JP2004269754A - Epoxy resin composition for optical semiconductor sealing, and optical semiconductor device - Google Patents

Epoxy resin composition for optical semiconductor sealing, and optical semiconductor device Download PDF

Info

Publication number
JP2004269754A
JP2004269754A JP2003064097A JP2003064097A JP2004269754A JP 2004269754 A JP2004269754 A JP 2004269754A JP 2003064097 A JP2003064097 A JP 2003064097A JP 2003064097 A JP2003064097 A JP 2003064097A JP 2004269754 A JP2004269754 A JP 2004269754A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
optical semiconductor
light transmittance
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003064097A
Other languages
Japanese (ja)
Inventor
Shinji Komori
慎司 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003064097A priority Critical patent/JP2004269754A/en
Publication of JP2004269754A publication Critical patent/JP2004269754A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an epoxy resin composition for optical semiconductor sealing which has good light transmissibility at a photocoupler, high moisture-proof reliability, high flame resistance, and in addition, good molding workability. <P>SOLUTION: The epoxy resin composition for sealing the optical semiconductors contains as essential components (A) an epoxy resin containing a brominated epoxy resin, (B) a phenolic resin hardener, (C) a hardening accelerator, (D) a filler containing a glass particle mainly composed of SiO<SB>2</SB>, CaO, and Al<SB>2</SB>O<SB>3</SB>, and (E) a mold release agent consisting of montanic acid and a fatty acid ester of glycerol. The amount formulated of the brominated epoxy resin is ≥3 wt.% and ≤10 wt.% in the whole resin composition. The boiling water absorption of the epoxy resin composition is ≤1.0%, and the light transmittance of a hardened product having 1 mm thickness of the epoxy resin composition is ≥30% at 950 nm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光半導体封止用エポキシ樹脂組成物及びその硬化物で封止された光半導体装置に関する。
【0002】
【従来の技術】
フォトカプラーは受光素子と発光素子とを組み合わせ、光を用いて信号を伝えるものである。このため、発光側からの光を効率よく受光側に伝えることが重要である。また外部からの光を遮断し、耐湿信頼性、耐燃性を付与するために、二重封止構造を有することが特徴である。すなわち、まず、光伝達能を有する一次封止樹脂で光半導体素子を封止し、続いて遮光性のある二次樹脂で封止する。
従来、一次封止樹脂にはシリコーン樹脂、二次封止樹脂にはエポキシ樹脂が用いられていたが、近年、低コスト化を目的に一次封止樹脂にエポキシ樹脂を適用する研究がなされている。
【0003】
さて、フォトカプラーの効率は、CTR(Current TransferRatio)で表され、発光側の電流と受光側の起電力の比で求められる。高いCTR値を得るためには、樹脂組成物の光透過率、特に700nm〜1000nm付近の近赤外光での高い光透過率が必要であった。
特許文献1には、フォトカプラー用に信頼性、光透過性に優れたエポキシ樹脂組成物を用いることが示されている。特に高い光透過性を得るためには、金属物質による光の吸収と無機フィラー、ここでは溶融シリカによる光の散乱が重要であると示されている。しかしながら、フォトカプラーの性能向上に伴い、従来無機フィラーとして用いられてきた溶融シリカでは、確かに光の散乱が増大することにより樹脂組成物の光透過性は向上するが、溶融シリカとエポキシ樹脂や硬化剤といったレジン成分の屈折率が大きくかけ離れているため、それを用いた樹脂組成物は十分な光透過性が得られていない。
【0004】
高い透過率を得るために、エポキシ樹脂組成物として、特許文献2にビスフェノールA型エポキシ樹脂と脂環式エポキシ樹脂を併用し、硬化剤に酸無水物を用いる材料が例示されている。これによると無色透明性と高い流動性を得られると記載あるが、有機物のみの構成であり、吸水率が高く、耐湿信頼性が劣る。加えて、この樹脂に無機充填剤を添加すべく設計されたものでは無いため、吸水率を低減するために充填剤を添加しようとすると流動性が不十分になり、流動むらが生じ、極端な場合、成形時の金型への未充填などの問題が生じるおそれがある。
【0005】
特許文献3では、屈折率が樹脂マトリックスと近い値であるような無機複合酸化物を充填材に用いることで、透明性を維持しつつ吸水率を低減する技術が開示されているが、充填剤表面の空気層の残留により成形物に濁りや流動跡が生じることが問題であった。さらに、この技術によると、硬化剤に酸無水物を適用することが例示されているが、酸無水物硬化剤の場合、吸水率が高くなり、耐湿信頼性で不十分な結果しか得るところができない。
【0006】
また、本発明者は以前、特許文献4で、エポキシ樹脂組成物において、酸無水物硬化剤を適用し、さらに充填剤とそれ以外の成分からなる組成物の硬化物の屈折率差を小さくすることで、高い光透過性と耐半田性の有する樹脂組成物を発明した。この技術では確かに、充填剤を添加しているため、吸水率は低く、高い光透過率が得られているが、この材料を耐湿性及び耐熱性の向上を目的としてフェノール硬化剤の樹脂組成物に適用した場合、光透過率が低い値となる。本発明者が類推するところでは、詳細なところは不明であるが、成形時の金型から離型するために添加した離型剤がフェノール硬化剤との相溶性が悪く、樹脂組成物が濁ってしまって光透過率が低下したと思われる。樹脂組成物の濁りを抑えるために、離型剤の添加量を少なくすると成形時の金型からの離型が悪くなる。また離型性を良くするためにシリコーン系やフッ素系のスプレー式離型剤を成形毎に噴霧した場合、離型性は良くなるが金型汚れが起こり、頻繁に金型クリーニングを実施する必要があり、生産上良くない。
すなわち、高い光透過性と耐湿性といった高い信頼性を得るためには、充填剤の技術だけでなく、離型剤の種類も重要であることがわかる。つまり、高い光透過性、耐燃性、耐湿信頼性を有し、かつ、成形作業上優れたフォトカプラー用の樹脂組成物はこれまでなかった。
【0007】
【特許文献1】
特開昭62−108583号公報(全頁)
【特許文献2】
特許2970214号公報(全頁)
【特許文献3】
特開平6−65475号公報(全頁)
【特許文献4】
特開2002−80698号公報(全頁)
【0008】
【発明が解決しようとする課題】
本発明は、フォトカプラーにおける良好な光伝達性を有し、かつ、高い耐湿信頼性及び耐燃性を有し、その上、成形作業良好な光半導体封止用エポキシ樹脂組成物及びその硬化物で封止された光半導体装置を提供するものである。
【0009】
【課題を解決するための手段】
本発明は、
[1] ブロモ化エポキシ樹脂を含むエポキシ樹脂(A)、フェノール樹脂硬化剤(B)、硬化促進剤(C)、SiO、CaO、及びAlを主成分とするガラス粒子を含む充填材(D)、モンタン酸及びグリセリン脂肪酸エステルからなる離型剤(E)を必須成分とし、上記ブロモ化エポキシ樹脂の配合量が全樹脂組成物中に3重量%以上、10重量%以下であり、エポキシ樹脂組成物の煮沸吸水率が1.0%以下であり、エポキシ樹脂組成物の硬化物1mm厚の950nmにおける光透過率が30%以上であることを特徴とする光半導体封止用エポキシ樹脂組成物、
[2] 上記ブロモ化エポキシ樹脂が、一般式(1)で表されるブロモ化ビスフェノールA型エポキシ樹脂である第[1]項記載の光半導体封止用エポキシ樹脂組成物、
