JP5967135B2 - Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device. - Google Patents

Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device. Download PDF

Info

Publication number
JP5967135B2
JP5967135B2 JP2014108112A JP2014108112A JP5967135B2 JP 5967135 B2 JP5967135 B2 JP 5967135B2 JP 2014108112 A JP2014108112 A JP 2014108112A JP 2014108112 A JP2014108112 A JP 2014108112A JP 5967135 B2 JP5967135 B2 JP 5967135B2
Authority
JP
Japan
Prior art keywords
optical semiconductor
resin composition
semiconductor element
curing agent
light reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014108112A
Other languages
Japanese (ja)
Other versions
JP2014159600A (en
Inventor
直之 浦崎
直之 浦崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014108112A priority Critical patent/JP5967135B2/en
Publication of JP2014159600A publication Critical patent/JP2014159600A/en
Application granted granted Critical
Publication of JP5967135B2 publication Critical patent/JP5967135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

本発明は、光半導体素子と蛍光体などの波長変換手段とを組み合わせた光半導体装置に用いる熱硬化性光反射用樹脂組成物、該熱硬化性光反射用樹脂組成物を用いた光半導体素子搭載用基板とその製造方法および光半導体装置に関する。   The present invention relates to a thermosetting light reflecting resin composition used in an optical semiconductor device in which an optical semiconductor element and a wavelength converting means such as a phosphor are combined, and an optical semiconductor element using the thermosetting light reflecting resin composition The present invention relates to a mounting substrate, a manufacturing method thereof, and an optical semiconductor device.

光半導体素子を利用した光半導体装置としては、例えば、図5に示す構成のSMD(Surfacemounted device)タイプのLED(Light Emitting Diode)が知られている。このLEDは、通常、マウント基板リフレクタに形成されたカップ状部(凹部)に発光素子が配置され、さらに当該発光素子が配置されたカップ状部に透明封止樹脂が充填されている。リフレクタは、発光素子から側方に放射された光をその表面で拡散反射して軸方向に分配し、これによって軸上強度を高めることを目的として使用されている。特許文献1、2及び3には、熱可塑性のSMDタイプのLED用成形材料が開示されている。   As an optical semiconductor device using an optical semiconductor element, for example, an SMD (Surface Mounted Device) type LED (Light Emitting Diode) having the configuration shown in FIG. 5 is known. In this LED, usually, a light emitting element is disposed in a cup-shaped portion (concave portion) formed in the mount substrate reflector, and a transparent sealing resin is filled in the cup-shaped portion in which the light emitting element is disposed. The reflector is used for the purpose of increasing the on-axis intensity by diffusing and reflecting the light emitted from the light emitting element to the side and distributing it in the axial direction. Patent Documents 1, 2, and 3 disclose thermoplastic SMD type molding materials for LEDs.

近年、紫外領域に発光ピーク波長を有する光半導体素子が開発され、この素子についてもSMDタイプのLEDへの適用が期待されている。
しかしながら、一般に使用されているリフレクタ材料は、酸化チタンを顔料として用いているため、発光波長が短波長領域になると急激にその反射率が低下してしまう。また、紫外線による劣化が原因で可視領域の光に対しても反射率の低下が起こることが課題となっている。
In recent years, an optical semiconductor element having an emission peak wavelength in the ultraviolet region has been developed, and this element is also expected to be applied to SMD type LEDs.
However, since the reflector material generally used uses titanium oxide as a pigment, when the emission wavelength is in a short wavelength region, the reflectance is drastically reduced. Another problem is that the reflectance is reduced even in the visible region due to the deterioration caused by ultraviolet rays.

特開2005−194513号公報JP 2005-194513 A 特開2004−277539号公報JP 2004-277539 A 特開2004−075994号公報Japanese Patent Laid-Open No. 2004-075994

本発明は、上記に鑑みてなされたものであり、その目的は、硬化後の、可視光から近紫外光の反射率が高い熱硬化性光反射用樹脂組成物、該熱硬化性光反射用樹脂組成物を用いた光半導体搭載用基板とその製造方法および光半導体装置を提供するものである。   The present invention has been made in view of the above, and an object of the present invention is to provide a thermosetting light reflecting resin composition having high reflectivity from visible light to near ultraviolet light after curing, and for the thermosetting light reflection. An optical semiconductor mounting substrate using a resin composition, a manufacturing method thereof, and an optical semiconductor device are provided.

本発明は、以下の(1)〜(8)に記載の事項をその特徴とする。
(1)(A)エポキシ樹脂、(B)硬化剤、(C)硬化触媒、(D)無機充填剤、(E)白色顔料、および(F)カップリング剤を含有する熱硬化性樹脂組成物において、熱硬化後の、波長800nm〜350nmにおける光反射率が80%以上であり、熱硬化前には室温(25℃)で加圧成型可能なことを特徴とする熱硬化性光反射用樹脂組成物。
The present invention is characterized by the following items (1) to (8).
(1) Thermosetting resin composition containing (A) epoxy resin, (B) curing agent, (C) curing catalyst, (D) inorganic filler, (E) white pigment, and (F) coupling agent The thermosetting light reflecting resin is characterized in that the light reflectance at a wavelength of 800 nm to 350 nm after thermosetting is 80% or more, and can be pressure-molded at room temperature (25 ° C.) before thermosetting. Composition.

(2)前記(D)無機充填剤が、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、水酸化アルミニウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウムからなる群から選択される1種以上であることを特徴とする上記(1)に記載の熱硬化性光反射用樹脂組成物。   (2) The inorganic filler (D) is at least one selected from the group consisting of silica, alumina, magnesium oxide, antimony oxide, aluminum hydroxide, barium sulfate, magnesium carbonate, and barium carbonate. The thermosetting light reflecting resin composition as described in (1) above.

