as methyl ethyl ketone and cyclohexanone, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, isopropanol and cyclohexanol, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, Petroleum solvents such as petroleum ether and petroleum naphtha, cellosolves such as cellosolve and butylcellosolve, carbitols such as carbitol and butylcarbitol, ethyl acetate, butyl acetate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butylcarbi Examples include acetates such as tall acetate and diethylene glycol monoethyl ether
  • antifoaming agent known ones can be used, and examples thereof include silicone-based, hydrocarbon-based and acrylic-based agents.
  • additives include dispersants such as coupling agents such as silane, titanate, and alumina, boron trifluoride-amine complex, dicyandiamide (DICY) and its derivatives, organic acid hydrazide, and diaminomaleonitrile (DAMN). And its derivatives, and latent curing agents such as guanamine and its derivatives, metal salts of acetylacetone such as acetylacetonate Zn and acetylacetonateCr, enamine, tin octylate, quaternary sulfonium salt, triphenylphosphine, imidazole, Examples include imidazolium salts and thermosetting accelerators such as triethanolamine borate.
  • dispersants such as coupling agents such as silane, titanate, and alumina, boron trifluoride-amine complex, dicyandiamide (DICY) and its derivatives, organic acid hydrazide, and diaminomaleon
  • an extender pigment may be blended in order to increase the physical strength of the coating film of the curable resin composition.
  • extender pigments include aluminum hydroxide, talc, and mica.
  • the method for producing the curable resin composition of the present invention is not limited to a specific method, for example, after blending the above-mentioned predetermined components in a predetermined ratio, at room temperature, kneading means such as a three roll, ball mill, sand mill, Alternatively, it can be produced by kneading or mixing with a stirring means such as a super mixer or a planetary mixer. Further, prior to the kneading or mixing, if necessary, preliminary kneading or premixing may be performed.
  • the curable resin composition of the present invention produced as described above has a circuit pattern formed by etching a copper foil, for example.
  • a desired thickness for example, 5 to 100 ⁇ m, using a screen printing method, a roll coater method, a bar coater method, a spray coater method, a curtain flow coater method, a gravure coater method or the like.
  • preliminary drying is performed by heating at a temperature of about 60 to 80 ° C. for about 15 to 60 minutes to form a tack-free coating film.
  • the negative film which has the pattern which made translucent except the land of the said circuit pattern was stuck on the apply
  • the coating film is developed by removing the non-exposed areas corresponding to the lands with a dilute alkaline aqueous solution.
  • a spray method, a shower method, or the like is used as the developing method.
  • a dilute alkaline aqueous solution a 0.5 to 5% sodium carbonate aqueous solution is generally used, but other alkalis can also be used.
  • the coating film is thermally cured by performing a post-cure for 20 to 80 minutes using a hot-air circulating dryer at 130 to 170 ° C. to form a solder resist film of the desired curable resin composition on the printed wiring board. Can be formed.
  • the curable resin composition of the present invention produced as described above has, for example, a circuit pattern formed by etching a copper foil.
  • preliminary drying is performed by heating at a temperature of about 60 to 80 ° C. for about 15 to 60 minutes to form a tack-free coating film.
  • the coating film is thermally cured by performing a post-cure for 20 to 80 minutes with a hot air circulation dryer or the like at 130 to 170 ° C., and a solder resist film of the desired curable resin composition on the printed wiring board. Can be formed.
  • An electronic circuit unit is formed by soldering an electronic component to the printed wiring board covered with the cured coating film thus obtained by a jet soldering method, a reflow soldering method, or the like.
  • the curable resin composition described above is applied to the surface of a sheet-like base film and used as a reflective film
  • the curable resin composition produced as described above is applied to the washed surface by a predetermined coating means with a desired thickness, for example, 5 to 100 ⁇ m. Apply to thickness.
  • pre-drying is performed at a temperature of about 60 to 80 ° C. for about 15 to 60 minutes to form a tack-free coating film.
  • a target white cured coating film that is, a reflective coating film can be formed on the surface of the sheet-like base film to produce a reflective sheet.
  • the material of the sheet-like base film is not particularly limited.
  • polyimide polyethylene terephthalate (PET), polyvinyl fluoride (PVF), fluorinated ethylene / propylene copolymer (FEP), polytetrafluoroethylene (PTFE), aramid , Polyamide / imide, epoxy, polyetherimide, polysulfone, polyethylene naphthalate (PEN), liquid crystal polymer (LCP), and the like.
  • the coating means is not particularly limited, and for example, screen printing method, spray coater method, honmelt coater method, bar coater method, applicator method, blade coater method, knife coater method, air knife coater method, curtain flow coater method , Roll coater method, gravure coater method, offset printing method, dip coater method, brush coating and the like.
  • the reflection sheet can be used as a back sheet by being disposed on the back surface side of the solar cell module, that is, on the surface opposite to the surface receiving solar radiation.
  • the reflective sheet is used as a back sheet, the sunlight transmitted through the solar cell module without being received by the power generation element of the solar cell module is reflected by the reflective film of the reflective sheet, and again from the back side of the solar cell module. Since it is returned to the inside of the module, the power generation efficiency of the solar cell module is improved.
  • the installation method of the reflective sheet to a solar cell module back surface includes the method of sticking directly on a solar cell module back surface using an adhesive agent or an adhesive tape, for example.
  • the reflective sheet is used for the back sheet of the solar cell module
  • a polyethylene terephthalate film having a thickness of 40 ⁇ m is used as the base film.
  • the curable resin composition is applied so that the film thickness after curing becomes a predetermined value (for example, 20 to 23 ⁇ m). Furthermore, it is preferable that the coating part of the curable resin composition is performed on the entire surface or substantially the entire surface of the base film facing the back surface of the solar cell module.
  • Examples 1-7, Comparative Examples 1-5 Ingredients shown in Table 1 below were blended at the blending ratios shown in Table 1 below, premixed with a stirrer, mixed and dispersed at room temperature using three rolls, Examples 1 to 7 and Comparative Examples 1 to 5 curable resin compositions were prepared. In addition, the numerical value of the mixture ratio in Table 1 shows a mass part.
  • the powder filler A is different from the powder filler C in that it is fired at 1300 ° C. under the firing conditions shown in FIG. 1 and in that a binder resin, a plasticizer, a lubricant and a solvent are blended.
  • the binder resin, plasticizer, lubricant and solvent are all formulated for the purpose of further improving the moldability of the powder filler A upon firing.
  • the binder resin, plasticizer, lubricant and solvent are volatilized by firing. Therefore, it does not affect the following evaluation results of the examples. The same applies to the relationship between the powder filler B and the powder filler D.
  • Photopolymerization initiator Irgacure 184 1-hydroxy-cyclohexyl-phenyl-ketone manufactured by Ciba Specialty Chemicals Co., Ltd.
  • DICY-7 is a curing accelerator manufactured by Japan Epoxy Resin Co., Ltd.
  • R-974 is a thixotropic agent manufactured by Nippon Aerosil Co., Ltd.
  • Sumilizer GA-80 is manufactured by Sumitomo Chemical Co., Ltd.
  • Test piece preparation process 1 The surface of a printed wiring board having a circuit pattern formed by etching a copper foil (manufactured by Panasonic Electric Works Co., Ltd., FR-4 substrate, plate thickness 1.6 mmt, conductor thickness 35 ⁇ m) was acid-treated with a 3% sulfuric acid aqueous solution. Thereafter, the curable resin compositions of Examples 1 to 7 and Comparative Examples 1 to 5 were respectively applied by screen printing. Thereafter, preliminary drying was performed in a BOX furnace at 70 ° C. for 20 minutes (25 minutes in the BOX furnace). For Example 3 only, after preliminary drying, the coating film was exposed to 400 mJ / cm 2 with an exposure apparatus (HMW-680GW manufactured by Oak Co.) for 1 minute, and then 0 ° C.
  • HMW-680GW manufactured by Oak Co.
  • Example 3 was added with 30% 1% aqueous sodium carbonate solution. .Developed by spraying at 1 MPa for 60 seconds.
  • Example 3 after development, and for other Examples and Comparative Examples, after preliminary drying, post-curing was performed at 150 ° C. for 60 minutes (70 minutes in the BOX furnace) and cured on the printed wiring board.
  • a cured coating film of the resin composition was formed to prepare a test piece. The thickness of the cured coating film was 20 to 23 ⁇ m.
  • the standard white board was Al 2 O 3 .
  • UV light with a wavelength of 300 to 450 nm is applied to the cured coating film of the test piece using an exposure apparatus (Oak Seisakusho, HMW-680GW, lamp SMX-7000H) until the accumulated light quantity reaches 800 J / cm 2 Were irradiated. Then, the reflectance after ultraviolet irradiation was measured by the same method as the reflectance at the initial stage of curing. Further, the reflectance maintenance rate (%) was calculated from reflectance after ultraviolet irradiation / reflectance at the initial stage of curing ⁇ 100.
  • ⁇ in the reflectance means that the reflectance is as low as 5% or less and measurement is impossible because noise is generated.
  • Examples 1 to 7 using powder filler B or D containing aluminum oxide (Al 2 O 3 ) and barium carbonate (BaCO 3 ) are comparative examples 1 using aluminum oxide (ZrO 2 ), aluminum oxide (Al Compared to Comparative Example 4 using 2 O 3 ) and Comparative Example 5 using barium carbonate (BaCO 3 ), the maintenance ratio is high, that is, the decrease in reflectance of light having a wavelength of 300 to 450 nm after ultraviolet irradiation is suppressed.
  • Examples 1 to 7 are excellent in quality stability because the decrease in reflectance can be suppressed even when exposed to light in the wavelength band from the short wavelength side of the visible light region to the ultraviolet light region. From Comparative Examples 2 and 3, even when titanium oxide (TiO 2 ) was blended, a predetermined reflectance for ultraviolet light could not be obtained.
  • Example 2 From the comparison between Example 1 and Example 2, when a powder filler containing zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), and barium carbonate (BaCO 3 ) is used for the fired product, the initial stage of curing and ultraviolet rays are used. The reflectivity and maintenance rate after irradiation improved with better balance. Further, even when a photopolymerization initiator is blended and exposed to light (Example 3), or when a photopolymerization initiator is not blended and heat-cured (Examples 1, 2, 4 to 7), an equivalent reflectance is obtained. A retention rate was obtained.
  • ZrO 2 zirconium oxide
  • Al 2 O 3 aluminum oxide
  • BaCO 3 barium carbonate
  • the curable resin composition of the present invention provides a cured product that can prevent a decrease in reflectance of light in the wavelength band even when exposed to light in the wavelength band from the short wavelength side of the visible light region to the ultraviolet light region. Therefore, for example, the utility value is high as the solder resist film of the printed wiring board, in particular, a printed wiring board on which a semiconductor light emitting element that emits light in the above-mentioned wavelength band is mounted. Moreover, the utility value is high also as a reflection sheet, for example, a solar cell backsheet.

Abstract

Provided is a curable resin composition which has high reflectance with respect to light in the wavelength range from the short wavelength side of the visible light region to the ultraviolet light region and which can be prevented from decrease in the reflectance of the above-described wavelength range even if exposed to the light within the above-described wavelength range. A curable resin composition which is characterized by containing (A) a curable resin and (B) a powder filler in which at least two kinds of inorganic compounds that are selected from the group consisting of zirconium oxide, aluminum oxide, barium carbonate and silicon dioxide are blended.