【化2】

Figure 2004269754
(但し、式中、RはC(CHを表し、RはBr又はHであるが、少なくともひとつ以上がBrである。nは0以上、10以下の整数である。)
【0010】
[3] 上記ガラス粒子の平均粒径が5μm以上100μm以下である第[1]又は[2]項記載の光半導体封止用エポキシ樹脂組成物、
[4] 上記ガラス粒子の配合量が全エポキシ樹脂組成物中に50重量%以上、85重量%以下である第[1]乃至[3]項のいずれかに記載の光半導体封止用エポキシ樹脂組成物、
[5] 上記離型剤の配合量が全エポキシ樹脂組成物中に1.0重量%以下である第[1]乃至[4]項のいずれかに記載の光半導体封止用エポキシ樹脂組成物、
[6] 第[1]乃至[5]項のいずれかに記載の光半導体封止用エポキシ樹脂組成物の硬化物で封止されたことを特徴とする光半導体装置、
である。
【0011】
【発明の実施の形態】
フォトカプラー用樹脂組成物は高い耐湿信頼性を得るために、本発明においては、樹脂組成物の煮沸吸水率は1.0%以下であることが必要である。煮沸吸水率が上記範囲の樹脂組成物を用いてフォトカプラー装置を組み立てた場合、プレッシャークッカーバイアステストで、長時間、例えば、300時間経過してもフォトカプラーの受発光素子の動作不具合は生じることなく作動し、またパッケージの外観上も膨れ等は発生しない。煮沸吸水率の測定に用いる試験片、及び試験片の前処理等はJIS K 6911の方法に準じて準備すればよく、煮沸時間は24時間とする。煮沸吸水率が上記上限値を超えた樹脂樹脂組成物を用いて、フォトカプラー装置を製造した場合、プレッシャークッカーテストといった耐湿信頼性の試験で、樹脂硬化物が吸湿し、パッケージ膨れが発生するといった不具合が生じる場合があり、またフォトカプラーの受発光素子の動作不良を起こす可能性がある。
【0012】
フォトカプラーの光伝達効率を良くするためには、光伝達能を有する一次封止樹脂の光透過性が良いことが必要である。本発明においては、エポキシ樹脂組成物の硬化物1mm厚の950nmにおける光透過率が30%以上であることが必要である。光透過率の測定は、分光光度計等の光透過率を測定できるものであれば何ら制限されることはものではない。分光光度計としては、島津自記分光光度計UV−3100(積分球装置設置型)で測定することが簡便でより好ましい。測定サンプルは、エポキシ樹脂組成物の硬化物で厚み1mm厚であればよく、形状は何ら制限されるものではないが、低圧トランスファー成形機を用いて、成形温度175℃、圧力6.9MPa、硬化時間120秒で試験片30mm×10mm×1mmを成形し、アフターベークとして、175℃、4時間処理して作製すれば簡便でより好ましい。光透過率が下限値を下回ったエポキシ樹脂組成物を用いて、フォトカプラーパッケージを組み立てた場合、フォトカプラーの光伝達能が低下し、十分なフォトカプラーの光学特性を得ることができない。
【0013】
本発明者らは、エポキシ樹脂組成物の硬化物の煮沸吸水率を極力小さくするために、種々検討した結果、樹脂組成物に用いる硬化剤の極性基を極力少なくすればよいことを見出した。具体的には、フェノール樹脂を硬化剤に用いればよい。
本発明に用いられるフェノール樹脂としては、分子内にフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般を指し、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、トリフェノールメタン型樹脂、フェノールアラルキル樹脂(フェニレン骨格、ビフェニレン骨格等を有する)、ナフトールアラルキル樹脂(フェニレン骨格、ビフェニレン骨格等を有する)等が挙げられるが、これらに限定されるものではない。また、これらは単独でも2種類以上併用して用いても良い。フェノール樹脂以外の硬化剤としては酸無水物硬化剤等が例示されるが、その場合、分子内にエステル結合を有していて、極性基が多く含まれるため、煮沸吸水率が高くなり好ましくない。酸無水物硬化剤に限らず、分子内にエステル結合等の極性基を多く含む硬化剤を適用した場合、やはり煮沸吸水率が高くなり好ましくない。煮沸吸水率を小さくする効果はフェノール樹脂に必須の構造であるベンゼン環等の芳香環にあるものと考えられる。但し、芳香環を有する場合であっても、分子内にエステル結合といった極性基が存在すると煮沸吸水率が高くなる場合がある。すなわち、芳香環を有する酸無水物、例えば、無水フタル酸は、エステル結合の寄与により、エポキシ樹脂の硬化剤に用いた場合、煮沸吸水率は高くなる。したがって、本発明における硬化剤は、フェノール樹脂であることが好ましい。また、プレッシャークッカーテスト等の耐湿信頼性の観点から、フェノール樹脂中に含まれる塩素イオン、ナトリウムイオン、その他フリーのイオンは、極力少ないことが望ましい。
【0014】
本発明に用いられるエポキシ樹脂は、ブロモ化エポキシ樹脂を含有してなることを特徴とする。ブロモ化エポキシ樹脂は、エポキシ樹脂組成物に耐燃性を付与するために用いるものである。ブロモ化エポキシ樹脂としては、テトラブロモビスフェノールA型エポキシ樹脂、オルソブロモフェノールノボラック型エポキシ樹脂等が例示されるが、これらに限定されるものではない。これらのエポキシ樹脂は、単独もしくは2種以上用いても何ら差し支えない。
難燃性の観点から、ブロモ化エポキシ樹脂は、全エポキシ樹脂組成物中に3重量%以上、10重量%以下で配合される。下限値を下回ると、十分な難燃性を得ることができず、また上限値を超えて配合した場合、エポキシ樹脂組成物中のフリーなイオンが多くなり、耐湿信頼性が悪くなる。
本発明の樹脂組成物には、ブロモ化エポキシ樹脂として、光透過率の観点で一般式(1)で示されるエポキシ樹脂を用いることが好ましい。一般式(1)で示されるエポキシ樹脂は、それ自体の着色性が低いため、エポキシ樹脂組成物の光透過率が高くなり好ましい。一般式(1)において、n=10を超える場合、エポキシ樹脂の分子量が大きくなり、粘度が高くなるため、樹脂組成物の流動性が低下するおそれがあり、好ましくない。
エポキシ樹脂に耐燃性を付与する技術として、アンチモン化合物を添加することは当業者間では公知の技術であるが、アンチモン化合物を該樹脂組成物に添加し、耐燃性を付与した場合、アンチモン化合物自体の光吸収により光透過率を得ることができず、好ましくない。したがって、該樹脂組成物に耐燃性を付与するにはブロモ化エポキシ樹脂のみを用いることが重要である。
【化3】
Figure 2004269754
【0015】
本発明に用いられるその他のエポキシ樹脂は、エポキシ基を有するモノマー、オリゴマー、ポリマー全般を指し、例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等の結晶性エポキシ樹脂、ビスフェノールA型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン骨格等を有する)、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ナフトール型エポキシ樹脂等が挙げられるが、これらに限定されるものではない。また、これらは単独でも2種類以上併用して用いても良い。耐湿信頼性向上のために、本発明に使用されるエポキシ樹脂中に含まれる塩素イオン、ナトリウムイオン、その他フリーのイオンは、極力少ないことが望ましい。
【0016】
全エポキシ樹脂のエポキシ基と全フェノール樹脂のフェノール性水酸基との当量比としては、好ましくは0.5〜2.0、特に好ましくは0.7〜1.5である。上記範囲を外れると、硬化性、耐湿信頼性等が低下する可能性がある。
【0017】
本発明には充填材として、SiO、CaO、及びAlを主成分とするガラス粒子を用いる必要がある。さらに平均粒径が5μm以上、100μm以下であるガラス粒子を用いることがより好ましい。ガラス粒子の形状は、球状、破砕状が一般的であるが、光透過率の観点から、球状であることがより好ましい。球状とした場合、比表面積が最小となり、光の散乱損失を小さく抑えることができる。また、平均粒径が下限値未満の場合にはガラス粒子が凝集して光透過率が低下する恐れがあり、上限値を超える場合は成形時の成形不良が生じる恐れがある。ここで、成形不良とは、金型のゲート部で樹脂詰まりが発生し、未充填となることなどである。また、ガラス粒子の粒径測定には、当業者間で公知の方法を用いればよいが、レーザー光散乱法で粒子の体積粒径分布を測定し、粒子の真密度の値を用いて重量粒径分布に換算する方法を用いるのが簡便で、最適である。
【0018】
また、樹脂組成物の高い光透過率を得るために、ガラス粒子が、1mmの光路長で波長400nmにおいて80%以上の光透過率を有することがより好ましい。光透過率の測定は、分光光度計等の光透過率を測定できるものであれば何ら制限されるものではない。分光光度計としては、島津自記分光光度計UV−3100(積分球装置設置型)で測定することが簡便でより好ましい。測定サンプルは、ガラスの塊状のものを用いればよく、例えば、30×10×1mmの直方体の板を低圧トランスファー成形機を用いて、例えば、成形温度175℃、圧力6.9MPa、硬化時間120秒で成形し、アフターベークとして175℃、4時間処理した後に、表面を平滑にして1mmの厚みで光透過率を測定すればよい。ガラスの波長400nmの光透過率が下限値未満の場合、エポキシ樹脂組成物に配合しても高い光透過率を得られない場合がある。
【0019】