(3)前記(E)白色顔料が、無機中空粒子であることを特徴とする上記(1)または(2)に記載の熱硬化性光反射用樹脂組成物。   (3) The thermosetting light reflecting resin composition as described in (1) or (2) above, wherein the (E) white pigment is inorganic hollow particles.

(4)前記(E)白色顔料の平均粒径が1〜50μmの範囲にあることを特徴とする上記(1)〜(3)のいずれか1つに記載の熱硬化性光反射用樹脂組成物。   (4) The thermosetting light reflecting resin composition as described in any one of (1) to (3) above, wherein the average particle diameter of the white pigment (E) is in the range of 1 to 50 μm. object.

(5)前記(D)無機充填剤と前記(E)白色顔料の合計量が、樹脂組成物全体に対して70体積%〜85体積%の範囲であることを特徴とする上記(1)〜(4)のいずれか1つに記載の熱硬化性光反射用樹脂組成物。   (5) The total amount of the (D) inorganic filler and the (E) white pigment is in the range of 70% by volume to 85% by volume with respect to the entire resin composition. (4) The resin composition for thermosetting light reflection as described in any one of (4).

(6)光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板であって、少なくとも前記凹部の内周側面が上記(1)〜(5)のいずれか1つに記載の熱硬化性光反射用樹脂組成物からなることを特徴とする光半導体素子搭載用基板。   (6) An optical semiconductor element mounting substrate in which one or more recesses to be an optical semiconductor element mounting region are formed, and at least an inner peripheral side surface of the recess is any one of the above (1) to (5) A substrate for mounting an optical semiconductor element, comprising the thermosetting light reflecting resin composition described in 1.

(7)光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板の製造方法であって、少なくとも前記凹部を上記(1)〜(5)のいずれか1項記載の熱硬化性光反射用樹脂組成物を用いたトランスファー成型により形成することを特徴とする光半導体搭載用基板の製造方法。   (7) A method for manufacturing a substrate for mounting an optical semiconductor element in which at least one recess serving as an optical semiconductor element mounting region is formed, wherein at least the recess is any one of the above (1) to (5). A method for producing a substrate for mounting an optical semiconductor, characterized by forming by transfer molding using the thermosetting light reflecting resin composition.

(8)上記(6)に記載の光半導体素子搭載用基板または上記(7)に記載の製造方法により製造された光半導体素子搭載用基板と、前記光半導体素子搭載用基板の凹部底面に搭載される光半導体素子と、前記光半導体素子を覆うように形成される封止樹脂と、を備える光半導体装置。   (8) The optical semiconductor element mounting substrate according to (6) or the optical semiconductor element mounting substrate manufactured by the manufacturing method according to (7), and mounted on the bottom surface of the recess of the optical semiconductor element mounting substrate. An optical semiconductor device comprising: an optical semiconductor element that is formed; and a sealing resin that is formed so as to cover the optical semiconductor element.

本発明によれば、硬化後の、可視光から近紫外光の反射率が高い熱硬化性光反射用樹脂組成物、該熱硬化性光反射用樹脂組成物を用いた光半導体搭載用基板とその製造方法および光半導体装置を提供することが可能となる。   According to the present invention, after curing, a thermosetting light reflecting resin composition having high reflectivity from visible light to near ultraviolet light, a substrate for mounting an optical semiconductor using the thermosetting light reflecting resin composition, and The manufacturing method and the optical semiconductor device can be provided.

本発明の光半導体素子搭載用基板の一実施形態を示す断面図と斜視図である。It is sectional drawing and perspective view which show one Embodiment of the optical semiconductor element mounting substrate of this invention. 本発明の光半導体素子搭載用基板を製造する工程の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the process of manufacturing the board | substrate for optical semiconductor element mounting of this invention. 本発明の光半導体装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the optical semiconductor device of this invention. 本発明の光半導体素子搭載用基板に光半導体素子を搭載した状態の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the state which mounted the optical semiconductor element in the board | substrate for optical semiconductor element mounting of this invention. 一般的なSMDタイプのLED(光半導体装置)を示す断面図である。It is sectional drawing which shows a general SMD type LED (optical semiconductor device).

本発明で用いる(A)エポキシ樹脂としては、電子部品封止用エポキシ樹脂成形材料で一般に使用されているものを用いることができ、特に限定されないが、例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換ビフェノール等のジグリシジエーテル、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、及び脂環族エポキシ樹脂等があり、これらは単独でも、2種以上併用してもよい。また、使用するエポキシ樹脂は比較的着色のないものであることが好ましく、そのようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、トリグリシジルイソシアヌレートを挙げることができる。   As the (A) epoxy resin used in the present invention, those generally used in epoxy resin molding materials for encapsulating electronic components can be used, and are not particularly limited. For example, phenol novolac type epoxy resin, orthocresol novolak Epoxidized novolak resins of phenols and aldehydes, including epoxy resins, bisphenol A, bisphenol F, bisphenol S, diglycidiethers such as alkyl-substituted biphenols, polyamines such as diaminodiphenylmethane, isocyanuric acid and epichlorohydrin There are glycidylamine type epoxy resins obtained by reaction, linear aliphatic epoxy resins obtained by oxidizing olefinic bonds with peracids such as peracetic acid, and alicyclic epoxy resins. Combined use It may be. In addition, it is preferable that the epoxy resin used is relatively uncolored, and examples of such an epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and triglycidyl isocyanate. Nurate can be mentioned.

