JP2019164360A - 光ファイバ及びその製造方法 - Google Patents

光ファイバ及びその製造方法 Download PDF

Info

Publication number
JP2019164360A
JP2019164360A JP2019083851A JP2019083851A JP2019164360A JP 2019164360 A JP2019164360 A JP 2019164360A JP 2019083851 A JP2019083851 A JP 2019083851A JP 2019083851 A JP2019083851 A JP 2019083851A JP 2019164360 A JP2019164360 A JP 2019164360A
Authority
JP
Japan
Prior art keywords
coupling agent
silane coupling
mixture
fluorine
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019083851A
Other languages
English (en)
Other versions
JP6858216B2 (ja
Inventor
斎藤 豪
Takeshi Saito
豪 斎藤
健一 須山
Kenichi Suyama
健一 須山
悦宏 新子谷
Nobuhiro Arakoya
悦宏 新子谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Publication of JP2019164360A publication Critical patent/JP2019164360A/ja
Application granted granted Critical
Publication of JP6858216B2 publication Critical patent/JP6858216B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/105Organic claddings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/40Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/48Coating with two or more coatings having different compositions
    • C03C25/50Coatings containing organic materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides
    • G02B1/048Light guides characterised by the cladding material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2962Silane, silicone or siloxane in coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

【課題】ポリマークラッド光ファイバの製造における濡れ性の問題、凝集の問題、及び相分離の問題を解決することのできる光ファイバ及びその製造方法を提供する。【解決手段】光ファイバ100は、ガラスコア101と、ガラスコアの周囲に形成されたポリマークラッド102とを備え、ポリマークラッドには、重合性組成物及びシランカップリング剤の混合物と、フッ素系紫外線硬化樹脂とが含まれ、混合物の全重量が100重量部とすると、混合物はシランカップリング剤を5〜95重量部含み、フッ素系紫外線硬化樹脂単独での紫外線硬化後の屈折率は1.350〜1.420の範囲にあり、ガラスコアとポリマークラッドとの界面からポリマークラッド内20μm以下の範囲にシランカップリング剤に由来する成分が集中している。【選択図】図1A