充填材とそれ以外の成分からなる樹脂組成物の硬化物の屈折率の差を小さくすると、光透過率が向上することは既に当業者間で公知であるが、本発明では、ガラス粒子の屈折率が1.55以上、1.59以下であることがより好ましい。エポキシ樹脂組成物において、充填材以外の成分からなる樹脂組成物の硬化物の屈折率は1.57近傍であるが、ガラス粒子と、それ以外の成分からなる樹脂組成物の硬化物の屈折率差の絶対値が、0.02以下の場合、光透過率が向上する。屈折率差が0.02を超えると、ガラス粒子の表面で光の散乱損失が生じ、光透過率が低下するおそれがある。屈折率の調整方法としては、前記ガラス粒子の3成分の成分比を調整することで、屈折率を変化させることができる。屈折率を上げるには、Al成分を増やせばよく、逆に屈折率を下げるにはSiO成分を増やせばよい。
【0020】
本発明の樹脂組成物に、ガラス粒子の屈折率を整合させるには、ガラス粒子の成分を、SiOを30〜70重量%、CaOを1〜50重量%、Alを5〜40重量%、合計で100重量%となるように調整するのがより好ましい。また、調整において、ガラス粒子の特性を損なわない範囲で、他の成分を加えても良い。ガラス粒子を製造する方法としては、通常の長石、珪石、硼砂を調し、加熱溶融混合を行い、冷却後、乾燥工程を経て粉砕する方法が適用できるが、さらに、ガラスの製造工程中に、減圧脱泡する方法や、ガラスの溶融時に空気や窒素などのガスを吹き込んでバブリングし、微細な気泡を大きな気泡に吸着させることで、気泡を容易に除去できるようにする方法が利用でき、また必要に応じて消泡材などの添加剤を利用することもできる。
【0021】
本発明には、光透過率に影響しないならば、他の充填材を用いることは何ら制限はなく、一般に封止材料に用いられているものを使用することができる。例えば、溶融破砕シリカ、溶融球状シリカ、結晶シリカ、2次凝集シリカ、アルミナ、チタンホワイト、水酸化アルミニウム、タルク、クレー、ガラス繊維等が挙げられ、これらは単独でも2種類以上併用して用いても良い。
【0022】
充填材の含有量としては、全エポキシ樹脂組成物中に50〜85重量%がより好ましく、さらにより好ましくは50〜80重量%である。下限値を下回ると、充填材による補強効果が十分に発現せず、且つ吸湿要因である樹脂成分の配合量が多くなるので、エポキシ樹脂組成物の硬化物の吸湿量が増大してしまうため、半田処理時に半導体装置にクラックが発生しやすくなる場合がある。85重量%を越えると、エポキシ樹脂組成物の流動性が低下し、成形時に充填不良やチップシフト、パッドシフト、ワイヤースイープが発生しやすくなる場合がある。
【0023】
本発明に用いられる硬化促進剤としては、前記エポキシ樹脂とフェノール樹脂との架橋反応を促進するものであれば良く、例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のアミン系化合物、トリフェニルホスフィン、テトラフェニルホスフォニウム・テトラフェニルボレート塩等の有機リン系化合物、2−メチルイミダゾール等のイミダゾール化合物等が挙げられるが、これらに限定されるものではない。また、これらは単独でも2種類以上併用して用いても良い。
【0024】
本発明に用いられる離型剤としては、モンタン酸及びグリセリン脂肪酸エステルからなる離型剤である必要がある。モンタン酸は、炭素数28の長鎖アルキル基を有していて、成形金型に対して高い離型性を示す。またグリセリン脂肪酸エステルも同様に脂肪酸に長鎖のアルキル基を有した場合、高い離型性示す。半導体封止用エポキシ樹脂組成物で一般的に用いられる離型剤として、カルナバといった天然ワックスがあるが、カルナバワックスを該樹脂組成物に添加した場合、エポキシ樹脂やフェノールノボラック硬化剤等のレジンとの相溶性が悪く、樹脂が濁ってしまい、高い光透過率が得ることができず、好ましくない。また、モンタン酸のみを離型剤として添加した場合、樹脂組成物は濁ってしまい、高い光透過率を得ることができない。そこで、グリセリン脂肪酸エステルを併用すると、エステル基の寄与によってエポキシ樹脂やフェノールノボラック硬化剤との相溶性が高まり、高い光透過率を得ることができるものと考えられる。
グリセリン脂肪酸エステルとしては、グリセリンと脂肪酸とが脱水縮合反応により生成したエステル化物であり、長鎖アルキル基とエステル結合を有する物であれば何ら制限されるものではない。グリセリン脂肪酸エステルの長鎖アルキル基は炭素数17のステアリン酸、炭素数22のベヘン酸、炭素数28のモンタン酸等が、エステル化物の合成上の観点でより好ましい。また、グリセリン脂肪酸エステルは、グリセリンの1つのアルコール性水酸基がエステル化したモノグリセライドや、2個のアルコール性水酸基が反応したジグリセライド、3個ともエステル化したトリグリセライドのいずれであってもよく、これら3種の混合物であっても良い。グリセリン脂肪酸エステルとしては、グリセリンモノステアレート、グリセリンモノベヘネート、グリセリンジラウレート、グリセリントリベヘネート等が例示することができるが、これらに限定されるものではない。またこれらは単独でも2種類以上併用して用いても良い。また、全離型剤の配合量は全エポキシ樹脂組成物中に1.0重量%以下であることが、光透過率の観点でより好ましい。全離型剤の配合量が上限値を超えて配合された場合、樹脂組成物が濁ってしまい、光透過率が低下する事態を招くおそれがある。光半導体用の封止樹脂で、離型剤が種々検討されているが、フェノールノボラックといったフェノール性水酸基を有する硬化剤を用いた光半導体封止用樹脂組成物においては、硬化剤と離型剤との相溶性が重要であり、離型剤によっては樹脂自体が濁ってしまい、光透過率が低下するおそれがあるため、本発明に記載の離型剤は重要である。
【0025】
本発明のエポキシ樹脂組成物は、(A)〜(E)成分の他、光半導体素子の特性、特に850nm〜1000nm付近の光透過率に影響しないならば、必要に応じて、酸化ビスマス水和物等の無機イオン交換体、シリコーンオイル、シリコーンゴム等の低応力化剤、カップリング剤、酸化防止剤等の各種添加剤を配合することができる。
【0026】
本発明のエポキシ樹脂組成物は、(A)〜(E)成分、及びその他の添加剤等をミキサーを用いて混合後、熱ロール、加熱ニーダー、押出機等の混練機で溶融混練、冷却後粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で硬化成形すればよい。
【0027】
【実施例】
以下、本発明を実施例で具体的に説明するが、本発明はこれらに限定されるものではない。配合割合は重量部とする。
実施例1
Figure 2004269754
をミキサーを用いて常温で混合した後、表面温度が90℃と15℃の2本ロールを用いて混練し、冷却後粉砕して、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
【0028】
評価方法
・煮沸吸水率:樹脂組成物タブレットを、金型温度175℃、注入圧力6.86MPa、硬化時間90秒の条件でトランスファー成形し、直径50mm、厚み3mmの円板状の成形品を得た。この成形品を、温度175℃の熱風オーブンで4時間ポストキュアした後、温度100℃に設定した煮沸釜に24時間放置し、保管前後の重量変化率を煮沸吸水率として測定した。
・光透過率:低圧トランスファー成形機を用いて、成形温度175℃、圧力6.9MPa、硬化時間120秒で試験片(30mm×10mm×1mm)を成形し、アフターベークとして175℃、4時間処理した後に、積分球を搭載した分光光度計(島津製作所製自記分光光度計UV−3100)を用いて、波長950nm、厚み1mmの光透過率を測定した。単位は%。
・難燃性:低圧トランスファー成形機を用いて、成形温度175℃、圧力6.9MPa、硬化時間120秒で試験片(127mm×12.7mm×1.0mm)を成形し、アフターベークとして175℃、8時間処理した後、UL−94垂直法に準じて、ΣF、Fmaxを測定し、難燃性を判定した。
・耐湿性:低圧トランスファー成形機を用いて、成形温度175℃、圧力6.9MPa、硬化時間120秒で16pDIP(チップサイズ3.0mm×3.5mm)を成形し、アフターベークとして175℃、4時間処理をした後、耐湿性試験(125℃、2.3気圧のオートクレーブ中、飽和100%の水蒸気中で20Vの電圧を印加した後、断線不良を調べるPCBT(プレッシャークッカーバイアステスト))を行い、断線不良となったパッケージを不良と判定した。20個のパッケージ中の不良率を百分率で示す。単位は%。
・スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒で測定した。単位はcm。
・金型表面汚れ性:低圧トランスファー成形機を用い、16pDIP半導体封止用金型を用いた。まず、メラミン樹脂等の金型クリーニング用材料を成形して、金型のクリーニングを行った(金型温度175℃、注入圧力6.9MPa)。続いて、16pDIPで、半導体素子をマウントしていないリードフレームで金型温度175℃、注入圧力6.9MPa、硬化時間2分の成形条件でエポキシ樹脂組成物を用いて連続して500回成形した。その際の成形品表面と金型表面の汚れ具合(特に曇り・白化)の変化を評価した。成形品が離型時に金型に張り付いた場合は×、曇り・白化・油浮きが発生した場合は△、問題ない場合は○とした。結果は表1にまとめて示す。
【0029】
(実施例2〜13、比較例1〜9)
表1の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得、実施例1と同様にして評価した。結果を表1に示す。
実施例1以外で使用した成分について、下記に示す。
・ビスフェノールA型エポキシ樹脂(エポキシ当量475、軟化点60℃)
・ジシクロペンタジエン変性フェノール型エポキシ樹脂(大日本インキ化学社製エポキシ樹脂HP−7200、エポキシ当量265、軟化点60℃)
・ビフェニル型エポキシ樹脂(ジャパンエポキシレジン社製エポキシ樹脂YX−4000、エポキシ当量190、融点105℃)
・脂環式エポキシ樹脂(ダイセル化学社製EHPE3150、エポキシ当量180、軟化点60℃)
・オルソクレゾールノボラック型ブロモ化エポキシ樹脂(エポキシ当量275、ブロモ含有率35%)