上記(B)硬化剤としては、エポキシ樹脂と反応するものであれば、特に制限なく用いることができるが、比較的着色のないものが好ましい。例えば、酸無水物系硬化剤、フェノール系硬化剤などが挙げられる。酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸などが挙げられる。これら酸無水物系硬化剤の中では、無水フタル酸、へキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸を用いることが好ましい。酸無水物系硬化剤は、その分子量が、140〜200程度のものが好ましく、また、無色ないし淡黄色の酸無水物が好ましい。   As said (B) hardening | curing agent, if it reacts with an epoxy resin, it can be used without a restriction | limiting especially, However, The thing without a coloring is preferable. For example, an acid anhydride curing agent, a phenol curing agent, and the like can be given. Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride. Examples include acid, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and the like. Among these acid anhydride curing agents, phthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, and methylhexahydrophthalic anhydride are preferably used. The acid anhydride curing agent preferably has a molecular weight of about 140 to 200, and is preferably a colorless or light yellow acid anhydride.

これらの硬化剤は単独で用いても、二種以上併用しても良い。エポキシ樹脂と、硬化剤との配合割合は、エポキシ樹脂中のエポキシ基1当量に対して、硬化剤におけるエポキシ基と反応可能な活性基(酸無水基または水酸基)が0.5〜1.5当量となるような割合であることが好ましく、0.7〜1.2当量となるような割合であることがより好ましい。活性基が0.5当量未満の場合には、エポキシ樹脂組成物の硬化速度が遅くなるとともに、得られる硬化体のガラス転移温度が低くなる場合があり、一方、1.5当量を超える場合には、耐湿性が低下する場合がある。   These curing agents may be used alone or in combination of two or more. The mixing ratio of the epoxy resin and the curing agent is such that the active group (acid anhydride group or hydroxyl group) capable of reacting with the epoxy group in the curing agent is 0.5 to 1.5 with respect to 1 equivalent of the epoxy group in the epoxy resin. The ratio is preferably equivalent, and more preferably 0.7 to 1.2 equivalent. When the active group is less than 0.5 equivalent, the curing rate of the epoxy resin composition is slowed, and the glass transition temperature of the resulting cured product may be lowered. The moisture resistance may be reduced.

上記(C)硬化促進剤としては、特に限定されるものではなく、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、トリ−2,4,6−ジメチルアミノメチルフェノールなどの3級アミン類、2−エチル−4−メチルイミダゾール、2−メチルイミダゾールなどのイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエートなどのリン化合物、4級アンモニウム塩、有機金属塩類、およびこれらの誘導体などが挙げられる。これらは単独で使用してもよく、あるいは、併用してもよい。これら硬化促進剤の中では、3級アミン類、イミダゾール類、リン化合物を用いることが好ましい。   The (C) curing accelerator is not particularly limited, and examples thereof include 1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, tri-2,4,6-dimethyl. Tertiary amines such as aminomethylphenol, imidazoles such as 2-ethyl-4-methylimidazole and 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o- Examples thereof include phosphorus compounds such as diethyl phosphorodithioate, quaternary ammonium salts, organometallic salts, and derivatives thereof. These may be used alone or in combination. Among these curing accelerators, it is preferable to use tertiary amines, imidazoles, and phosphorus compounds.

硬化促進剤の含有率は、エポキシ樹脂に対して、0.01〜8.0重量%であることが好ましく、より好ましくは、0.1〜3.0重量%である。硬化促進剤の含有率が、0.01重量%未満では、充分な硬化促進効果を得られない場合があり、また、8.0重量%を超えると、得られる硬化体に変色が見られる場合がある。   It is preferable that the content rate of a hardening accelerator is 0.01 to 8.0 weight% with respect to an epoxy resin, More preferably, it is 0.1 to 3.0 weight%. When the content of the curing accelerator is less than 0.01% by weight, a sufficient curing acceleration effect may not be obtained. When the content exceeds 8.0% by weight, discoloration is observed in the obtained cured product. There is.

上記(D)無機充填剤としては、例えば、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、水酸化アルミニウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウムなどを挙げることができ、単独でも、併用しても構わない。熱伝導性、光反射特性、成型性、難燃性の点からは、シリカ、アルミナ、酸化アンチモン、水酸化アルミニウムのうちの2種以上の混合物であることが好ましい。また、無機充填剤の粒径は、特に限定されるものではないが、白色顔料とのパッキング効率を考慮すると、平均粒径が1〜100μmの範囲であることが好ましい。   Examples of the inorganic filler (D) include silica, alumina, magnesium oxide, antimony oxide, aluminum hydroxide, barium sulfate, magnesium carbonate, and barium carbonate, and may be used alone or in combination. . From the viewpoint of thermal conductivity, light reflection characteristics, moldability, and flame retardancy, a mixture of two or more of silica, alumina, antimony oxide, and aluminum hydroxide is preferable. Further, the particle size of the inorganic filler is not particularly limited, but it is preferable that the average particle size is in the range of 1 to 100 μm in consideration of the packing efficiency with the white pigment.