Description

硬化性樹脂組成物Curable resin composition
 本発明は、優れた反射率を有する硬化性樹脂組成物、特に、プリント配線板等といった回路基板のソルダーレジスト膜や反射シートの反射皮膜として有用な硬化性樹脂組成物、並びに前記硬化性樹脂組成物の硬化物を有するプリント配線板及び反射シートに関するものである。 The present invention relates to a curable resin composition having an excellent reflectance, particularly a curable resin composition useful as a solder resist film for a circuit board such as a printed wiring board or a reflective film for a reflective sheet, and the curable resin composition. The present invention relates to a printed wiring board having a cured product and a reflection sheet.
 プリント配線板は、基板の上に導体回路のパターンを形成し、そのパターンのはんだ付けランドに電子部品をはんだ付けて搭載するために使用される。また、はんだ付けランドを除く回路部分は永久保護皮膜としてのソルダーレジスト膜で被覆される。これにより、プリント配線板に電子部品をはんだ付けする際に、はんだが不必要な部分に付着するのを防止すると共に、回路導体が空気に直接曝されて酸化や湿度により腐食されるのを防止する。 The printed wiring board is used for forming a conductor circuit pattern on a substrate and soldering and mounting an electronic component on the soldering land of the pattern. The circuit portion excluding the soldering land is covered with a solder resist film as a permanent protective film. This prevents solder from adhering to unnecessary parts when soldering electronic components to a printed wiring board, and prevents circuit conductors from being directly exposed to air and being corroded by oxidation or humidity. To do.
 プリント配線板は発光ダイオード素子(LED)等の半導体発光素子の実装用基板としても使用されている。この場合、実装面に形成されるソルダーレジスト膜に白色顔料を配合することで、半導体発光素子から放射される可視光の反射率を向上させる機能を設けている。しかし、白色のソルダーレジスト膜は、高温または光の照射により変色が起こって光反射率が低下してしまうという問題があった。そこで、高温条件または光照射に曝されても変色しにくく反射率の低下を抑制できるソルダーレジスト材料が提案されている(特許文献1)。 The printed wiring board is also used as a substrate for mounting a semiconductor light emitting element such as a light emitting diode element (LED). In this case, a function of improving the reflectance of visible light emitted from the semiconductor light emitting element is provided by blending a white pigment into the solder resist film formed on the mounting surface. However, the white solder resist film has a problem that the light reflectance is lowered due to discoloration caused by high temperature or light irradiation. Therefore, a solder resist material that is difficult to discolor even when exposed to high temperature conditions or light irradiation and that can suppress a decrease in reflectance has been proposed (Patent Document 1).
 また、熱硬化性樹脂と白色顔料とを含有した白色樹脂組成物を用いて、半導体発光素子から放射される可視光の反射率を向上させる機能を設けたプリント配線板が提案されている(特許文献2)。このプリント配線板は、基材と白色樹脂組成物層と銅箔からなる積層構造である。 Further, a printed wiring board having a function of improving the reflectance of visible light emitted from a semiconductor light emitting element using a white resin composition containing a thermosetting resin and a white pigment has been proposed (patent) Reference 2). This printed wiring board has a laminated structure including a base material, a white resin composition layer, and a copper foil.
 一方、近年、可視光領域の短波長側から紫外光領域にかけての波長帯(例えば、波長300~450nm)の光を放射する半導体発光素子の開発も進められている。それに応じて、ソルダーレジスト膜には、上記波長帯の光に暴露されても上記波長帯の光の反射率低下を防止できる機能が求められている。 On the other hand, in recent years, development of a semiconductor light emitting device that emits light in a wavelength band (for example, a wavelength of 300 to 450 nm) from the short wavelength side of the visible light region to the ultraviolet light region is also under development. Accordingly, the solder resist film is required to have a function capable of preventing a decrease in reflectance of light in the wavelength band even when exposed to light in the wavelength band.
 さらに、環境負荷の低減のために太陽電池が注目されており、太陽電池の発電効率を向上させるために、可視光領域の短波長側から紫外光領域にかけての波長帯(例えば、波長300~450nm)の光に長時間暴露されても、該光の反射率の低下を防止できる反射シートが要求されている。 Furthermore, solar cells are attracting attention for reducing the environmental load, and in order to improve the power generation efficiency of the solar cells, the wavelength band from the short wavelength side of the visible light region to the ultraviolet light region (for example, the wavelength of 300 to 450 nm). There is a demand for a reflective sheet that can prevent a decrease in the reflectance of light even when exposed to light for a long time.
特開2010-181693号公報JP 2010-181693 A 特開2010-100800号公報JP 2010-100800 A
 上記事情に鑑み、本発明は、可視光領域の短波長側から紫外光領域にかけての波長帯の光について高い反射率を有しつつ、該波長帯の光に曝されても、該波長帯の光の反射率低下を防止できる硬化性樹脂組成物を提供することを目的とする。 In view of the above circumstances, the present invention has a high reflectance for light in the wavelength band from the short wavelength side of the visible light region to the ultraviolet light region, and even when exposed to light in the wavelength band, It aims at providing the curable resin composition which can prevent the reflectance fall of light.
 本発明の態様は、(A)硬化性樹脂と、(B)酸化ジルコニウム、酸化アルミニウム、炭酸バリウム及び二酸化ケイ素からなる群から選択された少なくとも2種の無機化合物を配合した粉末フィラーと、を含有することを特徴とする硬化性樹脂組成物である。酸化ジルコニウム、酸化アルミニウム、炭酸バリウム及び二酸化ケイ素からなる群から選択された少なくとも2種の無機化合物を配合した粉末フィラーは白色顔料であり、この粉末フィラーを配合することで、硬化性樹脂組成物及びその硬化物は白色になる。硬化性樹脂は、熱硬化性及び/または光硬化性の樹脂である。 An aspect of the present invention contains (A) a curable resin and (B) a powder filler containing at least two inorganic compounds selected from the group consisting of zirconium oxide, aluminum oxide, barium carbonate, and silicon dioxide. It is a curable resin composition characterized by doing. The powder filler containing at least two kinds of inorganic compounds selected from the group consisting of zirconium oxide, aluminum oxide, barium carbonate and silicon dioxide is a white pigment, and by adding this powder filler, the curable resin composition and The cured product becomes white. The curable resin is a thermosetting and / or photocurable resin.
 本発明の態様は、前記(B)粉末フィラーが、焼成されていることを特徴とする硬化性樹脂組成物である。 An aspect of the present invention is a curable resin composition in which the powder filler (B) is fired.
 本発明の態様は、前記(B)粉末フィラーが、さらに、酸化チタンを含有することを特徴とする硬化性樹脂組成物である。この態様では、粉末フィラーには、酸化ジルコニウム、酸化アルミニウム、炭酸バリウム及び二酸化ケイ素からなる群から選択された少なくとも2種の無機化合物の他に、白色顔料である酸化チタン粉末も配合されている。 An aspect of the present invention is a curable resin composition wherein the powder filler (B) further contains titanium oxide. In this aspect, in addition to at least two inorganic compounds selected from the group consisting of zirconium oxide, aluminum oxide, barium carbonate, and silicon dioxide, the powder filler also contains titanium oxide powder that is a white pigment.
 本発明の態様は、前記(B)粉末フィラーが、前記(A)硬化性樹脂100質量部に対して、150~700質量部含有することを特徴とする硬化性樹脂組成物である。 An aspect of the present invention is a curable resin composition characterized in that the (B) powder filler contains 150 to 700 parts by mass with respect to 100 parts by mass of the (A) curable resin.
 本発明の態様は、前記(A)硬化性樹脂が、(A‐1)1分子中に2以上の不飽和基を有する化合物であることを特徴とする硬化性樹脂組成物である。 An aspect of the present invention is a curable resin composition wherein the (A) curable resin is (A-1) a compound having two or more unsaturated groups in one molecule.
 本発明の態様は、さらに(C)1分子中にアミノ基またはイミノ基を少なくとも1以上有する化合物を含有することを特徴とする硬化性樹脂組成物である。(A‐1)成分を用いた硬化性樹脂組成物に、さらに(C)成分を配合することで、効率的な熱硬化が可能となる。 An aspect of the present invention is a curable resin composition further comprising (C) a compound having at least one amino group or imino group in one molecule. By further blending the component (C) with the curable resin composition using the component (A-1), efficient thermal curing becomes possible.
 本発明の態様は、さらに、(D)光重合開始剤を含有することを特徴とする硬化性樹脂組成物である。硬化性樹脂を光にて硬化、すなわち感光させる場合に、光重合開始剤が配合されている。 An embodiment of the present invention is a curable resin composition further comprising (D) a photopolymerization initiator. When the curable resin is cured with light, that is, when it is exposed to light, a photopolymerization initiator is blended.
 本発明の態様は、上記硬化性樹脂組成物の硬化被膜を有することを特徴とするプリント配線板である。また、本発明の態様は、上記硬化性樹脂組成物を硬化して得られた皮膜を有することを特徴とする反射シートである。 An aspect of the present invention is a printed wiring board having a cured film of the curable resin composition. Moreover, the aspect of this invention is a reflective sheet characterized by having the film | membrane obtained by hardening | curing the said curable resin composition.
 本発明の硬化性樹脂組成物によれば、酸化ジルコニウム、酸化アルミニウム、炭酸バリウム及び二酸化ケイ素からなる群から選択された少なくとも2種の無機化合物を配合した粉末フィラーを含有することで、可視光領域の短波長側から紫外光領域にかけての波長帯の光に曝されても、該波長帯の光の反射率低下を抑制できる硬化物を得ることができる。従って、硬化物の品質安定性が向上する。また、可視光領域の短波長側から紫外光領域にかけての波長帯の光に曝された後の硬化物の反射率は、酸化ジルコニウム、酸化アルミニウム、炭酸バリウムまたは二酸化ケイ素のいずれか1種を使用した場合の上記反射率と比べて同等程度を維持できる。 According to the curable resin composition of the present invention, by containing a powder filler containing at least two inorganic compounds selected from the group consisting of zirconium oxide, aluminum oxide, barium carbonate and silicon dioxide, a visible light region can be obtained. Even when exposed to light in a wavelength band from the short wavelength side to the ultraviolet light region, a cured product capable of suppressing a decrease in reflectance of light in the wavelength band can be obtained. Therefore, the quality stability of the cured product is improved. In addition, the reflectivity of the cured product after being exposed to light in the wavelength band from the short wavelength side of the visible light region to the ultraviolet light region is any one of zirconium oxide, aluminum oxide, barium carbonate, or silicon dioxide. It is possible to maintain the same level of reflectance as the above-described reflectance.
 本発明によれば、粉末フィラーが焼成されていることで、可視光領域の短波長側の光に曝された後の反射率が損なわれることなく、紫外光領域の光に曝された後の反射率の低下をより抑制できる。 According to the present invention, since the powder filler is fired, the reflectance after being exposed to light on the short wavelength side in the visible light region is not impaired, and after being exposed to light in the ultraviolet region. A decrease in reflectance can be further suppressed.
 本発明によれば、さらに酸化チタンを配合することで、紫外光領域や可視光領域の短波長側の光だけではなく、全可視光領域の光に曝された後の反射率低下も抑えることができる。 According to the present invention, by further adding titanium oxide, not only the light on the short wavelength side in the ultraviolet light region and the visible light region, but also the reduction in reflectance after being exposed to the light in the entire visible light region can be suppressed. Can do.
 本発明によれば、粉末フィラーが、硬化性樹脂100質量部に対して150~700質量部配合されることで、耐変色性と塗工性を損なうことなく、可視光領域の短波長側から紫外光領域にかけての波長帯の光に曝された後の反射率低下を抑えることができる。 According to the present invention, the powder filler is blended in an amount of 150 to 700 parts by mass with respect to 100 parts by mass of the curable resin, so that the discoloration resistance and the coating property are not impaired, and from the short wavelength side in the visible light region. It is possible to suppress a decrease in reflectivity after exposure to light in the wavelength band over the ultraviolet region.
 本発明によれば、硬化性樹脂が、1分子中に2以上の不飽和基を有する硬化性化合物と、1分子中にアミノ基またはイミノ基を少なくとも1以上有する化合物とを含むことにより、熱硬化時の重合反応の速度を、光重合開始剤を配合して光硬化させるときの重合反応の速度と同等程度に速めることができる。このように、熱硬化時の重合反応の速度が向上するので、光による硬化でなくてもよく、よって、光重合開始剤の配合を要しない。 According to the present invention, the curable resin contains a curable compound having two or more unsaturated groups in one molecule and a compound having at least one amino group or imino group in one molecule. The speed of the polymerization reaction at the time of curing can be increased to the same extent as the speed of the polymerization reaction when the photopolymerization initiator is added and photocured. Thus, since the speed | rate of the polymerization reaction at the time of thermosetting improves, it does not need to harden | cure by light, Therefore, the mixing | blending of a photoinitiator is not required.
 本発明によれば、光重合開始剤を配合することで、重合反応が速く硬化時間の短い光硬化が可能となる。 According to the present invention, photocuring with a fast polymerization reaction and a short curing time is possible by blending a photopolymerization initiator.
 本発明によれば、プリント配線板に、可視光領域の短波長側から紫外光領域にかけての波長帯の光に曝されても該波長帯の光の反射率低下を防止できる硬化被膜を形成できる。また、本発明によれば、可視光領域の短波長側から紫外光領域にかけての波長帯の光に曝されても、該波長帯の光の反射率低下を防止できる反射皮膜を形成できる。 ADVANTAGE OF THE INVENTION According to this invention, the cured film which can prevent the reflectance fall of the light of this wavelength band can be formed on a printed wiring board even if it is exposed to the light of the wavelength band from the short wavelength side of a visible light region to an ultraviolet light region. . In addition, according to the present invention, it is possible to form a reflective film that can prevent a decrease in reflectance of light in the wavelength band even when exposed to light in a wavelength band from the short wavelength side of the visible light region to the ultraviolet light region.
粉末フィラーの焼成条件を説明する図である。It is a figure explaining the baking conditions of a powder filler.
 次に、本発明の硬化性樹脂組成物の各成分について説明する。本発明の硬化性樹脂組成物は、(A)硬化性樹脂と、(B)酸化ジルコニウム、酸化アルミニウム、炭酸バリウム及び二酸化ケイ素からなる群から選択された少なくとも2種の無機化合物を配合した粉末フィラーと、を含有することを特徴とするものであって、上記各成分は、以下の通りである。 Next, each component of the curable resin composition of the present invention will be described. The curable resin composition of the present invention is a powder filler comprising (A) a curable resin and (B) at least two inorganic compounds selected from the group consisting of zirconium oxide, aluminum oxide, barium carbonate and silicon dioxide. And each of the above components is as follows.
 (A)硬化性樹脂
 硬化して電気絶縁性を示す樹脂であれば、加熱により硬化する熱硬化性樹脂、紫外線により硬化する感光性樹脂のいずれでも特に限定されない。
(A) Curable resin No particular limitation is imposed on either a thermosetting resin that is cured by heating or a photosensitive resin that is cured by ultraviolet rays as long as it is a resin that cures and exhibits electrical insulation.
 硬化性樹脂には、例えば、(A‐1)1分子中に2以上の不飽和基を有する化合物が挙げられる。 Examples of the curable resin include (A-1) a compound having two or more unsaturated groups in one molecule.