・フェノールアラルキル樹脂(三井化学製XLC−4L、軟化点65℃、水酸基当量174)
・酸無水物硬化剤(新日本理化製THPA、酸無水物当量152、軟化点100℃)
・ガラス粒子B1(SiO:CaO:Al:添加剤=37:35:18:10の比率で調合、添加剤はMgO、屈折率は1.58、平均粒径24μm、1mmの光路長で波長400nmにおいて86%の光透過率を有する脱泡処理をした球状ガラス粒子)
・ガラス粒子B2(ガラス粒子B1と同様の組成で、屈折率は1.58、平均粒径5μm、1mmの光路長で波長400nmにおいて80%の光透過率を有する脱泡処理した破砕状ガラス粒子)
・ガラス粒子C(SiO:CaO:Al:添加剤=60:20:15:5の比率で調合、添加剤はMgO、屈折率は1.56、平均粒径85μm、1mmの光路長で波長400nmにおいて88%の光透過率を有する脱泡処理した球状ガラス粒子。
・溶融球状シリカ(平均粒径30.0μm、1mmの光路長で波長400nmにおいて光透過率はゼロ。)
・シランカップリング剤(γ−グリシドキシプロピルトリメトキシシラン)
【0030】
【表1】
Figure 2004269754
【0031】
【表2】
Figure 2004269754
【0032】
【発明の効果】
本発明の光半導体封止用エポキシ樹脂組成物は、良好な光伝達性を有し、かつ、耐燃性、信頼性に優れたオプトデバイスを提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an epoxy resin composition for optical semiconductor encapsulation and an optical semiconductor device encapsulated with a cured product thereof.
[0002]
[Prior art]
A photocoupler combines a light receiving element and a light emitting element and transmits a signal using light. Therefore, it is important to efficiently transmit light from the light emitting side to the light receiving side. In addition, it is characterized by having a double sealing structure in order to block external light and to provide moisture resistance reliability and flame resistance. That is, first, the optical semiconductor element is sealed with a primary sealing resin having a light transmitting ability, and then sealed with a secondary resin having a light shielding property.
Conventionally, silicone resin was used for the primary sealing resin and epoxy resin was used for the secondary sealing resin.Recently, research has been conducted to apply epoxy resin to the primary sealing resin for the purpose of cost reduction. .
[0003]
The efficiency of the photocoupler is represented by CTR (Current Transfer Ratio), and is determined by the ratio of the current on the light emitting side to the electromotive force on the light receiving side. In order to obtain a high CTR value, the light transmittance of the resin composition, particularly, a high light transmittance of near-infrared light near 700 nm to 1000 nm was required.
Patent Document 1 discloses that an epoxy resin composition having excellent reliability and light transmittance is used for a photocoupler. In order to obtain particularly high light transmittance, it is shown that light absorption by a metal substance and scattering of light by an inorganic filler, here, fused silica, are important. However, with the performance improvement of the photocoupler, fused silica, which has been conventionally used as an inorganic filler, certainly improves the light transmittance of the resin composition due to an increase in light scattering. Since the refractive indices of resin components such as a curing agent are greatly different from each other, a resin composition using the same does not have sufficient light transmittance.
[0004]
In order to obtain a high transmittance, Patent Document 2 exemplifies a material in which a bisphenol A type epoxy resin and an alicyclic epoxy resin are used in combination and an acid anhydride is used as a curing agent. According to this document, it is described that colorless transparency and high fluidity can be obtained, but the composition is composed of only organic substances, the water absorption is high, and the moisture resistance reliability is poor. In addition, because it is not designed to add an inorganic filler to this resin, if the filler is added to reduce the water absorption, the fluidity becomes insufficient, causing uneven flow, In such a case, there is a possibility that a problem such as unfilling in a mold at the time of molding may occur.
[0005]
Patent Document 3 discloses a technique for reducing the water absorption rate while maintaining transparency by using an inorganic composite oxide having a refractive index close to that of a resin matrix as a filler. There was a problem that turbidity and traces of flow were formed on the molded product due to the residual air layer on the surface. Furthermore, according to this technique, it is exemplified that an acid anhydride is applied to a curing agent.However, in the case of an acid anhydride curing agent, the water absorption rate is high, and only insufficient results can be obtained with moisture resistance reliability. .