上記(E)白色顔料としては、無機中空粒子のものを用いることが好ましく、例えば、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス、アルミナ、シラス等を挙げることができ、単独でも、併用しても構わない。なお、中空粒子とは略球状の粒子内部が空洞になっているものを指し、0.5〜3μm程度の均一な厚みの膜(外殻)で形成されているものであることが好ましい。また、白色顔料の粒径は、平均粒径が1〜50μmの範囲にあることが好ましい。平均粒径が1μm未満であると粒子が凝集しやすく分散性が悪くなる傾向にあり、50μmを超えると反射特性が十分に得られなくなる傾向にある。   As the above (E) white pigment, those having inorganic hollow particles are preferably used. For example, sodium silicate glass, aluminum silicate glass, borosilicate soda glass, alumina, shirasu and the like can be used alone or in combination. It doesn't matter. The hollow particles refer to those in which the inside of a substantially spherical particle is hollow, and are preferably formed of a film (outer shell) having a uniform thickness of about 0.5 to 3 μm. The white pigment preferably has an average particle size in the range of 1 to 50 μm. When the average particle size is less than 1 μm, the particles tend to aggregate and the dispersibility tends to deteriorate, and when the average particle size exceeds 50 μm, sufficient reflection characteristics tend not to be obtained.

上記(D)無機充填剤と上記(E)白色顔料の合計量は、樹脂組成物全体に対して、70体積%〜85体積%の範囲であることが好ましい。この合計量が70体積%未満であると光反射特性が不十分になる恐れがあり、85体積%を超えると樹脂組成物の成型性が悪くなり、光半導体搭載用基板の作製が困難となる。   The total amount of the (D) inorganic filler and the (E) white pigment is preferably in the range of 70% by volume to 85% by volume with respect to the entire resin composition. If this total amount is less than 70% by volume, the light reflection characteristics may be insufficient, and if it exceeds 85% by volume, the moldability of the resin composition is deteriorated, making it difficult to produce a substrate for mounting an optical semiconductor. .

上記(F)カップリング剤としては、特に限定されないが、例えば、シラン系カップリング剤やチタネート系カップリング剤等を用いることができ、シランカップリング剤としては、例えば、エポキシシラン系、アミノシラン系、カチオニックシラン系、ビニルシラン系、アクリルシラン系、メルカプトシラン系、およびこれらの複合系等を用いることができる。カップリング剤の種類や処理条件は特に限定しないが、カップリング剤の配合量は5重量%以下であることが好ましい。   Although it does not specifically limit as said (F) coupling agent, For example, a silane coupling agent, a titanate coupling agent, etc. can be used, As an silane coupling agent, an epoxysilane type, an aminosilane type, for example Cationic silane, vinyl silane, acryl silane, mercapto silane, and composites thereof can be used. The type and treatment conditions of the coupling agent are not particularly limited, but the amount of coupling agent is preferably 5% by weight or less.

また、本発明の樹脂組成物には、必要に応じて、酸化防止剤、離型剤、イオン補足剤等の添加剤を添加してもよい。   Moreover, you may add additives, such as antioxidant, a mold release agent, and an ion supplement agent, to the resin composition of this invention as needed.

以上のような成分を含有する本発明の樹脂組成物は、熱硬化前、室温(約25℃)において固体であり、好ましくは加圧成形可能であり、熱硬化後の、波長800nm〜350nmにおける光反射率が80%以上である。上記加圧成形は、例えば、室温(約25℃)において、0.5〜2MPa、1〜5秒程度の条件下で行うことができればよい。また、上記光反射率が80%未満であると、光半導体装置の輝度向上に十分寄与できない傾向がある。より好ましくは、光反射率は90%以上である。   The resin composition of the present invention containing the above components is solid at room temperature (about 25 ° C.) before thermosetting, preferably press-moldable, and after thermosetting at a wavelength of 800 nm to 350 nm. The light reflectance is 80% or more. The pressure molding may be performed, for example, at room temperature (about 25 ° C.) under conditions of 0.5 to 2 MPa and about 1 to 5 seconds. Further, if the light reflectance is less than 80%, there is a tendency that it cannot sufficiently contribute to the improvement in luminance of the optical semiconductor device. More preferably, the light reflectance is 90% or more.

熱硬化後の本発明の樹脂組成物は、その熱伝導率が1〜10W/mKの範囲であることが好ましい。この熱伝導率が1W/mK未満であると光半導体素子から発生する熱を十分に逃がすことができず、封止樹脂等を劣化させてしまう恐れがある。   The resin composition of the present invention after heat curing preferably has a thermal conductivity in the range of 1 to 10 W / mK. If the thermal conductivity is less than 1 W / mK, the heat generated from the optical semiconductor element cannot be sufficiently released, and the sealing resin or the like may be deteriorated.

本発明の光半導体素子搭載用基板は、光半導体素子搭載領域となる凹部が1つ以上形成されており、少なくとも前記凹部の内周側面が本発明の熱硬化性光反射用樹脂組成物からなることを特徴とするものである。本発明の光半導体素子搭載用基板の一実施形態を図1に示す。   The substrate for mounting an optical semiconductor element of the present invention has one or more recesses to be an optical semiconductor element mounting region, and at least the inner peripheral side surface of the recess is made of the thermosetting light reflecting resin composition of the present invention. It is characterized by this. One embodiment of a substrate for mounting an optical semiconductor element of the present invention is shown in FIG.