Description

本発明は、光ファイバ、詳細には、低屈折率のフッ素系紫外線硬化樹脂を用いて形成されるポリマークラッド光ファイバ及びその製造方法に関する。
一般的に、ポリマークラッド光ファイバは、コアの周りに樹脂が形成された構造を有する。ポリマークラッド光ファイバは、高密度な光エネルギー伝送を可能にし、レーザ等の高出力の光エネルギー伝送が必要とされる分野やセンサー分野等で使用されている。そのような光ファイバを製造するにあたり、従来から、ガラスコアと紫外線硬化樹脂との間の密着性を高めるために、シランカップリング剤が紫外線硬化樹脂に混合される。
特許文献1は、UV樹脂被覆層とガラスファイバの密着性を向上させる光ファイバの製造方法を開示する。特許文献2は、光ファイバを構成するガラス表面にシランカップリング剤を薄く塗布することにより、接着剤と光ファイバ心線との密着力を上げることを開示する。特許文献3は、裸光ファイバと被覆層との密着性を向上させる光ファイバの製造方法を開示する。特許文献4は、優れたファイバ強度と伝送特性を備える光ファイバを開示する。
特許文献5は、好適な粘度を有し、硬化状態における靱性のような優れた機械的特性を有する簡単に合成可能な低屈折率光硬化性組成物を開示する。特許文献6は、単層被覆であっても良好な機械的強度を有し、大きい開口数を有するダブルクラッド光ファイバ心線を開示する。
特開平2−48434号公報 特開平5−224108号公報 特開2000−34137号公報 特開2011−33933号公報 特開平10−197731号公報 特開2012−18258号公報
特許文献1では、ガラスファイバがシランカップリング剤の蒸気雰囲気内を通過させられ、それによりシランカップリング剤層がガラスファイバ表面に形成され、その後紫外線硬化樹脂がその上に被覆される。特許文献2では、多芯型光ファイバの長手方向の被覆が一部除去され、シランカップリング剤が、露出した光ファイバ心線のガラス部の非延伸部にスプレーコーティングによって塗布される。しかしながら、特許文献1及び2の方法では、シランカップリング剤の蒸気雰囲気を生成し制御するための装置が必要となり、ひいては製造コストの増大につながる。また、シランカップリング剤自体とガラスファイバ表面との濡れ性は悪いことから、シランカップリング剤を蒸気にしたところでシランカップリング剤をガラスファイバ表面に均一に蒸着させることは難しい。
特許文献3では、裸光ファイバの外周上に水分が供給された状態で裸光ファイバが紫外線硬化樹脂でコーティングされることにより、紫外線硬化樹脂に混合されたシランカップリング剤の効果が向上する。しかしながら、特許文献3の方法では、比較的低屈折率の紫外線硬化樹脂とシランカップリング剤とを混合することによる屈折率の問題や、それらの相溶性は悪いことからシランカップリング剤の凝集の問題やシランカップリング剤とフッ素系紫外線硬化樹脂との相分離の問題が生じる。
特許文献4では、フッ素系紫外線硬化型樹脂を含有する硬化組成物に含まれるシランカップリング剤の量を調整することで、フッ素系紫外線硬化型樹脂とシランカップリング剤との相溶性が担保されている。しかしながら、特許文献4の方法では、シランカップリング剤をコアガラスの表面に均一に塗布することは困難である。
シランカップリング剤とガラスコア表面との濡れ性は悪いため、シランカップリング剤をガラスコア表面に均一に塗布することが難しいという問題がある。また、シランカップリング剤がフッ素系紫外線硬化樹脂と混合されると、シランカップリング剤の影響によりフッ素系紫外線硬化樹脂の屈折率が高くなるという問題がある。また、低屈折率のフッ素系紫外線硬化樹脂とシランカップリング剤との相溶性は悪く、それらを単純に混合しただけではシランカップリング剤の凝集の問題や、シランカップリング剤とフッ素系紫外線硬化樹脂との相分離の問題が生じる。ポリマークラッド光ファイバの製造において、これらの問題を解決することが望まれる。
本発明の一実施形態は、ガラスコアと、ガラスコアの周囲に形成されたポリマークラッドとを備え、ポリマークラッドには、重合性組成物及びシランカップリング剤の混合物と、フッ素系紫外線硬化樹脂とが含まれ、混合物の全重量が100重量部とすると、混合物はシランカップリング剤を5〜95重量部含み、フッ素系紫外線硬化樹脂単独での紫外線硬化後の屈折率は1.350〜1.420の範囲にあり、ガラスコアとポリマークラッドとの界面からポリマークラッド内20μm以下の範囲にシランカップリング剤に由来する成分が集中していることを特徴とする光ファイバを提供する。