 1分子中に2以上の不飽和基を有する化合物には、分子内にエチレン性不飽和基を2個以上有するカルボキシル基を含有しない化合物、分子内にエチレン性不飽和基を2個以上有するカルボキシル基含有化合物等を挙げることができる。上記カルボキシル基を含有しない化合物には、例えば、脂環式エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応生成物がある。また、上記カルボキシル基含有化合物には、例えば、脂環式エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応生成物に、飽和または不飽和の多塩基酸または多塩基酸無水物を反応させて得られたものがある。 A compound having two or more unsaturated groups in one molecule includes a compound not containing a carboxyl group having two or more ethylenically unsaturated groups in the molecule, and a carboxyl having two or more ethylenically unsaturated groups in the molecule. Examples thereof include a group-containing compound. Examples of the compound not containing a carboxyl group include a reaction product of an alicyclic epoxy resin and a radically polymerizable unsaturated monocarboxylic acid. The carboxyl group-containing compound is reacted with, for example, a reaction product of an alicyclic epoxy resin and a radical polymerizable unsaturated monocarboxylic acid with a saturated or unsaturated polybasic acid or polybasic acid anhydride. There is something that was obtained.
 硬化性樹脂組成物に光重合開始剤が含まれない場合、すなわち、硬化性樹脂組成物を感光させずに熱硬化する場合、硬化性樹脂組成物の反応性向上の点から、上記のように反応させて得られたカルボキシル基含有化合物のカルボキシル基に、さらに1つ以上のラジカル重合性不飽和基とエポキシ基を有するグリシジル化合物を反応させて得られる、1分子中に2以上の不飽和基を有する化合物としてもよい。これは、グリシジル化合物の反応によってラジカル重合性不飽和基が、前記カルボキシル基含有化合物骨格の側鎖に結合することで、不飽和度が増加し、反応性の向上が得られるためである。 When the photopolymerization initiator is not included in the curable resin composition, that is, when the curable resin composition is heat-cured without being exposed, from the viewpoint of improving the reactivity of the curable resin composition, as described above. The carboxyl group of the carboxyl group-containing compound obtained by the reaction is further reacted with a glycidyl compound having one or more radically polymerizable unsaturated groups and an epoxy group, and two or more unsaturated groups in one molecule. It is good also as a compound which has. This is because the radically polymerizable unsaturated group is bonded to the side chain of the carboxyl group-containing compound skeleton by the reaction of the glycidyl compound, thereby increasing the degree of unsaturation and improving the reactivity.
 前記脂環式エポキシ樹脂とは、脂環骨格を有する樹脂であり、骨格が脂肪族環式化合物の連鎖によって形成されているエポキシ樹脂である。エポキシ当量は特に制限されず、例えば1000以下、好ましくは100~500である。 The alicyclic epoxy resin is a resin having an alicyclic skeleton, and the skeleton is an epoxy resin formed by a chain of aliphatic cyclic compounds. The epoxy equivalent is not particularly limited, and is, for example, 1000 or less, preferably 100 to 500.
 脂環骨格エポキシ樹脂としては、例えば、ダイセル化学工業(株)製「EHPE-3150」(2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキセン付加物)などを挙げることができる。 Examples of the alicyclic skeleton epoxy resin include “EHPE-3150” (1,2-epoxy-4- (2-oxiranyl) of 2,2-bis (hydroxymethyl) -1-butanol) manufactured by Daicel Chemical Industries, Ltd. Cyclohexene adduct).
 これらのエポキシ樹脂とラジカル重合性不飽和モノカルボン酸を反応させると、エポキシ基とカルボキシル基の反応によりエポキシ基が開裂して水酸基とエステル結合が生成する。 When these epoxy resins are reacted with radically polymerizable unsaturated monocarboxylic acid, the epoxy group is cleaved by the reaction of the epoxy group and the carboxyl group to form a hydroxyl group and an ester bond.
 使用するラジカル重合性不飽和モノカルボン酸は、特に限定されず、例えば、アクリル酸、メタクリル酸、クロトン酸、桂皮酸などがあり、アクリル酸及びメタクリル酸の少なくとも一方が好ましく、特にアクリル酸が好ましい。 The radically polymerizable unsaturated monocarboxylic acid to be used is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, and at least one of acrylic acid and methacrylic acid is preferable, and acrylic acid is particularly preferable. .
 また、エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応方法は、特に限定されず、例えば、エポキシ樹脂とアクリル酸を適当な希釈剤中で加熱することにより反応させることができる。希釈剤としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン等の芳香族炭化水素類、メタノール、イソプロパノール、シクロヘキサノール等のアルコール類、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素類、石油エーテル、石油ナフサ等の石油系溶剤類、セロソルブ、ブチルセロソルブ等のセロソルブ類、カルビトール、ブチルカルビトール等のカルビトール類、酢酸エチル、酢酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート等の酢酸エステル類等を挙げることができる。また触媒としては、例えば、トリエチルアミン、トリブチルアミンなどのアミン類、トリフェニルホスフィン、トリフェニルホスフェートなどのリン化合物類等を挙げることができる。 The reaction method between the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid is not particularly limited, and for example, the epoxy resin and acrylic acid can be reacted by heating in an appropriate diluent. Examples of the diluent include ketones such as methyl ethyl ketone and cyclohexanone, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, isopropanol and cyclohexanol, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, Petroleum solvents such as petroleum ether and petroleum naphtha, cellosolves such as cellosolve and butylcellosolve, carbitols such as carbitol and butylcarbitol, ethyl acetate, butyl acetate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butylcarbi Examples include acetates such as tall acetate. Examples of the catalyst include amines such as triethylamine and tributylamine, and phosphorus compounds such as triphenylphosphine and triphenylphosphate.
 上記したエポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応において、エポキシ樹脂が有するエポキシ基1当量あたり、ラジカル重合性不飽和モノカルボン酸を0.7~1.2当量反応させる。ラジカル重合性不飽和モノカルボン酸が0.7当量未満であると、後続の工程の合成反応時にゲル化を起こし、硬化性樹脂の安定性が低下する。また、ラジカル重合性不飽和モノカルボン酸が1.2当量を超えると、未反応のカルボン酸が多く残存するため、硬化物の諸特性(例えば耐水性等)が低下する。アクリル酸又はメタクリル酸の少なくとも一方を用いるときは、エポキシ樹脂が有するエポキシ基1当量あたり、0.8~1.0当量反応させるのが好ましい。エポキシ樹脂とラジカル重合性不飽和モノカルボン酸の反応は、加熱状態で行うのが好ましく、その反応温度は、80~140℃が特に好ましい。反応温度が140℃を超えるとラジカル重合性不飽和モノカルボン酸が熱重合を起こして合成が困難になることがあり、また80℃未満では反応速度が遅くなって生産効率が低下するためである。 In the reaction between the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid, 0.7 to 1.2 equivalents of the radically polymerizable unsaturated monocarboxylic acid are reacted per equivalent of the epoxy group of the epoxy resin. If the radically polymerizable unsaturated monocarboxylic acid is less than 0.7 equivalent, gelation occurs during the synthesis reaction in the subsequent step, and the stability of the curable resin decreases. On the other hand, when the amount of the radically polymerizable unsaturated monocarboxylic acid exceeds 1.2 equivalents, a large amount of unreacted carboxylic acid remains, so that various properties (such as water resistance) of the cured product are deteriorated. When at least one of acrylic acid or methacrylic acid is used, it is preferable to react 0.8 to 1.0 equivalent per equivalent of epoxy group of the epoxy resin. The reaction between the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid is preferably carried out in a heated state, and the reaction temperature is particularly preferably from 80 to 140 ° C. If the reaction temperature exceeds 140 ° C., the radically polymerizable unsaturated monocarboxylic acid may undergo thermal polymerization and may be difficult to synthesize. If the reaction temperature is less than 80 ° C., the reaction rate becomes slow and the production efficiency decreases. .
 エポキシ樹脂とラジカル重合性不飽和モノカルボン酸の希釈剤中での反応において、希釈剤の配合量は、反応系の総重量に対して20~50%が好ましい。エポキシ樹脂とラジカル重合性不飽和モノカルボン酸の反応生成物を単離することなく、希釈剤の溶液のまま、必要に応じて、次の多塩基酸類との反応に供することができる。 In the reaction of the epoxy resin and the radical polymerizable unsaturated monocarboxylic acid in the diluent, the blending amount of the diluent is preferably 20 to 50% with respect to the total weight of the reaction system. Without isolation of the reaction product of the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid, it can be subjected to the reaction with the following polybasic acids as necessary in the form of a diluent solution.
 1分子中に2以上の不飽和基を有するカルボキシル基含有化合物とする場合には、上記したエポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応生成物である不飽和モノカルボン酸化エポキシ樹脂に、多塩基酸又はその無水物を反応させる。多塩基酸または多塩基酸無水物は、エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応で生成した水酸基に反応して、硬化性樹脂に遊離のカルボキシル基を持たせる。 When a carboxyl group-containing compound having two or more unsaturated groups in one molecule is used, the unsaturated monocarboxylic oxide epoxy resin, which is a reaction product of the epoxy resin and the radical polymerizable unsaturated monocarboxylic acid, is used. The polybasic acid or its anhydride is reacted. The polybasic acid or polybasic acid anhydride reacts with a hydroxyl group generated by the reaction between the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid to give the curable resin a free carboxyl group.
 多塩基酸又はその無水物は、特に限定されず、飽和、不飽和のいずれも使用できる。多塩基酸としては、例えば、コハク酸、マレイン酸、アジピン酸、クエン酸、フタル酸、テトラヒドロフタル酸、3-メチルテトラヒドロフタル酸、4-メチルテトラヒドロフタル酸、3-エチルテトラヒドロフタル酸、4-エチルテトラヒドロフタル酸、ヘキサヒドロフタル酸、3-メチルヘキサヒドロフタル酸、4-メチルヘキサヒドロフタル酸、3-エチルヘキサヒドロフタル酸、4-エチルヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、メチルヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、メチルエンドメチレンテトラヒドロフタル酸、トリメリット酸、ピロメリット酸及びジグリコール酸等が挙げられ、多塩基酸無水物としてはこれらの無水物が挙げられる。これらは単独で用いてもよく、2種以上を混合して用いてもよい。 The polybasic acid or its anhydride is not particularly limited, and either saturated or unsaturated can be used. Examples of the polybasic acid include succinic acid, maleic acid, adipic acid, citric acid, phthalic acid, tetrahydrophthalic acid, 3-methyltetrahydrophthalic acid, 4-methyltetrahydrophthalic acid, 3-ethyltetrahydrophthalic acid, 4- Ethyltetrahydrophthalic acid, hexahydrophthalic acid, 3-methylhexahydrophthalic acid, 4-methylhexahydrophthalic acid, 3-ethylhexahydrophthalic acid, 4-ethylhexahydrophthalic acid, methyltetrahydrophthalic acid, methylhexahydro Examples include phthalic acid, endomethylenetetrahydrophthalic acid, methylendomethylenetetrahydrophthalic acid, trimellitic acid, pyromellitic acid, and diglycolic acid. Examples of polybasic acid anhydrides include these anhydrides. These may be used alone or in combination of two or more.
 多塩基酸または多塩基酸無水物の使用量は、エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応生成物が有する水酸基1モルに対して、後述する(C)成分のアミノ基またはイミノ基との反応性の低下防止、はんだ耐熱性の低下防止の点から下限値は0.3モルであり、最終的に得られる硬化塗膜の諸特性(例えば耐水性等)の低下を防止する点から上限値は1.0モルである。 The amount of the polybasic acid or polybasic acid anhydride used is the amino group or imino of the component (C) described later with respect to 1 mol of the hydroxyl group of the reaction product of the epoxy resin and the radical polymerizable unsaturated monocarboxylic acid. The lower limit is 0.3 mol from the viewpoint of preventing the reactivity with the group from being lowered and the solder heat resistance from being lowered, and prevents the deterioration of various properties (for example, water resistance) of the finally obtained cured coating film. From this point, the upper limit is 1.0 mol.
 多塩基酸は、上記した不飽和モノカルボン酸化エポキシ樹脂に添加されて脱水縮合反応するにあたり、脱水縮合反応時に生成した水は反応系から連続的に取り出すことが好ましく、またその反応は加熱状態で行うのが好ましく、その反応温度は70~130℃であることが好ましい。反応温度が130℃を超えると、エポキシ樹脂に結合されたものや、未反応モノマーのラジカル重合性不飽和基が熱重合を起こして合成が困難になることがあり、また70℃以下では反応速度が遅くなって生産効率が低下するためである。 When the polybasic acid is added to the above-described unsaturated monocarboxylic oxide epoxy resin and undergoes the dehydration condensation reaction, it is preferable to continuously take out the water produced during the dehydration condensation reaction from the reaction system, and the reaction is carried out in a heated state. The reaction is preferably carried out at a reaction temperature of 70 to 130 ° C. When the reaction temperature exceeds 130 ° C., synthesis may be difficult due to thermal polymerization of radical-polymerized unsaturated groups of the epoxy resin or unreacted monomers, and the reaction rate is below 70 ° C. This is because the production efficiency is lowered due to the delay.
 硬化性樹脂組成物の反応性向上のために、上記多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂と反応させる1以上のラジカル重合性不飽和基とエポキシ基を有するグリシジル化合物には、例えば、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、ペンタエリスリトールトリアクリレートモノグリシジルエーテル等が挙げられる。なお、グリシジル基は1分子中に複数有していてもよい。これらの化合物は単独で用いてもよく、2種以上を混合して用いてもよい。 In order to improve the reactivity of the curable resin composition, the glycidyl compound having one or more radical polymerizable unsaturated groups and an epoxy group to be reacted with the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin includes, for example, glycidyl. Examples include acrylate, glycidyl methacrylate, allyl glycidyl ether, and pentaerythritol triacrylate monoglycidyl ether. In addition, you may have multiple glycidyl groups in 1 molecule. These compounds may be used alone or in combination of two or more.
 このグリシジル化合物は、上記多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂の溶液に添加して反応させる。グリシジル化合物は、多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂に導入したカルボキシル基1モルに対し、0.05~0.5モル反応させ、電気絶縁性等の電気特性の点から0.1~0.5モル反応させるのが好ましい。また、反応温度は80~120℃が好ましい。このようにして得られるグリシジル化合物付加多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂の酸価は、45~250mgKOH/gが好ましい。 The glycidyl compound is added to the solution of the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin and allowed to react. The glycidyl compound is reacted in an amount of 0.05 to 0.5 mol with respect to 1 mol of the carboxyl group introduced into the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin, from the viewpoint of electric characteristics such as electric insulation, 0.1 to It is preferable to carry out 0.5 mol reaction. The reaction temperature is preferably 80 to 120 ° C. The acid value of the glycidyl compound-added polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin thus obtained is preferably 45 to 250 mgKOH / g.
 (B)酸化ジルコニウム、酸化アルミニウム、炭酸バリウム及び二酸化ケイ素からなる群から選択された少なくとも2種の無機化合物を配合した粉末フィラー
 酸化ジルコニウム(ZrO2)、酸化アルミニウム(Al2O3)、炭酸バリウム(BaCO3)及び二酸化ケイ素(SiO2)は、いずれも、白色の顔料として使用され得る。従って、(B)成分の粉末状フィラーは、2種以上の白色顔料を混合した白色顔料混合物である。(B)成分は、硬化性樹脂組成物の硬化物が、所定の反射率を得るため、特に、可視光領域の短波長側から紫外光領域にかけての波長帯の光(以下、「波長300~450nmの光」ということがある。)に曝されても該光の反射率の低下を抑えるために配合する。上記白色顔料を2種以上配合することで、単独で使用するよりも、上記反射率が低下するのを抑えることができる。
(B) Powder filler containing at least two inorganic compounds selected from the group consisting of zirconium oxide, aluminum oxide, barium carbonate and silicon dioxide Zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), barium carbonate Both (BaCO 3 ) and silicon dioxide (SiO 2 ) can be used as white pigments. Therefore, the powdery filler of the component (B) is a white pigment mixture in which two or more kinds of white pigments are mixed. The component (B) is a cured product of the curable resin composition, and in order to obtain a predetermined reflectance, in particular, light in a wavelength band from the short wavelength side of the visible light region to the ultraviolet light region (hereinafter referred to as “wavelength 300 to In some cases, it is also referred to as “450 nm light”. By blending two or more of the above white pigments, it is possible to prevent the reflectance from being lowered than when used alone.