本発明の光半導体素子搭載用基板の製造方法は、特に限定されないが、例えば、本発明の熱硬化性光反射用樹脂組成物をトランスファー成型により成型し、製造することができる。より具体的には、例えば、図2(a)に示すように、金属箔から打ち抜きやエッチング等の公知の方法により金属配線105を形成し、ついで、該金属配線105を所定形状の金型301に配置し(図2(b))、金型301の樹脂注入口300から本発明の樹脂組成物を注入し、これを好ましくは金型温度170〜190℃で60〜120秒、アフターキュア温度120℃〜180℃で1〜3時間の条件にて熱硬化させた後、金型301を外し、硬化した樹脂組成物からなるリフレクター103に周囲を囲まれてなる光半導体素子搭載領域(凹部)200の所定位置に、電気めっきによりNi/銀めっき104を施すことで製造することができる(図2(c))。   Although the manufacturing method of the optical semiconductor element mounting substrate of this invention is not specifically limited, For example, the thermosetting light reflection resin composition of this invention can be shape | molded and manufactured by transfer molding. More specifically, for example, as shown in FIG. 2A, a metal wiring 105 is formed from a metal foil by a known method such as punching or etching, and then the metal wiring 105 is formed into a mold 301 having a predetermined shape. (FIG. 2 (b)), and the resin composition of the present invention is injected from the resin injection port 300 of the mold 301. After thermosetting at 120 ° C. to 180 ° C. for 1 to 3 hours, the mold 301 is removed, and an optical semiconductor element mounting region (recessed portion) surrounded by the reflector 103 made of the cured resin composition It can be manufactured by applying Ni / silver plating 104 to a predetermined position of 200 by electroplating (FIG. 2C).

また、本発明の光半導体装置は、例えば、図3および図4に示すように、本発明の光半導体素子搭載用基板110の光半導体素子搭載領域(凹部)200の所定位置に光半導体素子100を搭載し、該光半導体素子100と金属配線105とをボンディングワイヤ102やはんだバンプ107などの公知の方法により電気的に接続した後、公知の蛍光体106を含む透明封止樹脂101により該光半導体素子100を覆うことで製造することができる。   Further, for example, as shown in FIGS. 3 and 4, the optical semiconductor device of the present invention has an optical semiconductor element 100 at a predetermined position of an optical semiconductor element mounting region (recessed portion) 200 of the optical semiconductor element mounting substrate 110 of the present invention. The optical semiconductor element 100 and the metal wiring 105 are electrically connected by a known method such as a bonding wire 102 or a solder bump 107, and then the light is transmitted by a transparent sealing resin 101 containing a known phosphor 106. It can be manufactured by covering the semiconductor element 100.

以下、本発明を実施例によって詳述する。   Hereinafter, the present invention will be described in detail by way of examples.

<光反射用樹脂組成物の作製>
下記表1に示す組成の材料を混練温度20〜30℃、混練時間10分の条件でロール混練し、実施例1〜3、比較例1および2の光反射用樹脂組成物を作製した。
※表中の数字は全て重量部
※エポキシ樹脂:トリグリシジルイソシアヌレート(エポキシ当量100、日産化学社製、TEPIC−S)、硬化剤:ヘキサヒドロ無水フタル酸(新日本理化製、リカシッドHH)、硬化促進剤:テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート(日本化学工業社製、ヒシリコーンPX−4ET)、無機充填剤:溶融シリカ(平均粒径20μm、電気化学工業社製、FB−950)、アルミナ(平均粒径1μm、アドマッテクス社製、AO−802)、カップリング剤:エポキシシラン(東レダウコーニング社製、SH6040)、酸化防止剤:9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光株式会社製、HCA)、白色顔料:ほう珪酸ガラスA(平均粒径27μm、住友3M社製、グラスバブルズS60HS)、ほう珪酸ガラスB(平均粒径10μm、旭硝子社製、ファインパールHSN−7H)、ほう珪酸ガラスC(平均粒径5μm、東海工業製、セルスターX−100)、ほう珪酸ガラスD(平均粒径135μm、住友3M社製、グラスバブルズK1)
<Preparation of resin composition for light reflection>
The materials having the compositions shown in Table 1 below were roll-kneaded under conditions of a kneading temperature of 20 to 30 ° C. and a kneading time of 10 minutes to prepare the light reflecting resin compositions of Examples 1 to 3 and Comparative Examples 1 and 2.
* All figures in the table are parts by weight. * Epoxy resin: triglycidyl isocyanurate (epoxy equivalent 100, manufactured by Nissan Chemical Co., TEPIC-S), curing agent: hexahydrophthalic anhydride (manufactured by Nippon Nippon Chemical Co., Ltd., Ricacid HH), cured Accelerator: Tetra-n-butylphosphonium-o, o-diethyl phosphorodithioate (manufactured by Nippon Chemical Industry Co., Ltd., Hisilicone PX-4ET), inorganic filler: fused silica (average particle size 20 μm, manufactured by Denki Kagaku Kogyo Co., Ltd.) , FB-950), alumina (average particle size 1 μm, manufactured by Admattex, AO-802), coupling agent: epoxysilane (manufactured by Toray Dow Corning, SH6040), antioxidant: 9,10-dihydro-9- Oxa-10-phosphaphenanthrene-10-oxide (manufactured by Sanko Co., Ltd., HCA), white pigment: borosilicate glass A (average particle size 27 μm, Sumitomo 3M, Glass Bubbles S60HS), borosilicate glass B (average particle size 10 μm, Asahi Glass Co., Ltd., Fine Pearl HSN-7H), borosilicate glass C (average particle size 5 μm, Tokai Industrial, Cellstar X-100), borosilicate glass D (average particle size 135 μm, manufactured by Sumitomo 3M, Glass Bubbles K1)