また、本発明の一実施形態は、重合性組成物とシランカップリング剤との混合物をガラスコアに塗布するステップと、混合物上にフッ素系紫外線硬化樹脂を塗布するステップと、フッ素系紫外線硬化樹脂を紫外線硬化処理することによりガラスコアの周囲にポリマークラッドを形成するステップとを具備し、混合物の全重量が100重量部とすると、混合物はシランカップリング剤を5〜95重量部含み、フッ素系紫外線硬化樹脂単独での紫外線硬化後の屈折率は1.350〜1.420の範囲にあり、ガラスコアとポリマークラッドとの界面からポリマークラッド内20μm以下の範囲にシランカップリング剤に由来する成分が集中していることを特徴とする光ファイバの製造方法を提供する。
本発明の一実施形態は、ガラスコア表面に対して濡れ性の良い重合性組成物とシランカップリング剤との混合物を用いることにより、シランカップリング剤をガラスコア表面に均一に塗布することができる。また、本発明の一実施形態は、重合性組成物とシランカップリング剤との混合物を塗布した後にフッ素系紫外線硬化樹脂をウェットオンウェットで塗布することにより、シランカップリング剤の凝集や、シランカップリング剤とフッ素系紫外線硬化樹脂との相分離を回避することができる。また、本発明の一実施形態は、ガラスコアとポリマークラッドとの界面からポリマークラッド内20μm以下の範囲にシランカップリング剤に由来する成分が集中していることにより、シランカップリング剤の影響によりフッ素系紫外線硬化樹脂の屈折率の増加を低減することができる。
本発明の一実施形態に係る光ファイバの断面図である。 本発明の一実施形態に係る光ファイバの断面図である。 本発明の一実施形態に係る光ファイバの製造工程における装置の模式図である。 本発明の一実施形態に係る光ファイバの、各製造工程における長さ方向に平行な断面を表す模式図である。 表1の屈折率及び密着力等の関係を示すプロット図である。
以下、本発明を実施するための例示的な実施形態を、図面を参照して詳細に説明する。ただし、以下の実施形態で説明する寸法、材料、形状、構成要素の相対的な位置等は任意であり、本発明が適用される装置の構造又は様々な条件に応じて変更できる。また、特別な記載がない限り、本発明の範囲は、以下に説明される実施形態で具体的に記載された形態に限定されるものではない。なお、以下で説明する図面で、同機能を有するものは同一符号を付け、その繰り返しの説明は省略することもある。
(光ファイバ)
図1A及び図1Bは、本発明の一実施形態に係る光ファイバの長さ方向に垂直な断面図である。
ガラスコア101は、円筒状の石英ガラス等から形成され、用途に応じて希土類元素等の物質が添加されてもよい。また、ガラスコア101の直径は、用途に応じて適宜変更されるものであり、例えば200μm以上であってもよい。
ポリマークラッド102は、重合性組成物(A)、シランカップリング剤(B)及びフッ素系紫外線硬化樹脂(C)を用いて形成され、ガラスコア101に比べて低い屈折率を有する。また、ポリマークラッド102の厚さは、用途に応じて適宜変更されるものであり、例えば25μmであってもよい。
重合性組成物(A)は、ガラスコア101の表面に対して濡れ性のよい物質であり、フッ素系紫外線硬化樹脂(C)と相溶性のよい物質である。例えば、重合性組成物(A)は、重合性組成物中にフッ素化(メタ)アクリレート化合物を含んでもよい。好適なフッ素化(メタ)アクリレート化合物の例は、ミズーリ州セントルイス、シグマ・アルドリッチ(Sigma−Aldrich, Saint Louis, Missouri)から入手可能な1H,1H−2,2,3,3,4,4,4−ヘプタフルオロブチルアクリレート;ニューハンプシャー州ウィンダム、ランカスター・シンセシス(Lancaster Synthesis, Windham, New Hampshire)から共に入手可能な1H,1H,2H,2H−パーフルオロデシルアクリレートおよび/又はω−ヒドロ−2,2,3,3,4,4,5,5−オクタフルオロペンチルアクリレート;米国特許第6,664,354号明細書の実施例2Aおよび2Bの手順で製造されるCSON(CH)CHCHOC(=O)CH=CH;(パーフルオロシクロヘキシル)メチルアクリレートを含む、米国特許第4,968,116号明細書および同第5,239,026号明細書に記載のフッ素化(メタ)アクリル化合物等である。また、重合性組成物(A)は、ペルフルオロシクロヘキシルメチルメタクリレート、ペンタフルオロベンジル(メタ)アクリレート、ペンタフルオロフェニル(メタ)アクリレート、ペルフルオロノルボニルメチル(メタ)アクリレート、1H-ペルフルオロイソボルニル(メタ)アクリレート、2,2,3,3,4,4,5,5-オクタフルオロヘキサンジオール-1,6-ジアクリレート、ペルフルオロシクロヘキシル-1,4-ジメチルジアクリレート、ポリペルフルオロエチレングリコールジアクリレート、2,2,3,3-テトラフルオロ-1,4-ブタンジオールジアクリレート、ヘキサフルオロペンタンジイル-1-5ビス(アクリレート)、ヘキサフルオロビスフェノールAジアクリレート等であってもよい。