 (B)成分の粉末フィラーの平均一次粒子径は、塗工性の点から5.0μm以下が好ましく、光反射率特性と分散性の点から0.1~3.0μmが特に好ましい。また、粉末フィラーは、波長300~450nmの光の反射率を高める点から少なくとも酸化ジルコニウムを配合することが好ましく、波長300~450nmの光に曝されても該光の反射率の低下を抑えて硬化処理終了当初の反射率を維持する点から酸化ジルコニウムと酸化アルミニウムと炭酸バリウムと二酸化ケイ素とを配合するのが特に好ましく、波長300~450nmの光の反射率と波長300~450nmの光の反射率低下抑制とのバランスの点から酸化ジルコニウムと酸化アルミニウムと炭酸バリウムとを配合するのがさらに好ましい。また、粉末フィラーは、焼成しても未焼成でも使用できるが、波長300~450nmの光の反射率低下をより安定的に抑制する点からは焼成するのが好ましい。 The average primary particle size of the powder filler of component (B) is preferably 5.0 μm or less from the viewpoint of coatability, and particularly preferably from 0.1 to 3.0 μm from the viewpoint of light reflectance characteristics and dispersibility. The powder filler preferably contains at least zirconium oxide from the viewpoint of increasing the reflectance of light having a wavelength of 300 to 450 nm, and suppresses a decrease in the reflectance of light even when exposed to light having a wavelength of 300 to 450 nm. It is particularly preferable to blend zirconium oxide, aluminum oxide, barium carbonate and silicon dioxide from the viewpoint of maintaining the reflectance at the beginning of the curing process, and reflectivity of light having a wavelength of 300 to 450 nm and reflection of light having a wavelength of 300 to 450 nm. More preferably, zirconium oxide, aluminum oxide, and barium carbonate are blended from the viewpoint of balance with reduction in rate. The powder filler can be used whether fired or unfired, but is preferably fired from the viewpoint of more stably suppressing a decrease in reflectance of light having a wavelength of 300 to 450 nm.
 粉末フィラーに配合される2種以上の無機化合物の配合割合は適宜選択可能である。例えば、モル比にて、ZrO2が1に対して、Al2O3が0.1~10、BaCO3が0.1~10、SiO2が0~10であり、可視光領域の短波長側から紫外光領域にかけての波長帯の光の反射率向上の点で、ZrO2が1に対して、Al2O3が0.5~1.5、BaCO3が0.5~1.5、SiO2が0~1.5が好ましく、紫外線照射の前後で前記波長帯の光の反射率の変化を確実に抑制する点で、等しいモル比が特に好ましい。 The blending ratio of two or more inorganic compounds blended in the powder filler can be appropriately selected. For example, in terms of molar ratio, ZrO 2 is 1, Al 2 O 3 is 0.1 to 10, BaCO 3 is 0.1 to 10, SiO 2 is 0 to 10, and the short wavelength in the visible light region From the viewpoint of improving the reflectance of light in the wavelength band from the side to the ultraviolet region, ZrO 2 is 1, Al 2 O 3 is 0.5 to 1.5, and BaCO 3 is 0.5 to 1.5. SiO 2 is preferably 0 to 1.5, and an equal molar ratio is particularly preferable in that the change in reflectance of light in the wavelength band is surely suppressed before and after ultraviolet irradiation.
 粉末フィラーの配合量の下限値は、硬化性樹脂100質量部に対して、波長300~450nmの光の照射後における反射率低下を抑制して硬化処理終了当初の反射率を維持する点から150質量部であり、さらに耐変色性をより向上させる点から200質量部が好ましく、確実に耐変色性を向上させる点から250質量部が特に好ましい。また、上限値は、硬化性樹脂100質量部に対して、硬化性樹脂に対する粉末フィラーの混錬性の点から700質量部であり、塗工性をより向上させる点から600質量部が好ましく、印刷後のレベリング速度の点から500質量部が特に好ましい。 The lower limit of the blending amount of the powder filler is 150 from the viewpoint of maintaining the reflectivity at the end of the curing process by suppressing the decrease in reflectivity after irradiation with light having a wavelength of 300 to 450 nm with respect to 100 parts by mass of the curable resin. 200 parts by mass is preferable from the viewpoint of further improving discoloration resistance, and 250 parts by mass is particularly preferable from the viewpoint of reliably improving discoloration resistance. Further, the upper limit is 700 parts by mass from the point of kneadability of the powder filler to the curable resin with respect to 100 parts by mass of the curable resin, and 600 parts by mass is preferable from the viewpoint of further improving the coatability. 500 parts by mass is particularly preferable from the viewpoint of leveling speed after printing.
 また、上記粉末フィラーに、さらに酸化チタン(TiO2)を配合してもよい。酸化チタンも、硬化物を白色化するための顔料である。酸化チタンも配合することで、波長300~450nmの光だけでなく、それ以外の可視光領域の光についても、光照射後の反射率低下を抑えることができる。酸化チタンには、アナターゼ型酸化チタン、ルチル型酸化チタンを挙げることができる。アナターゼ型酸化チタン、ルチル型酸化チタンいずれも使用できるが、アナターゼ型酸化チタンは、ルチル型酸化チタンと比較して白色度は高いものの、光触媒活性を有するので、硬化性樹脂組成物中の樹脂の変色を引き起こすことがある。ルチル型酸化チタンは、光触媒活性をほとんど有さないので硬化物の変色を防止できる。 Further, in the powder filler may be further blended titanium oxide (TiO 2). Titanium oxide is also a pigment for whitening the cured product. By incorporating titanium oxide, not only light with a wavelength of 300 to 450 nm but also light in other visible light regions can be prevented from lowering the reflectance after light irradiation. Examples of titanium oxide include anatase type titanium oxide and rutile type titanium oxide. Either anatase-type titanium oxide or rutile-type titanium oxide can be used, but anatase-type titanium oxide has higher whiteness than rutile-type titanium oxide, but has photocatalytic activity, so that the resin in the curable resin composition May cause discoloration. Since rutile type titanium oxide has almost no photocatalytic activity, it can prevent discoloration of the cured product.
 ルチル型酸化チタン及びアナターゼ型酸化チタンの粒子の平均粒径は特に限定されないが、例えば、0.01~1μmである。また、ルチル型酸化チタン粒子の表面処理剤も特に限定されない。ルチル型酸化チタンには、例えば、富士チタン工業(株)製「TR-600」、「TR-700」、「TR-750」、「TR-840」、石原産業(株)製「R-550」、「R-580」、「R-630」、「R-820」、「CR-50」、「CR-60」、「CR-90」、「CR-93」、チタン工業(株)製「KR-270」、「KR-310」、「KR-380」、テイカ(株)製「JR-1000 」、「JR-805」, 「JR-806」等を使用することができる。 The average particle diameter of the rutile type titanium oxide and anatase type titanium oxide particles is not particularly limited, but is, for example, 0.01 to 1 μm. Further, the surface treating agent for rutile type titanium oxide particles is not particularly limited. Examples of the rutile titanium oxide include “TR-600”, “TR-700”, “TR-750”, “TR-840” manufactured by Fuji Titanium Industry Co., Ltd., and “R-550” manufactured by Ishihara Sangyo Co., Ltd. ”,“ R-580 ”,“ R-630 ”,“ R-820 ”,“ CR-50 ”,“ CR-60 ”,“ CR-90 ”,“ CR-93 ”, manufactured by Titanium Industry Co., Ltd. “KR-270”, “KR-310”, “KR-380”, “JR-1000”, “JR-805”, “JR-806” manufactured by Teika Co., Ltd. can be used.
 ルチル型酸化チタンとアナターゼ型酸化チタンのいずれか一方を用いてもよく、ルチル型酸化チタンとアナターゼ型酸化チタンの混合物を用いてもよい。ルチル型酸化チタンとアナターゼ型酸化チタンの配合量の合計は、硬化性樹脂100質量部に対して、波長300~450nmの光だけでなく可視光領域の光についてもその反射率の低下を防止する点から10~500質量部であり、塗工性の点から10~400質量部が好ましい。 Either one of rutile titanium oxide and anatase titanium oxide may be used, or a mixture of rutile titanium oxide and anatase titanium oxide may be used. The total amount of rutile-type titanium oxide and anatase-type titanium oxide prevents a decrease in the reflectance of not only light with a wavelength of 300 to 450 nm but also light in the visible light region with respect to 100 parts by mass of the curable resin. From the point of view, it is 10 to 500 parts by weight, and from the viewpoint of coatability, 10 to 400 parts by weight are preferable.
 硬化性樹脂として(A‐1)1分子中に2以上の不飽和基を有する化合物を使用する場合、必要に応じて、さらに(C)1分子中にアミノ基またはイミノ基を少なくとも1以上有する化合物を配合してもよい。 When (A-1) a compound having two or more unsaturated groups in one molecule is used as the curable resin, if necessary, (C) further having at least one amino group or imino group in one molecule You may mix | blend a compound.
 上記態様は、1分子中に2以上の不飽和基を有する化合物に、1分子中にアミノ基またはイミノ基を1以上有する化合物を配合すると、硬化性樹脂組成物の加熱時における重合反応速度が、光硬化性樹脂組成物の重合反応速度と同等程度まで速くなるという知見に基づくものである。1分子中にアミノ基またはイミノ基を1以上有する化合物を配合すると加熱による重合反応速度が速くなるのは、加熱により、(C)成分のアミノ基またはイミノ基が(A‐1)成分のカルボキシル基と反応するためと考えられる。 In the above aspect, when a compound having one or more amino groups or imino groups in one molecule is blended with a compound having two or more unsaturated groups in one molecule, the polymerization reaction rate during heating of the curable resin composition is increased. This is based on the knowledge that the polymerization reaction rate of the photocurable resin composition is increased to the same level. When a compound having at least one amino group or imino group in one molecule is added, the polymerization reaction rate by heating increases because the amino group or imino group of component (C) becomes carboxyl of component (A-1) by heating. This is considered to react with the group.
 1分子中にアミノ基またはイミノ基を少なくとも1以上有する化合物としては、従来公知のものであれば、いずれも使用できる。具体例としては、メラミン、メラミン誘導体を挙げることができる。メラミン誘導体には、イミノ基、メチロール基、メトキシメチル基の官能基を含むアルキル化メラミン等を挙げることができ、アルキル化メラミンには、例えば、下記一般式(i) Any conventionally known compounds can be used as the compound having at least one amino group or imino group in one molecule. Specific examples include melamine and melamine derivatives. Examples of the melamine derivative include an alkylated melamine containing a functional group such as an imino group, a methylol group, and a methoxymethyl group. Examples of the alkylated melamine include the following general formula (i):
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、R1、R2、R3、R4、R5、R6は、それぞれ相互に独立に、水素、メチロール基またはメトキシメチル基を表す)のものを挙げることができる。 (Wherein R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 each independently represents hydrogen, a methylol group, or a methoxymethyl group).
 市販されているメラミン誘導体には、例えば、(株)三和ケミカル製の「ニカラックMW-30HM」、「ニカラックMW-390」、「ニカラックMW-100LM」、「ニカラックMX-750LM」等を挙げることができる。 Examples of commercially available melamine derivatives include “Nicarak MW-30HM”, “Nicarak MW-390”, “Nicarac MW-100LM”, “Nicarac MX-750LM” manufactured by Sanwa Chemical Co., Ltd. Can do.
 1分子中に2以上の不飽和基を有する化合物100質量部に対して、1分子中にアミノ基またはイミノ基を1以上有する化合物の配合量の下限値は、硬化速度を確保する点から0.2質量部であり、耐変色性をより高める点から1.2質量部が好ましく、さらにはんだ耐熱性もより高める点から1.5質量部が特に好ましい。また、配合量の上限値は、耐水性の点から10質量部であり、湿中における電気特性の向上の点から5質量部が好ましく、高絶縁抵抗の点から3質量部が特に好ましい。 The lower limit of the compounding amount of the compound having one or more amino groups or imino groups in one molecule is 0 from the viewpoint of ensuring the curing speed with respect to 100 parts by mass of the compound having two or more unsaturated groups in one molecule. 1.2 parts by mass from the viewpoint of further improving discoloration resistance, and 1.5 parts by mass is particularly preferable from the viewpoint of further improving the heat resistance of the solder. Moreover, the upper limit of the amount is 10 parts by mass from the viewpoint of water resistance, 5 parts by mass is preferable from the viewpoint of improving electrical characteristics in humidity, and 3 parts by mass is particularly preferable from the viewpoint of high insulation resistance.
(D)光重合開始剤
 光重合開始剤は、硬化性樹脂を光硬化させる場合に配合する。光重合開始剤は、一般的に使用されるものであれば特に限定されず、例えば、オキシム系開始剤、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインーnーブチルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、ジメチルアミノアセトフェノン、2, 2- ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2- ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノ-プロパン-1-オン、4- (2-ヒドロキシエトキシ) フェニル-2-(ヒドロキシ-2- プロピル) ケトン、ベンゾフェノン、p-フェニルベンゾフェノン、4, 4′ージエチルアミノベンゾフェノン、ジクロルベンゾフェノン、2-メチルアントラキノン、2-エチルアントラキノン、2- ターシャリーブチルアントラキノン、2-アミノアントラキノン、 2-メチルチオキサントン、2-エチルチオキサントン、2-クロルチオキサントン、2,4-ジメチルチオキサントン、2,4ジエチルチオキサントン、ベンジルジメチルケタール、アセトフェノンジメチルケタール、P-ジメチルアミノ安息香酸エチルエステル等が挙げられる。これらは単独で使用してもよく2種以上を混合して使用してもよい。光重合開始剤の配合量は、硬化性樹脂100質量部に対して、1~40質量部であり、好ましくは5~30質量部である。
(D) Photoinitiator A photoinitiator is mix | blended when photocuring a curable resin. The photopolymerization initiator is not particularly limited as long as it is generally used. For example, an oxime initiator, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-butyl ether, benzoin isobutyl ether Acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl Phenylketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 4- (2-hydroxyethoxy) phenyl-2- (hydroxy-2-propyl) ketone, ben Zophenone, p-phenylbenzophenone, 4,4'-diethylaminobenzophenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertiarybutylanthraquinone, 2-aminoanthraquinone, 2-methylthioxanthone, 2-ethylthioxanthone 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4 diethylthioxanthone, benzyl dimethyl ketal, acetophenone dimethyl ketal, P-dimethylaminobenzoic acid ethyl ester, and the like. These may be used alone or in combination of two or more. The blending amount of the photopolymerization initiator is 1 to 40 parts by mass, preferably 5 to 30 parts by mass with respect to 100 parts by mass of the curable resin.
 本発明の硬化性樹脂組成物には、上記した成分(A)~(D)の他にも、必要に応じて、下記成分を配合させてもよい。 In addition to the components (A) to (D) described above, the curable resin composition of the present invention may contain the following components as necessary.
 希釈剤
 希釈剤は、例えば、反応性希釈剤である重合性モノマーであり、硬化性樹脂の硬化を十分にして、耐酸性、耐熱性、耐アルカリ性などを有する硬化物を得るために使用する。重合性モノマーとしては、例えば、1,4‐ブタンジオールジ(メタ)アクリレート、1,6‐ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキサイド変性燐酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。これらは単独で使用してもよく、2種以上を混合して使用してもよい。
Diluent The diluent is, for example, a polymerizable monomer that is a reactive diluent, and is used to obtain a cured product having sufficient acid resistance, heat resistance, alkali resistance, etc., by sufficiently curing the curable resin. Examples of the polymerizable monomer include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, neo Pentyl glycol adipate di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone-modified dicyclopentenyl di (meth) acrylate, ethylene oxide-modified phosphate di (meth) Acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol tri (meth) acrylate Propionate modified dipentaerythritol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, propionic acid modified dipentaerythritol Examples include penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and caprolactone-modified dipentaerythritol hexa (meth) acrylate. These may be used alone or in combination of two or more.
 上記した反応性希釈剤の配合量は、硬化性樹脂100質量部に対して、2.0~100質量部であり、10~60質量部が好ましく、20~50質量部が特に好ましい。 The amount of the reactive diluent described above is 2.0 to 100 parts by mass, preferably 10 to 60 parts by mass, and particularly preferably 20 to 50 parts by mass with respect to 100 parts by mass of the curable resin.