<光反射率の測定>
各実施例及び各比較例の光反射用樹脂組成物を、金型温度180℃、キュア時間90秒の条件でトランスファー成形を行った後、150℃の温度で2時間ポストキュアを行うことによって厚み1.0mmのテストピースを作製した。ついで、各テストピースの、波長350〜800nmにおける光反射率を積分球型分光光度計V−570型(日本分光株式会社製)を用いて測定した。また、150℃、72時間熱処理後の各テストピースの光反射特性も合わせて評価した。評価基準は下記のとおりである。結果を表2に示す。
(光反射率の評価基準)
○:光反射率80%以上
△:光反射率70%以上、80%未満
×:光反射率70%未満
<Measurement of light reflectance>
The thickness of the resin composition for light reflection of each example and each comparative example was obtained by performing transfer molding at a temperature of 150 ° C. for 2 hours after transfer molding under conditions of a mold temperature of 180 ° C. and a curing time of 90 seconds. A 1.0 mm test piece was prepared. Subsequently, the light reflectance in the wavelength of 350-800 nm of each test piece was measured using the integrating sphere type spectrophotometer V-570 type (made by JASCO Corporation). The light reflection characteristics of each test piece after heat treatment at 150 ° C. for 72 hours were also evaluated. The evaluation criteria are as follows. The results are shown in Table 2.
(Evaluation criteria for light reflectance)
○: Light reflectance 80% or more Δ: Light reflectance 70% or more, less than 80% ×: Light reflectance 70% or less

<タブレット作製>
各実施例及び各比較例の光反射用樹脂組成物について、室温(25℃)でタブレット成型できるものを○、タブレット成型できないものを×として評価した。なお、タブレットの成型は、MTV−I−37((株)丸七鉄工所製、商品名)を用い、0.7MPa、2秒の条件で行った。結果を表2に示す。
<Tablet production>
About the resin composition for light reflection of each Example and each comparative example, what can be tablet-molded at room temperature (25 degreeC) was evaluated as (circle) and what cannot be tablet-molded as x. The tablet was molded using MTV-I-37 (manufactured by Marunouchi Iron Works, trade name) under conditions of 0.7 MPa and 2 seconds. The results are shown in Table 2.

表2に示したように、各実施例は各比較例と比べて、反射特性、作業性(タブレット成型性)に優れている。したがって、本発明に係る熱硬化性光反射用樹脂組成物を用いると、硬化後、可視光から近紫外光領域において高い反射率を有する光半導体素子搭載用基板を効率的に得ることができる。   As shown in Table 2, each example is superior in reflection characteristics and workability (tablet moldability) as compared with each comparative example. Therefore, when the thermosetting light reflecting resin composition according to the present invention is used, an optical semiconductor element mounting substrate having a high reflectance in the visible to near-ultraviolet region can be efficiently obtained after curing.

100・・・・・光半導体素子(LED素子)
101・・・・・(透明)封止樹脂
102・・・・・ボンディングワイヤ
103・・・・・リフレクター
104・・・・・Ni/Agめっき
105・・・・・金属配線
106・・・・・蛍光体
107・・・・・はんだバンプ
110・・・・・光半導体素子搭載用基板
200・・・・・光半導体素子搭載領域(凹部)
300・・・・・樹脂注入口
301・・・・・金型
400・・・・・LED素子
401・・・・・ワイヤボンド
402・・・・・透明封止樹脂
403・・・・・リフレクタ
404・・・・・リード
405・・・・・蛍光体
406・・・・・ダイボンド材
100 ... Optical semiconductor element (LED element)
101 (transparent) sealing resin 102 ... bonding wire 103 ... reflector 104 ... Ni / Ag plating 105 ... metal wiring 106 ... · Phosphor 107 ··· Solder bump 110 ··· Optical semiconductor element mounting substrate 200 ··· Optical semiconductor element mounting region (recess)
300 ... Resin injection port 301 ... Mold 400 ... LED element 401 ... Wire bond 402 ... Transparent sealing resin 403 ... Reflector 404 ··· Lead 405 ··· Phosphor 406 ··· Die bond material

Claims (17)