シランカップリング剤(B)は、重合性組成物(A)内で分散し、ガラスコア101の表面とフッ素系紫外線硬化樹脂(C)との密着力を向上させる物質である。例えば、シランカップリング剤(B)は、反応性官能基として、アクリル基、(メタ)アクリル基、エポキシ基、ビニル基、アミノ基、スチリル基、メルカプト基、ウレイド基、スルフィド基、イソシアネート基等のいずれかを含み、加水分解性基として、メトキシ基(OCH)、エトキシ基(OC)、アセトキシ基(OCOCH)等を含む。アクリル基の例は、3-アクリロキシプロピルトリメトキシシランである。(メタ)アクリル基の例は、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランである。エポキシ基の例は、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランである。ビニル基の例は、ビニルトリメトキシシラン、ビニルトリエトキシシランである。アミノ基の例は、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩である。スチリル基の例は、p-スチリルトリメトキシシランである。メルカプト基の例は、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランである。ウレイド基の例は、3-ウレイドプロピルトリエトキシシランである。スルフィド基の例は、ビス(トリエトキシシリルプロピル)テトラスルフィドである。イソシアネート基の例は、3-イソシアネートプロピルトリエトキシシランである。
フッ素系紫外線硬化樹脂(C)は、重合性組成物(A)と相溶性がよく、フッ素を比較的多く含む低屈折率の紫外線硬化樹脂である。フッ素系紫外線硬化樹脂(C)単独、即ち、重合性組成物(A)及びシランカップリング剤(B)が混合されていないフッ素系紫外線硬化樹脂(C)の紫外線硬化後の屈折率は、一般的にファイバレーザー等に用いられるポリマークラッド光ファイバの場合には、1.350〜1.420の範囲にあることが望ましい。フッ素系紫外線硬化樹脂(C)の例は、アクリル系オリゴマー、パーフルオロポリエーテル基を有するウレタンアクリレート、単官能フッ化アクリレートモノマー、分子量400〜600程度の二官能フッ化アクリレートモノマー、分子量1500未満の(メタ)アクリレート官能基を二つ有するパーフルオロポリエーテル、光重合開始剤(例えばDarocur1173)といった成分の混合物である。
図1Bに示されるように、ポリマークラッド102の外側に保護層となる被覆層106をさらに形成してもよい。当該被覆層106は、通常の熱可塑性ポリマーや紫外線硬化樹脂を含むものであってもよい。
(光ファイバの製造方法)
図2Aは、本発明の一実施形態に係る光ファイバ100の製造工程における装置の模式図であり、図2Bは、各製造工程における光ファイバ100の長さ方向に平行な断面を表す模式図である。
工程S201において、線引きされたガラスコア101が第1の塗布装置1へ供給される。第1の塗布装置1には、それぞれ所定の比率で混合された重合性組成物(A)とシランカップリング剤(B)104aとの混合物103(「プライマー」とも言う。)が充填されている。第1の塗布装置は、混合物103を液体状のまま、ガラスコア101の周囲に所定の厚さTで塗布する。厚さTは用途に応じて適宜変更されるものであり、好ましくは20μm以下、好ましくは15μm以下、より好ましくは10μm以下である。
混合物103中のシランカップリング剤(B)104aは重合性組成物(A)内で分散し、ガラスコア101の表面に対する重合性組成物(A)の濡れ性はよい。そのため、工程S201で塗布された混合物103中のシランカップリング剤(B)104aは、ガラスコア101上に均一に存在する。
第2の塗布装置2には、液体状のフッ素系紫外線硬化樹脂(C)105が充填されている。工程S202では、第2の塗布装置2は、液体状の混合物103が乾く前に混合物103上にフッ素系紫外線硬化樹脂(C)105を塗布する。このように、塗布された液体状の物質が乾く前にさらに別の液体状の物質を塗布することを「ウェットオンウェット」で塗布するという。言い換えると、工程202では、フッ素系紫外線硬化樹脂(C)105が、混合物103上にウェットオンウェットで塗布される。
そして、工程S203では、UVランプ等を備える紫外線照射装置3は、紫外線をフッ素系紫外線硬化樹脂(C)に照射し、フッ素系紫外線硬化樹脂(C)を硬化させる。この処理を「紫外線硬化処理」という。このようにして、ガラスコア101の周囲にポリマークラッド102が形成された光ファイバ100が製造される。