 エポキシ化合物
 エポキシ化合物は、硬化物の架橋密度を上げて、十分な機械的強度を有する硬化塗膜を得るためのものである。エポキシ化合物には、例えば、エポキシ樹脂がある。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂、p-tert-ブチルフェノールノボラック型など)、ビスフェノールFやビスフェノールSにエピクロルヒドリンを反応させて得られたビスフェノールF型やビスフェノールS型エポキシ樹脂、さらにシクロヘキセンオキシド基、トリシクロデカンオキシド基、シクロペンテンオキシド基などを有する脂環式エポキシ樹脂、トリス(2,3-エポキシプロピル)イソシアヌレート、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート等のトリアジン環を有するトリグリシジルイソシアヌレート、ジシクロペンタジエン型エポキシ樹脂、アダマンタン型エポキシ樹脂等を挙げることができる。これらの化合物は単独で使用してもよく、2種以上混合して使用してもよい。エポキシ化合物の配合量は、硬化性樹脂100質量部に対して、硬化後に十分な塗膜を得、かつはんだ耐熱性を向上させる点から1~75質量部であり、塗膜硬化性とはんだ耐熱性のバランスの点から10~30質量部が好ましい。
Epoxy compound The epoxy compound is for obtaining a cured coating film having sufficient mechanical strength by increasing the crosslinking density of the cured product. Examples of the epoxy compound include an epoxy resin. Examples of the epoxy resin include bisphenol A type epoxy resin, novolak type epoxy resin (phenol novolak type epoxy resin, o-cresol novolak type epoxy resin, p-tert-butylphenol novolak type, etc.), bisphenol F and bisphenol S with epichlorohydrin. Bisphenol F type and bisphenol S type epoxy resins obtained by reaction, alicyclic epoxy resins having cyclohexene oxide groups, tricyclodecane oxide groups, cyclopentene oxide groups, and the like, tris (2,3-epoxypropyl) isocyanurate , Triglycidyl isocyanurate having a triazine ring such as triglycidyl tris (2-hydroxyethyl) isocyanurate, dicyclopentadiene type epoxy resin, Adama It can be exemplified Tan type epoxy resin or the like. These compounds may be used alone or in combination of two or more. The compounding amount of the epoxy compound is 1 to 75 parts by mass with respect to 100 parts by mass of the curable resin from the viewpoint of obtaining a sufficient coating film after curing and improving the solder heat resistance. From the viewpoint of balance of properties, 10 to 30 parts by mass is preferable.
 溶剤
 硬化性樹脂組成物の粘度や乾燥性を調節するために、非反応性の有機溶剤を用いてもよい。有機溶剤としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン等の芳香族炭化水素類、メタノール、イソプロパノール、シクロヘキサノール等のアルコール類、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素類、石油エーテル、石油ナフサ等の石油系溶剤類、セロソルブ、ブチルセロソルブ等のセロソルブ類、カルビトール、ブチルカルビトール等のカルビトール類、酢酸エチル、酢酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、ジエチレングリコールモノエチルエーテルアセテート等の酢酸エステル類等を挙げることができる。有機溶剤を用いる場合の配合量は、硬化性樹脂100質量部に対して、10~500質量部であり、20~100質量部が好ましい。
Solvent A non-reactive organic solvent may be used to adjust the viscosity and drying properties of the curable resin composition. Examples of the organic solvent include ketones such as methyl ethyl ketone and cyclohexanone, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, isopropanol and cyclohexanol, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, Petroleum solvents such as petroleum ether and petroleum naphtha, cellosolves such as cellosolve and butylcellosolve, carbitols such as carbitol and butylcarbitol, ethyl acetate, butyl acetate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butylcarbi Examples include acetates such as tall acetate and diethylene glycol monoethyl ether acetate. When the organic solvent is used, the blending amount is 10 to 500 parts by weight, preferably 20 to 100 parts by weight, based on 100 parts by weight of the curable resin.
 消泡剤には、公知のものを使用でき、例えば、シリコーン系、炭化水素系、アクリル系等を挙げることができる。 As the antifoaming agent, known ones can be used, and examples thereof include silicone-based, hydrocarbon-based and acrylic-based agents.
 添加剤には、例えば、シラン系、チタネート系、アルミナ系等のカップリング剤といった分散剤、三フッ化ホウ素-アミンコンプレックス、ジシアンジアミド(DICY)及びその誘導体、有機酸ヒドラジド、ジアミノマレオニトリル(DAMN)及びその誘導体、並びにグアナミン及びその誘導体等の潜在性硬化剤、アセチルアセナートZn及びアセチルアセナートCr等のアセチルアセトンの金属塩、エナミン、オクチル酸錫、第4級スルホニウム塩、トリフェニルホスフィン、イミダゾール、イミダゾリウム塩並びにトリエタノールアミンボレート等の熱硬化促進剤を挙げることができる。 Examples of additives include dispersants such as coupling agents such as silane, titanate, and alumina, boron trifluoride-amine complex, dicyandiamide (DICY) and its derivatives, organic acid hydrazide, and diaminomaleonitrile (DAMN). And its derivatives, and latent curing agents such as guanamine and its derivatives, metal salts of acetylacetone such as acetylacetonate Zn and acetylacetonateCr, enamine, tin octylate, quaternary sulfonium salt, triphenylphosphine, imidazole, Examples include imidazolium salts and thermosetting accelerators such as triethanolamine borate.
 また、硬化性樹脂組成物の塗膜の物理的強度を上げるために体質顔料を配合してもよい。体質顔料には、例えば、水酸化アルミニウム、タルク、マイカ等を挙げることができる。 Further, an extender pigment may be blended in order to increase the physical strength of the coating film of the curable resin composition. Examples of extender pigments include aluminum hydroxide, talc, and mica.
 本発明の硬化性樹脂組成物の製造方法は、特定の方法に限定されないが、例えば、上記所定の成分を所定割合で配合後、室温にて、三本ロール、ボールミル、サンドミル等の混練手段、またはスーパーミキサー、プラネタリーミキサー等の攪拌手段により混練または混合して製造することができる。また、前記混練または混合の前に、必要に応じて、予備混練または予備混合してもよい。 The method for producing the curable resin composition of the present invention is not limited to a specific method, for example, after blending the above-mentioned predetermined components in a predetermined ratio, at room temperature, kneading means such as a three roll, ball mill, sand mill, Alternatively, it can be produced by kneading or mixing with a stirring means such as a super mixer or a planetary mixer. Further, prior to the kneading or mixing, if necessary, preliminary kneading or premixing may be performed.
 以下に、本発明の硬化性樹脂組成物の使用方法について説明する。まず、本発明の硬化性樹脂組成物をプリント配線板に塗工してソルダーレジスト膜として使用する場合を例にとって説明する。 Hereinafter, a method for using the curable resin composition of the present invention will be described. First, the case where the curable resin composition of the present invention is applied to a printed wiring board and used as a solder resist film will be described as an example.
 光重合開始剤を配合した硬化性樹脂組成物を光硬化させる場合には、上記のようにして製造した本発明の硬化性樹脂組成物を、例えば銅箔をエッチングして形成した回路パターンを有するプリント配線板上に、スクリーン印刷法、ロールコータ法、バーコータ法、スプレーコータ法、カーテンフローコータ法、グラビアコータ法等を用いて、所望の厚さ、例えば5~100μmの厚さに塗布する。次に、硬化性樹脂組成物中の溶剤を揮散させるために60~80℃程度の温度で15~60分間程度加熱する予備乾燥を行ってタックフリーの塗膜を形成する。その後、塗布した硬化性樹脂組成物上に、前記回路パターンのランド以外を透光性にしたパターンを有するネガフィルムを密着させ、その上から紫外線を照射させる。そして、前記ランドに対応する非露光領域を希アルカリ水溶液で除去することにより塗膜が現像される。現像方法には、スプレー法、シャワー法等が用いられ、使用される希アルカリ水溶液としては0.5~5%の炭酸ナトリウム水溶液が一般的であるが、他のアルカリも使用可能である。次いで、130~170℃の熱風循環式の乾燥機等で20~80分間ポストキュアを行うことにより塗膜を熱硬化させ、プリント配線板上に目的とする硬化性樹脂組成物のソルダーレジスト膜を形成させることができる。 When photocuring a curable resin composition containing a photopolymerization initiator, the curable resin composition of the present invention produced as described above has a circuit pattern formed by etching a copper foil, for example. On a printed wiring board, it is applied to a desired thickness, for example, 5 to 100 μm, using a screen printing method, a roll coater method, a bar coater method, a spray coater method, a curtain flow coater method, a gravure coater method or the like. Next, in order to volatilize the solvent in the curable resin composition, preliminary drying is performed by heating at a temperature of about 60 to 80 ° C. for about 15 to 60 minutes to form a tack-free coating film. Then, the negative film which has the pattern which made translucent except the land of the said circuit pattern was stuck on the apply | coated curable resin composition, and an ultraviolet-ray is irradiated from it. Then, the coating film is developed by removing the non-exposed areas corresponding to the lands with a dilute alkaline aqueous solution. As the developing method, a spray method, a shower method, or the like is used. As the dilute alkaline aqueous solution used, a 0.5 to 5% sodium carbonate aqueous solution is generally used, but other alkalis can also be used. Next, the coating film is thermally cured by performing a post-cure for 20 to 80 minutes using a hot-air circulating dryer at 130 to 170 ° C. to form a solder resist film of the desired curable resin composition on the printed wiring board. Can be formed.
 光重合開始剤を配合しない硬化性樹脂組成物を熱硬化させる場合には、上記のようにして製造した本発明の硬化性樹脂組成物を、例えば銅箔をエッチングして形成した回路パターンを有するプリント配線板上に、スクリーン印刷法、スプレーコータ法、ホンメルトコータ法、バーコータ法、アプリケータ法、ブレードコータ法、ナイフコータ法、エアナイフコータ法、カーテンフローコータ法、ロールコータ法、グラビアコータ法、オフセット印刷法、ディップコータ法、刷毛塗り等を用いて、所望の厚さ、例えば5~100μmの厚さに塗布する。塗工後、硬化性樹脂組成物中の溶剤を揮散させるために60~80℃程度の温度で15~60分間程度加熱する予備乾燥を行ってタックフリーの塗膜を形成する。その後、130~170℃の熱風循環式の乾燥機等で20~80分間ポストキュアを行うことにより塗膜を熱硬化させて、プリント配線板上に目的とする硬化性樹脂組成物のソルダーレジスト膜を形成させることができる。 When thermosetting a curable resin composition not containing a photopolymerization initiator, the curable resin composition of the present invention produced as described above has, for example, a circuit pattern formed by etching a copper foil. On the printed wiring board, screen printing method, spray coater method, honmelt coater method, bar coater method, applicator method, blade coater method, knife coater method, air knife coater method, curtain flow coater method, roll coater method, gravure coater method, Using an offset printing method, a dip coater method, brush coating, etc., it is applied to a desired thickness, for example, 5 to 100 μm. After coating, in order to volatilize the solvent in the curable resin composition, preliminary drying is performed by heating at a temperature of about 60 to 80 ° C. for about 15 to 60 minutes to form a tack-free coating film. Thereafter, the coating film is thermally cured by performing a post-cure for 20 to 80 minutes with a hot air circulation dryer or the like at 130 to 170 ° C., and a solder resist film of the desired curable resin composition on the printed wiring board. Can be formed.
 このようにして得られた硬化塗膜にて被覆されたプリント配線板に、噴流はんだ付け方法、リフローはんだ付け方法等により電子部品がはんだ付けされることで、電子回路ユニットが形成される。 An electronic circuit unit is formed by soldering an electronic component to the printed wiring board covered with the cured coating film thus obtained by a jet soldering method, a reflow soldering method, or the like.
 次に、上記した硬化性樹脂組成物をシート状のベースフィルム表面に塗工して、反射皮膜として使用する場合を例にとって説明する。シート状ベースフィルム表面を例えば酸処理して洗浄後、該洗浄した表面に、上記のようにして製造した硬化性樹脂組成物を所定の塗工手段にて所望の厚さ、例えば5~100μmの厚さに塗布する。塗工後、60~80℃程度の温度で15~60分間程度加熱する予備乾燥を行ってタックフリーの塗膜を形成する。次いで、130~170℃程度の温度で10~80分間ポストキュアを行うことにより、シート状のベースフィルム表面に目的とする白色の硬化塗膜、すなわち反射皮膜を形成させて反射シートを製造できる。 Next, the case where the curable resin composition described above is applied to the surface of a sheet-like base film and used as a reflective film will be described as an example. After the surface of the sheet-like base film is washed by, for example, acid treatment, the curable resin composition produced as described above is applied to the washed surface by a predetermined coating means with a desired thickness, for example, 5 to 100 μm. Apply to thickness. After coating, pre-drying is performed at a temperature of about 60 to 80 ° C. for about 15 to 60 minutes to form a tack-free coating film. Next, by performing post-cure at a temperature of about 130 to 170 ° C. for 10 to 80 minutes, a target white cured coating film, that is, a reflective coating film can be formed on the surface of the sheet-like base film to produce a reflective sheet.
 上記シート状ベースフィルムの材料は、特に限定されないが、例えば、ポリイミド、ポリエチレンテレフタレート(PET)、ポリビニルフロライド(PVF)、フッ化エチレン・プロピレンコポリマー(FEP)、ポリテトラフロロエチレン(PTFE)、アラミド、ポリアミド・イミド、エポキシ、ポリエーテルイミド、ポリスルホン、ポリエチレンナフタレート(PEN)、液晶ポリマー(LCP)等を挙げることができる。 The material of the sheet-like base film is not particularly limited. For example, polyimide, polyethylene terephthalate (PET), polyvinyl fluoride (PVF), fluorinated ethylene / propylene copolymer (FEP), polytetrafluoroethylene (PTFE), aramid , Polyamide / imide, epoxy, polyetherimide, polysulfone, polyethylene naphthalate (PEN), liquid crystal polymer (LCP), and the like.
 また、塗工手段としては、特に限定されず、例えば、スクリーン印刷法、スプレーコータ法、ホンメルトコータ法、バーコータ法、アプリケータ法、ブレードコータ法、ナイフコータ法、エアナイフコータ法、カーテンフローコータ法、ロールコータ法、グラビアコータ法、オフセット印刷法、ディップコータ法、刷毛塗り等を挙げることができる。 Also, the coating means is not particularly limited, and for example, screen printing method, spray coater method, honmelt coater method, bar coater method, applicator method, blade coater method, knife coater method, air knife coater method, curtain flow coater method , Roll coater method, gravure coater method, offset printing method, dip coater method, brush coating and the like.
 以下に、上記反射シートの使用方法例について説明する。反射シートは、例えば、太陽電池モジュールの裏面側、すなわち日射を受ける表面とは反対側の表面上に配置してバックシートとして使用できる。反射シートをバックシートとして使用すると、太陽電池モジュールの発電素子に受光されずに太陽電池モジュール内を透過した太陽光が、反射シートの反射皮膜により反射されて太陽電池モジュールの裏面側から再度太陽電池モジュール内部に戻されるので、太陽電池モジュールの発電効率が向上する。なお、太陽電池モジュール裏面への反射シートの設置方法には、例えば、接着剤や接着用テープを用いて太陽電池モジュール裏面に直接貼り合わせる方法が挙げられる。 Hereinafter, an example of how to use the reflection sheet will be described. For example, the reflection sheet can be used as a back sheet by being disposed on the back surface side of the solar cell module, that is, on the surface opposite to the surface receiving solar radiation. When the reflective sheet is used as a back sheet, the sunlight transmitted through the solar cell module without being received by the power generation element of the solar cell module is reflected by the reflective film of the reflective sheet, and again from the back side of the solar cell module. Since it is returned to the inside of the module, the power generation efficiency of the solar cell module is improved. In addition, the installation method of the reflective sheet to a solar cell module back surface includes the method of sticking directly on a solar cell module back surface using an adhesive agent or an adhesive tape, for example.
 反射シートを、太陽電池モジュールのバックシートに使用する場合、ベースフィルムには、例えば、厚さ40μmのポリエチレンテレフタレートフィルムを用いる。また、硬化後の膜厚が所定値(例えば20~23μm)となるように硬化性樹脂組成物を塗工する。さらに、硬化性樹脂組成物の塗工部位は、太陽電池モジュール裏面に対向したベースフィルム表面の全面または略全面について行なうのが好ましい。 When the reflective sheet is used for the back sheet of the solar cell module, for example, a polyethylene terephthalate film having a thickness of 40 μm is used as the base film. Further, the curable resin composition is applied so that the film thickness after curing becomes a predetermined value (for example, 20 to 23 μm). Furthermore, it is preferable that the coating part of the curable resin composition is performed on the entire surface or substantially the entire surface of the base film facing the back surface of the solar cell module.