[0006]
In addition, the present inventor has previously described in Patent Document 4 an acid anhydride curing agent in an epoxy resin composition, and further reduces the difference in refractive index between a cured product of a composition comprising a filler and other components. Thus, a resin composition having high light transmittance and solder resistance was invented. In this technology, a filler is added, so the water absorption is low and a high light transmittance is obtained.However, this material is used to improve the moisture resistance and heat resistance. When applied to an object, the light transmittance becomes a low value. The inventor of the present invention has inferred that the details are unknown, but the release agent added for releasing the mold from the mold during molding has poor compatibility with the phenol curing agent, and the resin composition becomes cloudy. It is considered that the light transmittance was lowered. If the amount of the release agent added is reduced in order to suppress the turbidity of the resin composition, the release from the mold during molding becomes worse. If a silicone or fluorine spray release agent is sprayed after each molding to improve the mold release, mold release will be improved but mold contamination will occur, and frequent mold cleaning will be required. There is no good production.
That is, in order to obtain high reliability such as high light transmittance and moisture resistance, it is understood that not only the technique of the filler but also the type of the release agent is important. That is, there has not been a resin composition for a photocoupler having high light transmittance, flame resistance and moisture resistance reliability, and excellent in molding work.
[0007]
[Patent Document 1]
JP-A-62-108583 (all pages)
[Patent Document 2]
Japanese Patent No. 2970214 (all pages)
[Patent Document 3]
JP-A-6-65475 (all pages)
[Patent Document 4]
JP-A-2002-80698 (all pages)
[0008]
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition for optical semiconductor encapsulation having a good light transmission property in a photocoupler, and having high moisture resistance reliability and flame resistance, as well as a good molding operation, and a cured product thereof. It is to provide a sealed optical semiconductor device.
[0009]
[Means for Solving the Problems]
The present invention
[1] Epoxy resin containing brominated epoxy resin (A), phenol resin curing agent (B), curing accelerator (C), SiO 2 , CaO, and Al 2 O 3 A filler (D) containing glass particles whose main component is a release agent (E) composed of montanic acid and glycerin fatty acid ester are essential components, and the amount of the brominated epoxy resin is 3% in the total resin composition. Not less than 10% by weight and not more than 10% by weight, the boiling water absorption of the epoxy resin composition is not more than 1.0%, and the light transmittance at 950 nm of 1 mm thick cured product of the epoxy resin composition is not less than 30%. An epoxy resin composition for optical semiconductor encapsulation,
[2] The epoxy resin composition for optical semiconductor encapsulation according to [1], wherein the brominated epoxy resin is a brominated bisphenol A type epoxy resin represented by the general formula (1):
Embedded image
Figure 2004269754
(However, in the formula, R 1 Is C (CH 3 ) 2 And R 2 Is Br or H, and at least one is Br. n is an integer of 0 or more and 10 or less. )
[0010]
[3] The epoxy resin composition for optical semiconductor encapsulation according to [1] or [2], wherein the average particle diameter of the glass particles is 5 μm or more and 100 μm or less,
[4] The epoxy resin for optical semiconductor encapsulation according to any one of [1] to [3], wherein the amount of the glass particles is 50% by weight or more and 85% by weight or less in the total epoxy resin composition. Composition,
[5] The epoxy resin composition for optical semiconductor encapsulation according to any one of [1] to [4], wherein the compounding amount of the release agent is 1.0% by weight or less in the total epoxy resin composition. ,
[6] An optical semiconductor device sealed with a cured product of the epoxy resin composition for optical semiconductor encapsulation according to any one of [1] to [5],
It is.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the resin composition for photocouplers needs to have a boiling water absorption of 1.0% or less in order to obtain high moisture resistance reliability. When a photocoupler device is assembled using a resin composition having a boiling water absorption in the above range, a pressure cooker bias test may cause a malfunction of the light emitting / receiving element of the photocoupler for a long time, for example, 300 hours. The package operates without any swelling and the like. The test piece used for measuring the boiling water absorption and the pretreatment of the test piece may be prepared according to the method of JIS K 6911, and the boiling time is 24 hours. When a photocoupler device is manufactured using a resin composition having a boiling water absorption exceeding the upper limit, when a moisture resistance reliability test such as a pressure cooker test is performed, the resin cured product absorbs moisture and package swelling occurs. A malfunction may occur, and an operation failure of the light receiving / emitting element of the photocoupler may occur.
[0012]
In order to improve the light transmission efficiency of the photocoupler, it is necessary that the primary sealing resin having the light transmission ability has good light transmittance. In the present invention, it is necessary that the light transmittance at 950 nm of a cured product of the epoxy resin composition having a thickness of 1 mm is 30% or more. The measurement of the light transmittance is not particularly limited as long as the light transmittance of a spectrophotometer or the like can be measured. As a spectrophotometer, measurement with a Shimadzu self-recording spectrophotometer UV-3100 (integrating sphere device installed type) is simple and more preferable. The measurement sample may be a cured product of the epoxy resin composition and may have a thickness of 1 mm, and the shape is not particularly limited. However, using a low-pressure transfer molding machine, the molding temperature is 175 ° C., the pressure is 6.9 MPa, and the curing is performed. A test piece of 30 mm × 10 mm × 1 mm is molded in a time of 120 seconds, and after baking is processed at 175 ° C. for 4 hours. When a photocoupler package is assembled using an epoxy resin composition having a light transmittance lower than the lower limit, the light transmission capability of the photocoupler is reduced, and sufficient optical characteristics of the photocoupler cannot be obtained.
[0013]
The present inventors have conducted various studies in order to minimize the boiling water absorption of the cured product of the epoxy resin composition, and as a result, have found that the polar group of the curing agent used in the resin composition should be reduced as much as possible. Specifically, a phenol resin may be used as a curing agent.
The phenolic resin used in the present invention refers to all monomers, oligomers and polymers having a phenolic hydroxyl group in the molecule, such as phenol novolak resin, cresol novolak resin, terpene-modified phenol resin, dicyclopentadiene-modified phenol resin, Examples include, but are not limited to, phenol methane type resins, phenol aralkyl resins (having a phenylene skeleton, biphenylene skeleton, etc.), and naphthol aralkyl resins (having a phenylene skeleton, biphenylene skeleton, etc.). These may be used alone or in combination of two or more. Examples of the curing agent other than the phenol resin include an acid anhydride curing agent. In this case, since the ester has an ester bond in the molecule and contains a large number of polar groups, the boiling water absorption rate is high, which is not preferable. . When a curing agent containing a large amount of a polar group such as an ester bond in a molecule is applied, not only the acid anhydride curing agent, but also the boiling water absorption is undesirably high. It is considered that the effect of reducing the boiling water absorption is due to the aromatic ring such as a benzene ring which is an essential structure of the phenol resin. However, even in the case of having an aromatic ring, the presence of a polar group such as an ester bond in the molecule may increase the boiling water absorption. That is, when an acid anhydride having an aromatic ring, for example, phthalic anhydride is used as a curing agent for an epoxy resin due to the contribution of an ester bond, the boiling water absorption increases. Therefore, the curing agent in the present invention is preferably a phenol resin. In addition, from the viewpoint of moisture resistance reliability such as a pressure cooker test, it is desirable that chlorine ions, sodium ions, and other free ions contained in the phenol resin are as small as possible.
[0014]
The epoxy resin used in the present invention is characterized by containing a brominated epoxy resin. The brominated epoxy resin is used for imparting flame resistance to the epoxy resin composition. Examples of the brominated epoxy resin include, but are not limited to, tetrabromobisphenol A type epoxy resin and orthobromophenol novolak type epoxy resin. These epoxy resins may be used alone or in combination of two or more.
From the viewpoint of flame retardancy, the brominated epoxy resin is blended in the entire epoxy resin composition at 3% by weight or more and 10% by weight or less. If the amount is below the lower limit, sufficient flame retardancy cannot be obtained, and if the amount exceeds the upper limit, the amount of free ions in the epoxy resin composition increases, and the moisture resistance reliability deteriorates.
In the resin composition of the present invention, it is preferable to use an epoxy resin represented by the general formula (1) as a brominated epoxy resin from the viewpoint of light transmittance. The epoxy resin represented by the general formula (1) is preferable because the epoxy resin composition itself has low coloring property, and thus the light transmittance of the epoxy resin composition increases. In the general formula (1), when n is more than 10, the molecular weight of the epoxy resin is increased and the viscosity is increased, so that the fluidity of the resin composition may decrease, which is not preferable.