光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板の、少なくとも前記凹部の内周側面を形成するために用いられる熱硬化性光反射用樹脂組成物であって、
エポキシ樹脂、硬化剤、無機充填剤、及び白色顔料を含有し、
前記エポキシ樹脂と前記硬化剤との配合割合が、前記エポキシ樹脂中のエポキシ基1当量に対して、前記硬化剤におけるエポキシ基と反応可能な活性基が0.5〜1.5当量となる割合であり、
前記無機充填剤と前記白色顔料の合計量が、熱硬化性光反射用樹脂組成物全体に対して70〜85体積%であり、
熱硬化前には室温(25℃)で加圧成型可能である、
熱硬化性光反射用樹脂組成物。
A thermosetting light reflecting resin composition used for forming at least an inner peripheral side surface of an optical semiconductor element mounting substrate on which one or more concave parts to be an optical semiconductor element mounting area are formed. ,
Containing epoxy resin, curing agent, inorganic filler, and white pigment,
The proportion of the epoxy resin and the curing agent is such that the active group capable of reacting with the epoxy group in the curing agent is 0.5 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin. And
The total amount of the inorganic filler and the white pigment is 70 to 85% by volume with respect to the entire thermosetting light reflecting resin composition,
Before thermosetting, pressure molding is possible at room temperature (25 ° C).
A thermosetting resin composition for light reflection.
少なくとも前記凹部の内周側面を、トランスファー成型により形成するために用いられる、請求項1に記載の熱硬化性光反射用樹脂組成物。   The thermosetting light reflecting resin composition according to claim 1, which is used for forming at least an inner peripheral side surface of the recess by transfer molding. 前記エポキシ樹脂と前記硬化剤との配合割合が、前記エポキシ樹脂中のエポキシ基1当量に対して、前記硬化剤におけるエポキシ基と反応可能な活性基が0.7〜1.2当量となる割合である、請求項1又は2に記載の熱硬化性光反射用樹脂組成物。   The proportion of the active resin capable of reacting with the epoxy group in the curing agent is 0.7 to 1.2 equivalents relative to 1 equivalent of the epoxy group in the epoxy resin, with respect to the blending ratio of the epoxy resin and the curing agent. The resin composition for thermosetting light reflection according to claim 1 or 2, wherein 前記エポキシ樹脂が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、及びトリグリシジルイソシアヌレートからなる群から選ばれる少なくとも一種を含む、請求項1〜3のいずれか一項に記載の熱硬化性光反射用樹脂組成物。   The said epoxy resin contains at least 1 sort (s) chosen from the group which consists of a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, and triglycidyl isocyanurate. The thermosetting light reflecting resin composition as described. 前記硬化剤が、酸無水物系硬化剤又はフェノール系硬化剤の少なくともいずれかを含む、請求項1〜4のいずれか一項に記載の熱硬化性光反射用樹脂組成物。   The thermosetting light reflecting resin composition according to any one of claims 1 to 4, wherein the curing agent includes at least one of an acid anhydride curing agent and a phenol curing agent. 前記硬化剤が、分子量140〜200の酸無水物系硬化剤を含む、請求項1〜5のいずれか一項に記載の熱硬化性光反射用樹脂組成物。   The thermosetting light reflecting resin composition according to any one of claims 1 to 5, wherein the curing agent comprises an acid anhydride curing agent having a molecular weight of 140 to 200. 前記硬化剤が、酸無水物系硬化剤を含み、当該酸無水物系硬化剤が、無水フタル酸、へキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、及びメチルヘキサヒドロ無水フタル酸からなる群から選ばれる少なくとも一種を含む、請求項5又は6に記載の熱硬化性光反射用樹脂組成物。   The curing agent includes an acid anhydride curing agent, and the acid anhydride curing agent is selected from the group consisting of phthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, and methylhexahydrophthalic anhydride. The thermosetting light reflecting resin composition according to claim 5, comprising at least one of the above. 前記無機充填剤が、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、水酸化アルミニウム、硫酸バリウム、炭酸マグネシウム、及び炭酸バリウムからなる群から選ばれる少なくとも一種を含む、請求項1〜7のいずれか一項に記載の熱硬化性光反射用樹脂組成物。   The inorganic filler includes at least one selected from the group consisting of silica, alumina, magnesium oxide, antimony oxide, aluminum hydroxide, barium sulfate, magnesium carbonate, and barium carbonate. 2. A thermosetting light reflecting resin composition as described in 1. above. 前記無機充填剤が、シリカを含む、請求項1〜8のいずれか一項に記載の熱硬化性光反射用樹脂組成物。   The thermosetting light reflecting resin composition according to any one of claims 1 to 8, wherein the inorganic filler contains silica. 前記白色顔料が、無機中空粒子を含む、請求項1〜9のいずれか一項に記載の熱硬化性光反射用樹脂組成物。   The thermosetting light reflecting resin composition according to any one of claims 1 to 9, wherein the white pigment contains inorganic hollow particles. 前記白色顔料の平均粒径が、1〜50μmである、請求項1〜10のいずれか一項に記載の熱硬化性光反射用樹脂組成物。   The thermosetting light reflecting resin composition according to claim 1, wherein the white pigment has an average particle diameter of 1 to 50 μm. 請求項1〜1のいずれか一項に記載の熱硬化性光反射用樹脂組成物を成型してなる、タブレット。 The tablet formed by shape | molding the thermosetting light-reflective resin composition as described in any one of Claims 1-11. 光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板であって、少なくとも前記凹部の内周側面が請求項1〜1のいずれか一項に記載の熱硬化性光反射用樹脂組成物の硬化物からなる、光半導体素子搭載用基板。 It is the optical semiconductor element mounting substrate in which one or more recessed parts used as an optical semiconductor element mounting area | region are formed, Comprising: At least the inner peripheral side surface of the said recessed part is the thermosetting as described in any one of Claims 1-11. A substrate for mounting an optical semiconductor element, comprising a cured product of a resin composition for reflective light reflection. 光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板の製造方法であって、少なくとも前記凹部の内周側面を請求項1〜1のいずれか一項に記載の熱硬化性光反射用樹脂組成物又は請求項1に記載のタブレットを用いたトランスファー成型により形成する、光半導体素子搭載用基板の製造方法。 It is a manufacturing method of the board | substrate for optical semiconductor element mounting in which one or more recessed parts used as an optical semiconductor element mounting area | region are formed, Comprising: At least the inner peripheral side surface of the said recessed part is described in any one of Claims 1-11. formed by transfer molding using a tablet according to the thermosetting light-reflecting resin composition or claim 1 2, the method for manufacturing an optical semiconductor element mounting substrate. 前記トランスファー成型において、温度170〜190℃、時間60〜120秒の条件で硬化を行う、請求項1に記載の光半導体素子搭載用基板の製造方法。 In the transfer molding, the temperature 170 to 190 ° C., subjected to a curing under conditions of time 60-120 sec, the manufacturing method of the optical semiconductor element mounting board according to claim 1 4. 前記トランスファー成型において、温度120℃〜180℃、時間1〜3時間の条件でアフターキュアを行う、請求項1又は1に記載の光半導体素子搭載用基板の製造方法。 In the transfer molding, the temperature 120 ° C. to 180 ° C., perform after-curing under the conditions of time 1 to 3 hours, according to claim 1 4 or 1 5 method for manufacturing an optical semiconductor element mounting substrate according to. 請求項1に記載の光半導体素子搭載用基板又は請求項1〜1のいずれか一項に記載の製造方法により製造された光半導体素子搭載用基板と、前記光半導体素子搭載用基板の凹部底面に搭載された光半導体素子と、前記光半導体素子を覆うように形成された封止樹脂とを備えた、光半導体装置。 An optical semiconductor element mounting substrate manufactured by the method according to any one of the optical element mounting substrate or claim 1 4 to 1 6 according to claim 1 3, wherein the optical element mounting substrate An optical semiconductor device comprising: an optical semiconductor element mounted on the bottom surface of the recess; and a sealing resin formed so as to cover the optical semiconductor element.
JP2014108112A 2005-10-07 2014-05-26 Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device. Active JP5967135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014108112A JP5967135B2 (en) 2005-10-07 2014-05-26 Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005294880 2005-10-07
JP2005294880 2005-10-07
JP2014108112A JP5967135B2 (en) 2005-10-07 2014-05-26 Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012233940A Division JP5727984B2 (en) 2005-10-07 2012-10-23 Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.