 次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、これらの例に限定されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited to these examples as long as it does not exceed the gist thereof.
実施例1~7、比較例1~5
 下記表1に示す各成分を下記表1に示す配合割合にて配合し、攪拌機にて予備混合した後、3本ロールを用いて室温にて混合分散させて、実施例1~7、比較例1~5の硬化性樹脂組成物を調製した。なお、表1中の配合割合の数値は質量部を示す。
Examples 1-7, Comparative Examples 1-5
Ingredients shown in Table 1 below were blended at the blending ratios shown in Table 1 below, premixed with a stirrer, mixed and dispersed at room temperature using three rolls, Examples 1 to 7 and Comparative Examples 1 to 5 curable resin compositions were prepared. In addition, the numerical value of the mixture ratio in Table 1 shows a mass part.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1中の各成分についての詳細は以下の通りである。
(A)硬化性樹脂
・サイクロマーP(ACA)Z-300:ダイセル化学工業(株)製、アクリル共重合構造の樹脂を使用したカルボキシル基含有樹脂。
(B)粉末フィラー
 実施例で使用した顔料の混合物である粉末フィラーA~Dの配合及び比較例で使用した酸化ジルコニウム(ZrO2)、酸化チタン(TIO2)、酸化アルミニウム(Al2O3)、炭酸バリウム(BaCO3)の詳細は下記表2の通りである。
Details of each component in Table 1 are as follows.
(A) Curable resin / Cyclomer P (ACA) Z-300: A carboxyl group-containing resin using a resin having an acrylic copolymer structure manufactured by Daicel Chemical Industries, Ltd.
(B) Powder filler The composition of powder fillers A to D, which is a mixture of pigments used in the examples, and zirconium oxide (ZrO 2 ), titanium oxide (TIO 2 ), and aluminum oxide (Al 2 O 3 ) used in the comparative examples. The details of barium carbonate (BaCO 3 ) are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、粉末フィラーAは、図1に示す焼成条件にて1300℃で焼成された点と、バインダー樹脂、可塑化剤、滑剤及び溶媒を配合した点で粉末フィラーCと相違する。しかし、バインダー樹脂、可塑化剤、滑剤及び溶媒は、いずれも焼成に当たり粉末フィラーAの成形性をより向上させる目的で配合したものであり、バインダー樹脂、可塑化剤、滑剤及び溶媒は焼成により揮発するので、実施例の下記評価結果には影響しない。粉末フィラーBと粉末フィラーDの関係についても同様である。 The powder filler A is different from the powder filler C in that it is fired at 1300 ° C. under the firing conditions shown in FIG. 1 and in that a binder resin, a plasticizer, a lubricant and a solvent are blended. However, the binder resin, plasticizer, lubricant and solvent are all formulated for the purpose of further improving the moldability of the powder filler A upon firing. The binder resin, plasticizer, lubricant and solvent are volatilized by firing. Therefore, it does not affect the following evaluation results of the examples. The same applies to the relationship between the powder filler B and the powder filler D.
(D)光重合開始剤
・イルガキュア184:チバ・スペシャルティ・ケミカルズ(株)製、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン。
その他の成分
・希釈剤;M‐408:東亜合成(株)製、ジトリメチロールプロパンテトラアクリレート。
・エポキシ化合物;EPICRON850:大日本インキ化学工業(株)製、ビスフェノールA型エポキシ樹脂。
・消泡剤;KS-66:信越化学工業(株)製シリコーン系消泡剤。
 また、添加剤のうち、DICY-7はジャパンエポキシレジン(株)製の硬化促進剤、R-974は日本アエロジル(株)製のチキソ性付与剤、スミライザーGA-80は住友化学(株)製の3,9-ビス[2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル) プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンで、酸化防止剤である。
(D) Photopolymerization initiator Irgacure 184: 1-hydroxy-cyclohexyl-phenyl-ketone manufactured by Ciba Specialty Chemicals Co., Ltd.
Other components / diluent: M-408: Ditrimethylolpropane tetraacrylate manufactured by Toa Gosei Co., Ltd.
Epoxy compound; EPICRON 850: Dainippon Ink & Chemicals, Inc., bisphenol A type epoxy resin.
Antifoaming agent: KS-66: Silicone antifoaming agent manufactured by Shin-Etsu Chemical Co., Ltd.
Among the additives, DICY-7 is a curing accelerator manufactured by Japan Epoxy Resin Co., Ltd., R-974 is a thixotropic agent manufactured by Nippon Aerosil Co., Ltd., and Sumilizer GA-80 is manufactured by Sumitomo Chemical Co., Ltd. Of 3,9-bis [2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxa Spiro [5,5] undecane, an antioxidant.
 試験片作成工程1
 銅箔をエッチングして形成した回路パターンを有するプリント配線板(パナソニック電工(株)製、FR‐4基板、板厚1.6mmt、導体厚35μm)の表面を、3%硫酸水溶液により酸処理した後、スクリーン印刷法にて、実施例1~7及び比較例1~5の硬化性樹脂組成物をそれぞれ塗布した。その後、BOX炉にて70℃で20分(BOX炉内25分)の予備乾燥を行った。実施例3についてのみ、予備乾燥後、塗膜上に露光装置(オーク社製HMW-680GW)にて400mJ/cm2の露光を1分間行なった後、30℃、1%の炭酸ナトリウム水溶液を0.1MPaにて60秒間噴霧して現像した。実施例3については現像後、その他の実施例及び比較例については予備乾燥後、BOX炉にて150℃で60分(BOX炉内70分)のポストキュアを行ってプリント配線板上に硬化性樹脂組成物の硬化塗膜を形成し、試験片を作成した。硬化塗膜の厚みは20~23μmであった。
Test piece preparation process 1
The surface of a printed wiring board having a circuit pattern formed by etching a copper foil (manufactured by Panasonic Electric Works Co., Ltd., FR-4 substrate, plate thickness 1.6 mmt, conductor thickness 35 μm) was acid-treated with a 3% sulfuric acid aqueous solution. Thereafter, the curable resin compositions of Examples 1 to 7 and Comparative Examples 1 to 5 were respectively applied by screen printing. Thereafter, preliminary drying was performed in a BOX furnace at 70 ° C. for 20 minutes (25 minutes in the BOX furnace). For Example 3 only, after preliminary drying, the coating film was exposed to 400 mJ / cm 2 with an exposure apparatus (HMW-680GW manufactured by Oak Co.) for 1 minute, and then 0 ° C. was added with 30% 1% aqueous sodium carbonate solution. .Developed by spraying at 1 MPa for 60 seconds. For Example 3, after development, and for other Examples and Comparative Examples, after preliminary drying, post-curing was performed at 150 ° C. for 60 minutes (70 minutes in the BOX furnace) and cured on the printed wiring board. A cured coating film of the resin composition was formed to prepare a test piece. The thickness of the cured coating film was 20 to 23 μm.
 評価項目
(1)反射率(%)
 反射率の測定では、調製した硬化性樹脂組成物をスライドガラス(50×50×1mm)の表面にスクリーン印刷法にて100μmの厚さに塗工後、150℃で1時間加熱硬化して試験片とした。次に、この試験片の硬化塗膜について、紫外可視分光光度計(日立ハイテク社製UV-3310)を用いて、スキャン幅200~800nm、スキャン速度600nm/min、スリット幅5mmでポストキュア後(以下、「硬化初期」という)の反射率を測定した。標準白板はAl2O3とした。硬化初期の反射率測定後、露光装置(オーク製作所製、HMW-680GW、ランプSMX‐7000H) を用いて、試験片の硬化塗膜へ積算光量800J/cm2になるまで波長300~450nmの紫外線を照射させた。その後、上記硬化初期の反射率と同様の方法にて、紫外線照射後の反射率を測定した。また、紫外線照射後の反射率/硬化初期の反射率×100から、反射率の維持率(%)を算出した。
Evaluation item (1) Reflectivity (%)
In the measurement of reflectance, the prepared curable resin composition was applied to the surface of a slide glass (50 × 50 × 1 mm) to a thickness of 100 μm by a screen printing method, and then cured by heating at 150 ° C. for 1 hour. It was a piece. Next, the cured coating film of this test piece was post-cured with a UV-visible spectrophotometer (UV-3310 manufactured by Hitachi High-Tech) with a scan width of 200 to 800 nm, a scan speed of 600 nm / min, and a slit width of 5 mm ( Hereinafter, the reflectance of “the initial stage of curing” was measured. The standard white board was Al 2 O 3 . After measuring the reflectivity at the initial stage of curing, UV light with a wavelength of 300 to 450 nm is applied to the cured coating film of the test piece using an exposure apparatus (Oak Seisakusho, HMW-680GW, lamp SMX-7000H) until the accumulated light quantity reaches 800 J / cm 2 Were irradiated. Then, the reflectance after ultraviolet irradiation was measured by the same method as the reflectance at the initial stage of curing. Further, the reflectance maintenance rate (%) was calculated from reflectance after ultraviolet irradiation / reflectance at the initial stage of curing × 100.
(2)耐変色性
 試験片作成工程1にて作成した試験片について、170℃にて100時間加熱後、硬化塗膜の色調を目視にて観察し、以下の基準にて評価した。
 ○:変色なし、△:変色が若干見られる、×:黄変
(3)絶縁抵抗
 試験片作成工程1にて作成した試験片の硬化塗膜について、IPC-TM-650のIPC-SM840B B-25テストクーポンのくし形電極を用い、85℃、85%R.H.で200時間加湿処理した後の絶縁抵抗を、DC50Vを印加して測定した。
(4)はんだ耐熱性
 試験片作成工程1にて作成した試験片を、JIS C-6481の試験方法に従って、260℃のはんだ槽に30秒間浸せき後、セロハンテープによるピーリング試験を1サイクルとし、これを1~3回繰り返した後の塗膜状態を目視により観察し、以下の基準に従って評価した。
 ◎:3サイクル繰り返し後も塗膜に変化が認められない、○:3サイクル繰り返し後の塗膜にほんの僅か変化が認められる、△:2サイクル繰り返し後の塗膜に変化が認められる、×:1サイクル後の塗膜に剥離が認められる。
(5)粘度
 ブルックフィールド社製HBT型回転粘度計を用いて、塗工前の硬化性樹脂組成物の25℃における粘度を測定した。
(6)塗工性
 スクリーン印刷後の塗膜状態を目視により観察し、以下の基準にて評価した。
 ○:塗膜面平滑で気泡なし、△:若干塗膜面にムラあり、気泡の発生が認められる、×:塗膜面にムラ多く、平滑でない。
(2) Discoloration resistance About the test piece created in the test piece preparation step 1, after heating at 170 ° C. for 100 hours, the color tone of the cured coating film was visually observed and evaluated according to the following criteria.
○: No discoloration, Δ: Some discoloration is observed, ×: Yellow discoloration (3) Insulation resistance IPC-TM-840B IPC-TM840B B- Using 25 test coupon comb electrodes, 85 ° C., 85% R.D. H. The insulation resistance after the humidification treatment for 200 hours was measured by applying DC 50V.
(4) Solder heat resistance After the test piece prepared in the test piece preparation step 1 is immersed in a solder bath at 260 ° C for 30 seconds in accordance with the test method of JIS C-6481, a peeling test using a cellophane tape is defined as one cycle. The coating state after repeating 1 to 3 times was visually observed and evaluated according to the following criteria.
A: No change is observed in the coating film even after 3 cycles are repeated. O: Only a slight change is observed in the coating film after the 3 cycles. Δ: A change is observed in the coating film after the 2 cycles. Peeling is observed in the coating film after one cycle.
(5) Viscosity Using a Brookfield HBT type viscometer, the viscosity at 25 ° C. of the curable resin composition before coating was measured.
(6) Coating property The state of the coated film after screen printing was visually observed and evaluated according to the following criteria.
○: Smooth coating surface and no bubbles, Δ: Slight unevenness on the coating surface, generation of bubbles is observed, ×: Many unevenness on the coating surface and not smooth.
 評価結果を下記表3に示す。 Evaluation results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、表3中、反射率の「-」は、反射率が5%以下と低く、ノイズが生じたので測定不可であることを意味する。 In Table 3, “−” in the reflectance means that the reflectance is as low as 5% or less and measurement is impossible because noise is generated.
 表3より、酸化ジルコニウム(ZrO2)と酸化アルミニウム(Al2O3)と炭酸バリウム(BaCO3)と二酸化ケイ素(SiO2)を配合した粉末フィラーA若しくはC、または酸化ジルコニウム(ZrO2)と酸化アルミニウム(Al2O3)と炭酸バリウム(BaCO3)を配合した粉末フィラーB若しくはDを用いた実施例1~7は、酸化ジルコニウム(ZrO2)を用いた比較例1、酸化アルミニウム(Al2O3)を用いた比較例4、炭酸バリウム(BaCO3)を用いた比較例5と比べて、維持率が高い、すなわち、紫外線照射後の波長300~450nm光の反射率の低下が抑えられた。従って、実施例1~7では、可視光領域の短波長側から紫外光領域にかけての波長帯の光に曝されても反射率の低下を抑制できるので、品質安定性に優れている。なお、比較例2、3より、酸化チタン(TiO2)を配合しても紫外光について所定の反射率が得られなかった。 From Table 3, powder filler A or C containing zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), barium carbonate (BaCO 3 ), and silicon dioxide (SiO 2 ), or zirconium oxide (ZrO 2 ) Examples 1 to 7 using powder filler B or D containing aluminum oxide (Al 2 O 3 ) and barium carbonate (BaCO 3 ) are comparative examples 1 using aluminum oxide (ZrO 2 ), aluminum oxide (Al Compared to Comparative Example 4 using 2 O 3 ) and Comparative Example 5 using barium carbonate (BaCO 3 ), the maintenance ratio is high, that is, the decrease in reflectance of light having a wavelength of 300 to 450 nm after ultraviolet irradiation is suppressed. It was. Therefore, Examples 1 to 7 are excellent in quality stability because the decrease in reflectance can be suppressed even when exposed to light in the wavelength band from the short wavelength side of the visible light region to the ultraviolet light region. From Comparative Examples 2 and 3, even when titanium oxide (TiO 2 ) was blended, a predetermined reflectance for ultraviolet light could not be obtained.
 実施例1、2と実施例4、5の対比から、粉末フィラーを焼成すると、波長300~350nmの光における維持率が特に向上した。実施例1~5、7と実施例6の対比より、硬化性樹脂100質量部に対して粉末フィラーを159.7質量部超配合すると、維持率だけでなく耐変色性もさらに向上した。実施例1~6と実施例7の対比より、硬化性樹脂100質量部に対して粉末フィラーを689.8質量部未満配合することにより、硬化性樹脂組成物の粘度上昇が抑えられて塗工性もさらに向上した。実施例1と実施例2の対比より、焼成品について、酸化ジルコニウム(ZrO2)と酸化アルミニウム(Al2O3)と炭酸バリウム(BaCO3)を配合した粉末フィラーを用いると、硬化初期及び紫外線照射後の反射率と維持率とが、よりバランス良く向上した。また、光重合開始剤を配合して感光させても(実施例3)、光重合開始剤を配合せず熱硬化させても(実施例1、2、4~7)、同等の反射率と維持率が得られた。 From the comparison between Examples 1 and 2 and Examples 4 and 5, when the powder filler was baked, the maintenance rate in light having a wavelength of 300 to 350 nm was particularly improved. From the comparison of Examples 1 to 5, 7 and Example 6, when the powder filler was mixed in an amount of more than 159.7 parts by mass with respect to 100 parts by mass of the curable resin, not only the maintenance rate but also the color fastness was further improved. From the comparison between Examples 1 to 6 and Example 7, by adding less than 689.8 parts by mass of the powder filler to 100 parts by mass of the curable resin, the increase in the viscosity of the curable resin composition can be suppressed and coating can be performed. Also improved. From the comparison between Example 1 and Example 2, when a powder filler containing zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), and barium carbonate (BaCO 3 ) is used for the fired product, the initial stage of curing and ultraviolet rays are used. The reflectivity and maintenance rate after irradiation improved with better balance. Further, even when a photopolymerization initiator is blended and exposed to light (Example 3), or when a photopolymerization initiator is not blended and heat-cured (Examples 1, 2, 4 to 7), an equivalent reflectance is obtained. A retention rate was obtained.
 本発明の硬化性樹脂組成物は、可視光領域の短波長側から紫外光領域にかけての波長帯の光に曝されても、該波長帯の光の反射率低下を防止できる硬化物を得ることができるので、例えば、プリント配線板の分野、特に、上記波長帯の光を放射する半導体発光素子を搭載したプリント配線板のソルダーレジスト膜として利用価値が高い。また、反射シート、例えば、太陽電池のバックシートとしても利用価値が高い。 The curable resin composition of the present invention provides a cured product that can prevent a decrease in reflectance of light in the wavelength band even when exposed to light in the wavelength band from the short wavelength side of the visible light region to the ultraviolet light region. Therefore, for example, the utility value is high as the solder resist film of the printed wiring board, in particular, a printed wiring board on which a semiconductor light emitting element that emits light in the above-mentioned wavelength band is mounted. Moreover, the utility value is high also as a reflection sheet, for example, a solar cell backsheet.