As a technique for imparting flame resistance to an epoxy resin, adding an antimony compound is a technique known to those skilled in the art, but when an antimony compound is added to the resin composition to impart flame resistance, the antimony compound itself is added. Cannot be obtained because of the light absorption of the above. Therefore, it is important to use only a brominated epoxy resin in order to impart flame resistance to the resin composition.
Embedded image
Figure 2004269754
[0015]
Other epoxy resins used in the present invention refer to monomers, oligomers and polymers having an epoxy group in general, and include, for example, crystallinity such as biphenyl type epoxy resin, stilbene type epoxy resin, hydroquinone type epoxy resin and bisphenol F type epoxy resin. Epoxy resin, bisphenol A type epoxy resin, phenol aralkyl type epoxy resin (having phenylene skeleton, biphenylene skeleton, etc.), orthocresol novolak type epoxy resin, phenol novolak type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, triphenol methane Type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, triazine nucleus containing epoxy resin, naphthol type epoxy resin, etc., but are not limited thereto. No. These may be used alone or in combination of two or more. In order to improve the moisture resistance reliability, it is desirable that chlorine ions, sodium ions, and other free ions contained in the epoxy resin used in the present invention are as small as possible.
[0016]
The equivalent ratio of the epoxy groups of all epoxy resins to the phenolic hydroxyl groups of all phenol resins is preferably 0.5 to 2.0, particularly preferably 0.7 to 1.5. If the ratio is outside the above range, the curability, the moisture resistance reliability and the like may be reduced.
[0017]
In the present invention, SiO 2 is used as a filler. 2 , CaO, and Al 2 O 3 It is necessary to use glass particles containing as a main component. Further, it is more preferable to use glass particles having an average particle size of 5 μm or more and 100 μm or less. The shape of the glass particles is generally spherical or crushed, but is more preferably spherical from the viewpoint of light transmittance. In the case of a spherical shape, the specific surface area is minimized, and light scattering loss can be suppressed to a small value. If the average particle size is less than the lower limit, the glass particles may aggregate and the light transmittance may decrease. If the average particle size exceeds the upper limit, molding failure may occur during molding. Here, the molding failure means that the resin is clogged at the gate portion of the mold and is not filled. The particle size of the glass particles may be measured by a method known to those skilled in the art.However, the volume particle size distribution of the particles is measured by a laser light scattering method, and the weight particle size is determined by using the value of the true density of the particles. It is simple and optimal to use a method of converting to a diameter distribution.
[0018]
In order to obtain a high light transmittance of the resin composition, it is more preferable that the glass particles have a light transmittance of 80% or more at a wavelength of 400 nm with an optical path length of 1 mm. The measurement of the light transmittance is not particularly limited as long as the light transmittance of a spectrophotometer or the like can be measured. As a spectrophotometer, measurement with a Shimadzu self-recording spectrophotometer UV-3100 (integrating sphere device installed type) is simple and more preferable. The measurement sample may be a lump of glass. For example, a rectangular parallelepiped plate of 30 × 10 × 1 mm is formed using a low-pressure transfer molding machine, for example, at a molding temperature of 175 ° C., a pressure of 6.9 MPa, and a curing time of 120 seconds. After baking at 175 ° C. for 4 hours as an afterbake, the surface may be smoothed and the light transmittance measured at a thickness of 1 mm. When the light transmittance at a wavelength of 400 nm of the glass is less than the lower limit, a high light transmittance may not be obtained even when blended with the epoxy resin composition.
[0019]
It is already known among those skilled in the art that when the difference in the refractive index of the cured product of the resin composition composed of the filler and the other components is reduced, the light transmittance is improved. More preferably, the ratio is 1.55 or more and 1.59 or less. In the epoxy resin composition, the refractive index of the cured product of the resin composition composed of components other than the filler is about 1.57, but the refractive index of the cured product of the glass particles and the resin composition composed of the other components is about 1.57. When the absolute value of the difference is 0.02 or less, the light transmittance is improved. When the refractive index difference exceeds 0.02, light scattering loss occurs on the surface of the glass particles, and the light transmittance may be reduced. As a method of adjusting the refractive index, the refractive index can be changed by adjusting the component ratio of the three components of the glass particles. To increase the refractive index, use Al 2 O 3 It is only necessary to increase the component, and conversely, to lower the refractive index, use SiO 2 2 You only have to increase the ingredients.
[0020]
In order to match the refractive index of the glass particles with the resin composition of the present invention, the components of the glass particles should be SiO 2 2 30 to 70% by weight, CaO 1 to 50% by weight, Al 2 O 3 Is more preferably adjusted to 5 to 40% by weight, that is, 100% by weight in total. In the adjustment, other components may be added as long as the properties of the glass particles are not impaired. As a method for producing glass particles, a method of preparing ordinary feldspar, silica stone, borax, performing heat-melt mixing, cooling, and then pulverizing through a drying step can be applied. A method of defoaming under reduced pressure or a method of blowing bubbles such as air or nitrogen at the time of melting glass to make it possible to easily remove bubbles by adsorbing fine bubbles to large bubbles can be used. If necessary, additives such as an antifoaming material can be used.
[0021]
In the present invention, the use of other fillers is not limited as long as it does not affect the light transmittance, and those generally used for a sealing material can be used. For example, fused crushed silica, fused spherical silica, crystalline silica, secondary aggregated silica, alumina, titanium white, aluminum hydroxide, talc, clay, glass fiber, and the like, and these may be used alone or in combination of two or more. Is also good.
[0022]
The content of the filler is preferably from 50 to 85% by weight, more preferably from 50 to 80% by weight, based on the entire epoxy resin composition. Below the lower limit, the reinforcing effect of the filler is not sufficiently exhibited, and the amount of the resin component that is a factor of moisture absorption increases, so that the amount of moisture absorption of the cured product of the epoxy resin composition increases, During the soldering process, cracks may easily occur in the semiconductor device. If the content exceeds 85% by weight, the fluidity of the epoxy resin composition is reduced, and poor filling, chip shift, pad shift, and wire sweep may easily occur during molding.
[0023]
As the curing accelerator used in the present invention, any one may be used as long as it promotes a crosslinking reaction between the epoxy resin and the phenol resin. Examples thereof include amines such as 1,8-diazabicyclo (5,4,0) undecene-7. Organic compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate salts; and imidazole compounds such as 2-methylimidazole, but are not limited thereto. These may be used alone or in combination of two or more.
[0024]
The release agent used in the present invention needs to be a release agent comprising montanic acid and glycerin fatty acid ester. Montanic acid has a long-chain alkyl group having 28 carbon atoms and exhibits high releasability from a molding die. Glycerin fatty acid esters also exhibit high releasability when the fatty acid has a long-chain alkyl group. As a release agent generally used in an epoxy resin composition for semiconductor encapsulation, there is a natural wax such as carnauba, but when carnauba wax is added to the resin composition, a resin such as an epoxy resin or a phenol novolak hardener is used. Is poor, the resin becomes cloudy, and a high light transmittance cannot be obtained, which is not preferable. In addition, when only montanic acid is added as a release agent, the resin composition becomes cloudy, and a high light transmittance cannot be obtained. Therefore, it is considered that when glycerin fatty acid ester is used in combination, the compatibility with the epoxy resin and the phenol novolak curing agent is enhanced by the contribution of the ester group, and a high light transmittance can be obtained.