尚、ポリマークラッド102は一般的に低弾性率である場合が多く、必要に応じてポリマークラッド102の外側に保護層となる被覆層106を適宜設けても構わない。その際、紫外線硬化樹脂により保護層を形成することが製造の効率性からは好ましいが、熱可塑性ポリマーによる押し出し被覆等、紫外線硬化樹脂以外の材料で保護層106を形成することや、前記紫外線硬化樹脂による保護層106の外側にさらに被覆層を形成することも可能である。ポリマークラッド102の外側に被覆する紫外線硬化樹脂からなる保護層106は、例として通常の通信用光ファイバで一般的にセカンダリとして用いられているような樹脂を適用することが出来る。
本実施形態に係る光ファイバ100では、シランカップリング剤に由来する成分104bが、ガラスコア101とポリマークラッド102との界面からポリマークラッド102内所定の範囲T内に集中して存在する。シランカップリング剤に由来する成分104bは、シランカップリング剤(B)104aとフッ素系紫外線硬化樹脂(C)105とが反応した後に、それらが結合した物質である。
所定の範囲Tは、用途に応じて適宜変更されるものであり、20μm以下、好ましくは15μm以下、より好ましくは10μm以下である。工程S201において混合物103をガラスコア101に塗布する際に混合物103の厚さTを調整し、及び、工程S203において、混合物103中に含まれているシランカップリング剤(B)がフッ素系紫外線硬化樹脂(C)105の全体に拡散していく前に、フッ素系紫外線硬化樹脂(C)105を紫外線硬化処理することによって、所定の範囲Tを調整することができる。
例えば、工程S201においてガラスコア101に塗布する混合物103の厚さTを10μm程度以下に調整し、工程S203においてフッ素系紫外線硬化樹脂(C)105を塗布した後所定の時間内にフッ素系紫外線硬化樹脂(C)105を紫外線硬化処理する。これにより、シランカップリング剤(B)に由来する成分104bを、ガラスコア101とポリマークラッド102との界面からポリマークラッド102内20μm以下、好ましくは15μm以下、より好ましくは10μm以下の範囲に集中させることができる。なお、当該所定時間は使用する物質に応じて定まり、経験的に求められるものである。
以上の製造方法によれば、重合性組成物(A)とシランカップリング剤(B)との混合物103を用いるため、シランカップリング剤(B)をガラスコア101の表面に均一に塗布することができる。また、重合性組成物(A)とシランカップリング剤(B)の混合物の塗布性が向上するため、フッ素系紫外線硬化樹脂(C)の材料の選択肢が増える利点がある。さらに、シランカップリング剤に由来する成分104bをガラスコア101とポリマークラッド102との界面近傍、即ち、ガラスコア101とポリマークラッド102との界面からポリマークラッド102内の所定の範囲Tに集中して存在させることができる。そのため、ガラスコア101とポリマークラッド102との間の密着力を向上することができるとともに、シランカップリング剤に由来する成分104bがポリマークラッド102の屈折率を高めてしまう影響を低減することができる。
(実施例)
以下、本発明の実施例を説明する。本実施例では、フッ素系紫外線硬化樹脂(C)の比率を一定に保ちつつ重合性組成物(A)とシランカップリング剤(B)との比率を様々に変更しながら、ガラスコアとその周囲に形成されるポリマークラッドとの間の密着力、重合性組成物(A)とシランカップリング剤(B)の混合物の混合性、塗布性及び屈折率を調べた。
本実施例では、混合物の塗布性確認やガラスに対する密着力測定を容易にするために、ガラスコアと同一物質(本実施例では石英)からなるガラス板を用いた。ガラス板上に重合性組成物(A)とシランカップリング剤(B)との混合物をスピンコータ等により塗布し、その上にウェットオンウェットでフッ素系紫外線硬化樹脂(C)をスピンコータ等により塗布し、それを紫外線硬化処理することによって、ガラス板(ガラスコアに相当)上に樹脂層(ポリマークラッドに相当)を備えたサンプル1〜8を作製した。
さらに前記サンプル1〜8の組成物及び組み合わせで、外径200μmのシリカコアファイバに外径が300μmになるように混合物層+ポリマークラッド層を形成したファイバを製造し、製造から24〜36時間経過後の850nmにおける伝送ロスをOTDRによって測定した。またその後、100℃、100%RHの加圧型恒温槽内で24時間エージング後の伝送ロスを測定し、エージング前後でのロス増の有無について確認した。下記表1の「初期ロス(dB/km)」及び「100℃×100%RH 24hrs後(dB/km)」の項目にその結果を表わす。
表1は、作製したサンプルの実施例(サンプル1〜5)及び比較例(サンプル6〜8)を示す。なお、使用する物質の比率が同様であればファイバ形状のサンプルであっても表1のデータと同様の結果となることが想定される。