Publications (2)

Publication Number Publication Date
JP2014159600A JP2014159600A (en) 2014-09-04
JP5967135B2 true JP5967135B2 (en) 2016-08-10

Family

ID=48186880

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012233940A Active JP5727984B2 (en) 2005-10-07 2012-10-23 Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.
JP2014108112A Active JP5967135B2 (en) 2005-10-07 2014-05-26 Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012233940A Active JP5727984B2 (en) 2005-10-07 2012-10-23 Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.

Country Status (1)

Country Link
JP (2) JP5727984B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727984B2 (en) * 2005-10-07 2015-06-03 日立化成株式会社 Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.
WO2015093543A1 (en) 2013-12-18 2015-06-25 日本化薬株式会社 Thermosetting resin composition, method for manufacturing reflective member for optical semiconductor device using same, and optical semiconductor device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03206673A (en) * 1990-01-08 1991-09-10 Seiwa Denki Kk Light-emitting diode element and its manufacture
JPH08245755A (en) * 1995-03-13 1996-09-24 Toshiba Chem Corp Epoxy resin composition and sealed device of electronic part
JPH093169A (en) * 1995-06-20 1997-01-07 Toshiba Chem Corp Sealing resin composition and device for sealing electronic part
JP3492178B2 (en) * 1997-01-15 2004-02-03 株式会社東芝 Semiconductor light emitting device and method of manufacturing the same
JP2002155206A (en) * 2000-11-20 2002-05-28 Toshiba Chem Corp Resin composition for sealing and apparatus for sealing semiconductor
JP2004326505A (en) * 2003-04-25 2004-11-18 Omron Corp Equipment failure confirmation supporting device and method
JP4421228B2 (en) * 2003-07-03 2010-02-24 京セラケミカル株式会社 Resin composition for optical semiconductor encapsulation and optical semiconductor device
JP2005194513A (en) * 2003-12-09 2005-07-21 Mitsui Chemicals Inc Resin composition for reflector, and reflector
JP5303097B2 (en) * 2005-10-07 2013-10-02 日立化成株式会社 Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.
JP5727984B2 (en) * 2005-10-07 2015-06-03 日立化成株式会社 Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.

Also Published As

Publication number Publication date
JP2013062519A (en) 2013-04-04
JP5727984B2 (en) 2015-06-03
JP2014159600A (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP5303097B2 (en) Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.
JP6306652B2 (en) Thermosetting light reflecting resin composition and method for producing the same
JP5298468B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP5060707B2 (en) Thermosetting resin composition for light reflection
JP2007297601A (en) Thermosetting resin composition for light reflection, substrate for loading photosemiconductor device using the same, method for producing the same, and photosemiconductor device
JP6341256B2 (en) Tablet and method for manufacturing optical semiconductor device using the same
JP2008306151A (en) Epoxy resin composition for optical semiconductor, and substrate for loading optical semiconductor element using the same, and optical semiconductor device
JP5233186B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP5967135B2 (en) Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.
JP5376014B2 (en) A thermosetting resin composition for light reflection, an optical semiconductor mounting substrate using the same, a manufacturing method thereof, and an optical semiconductor device.
JP2012178567A (en) Thermosetting resin composition for reflecting light, substrate for mounting optical semiconductor element using the same and method for manufacturing the same, and optical semiconductor device
JP2010212717A (en) Substrate for mounting optical semiconductor using light-reflecting thermosetting resin composition, method for manufacturing the same, and optical semiconductor device
JP6409845B2 (en) Optical semiconductor element mounting substrate and optical semiconductor device
JP6740997B2 (en) Substrate for mounting optical semiconductor element and optical semiconductor device
JP6210575B2 (en) Optical semiconductor element mounting substrate and optical semiconductor device
JP6210577B2 (en) Optical semiconductor element mounting substrate and optical semiconductor device
JP6269774B2 (en) Optical semiconductor element mounting substrate and optical semiconductor device
JP6210576B2 (en) Optical semiconductor element mounting substrate and optical semiconductor device
JP6337996B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP6163131B2 (en) A thermosetting resin composition for light reflection, an optical semiconductor mounting substrate using the same, a manufacturing method thereof, and an optical semiconductor device.
JP6367593B2 (en) Optical semiconductor element mounting substrate and optical semiconductor device
JP2013012763A (en) Thermosetting resin composition for light reflection, optical semiconductor mounting substrate manufactured using the same, method for manufacturing the substrate, and optical semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R151 Written notification of patent or utility model registration

Ref document number: 5967135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350