The glycerin fatty acid ester is an esterified product of glycerin and a fatty acid formed by a dehydration condensation reaction, and is not particularly limited as long as it has a long-chain alkyl group and an ester bond. As the long-chain alkyl group of the glycerin fatty acid ester, stearic acid having 17 carbon atoms, behenic acid having 22 carbon atoms, montanic acid having 28 carbon atoms, and the like are more preferable from the viewpoint of synthesis of an esterified product. The glycerin fatty acid ester may be any of monoglyceride in which one alcoholic hydroxyl group of glycerin is esterified, diglyceride in which two alcoholic hydroxyl groups are reacted, and triglyceride in which all three are esterified. May be used as a mixture. Examples of the glycerin fatty acid ester include, but are not limited to, glycerin monostearate, glycerin monobehenate, glycerin dilaurate, and glycerin tribehenate. These may be used alone or in combination of two or more. Further, it is more preferable that the compounding amount of the entire release agent is 1.0% by weight or less in the entire epoxy resin composition from the viewpoint of light transmittance. When the compounding amount of all the release agents exceeds the upper limit, the resin composition may become cloudy, which may cause a situation in which the light transmittance is reduced. Various types of mold release agents have been studied for encapsulation resins for optical semiconductors.However, in an optical semiconductor encapsulation resin composition using a curing agent having a phenolic hydroxyl group such as phenol novolak, a curing agent and a release agent are used. Is important because the resin itself becomes cloudy depending on the release agent and the light transmittance may be reduced. Therefore, the release agent according to the present invention is important.
[0025]
The epoxy resin composition of the present invention may contain, if necessary, the hydration of bismuth oxide if it does not affect the properties of the optical semiconductor element, especially the light transmittance in the vicinity of 850 nm to 1000 nm, in addition to the components (A) to (E). Various additives such as an inorganic ion exchanger such as a product, a low stress agent such as silicone oil and silicone rubber, a coupling agent, and an antioxidant can be blended.
[0026]
The epoxy resin composition of the present invention is obtained by mixing the components (A) to (E), other additives, and the like using a mixer, then kneading with a kneading machine such as a hot roll, a heating kneader, an extruder, and cooling. Obtained by grinding.
In order to manufacture a semiconductor device by encapsulating an electronic component such as a semiconductor element using the epoxy resin composition of the present invention, it is sufficient to cure and mold by a molding method such as a transfer mold, a compression mold, and an injection mold.
[0027]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. The mixing ratio is by weight.
Example 1
Figure 2004269754
Was mixed at room temperature using a mixer, kneaded using two rolls having a surface temperature of 90 ° C. and 15 ° C., cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following method. Table 1 shows the results.
[0028]
Evaluation method
Boiling water absorption: The resin composition tablet was transfer-molded under the conditions of a mold temperature of 175 ° C., an injection pressure of 6.86 MPa, and a curing time of 90 seconds to obtain a disk-shaped molded product having a diameter of 50 mm and a thickness of 3 mm. This molded article was post-cured in a hot air oven at a temperature of 175 ° C. for 4 hours, then left in a boiling pot set at a temperature of 100 ° C. for 24 hours, and the rate of weight change before and after storage was measured as boiling water absorption.
-Light transmittance: A test piece (30 mm x 10 mm x 1 mm) is molded using a low-pressure transfer molding machine at a molding temperature of 175 ° C, a pressure of 6.9 MPa, and a curing time of 120 seconds, and treated at 175 ° C for 4 hours as an after-bake. After that, the light transmittance at a wavelength of 950 nm and a thickness of 1 mm was measured using a spectrophotometer equipped with an integrating sphere (Shimadzu Corporation's self-recording spectrophotometer UV-3100). Units%.
Flame retardancy: A test piece (127 mm x 12.7 mm x 1.0 mm) was molded using a low-pressure transfer molding machine at a molding temperature of 175 ° C, a pressure of 6.9 MPa, and a curing time of 120 seconds, and 175 ° C as an after-bake. After treating for 8 hours, ΔF and Fmax were measured according to the UL-94 vertical method to determine the flame retardancy.
-Moisture resistance: Using a low-pressure transfer molding machine, a 16pDIP (chip size: 3.0 mm x 3.5 mm) is molded at a molding temperature of 175 ° C, a pressure of 6.9 MPa, and a curing time of 120 seconds, and after-baking at 175 ° C, 4 After a time treatment, a moisture resistance test (PCBT (pressure cooker bias test) for checking a disconnection defect after applying a voltage of 20 V in a 100% saturated steam in an autoclave at 125 ° C. and 2.3 atm) is performed. In addition, a package having a disconnection failure was determined to be defective. The percentage defective in 20 packages is shown as a percentage. Units%.
Spiral flow: Measured using a mold for spiral flow measurement according to EMMI-1-66 at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. The unit is cm.
-Mold surface contamination: A 16pDIP semiconductor encapsulation mold was used using a low pressure transfer molding machine. First, a mold cleaning material such as a melamine resin was molded, and the mold was cleaned (mold temperature: 175 ° C., injection pressure: 6.9 MPa). Subsequently, using a lead frame on which no semiconductor element was mounted at 16 pDIP, molding was continuously performed 500 times using an epoxy resin composition under molding conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes. . At that time, the change in the degree of contamination (particularly, fogging and whitening) between the surface of the molded product and the surface of the mold was evaluated. When the molded product was stuck to the mold at the time of release, it was evaluated as ×, when clouding, whitening, or oil floating occurred, as Δ, and when there was no problem, as ○. The results are summarized in Table 1.
[0029]
(Examples 2 to 13, Comparative Examples 1 to 9)
According to the formulation in Table 1, an epoxy resin composition was obtained in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the results.
The components used in other than Example 1 are shown below.
・ Bisphenol A type epoxy resin (epoxy equivalent 475, softening point 60 ° C)
・ Dicyclopentadiene-modified phenolic epoxy resin (Epoxy resin HP-7200 manufactured by Dainippon Ink and Chemicals, epoxy equivalent 265, softening point 60 ° C)
-Biphenyl type epoxy resin (Epoxy resin YX-4000 manufactured by Japan Epoxy Resin Co., epoxy equivalent 190, melting point 105 ° C)
・ Alicyclic epoxy resin (EHPE3150 manufactured by Daicel Chemical Industries, epoxy equivalent 180, softening point 60 ° C)
-Orthocresol novolak type brominated epoxy resin (epoxy equivalent 275, bromo content 35%)
・ Phenol aralkyl resin (XLC-4L, manufactured by Mitsui Chemicals, softening point 65 ° C, hydroxyl equivalent 174)
・ Anhydride curing agent (THPA manufactured by Shin Nippon Rika Co., Ltd., acid anhydride equivalent 152, softening point 100 ° C)
-Glass particles B1 (SiO 2 : CaO: Al 2 O 3 : Additive = 37: 35: 18: 10 ratio, the additive is MgO, the refractive index is 1.58, the average particle size is 24 μm, the optical path length is 1 mm, and the light transmittance is 86% at a wavelength of 400 nm. Foamed spherical glass particles)
Glass particles B2 (having the same composition as glass particles B1, having a refractive index of 1.58, an average particle diameter of 5 μm, and a defoamed crushed glass particle having an optical path length of 1 mm and a light transmittance of 80% at a wavelength of 400 nm) )
・ Glass particles C (SiO 2 : CaO: Al 2 O 3 : Additive = mixed in a ratio of 60: 20: 15: 5, the additive is MgO, the refractive index is 1.56, the average particle diameter is 85 μm, the optical path length is 1 mm, and the light transmittance is 88% at a wavelength of 400 nm. Foam-treated spherical glass particles.
Fused spherical silica (average particle diameter 30.0 μm, light path length of 1 mm, and no light transmittance at a wavelength of 400 nm)
・ Silane coupling agent (γ-glycidoxypropyltrimethoxysilane)
[0030]
[Table 1]
Figure 2004269754
[0031]
[Table 2]
Figure 2004269754
[0032]
【The invention's effect】
ADVANTAGE OF THE INVENTION The epoxy resin composition for optical semiconductor sealing of this invention has favorable light transmission property, and can provide the opto-device excellent in flame resistance and reliability.