表1のデータを得るために、石英からなるガラス板、重合性組成物(A)としてペルフルオロシクロヘキシルメチルメタクリレート、シランカップリング剤(B)として3−アクリロキシプロピルトリメトキシシラン、及び、フッ素系紫外線硬化樹脂(C)としてフッ素を多く含むアクリル系オリゴマーと光重合開始剤等の混合物を用いた。当該フッ素系紫外線硬化樹脂(C)単独での紫外線硬化後の屈折率は1.38程度であった。
Figure 2019164360
表1において、(A)、(B)及び(C)の単位は「重量部」であり、密着力の単位は「N/mm」である。密着力は、洗浄されたガラス板の上にスピンコータ等によって(A)と(B)の混合物を塗布後、さらにウェットオンウェットで(C)を一定の厚み(例えば100μm)で塗布し、UVランプによって紫外線硬化処理(照射条件:1500mW、1000mJ)した後一定幅に切断し、これをテンシロン万能試験機等により90°ピール力を測定することにより得られた。
また、(B)/{(A)+(B)}の単位は「%」である。(A)と(B)の混合物の屈折率は、光源に波長589nmのナトリウムランプ、温度25℃でアッベ屈折率計を用いて測定された。(A)と(B)の混合性は、(A)と(B)をガラス容器で混合した後24時間静置させ、(A)と(B)が二層に分離していない場合を「○」とした。(A)と(B)の混合物の塗布性は、スピンコータにより、洗浄されたガラス板に(A)と(B)の混合物を塗布した際に均一に塗れている場合を「○」、ガラス板にはじかれて塗布できていない部分があれば「×」とした。
サンプル1は、1.8重量部の重合性組成物(A)と0.2重量部のシランカップリング剤(B)との混合物をガラス板上に塗布し、その上にウェットオンウェットで100重量部のフッ素系紫外線硬化樹脂(C)を塗布し、それを紫外線硬化処理することによって作製された。
サンプル1のガラス板(ガラスコアに相当)と樹脂層(ポリマークラッドに相当)との間の密着力を調べるために、サンプル1を一定幅に切断し、これをテンシロン万能試験機を用いて90°ピール力を測定した。その結果、当該密着力は、20N/mmであった。
サンプル1を作製するために使用した重合性組成物(A)とシランカップリング剤(B)の混合物の屈折率を調べるために、光源に波長589nmのナトリウムランプを用い、温度25℃でアッベ屈折率計を用いて当該屈折率を測定した。その結果、当該屈折率は、1.373であった。また、当該混合物の混合性を調べるために、当該混合物を混合後に24時間静置させた。その結果、当該混合物中の重合性組成物(A)とシランカップリング剤(B)は、2層に分離しなかった(「○」)。また、当該混合物の塗布性を調べるために、スピンコータを用いて洗浄されたガラス板上に当該混合物を塗布した。その結果、ガラス板上に当該混合物が均一に塗れていた(「○」)。
サンプル1と同様に、サンプル2〜8に関して、表1のデータのように重合性組成物(A)及びシランカップリング剤(B)の重量部を様々に変えながら、当該密着力等を測定した。
図3は、表1に示された、当該屈折率及び密着力と当該混合物中のシランカップリング剤(B)の比率「(B)/{(A)+(B)}」との関係を示すプロット図である。重合性組成物(A)とシランカップリング剤(B)の混合物中のシランカップリング剤(B)の比率が増加するに従い、当該屈折率は増加し、当該密着力は増加した後ゆるやかに低下した。
また、製造した光ファイバの伝送ロスをエージング前後で比較すると、実施例1〜5ではエージング前後でロス増が認められないのに対して、比較例1ではエージング後のロス増が認められる。また比較例2、3では顕著なロス増こそ認められないものの、混合物層あるいはシランカップリング剤層が均一に形成されていないため、初期ロス(エージング前)が高く、好ましくない。
ファイバレーザー等に用いられるポリマークラッド光ファイバの場合には、フッ素系紫外線硬化樹脂(C)単独での紫外線硬化後の屈折率が1.350〜1.420の範囲にあることが望ましい。そのため、重合性組成物(A)とシランカップリング剤(B)の混合物の屈折率は、フッ素系紫外線硬化樹脂(C)の屈折率への影響を低減するために、当該範囲にあり、かつ、低いことが望ましい。よって、当該密着力を保ちつつ、シランカップリング剤(B)を含む当該混合物によるフッ素系紫外線硬化樹脂(C)の屈折率への影響を抑えるためには、当該混合物中のシランカップリング剤の比率は、望ましくは10〜80%であり、より望ましくは10〜50%であり、さらに望ましくは20〜40%である。
本発明の上記実施例は、例として提示したものであり、発明の範囲を限定することを意図するものではない。本発明は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。
100:光ファイバ、101:ガラスコア、102:ポリマークラッド、103:混合物、104a:シランカップリング剤、104b:シランカップリング剤に由来する成分、105:フッ素系紫外線硬化樹脂、106:被覆層