Claims (9)

  1.  (A)硬化性樹脂と、(B)酸化ジルコニウム、酸化アルミニウム、炭酸バリウム及び二酸化ケイ素からなる群から選択された少なくとも2種の無機化合物を配合した粉末フィラーと、を含有することを特徴とする硬化性樹脂組成物。 (A) A curable resin and (B) a powder filler containing at least two inorganic compounds selected from the group consisting of zirconium oxide, aluminum oxide, barium carbonate, and silicon dioxide. Curable resin composition.
  2.  前記(B)粉末フィラーが、焼成されていることを特徴とする請求項1に記載の硬化性樹脂組成物。 2. The curable resin composition according to claim 1, wherein the (B) powder filler is fired.
  3.  前記(B)粉末フィラーが、さらに、酸化チタンを含有することを特徴とする請求項1または2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1 or 2, wherein the (B) powder filler further contains titanium oxide.
  4.  前記(B)粉末フィラーが、前記(A)硬化性樹脂100質量部に対して、150~700質量部含有することを特徴とする請求項1乃至3のいずれか1項に記載の硬化性樹脂組成物。 The curable resin according to any one of claims 1 to 3, wherein the (B) powder filler contains 150 to 700 parts by mass with respect to 100 parts by mass of the (A) curable resin. Composition.
  5.  前記(A)硬化性樹脂が、(A‐1)1分子中に2以上の不飽和基を有する化合物であることを特徴とする請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the (A) curable resin is (A-1) a compound having two or more unsaturated groups in one molecule.
  6.  さらに、(C)1分子中にアミノ基またはイミノ基を少なくとも1以上有する化合物を含有することを特徴とする請求項5に記載の硬化性樹脂組成物。 The curable resin composition according to claim 5, further comprising (C) a compound having at least one amino group or imino group in one molecule.
  7.  さらに、(D)光重合開始剤を含有することを特徴とする請求項1乃至6のいずれか1項に記載の硬化性樹脂組成物。 Furthermore, (D) a photoinitiator is contained, The curable resin composition of any one of the Claims 1 thru | or 6 characterized by the above-mentioned.
  8.  請求項1乃至7のいずれか1項に記載の硬化性樹脂組成物の硬化被膜を有することを特徴とするプリント配線板。 A printed wiring board comprising a cured film of the curable resin composition according to any one of claims 1 to 7.
  9.  請求項1乃至7のいずれか1項に記載の硬化性樹脂組成物を硬化して得られた皮膜を有することを特徴とする反射シート。 A reflective sheet comprising a film obtained by curing the curable resin composition according to any one of claims 1 to 7.
PCT/JP2011/075811 2011-01-27 2011-11-09 Curable resin composition WO2012101889A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-015561 2011-01-27
JP2011015561A JP5685097B2 (en) 2011-01-27 2011-01-27 Curable resin composition