Claims (6)

ブロモ化エポキシ樹脂を含むエポキシ樹脂(A)、フェノール樹脂硬化剤(B)、硬化促進剤(C)、SiO、CaO、及びAlを主成分とするガラス粒子を含む充填材(D)、モンタン酸及びグリセリン脂肪酸エステルからなる離型剤(E)を必須成分とし、上記ブロモ化エポキシ樹脂の配合量が全樹脂組成物中に3重量%以上、10重量%以下であり、エポキシ樹脂組成物の煮沸吸水率が1.0%以下であり、エポキシ樹脂組成物の硬化物1mm厚の950nmにおける光透過率が30%以上であることを特徴とする光半導体封止用エポキシ樹脂組成物。Epoxy resin containing brominated epoxy resin (A), phenol resin curing agent (B), curing accelerator (C), filler containing glass particles mainly composed of SiO 2 , CaO, and Al 2 O 3 (D ), A release agent (E) consisting of montanic acid and a glycerin fatty acid ester as an essential component, and the amount of the brominated epoxy resin is 3% by weight or more and 10% by weight or less in the total resin composition; An epoxy resin composition for optical semiconductor encapsulation, wherein a boiling water absorption of the composition is 1.0% or less and a light transmittance at 950 nm of a cured product of the epoxy resin composition at 1 mm thickness is 30% or more. . 上記ブロモ化エポキシ樹脂が、一般式(1)で表されるブロモ化ビスフェノールA型エポキシ樹脂である請求項1記載の光半導体封止用エポキシ樹脂組成物。
Figure 2004269754
(但し、式中、RはC(CHを表し、RはBr又はHであるが、少なくともひとつ以上がBrである。nは0以上、10以下の整数である。)
The epoxy resin composition for optical semiconductor encapsulation according to claim 1, wherein the brominated epoxy resin is a brominated bisphenol A type epoxy resin represented by the general formula (1).
Figure 2004269754
(Wherein, R 1 represents C (CH 3 ) 2 , and R 2 is Br or H, but at least one is Br. N is an integer of 0 or more and 10 or less.)
上記ガラス粒子の平均粒径が5μm以上100μm以下である請求項1又は2記載の光半導体封止用エポキシ樹脂組成物。The epoxy resin composition for optical semiconductor encapsulation according to claim 1 or 2, wherein the average particle size of the glass particles is 5 µm or more and 100 µm or less. 上記ガラス粒子の配合量が全エポキシ樹脂組成物中に50重量%以上、85重量%以下である請求項1乃至3のいずれかに記載の光半導体封止用エポキシ樹脂組成物。The epoxy resin composition for optical semiconductor encapsulation according to any one of claims 1 to 3, wherein the content of the glass particles is 50% by weight or more and 85% by weight or less in the total epoxy resin composition. 上記離型剤の配合量が全エポキシ樹脂組成物中に1.0重量%以下である請求項1乃至4のいずれかに記載の光半導体封止用エポキシ樹脂組成物。The epoxy resin composition for optical semiconductor encapsulation according to any one of claims 1 to 4, wherein the compounding amount of the release agent is 1.0% by weight or less in the total epoxy resin composition. 請求項1乃至5のいずれかに記載の光半導体封止用エポキシ樹脂組成物の硬化物で封止されたことを特徴とする光半導体装置。An optical semiconductor device sealed with a cured product of the epoxy resin composition for optical semiconductor encapsulation according to claim 1.
JP2003064097A 2003-03-10 2003-03-10 Epoxy resin composition for optical semiconductor sealing, and optical semiconductor device Pending JP2004269754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003064097A JP2004269754A (en) 2003-03-10 2003-03-10 Epoxy resin composition for optical semiconductor sealing, and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003064097A JP2004269754A (en) 2003-03-10 2003-03-10 Epoxy resin composition for optical semiconductor sealing, and optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2004269754A true JP2004269754A (en) 2004-09-30

Family

ID=33125507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003064097A Pending JP2004269754A (en) 2003-03-10 2003-03-10 Epoxy resin composition for optical semiconductor sealing, and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2004269754A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111823A (en) * 2004-10-18 2006-04-27 Nitto Denko Corp Epoxy resin composition for sealing optical semiconductor element and optical semiconductor by using the same
JP2006310199A (en) * 2005-04-28 2006-11-09 Toshiba Corp Switchgear
JP2006335894A (en) * 2005-06-02 2006-12-14 Nippon Kayaku Co Ltd Epoxy resin liquid composition for optical semiconductor
JP2007002233A (en) * 2005-05-24 2007-01-11 Shin Etsu Chem Co Ltd Epoxy/silicone resin composition, its cured product and light-emitting semiconductor device encapsulated and protected with the composition
JP2008007561A (en) * 2006-06-27 2008-01-17 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device using the same
WO2009011335A1 (en) * 2007-07-18 2009-01-22 Nipponkayaku Kabushikikaisha Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2016079344A (en) * 2014-10-21 2016-05-16 信越化学工業株式会社 Thermosetting epoxy resin composition for primary encapsulation of photocoupler, and optical semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111823A (en) * 2004-10-18 2006-04-27 Nitto Denko Corp Epoxy resin composition for sealing optical semiconductor element and optical semiconductor by using the same
JP2006310199A (en) * 2005-04-28 2006-11-09 Toshiba Corp Switchgear
JP4625714B2 (en) * 2005-04-28 2011-02-02 株式会社東芝 Switchgear
JP2007002233A (en) * 2005-05-24 2007-01-11 Shin Etsu Chem Co Ltd Epoxy/silicone resin composition, its cured product and light-emitting semiconductor device encapsulated and protected with the composition
JP2006335894A (en) * 2005-06-02 2006-12-14 Nippon Kayaku Co Ltd Epoxy resin liquid composition for optical semiconductor
JP4641869B2 (en) * 2005-06-02 2011-03-02 日本化薬株式会社 Epoxy resin liquid composition for optical semiconductors
JP2008007561A (en) * 2006-06-27 2008-01-17 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device using the same
WO2009011335A1 (en) * 2007-07-18 2009-01-22 Nipponkayaku Kabushikikaisha Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2016079344A (en) * 2014-10-21 2016-05-16 信越化学工業株式会社 Thermosetting epoxy resin composition for primary encapsulation of photocoupler, and optical semiconductor device

Similar Documents

Publication Publication Date Title
JP3891554B2 (en) Epoxy resin composition for optical semiconductor encapsulation and optical semiconductor device
US7605213B2 (en) Semiconductor encapsulant of epoxy resin, phenolic resin, phosphine-quinone adduct and OH compound
KR20050036813A (en) Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same
JP2004269754A (en) Epoxy resin composition for optical semiconductor sealing, and optical semiconductor device
JP2005089607A (en) Epoxy resin composition for optical semiconductor sealing and optical semiconductor device
JP2002080698A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP6307352B2 (en) Resin composition for optical semiconductor encapsulation and optical semiconductor device
JP3897282B2 (en) Epoxy resin composition for optical semiconductor encapsulation and optical semiconductor device
JP3973138B2 (en) Epoxy resin composition for optical semiconductor encapsulation and optical semiconductor device
JP2002234990A (en) Sealing epoxy resin composition for optical semiconductor and optical semiconductor
KR101908179B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
JPS62209128A (en) Epoxy resin composition for sealing semiconductor device
JP2005015622A (en) Epoxy resin composition for photosemiconductor encapsulation and photosemiconductor device
JP2003246840A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP2593503B2 (en) Epoxy resin composition and resin-sealed semiconductor device using the same
JP2005272543A (en) Epoxy resin composition for encapsulating optical semiconductor and optical semiconductor device
JPH11181244A (en) Epoxy resin composition and semiconductor device
KR101669338B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
JP4380101B2 (en) Epoxy resin composition and semiconductor device
JP2002265568A (en) Epoxy resin composition for sealing photosemiconductor, and photosemiconductor device
JP2003041096A (en) Method for manufacturing epoxy resin molding material and semiconductor device
KR100504604B1 (en) Epoxy molding compound for sealing of semiconductor device
JPH11172075A (en) Epoxy resin composition and semiconductor device
JP2001106872A (en) Epoxy resin composition and semiconductor device
JP2007146155A (en) Epoxy resin composition for sealing semiconductor and semiconductor device