Claims (4)

  1. ガラスコアと、
    前記ガラスコアの周囲に形成され、厚さ25〜100μmのポリマークラッドとを備え、
    前記ポリマークラッドには、重合性組成物及びシランカップリング剤の混合物と、フッ素系紫外線硬化樹脂とが含まれ、
    前記混合物の全重量が100重量部とすると、前記混合物は前記シランカップリング剤を10〜75重量部含み、
    前記フッ素系紫外線硬化樹脂単独での紫外線硬化後の屈折率は1.350〜1.420の範囲にあり、
    前記ガラスコアと前記ポリマークラッドとの界面から前記ポリマークラッド内20μm以下の範囲に前記シランカップリング剤に由来する成分が集中している、ことを特徴とする光ファイバ。
  2. 重合性組成物とシランカップリング剤との混合物をガラスコアに塗布するステップと、
    前記混合物上にフッ素系紫外線硬化樹脂を塗布するステップと、
    前記フッ素系紫外線硬化樹脂を紫外線硬化処理することにより前記ガラスコアの周囲に厚さ25〜100μmのポリマークラッドを形成するステップとを具備し、
    前記混合物の全重量が100重量部とすると、前記混合物は前記シランカップリング剤を10〜75重量部含み、
    前記フッ素系紫外線硬化樹脂単独での紫外線硬化後の屈折率は1.350〜1.420の範囲にあり、
    前記ガラスコアと前記ポリマークラッドとの界面から前記ポリマークラッド内20μm以下の範囲に前記シランカップリング剤に由来する成分が集中している、ことを特徴とする光ファイバの製造方法。
  3. 前記混合物は、前記シランカップリング剤を10〜50重量部含む、ことを特徴とする請求項2に記載の光ファイバの製造方法。
  4. 前記混合物の全重量が2重量部とすると、前記フッ素系紫外線硬化樹脂を100重量部含む、ことを特徴とする請求項1に記載の光ファイバ。
JP2019083851A 2013-02-04 2019-04-25 光ファイバ及びその製造方法 Active JP6858216B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013019537 2013-02-04
JP2013019537 2013-02-04