Publications (1)

Publication Number Publication Date
WO2012101889A1 true WO2012101889A1 (en) 2012-08-02

Family

ID=46580475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075811 WO2012101889A1 (en) 2011-01-27 2011-11-09 Curable resin composition

Country Status (2)

Country Link
JP (1) JP5685097B2 (en)
WO (1) WO2012101889A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111690246A (en) * 2019-03-14 2020-09-22 味之素株式会社 Resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102002A (en) * 1996-10-03 1998-04-21 Shin Etsu Chem Co Ltd Composition for photocurable coating agent and formation of coated film
JP2005242096A (en) * 2004-02-27 2005-09-08 Toray Ind Inc Photosensitive ceramic composition
JP2008233290A (en) * 2007-03-19 2008-10-02 Mitsubishi Plastics Ind Ltd Reflecting film and reflecting plate
JP2008306151A (en) * 2007-05-09 2008-12-18 Hitachi Chem Co Ltd Epoxy resin composition for optical semiconductor, and substrate for loading optical semiconductor element using the same, and optical semiconductor device
JP2009091548A (en) * 2007-09-21 2009-04-30 Ricoh Co Ltd Paste composition, insulating film, multilayer interconnection structure, printed-circuit board, image display device, and manufacturing method of paste composition
JP2010079261A (en) * 2008-08-26 2010-04-08 Tamura Kaken Co Ltd Photosensitive resin composition, solder resist composition for printed wiring board, and printed wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102002A (en) * 1996-10-03 1998-04-21 Shin Etsu Chem Co Ltd Composition for photocurable coating agent and formation of coated film
JP2005242096A (en) * 2004-02-27 2005-09-08 Toray Ind Inc Photosensitive ceramic composition
JP2008233290A (en) * 2007-03-19 2008-10-02 Mitsubishi Plastics Ind Ltd Reflecting film and reflecting plate
JP2008306151A (en) * 2007-05-09 2008-12-18 Hitachi Chem Co Ltd Epoxy resin composition for optical semiconductor, and substrate for loading optical semiconductor element using the same, and optical semiconductor device
JP2009091548A (en) * 2007-09-21 2009-04-30 Ricoh Co Ltd Paste composition, insulating film, multilayer interconnection structure, printed-circuit board, image display device, and manufacturing method of paste composition
JP2010079261A (en) * 2008-08-26 2010-04-08 Tamura Kaken Co Ltd Photosensitive resin composition, solder resist composition for printed wiring board, and printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111690246A (en) * 2019-03-14 2020-09-22 味之素株式会社 Resin composition

Also Published As

Publication number Publication date
JP5685097B2 (en) 2015-03-18
JP2012153830A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5802126B2 (en) White curable resin composition
JP5066376B2 (en) Solder resist composition for printed wiring board and printed wiring board
JP5147820B2 (en) White solder resist composition for spray painting
JP5007453B2 (en) Black curable resin composition
JP5325805B2 (en) Photosensitive resin composition and printed wiring board using cured film thereof
JP5650460B2 (en) White curable resin composition
JP5117416B2 (en) Photosensitive resin composition, solder resist composition for printed wiring board, and printed wiring board
JP5583091B2 (en) Black curable resin composition
JP2010266556A (en) Photosensitive resin composition, solder resist composition for printed wiring board, and printed wiring board
JP5855405B2 (en) Photosensitive resin composition
JP5485599B2 (en) Photosensitive resin composition, solder resist composition for printed wiring board, and printed wiring board
JP5419618B2 (en) Photosensitive resin composition, solder resist composition for printed wiring board, and printed wiring board
JP5766671B2 (en) Black curable resin composition and printed wiring board using the same
KR101727101B1 (en) Photopolymer composition, solder resist composition for print circuit boards and print circuit boards
JP6222764B2 (en) Curable resin composition, flexible substrate having a coating of curable resin composition, and reflective sheet
JP2018037446A (en) Printed wiring board and method for manufacturing the same
JP6538390B2 (en) Photosensitive resin composition
JP2014043523A (en) White active energy ray-curable resin composition
JP5685097B2 (en) Curable resin composition
JP6114799B2 (en) Photosensitive resin composition, printed wiring board having cured film of photosensitive resin composition, and method for producing reflection sheet
JP6073007B2 (en) Curable resin composition
JP5802133B2 (en) Thermosetting white ink composition excellent in color fastness and cured product thereof
JP5971977B2 (en) White curable resin composition
JP2019020713A (en) Photosensitive resin composition
JP5711473B2 (en) Reflective sheet having a film of a thermosetting white ink composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857021

Country of ref document: EP

Kind code of ref document: A1