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014559551A Division JPWO2014119250A1 (ja) 2013-02-04 2014-01-22 光ファイバ及びその製造方法

Publications (2)

Publication Number Publication Date
JP2019164360A true JP2019164360A (ja) 2019-09-26
JP6858216B2 JP6858216B2 (ja) 2021-04-14

Family

ID=51261967

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014559551A Pending JPWO2014119250A1 (ja) 2013-02-04 2014-01-22 光ファイバ及びその製造方法
JP2019083851A Active JP6858216B2 (ja) 2013-02-04 2019-04-25 光ファイバ及びその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014559551A Pending JPWO2014119250A1 (ja) 2013-02-04 2014-01-22 光ファイバ及びその製造方法

Country Status (4)

Country Link
US (1) US10793470B2 (ja)
EP (1) EP2952941B1 (ja)
JP (2) JPWO2014119250A1 (ja)
WO (1) WO2014119250A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105837059B (zh) * 2016-04-22 2018-12-11 常州天马集团有限公司(原建材二五三厂) 低克重玻璃纤维短切原丝毡用原丝及其制造方法
US11880061B2 (en) * 2021-10-16 2024-01-23 ZSquare Ltd. Optical fiber from a single polymer

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4317616A (en) * 1979-10-09 1982-03-02 Raychem Corporation Fluorosiloxane optical cladding
US4457970A (en) * 1982-06-21 1984-07-03 Ppg Industries, Inc. Glass fiber reinforced thermoplastics
JPH0679095B2 (ja) * 1986-04-03 1994-10-05 旭硝子株式会社 プラスチツククラツド光伝送フアイバ−
JPS63287908A (ja) * 1987-05-21 1988-11-25 Asahi Glass Co Ltd プラスチッククラッド光ファイバ
AU608420B2 (en) 1988-03-15 1991-03-28 Minnesota Mining And Manufacturing Company Polymer claddings for optical fibre waveguides
JPH0248434A (ja) * 1988-08-05 1990-02-19 Sumitomo Electric Ind Ltd 光ファイバの製造方法
JPH04198346A (ja) * 1990-11-28 1992-07-17 Mitsubishi Rayon Co Ltd フッ素樹脂組成物
JPH05224108A (ja) 1991-06-28 1993-09-03 Sumitomo Electric Ind Ltd 多芯型光ファイバカプラの補強方法
US5239026A (en) 1991-08-26 1993-08-24 Minnesota Mining And Manufacturing Company Low loss high numerical aperture cladded optical fibers
JPH0961643A (ja) * 1995-08-23 1997-03-07 Toray Ind Inc 広帯域プラスチッククラッド光ファイバ及びコネクタ付き光ファイバコード
JPH09222526A (ja) * 1995-12-12 1997-08-26 Toray Ind Inc 広帯域プラスチッククラッド光ファイバ
JPH10160947A (ja) * 1996-11-29 1998-06-19 Toray Ind Inc 広帯域プラスチッククラッド光ファイバ
US5822489A (en) 1996-12-31 1998-10-13 Lucent Technologies, Inc. Low refractive index photo-curable composition for waveguide applications
EP0968145B1 (en) * 1997-03-18 2003-07-16 Dsm N.V. Method for curing optical fiber coatings and inks by low power electron beam radiation
JP4094128B2 (ja) 1998-07-17 2008-06-04 株式会社フジクラ 光ファイバ素線の製造方法および製造装置
JP2000214342A (ja) 1999-01-21 2000-08-04 Sumitomo Electric Ind Ltd プラスチッククラッド光ファイバおよびその製造方法
JP4855616B2 (ja) 1999-10-27 2012-01-18 スリーエム イノベイティブ プロパティズ カンパニー フルオロケミカルスルホンアミド界面活性剤
JP2011033933A (ja) 2009-08-04 2011-02-17 Sumitomo Electric Ind Ltd プラスチッククラッド光ファイバおよびその製造方法
JP2012018258A (ja) 2010-07-07 2012-01-26 Furukawa Electric Co Ltd:The 光ファイバ心線
JP2012042795A (ja) * 2010-08-20 2012-03-01 Sumitomo Electric Ind Ltd ハードプラスチッククラッド光ファイバ素線

Also Published As

Publication number Publication date
EP2952941A1 (en) 2015-12-09
JP6858216B2 (ja) 2021-04-14
JPWO2014119250A1 (ja) 2017-01-26
WO2014119250A1 (ja) 2014-08-07
EP2952941B1 (en) 2018-01-03
US10793470B2 (en) 2020-10-06
US20150315072A1 (en) 2015-11-05
EP2952941A4 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
US11513284B2 (en) Reduced diameter optical fiber and manufacturing method
US10816732B2 (en) Low dn/dT optical adhesives
JPH01133011A (ja) 合成樹脂コーティングを備えた光ファイバ及びその製造方法
JP4894348B2 (ja) フレキシブル光導波路及びその製造方法
JP6858216B2 (ja) 光ファイバ及びその製造方法
JP2836285B2 (ja) 被覆光ファイバ
WO1998023982A1 (fr) Fibre optique large bande a gaine plastique
RU2012112926A (ru) D1451 способы составления отверждаемых облучением суперпокрытий для оптического волокна
WO2008012926A1 (en) Optical fiber
CN111171777B (zh) 一种光纤陀螺用紫外光固化胶
CN102016666B (zh) 制造光波导的方法
JP4589211B2 (ja) 光学用紫外線硬化型液状樹脂組成物
JP2006137948A (ja) 低収縮性で低光吸収性で低屈折率の接着剤組成物
TW201710723A (zh) 樹脂光波導
JP2009198706A (ja) ポリマークラッド光ファイバ心線
JP4952140B2 (ja) ポリマークラッド光ファイバ心線
CN104101943B (zh) 光纤及其制造方法
JPWO2017164042A1 (ja) 複合光導波路
JP2004339263A (ja) 紫外線硬化型エポキシ樹脂組成物およびその製法
JP2023087312A (ja) 接合レンズおよび接合レンズの製造方法
US10035915B2 (en) Low refractive index coating for optical fibers, methods of manufacture thereof and articles comprising the same
CN104671676A (zh) 改进的用于光纤的低折射率涂层,其制造方法和包含其的制品
JP7094107B2 (ja) 表面修飾金属酸化物粒子、製造方法、分散液、硬化性組成物および硬化物
JP2004339262A (ja) 紫外線硬化型エポキシ樹脂組成物およびその製法
TWI629336B (zh) 光學膠及觸控顯示裝置與其貼合方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201126

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201204

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210323

R151 Written notification of patent or utility model registration

Ref document number: 6858216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350