JP2019110413A - 増幅装置 - Google Patents

増幅装置 Download PDF

Info

Publication number
JP2019110413A
JP2019110413A JP2017241395A JP2017241395A JP2019110413A JP 2019110413 A JP2019110413 A JP 2019110413A JP 2017241395 A JP2017241395 A JP 2017241395A JP 2017241395 A JP2017241395 A JP 2017241395A JP 2019110413 A JP2019110413 A JP 2019110413A
Authority
JP
Japan
Prior art keywords
bipolar transistor
base
power supply
resistor
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017241395A
Other languages
English (en)
Other versions
JP7096478B2 (ja
Inventor
吉田 誠
Makoto Yoshida
吉田  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onkyo Corp
Original Assignee
Onkyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onkyo Corp filed Critical Onkyo Corp
Priority to JP2017241395A priority Critical patent/JP7096478B2/ja
Priority to EP18212465.1A priority patent/EP3499714A1/en
Publication of JP2019110413A publication Critical patent/JP2019110413A/ja
Application granted granted Critical
Publication of JP7096478B2 publication Critical patent/JP7096478B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • H03F1/0266Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/307Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in push-pull amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3217Modifications of amplifiers to reduce non-linear distortion in single ended push-pull amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3069Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the emitters of complementary power transistors being connected to the output
    • H03F3/3076Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the emitters of complementary power transistors being connected to the output with symmetrical driving of the end stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/30Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor
    • H03F2203/30078A resistor being added in the pull stage of the SEPP amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/30Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor
    • H03F2203/30111A resistor being added in the push stage of the SEPP amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/30Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor
    • H03F2203/30147Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor the current sink of the push driven, i.e. source driven SEPP amplifier being a current mirror
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/30Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor
    • H03F2203/30153Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor the current source of the pull driven, i.e. sink driven SEPP amplifier being a current mirror

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

【課題】エネルギー消費が大きくなることなく、歪特性が悪化することがない増幅装置を提供すること。【解決手段】増幅装置1は、入力される信号を増幅するオペアンプU1と、オペアンプU1により増幅された信号が入力されるダイヤモンドバッファ回路2と、カレントミラー回路3、4と、を備える。カレントミラー回路3は、正側の電源V1とダイヤモンドバッファ回路2とに接続され、オペアンプU1の正側の電源端子に接続されている。カレントミラー回路4は、負側の電源V2とダイヤモンドバッファ回路2とに接続され、オペアンプU1の負側の電源端子に接続されている。【選択図】図1

Description

本発明は、信号を増幅する増幅装置に関する。
図8は、ダイヤモンドバッファと呼ばれている回路の構成を示す図である(例えば、特許文献1の図5参照。)。図8に示すように、ダイヤモンドバッファ回路は、バイポーラトランジスタQ101〜Q104、抵抗R101、R102、R104〜R107を有する。R103は、負荷である。ダイヤモンドバッファ回路において、出力段ベース側のバイアス電流は、抵抗R106、R104を流れている。出力電圧が上昇し、負荷R103に流れる電流が増加したとき、バイポーラトランジスタQ101の出力電流が増え、ベース電流も増える。このため、バイアス電流は、これを供給するのに、十分な電流が望まれる。しかしながら、ベース側のバイアス電流は、これに反して減少する(図9参照。)。その理由は、入力電圧が上昇すると、バイポーラトランジスタQ103のベース電圧が上昇する。これに伴い、エミッタの電位が上昇し、+VCCとの電位差が小さくなる。バイアス電流は、バイポーラトランジスタQ103のエミッタ電位と+VCCの電位差と抵抗R104の値で決まる。このため、出力の振幅が大きければ大きいほど、減少が顕著になる。なお、図9において、上のグラフは、バイアス電流を示し、真ん中のグラフは、負荷電流を示し、下のグラフは、出力電圧を示している。
図10は、上記した問題を解決した回路の構成を示す図である。図8と比較して、バイポーラトランジスタQ105、Q106、抵抗R106〜R108、ダイオードD101〜D104が追加されている。ダイオードD101、D103、抵抗R106、バイポーラトランジスタQ105は、定電流回路(定電流源)を構成している。また、ダイオードD102、D104、抵抗R107、バイポーラトランジスタQ106は、定電流回路(定電流源)を構成している。定電流回路により、バイアス電流の減少を抑えている。すなわち、予めバイアス電流を定電流で流し、その電流をベース電流に当てる。この場合、瞬間的な電流が必要になったときも、定電流であり、決められた電流以上を供給することができない(図10参照。)。また、十分な電流を供給するためには、無負荷時も常に予め負荷に対応できるだけの電流を流しておく必要があり、損失が多い。なお、図11において、上のグラフは、バイアス電流を示し、真ん中のグラフは、負荷電流を示し、下のグラフは、出力電圧を示している。
特開2011−182173号公報
上述のとおり、従来のダイヤモンドバッファ回路は、出力負荷が大きくなったときほど、バイアス電流が減少し、十分なベース電流を流すことができないので、歪特性が悪化するという問題点を有する。この対策として、定電流源でバイアス電流を与える方式もあるが、歪を改善するためには、予め大きな電流を流せばよいが、無信号時のエネルギー消費が大きくなる課題があった。
本発明の目的は、アイドリング時のエネルギー消費を小さくしつつ、歪特性を悪化させない増幅装置を提供することである。
第1の発明の増幅装置は、入力される信号を増幅するオペアンプと、前記オペアンプにより増幅された信号が入力されるダイヤモンドバッファ回路と、電源と前記ダイヤモンドバッファ回路とに接続され、前記オペアンプの電源端子に接続されたカレントミラー回路と、を備えることを特徴とする。
本発明では、カレントミラー回路は、電源とダイヤモンドバッファ回路とに接続されている。また、カレントミラー回路は、オペアンプの電源端子に接続されている。オペアンプの電源電流は、入力信号に相似している。従って、入力信号が大きいときは、オペアンプの電源電流が大きくなり、カレントミラー回路により、ダイヤモンドバッファ回路に流れるバイアス電流が大きくなる。これにより、十分なバイアス電流を流すことができるため、歪特性が悪化することがない。
また、入力信号が小さいときは、オペアンプの電源電流が小さくなり、カレントミラー回路により、ダイヤモンドバッファ回路に流れるバイアス電流が小さくなる。これにより、エネルギー消費が大きくなることがない。
このように、本発明によれば、アイドリング時のエネルギー消費が大きくなることなく、歪特性が悪化することがない。
第2の発明の増幅装置は、第1の発明の増幅装置において、前記カレントミラー回路は、正側の電源と前記ダイヤモンドバッファ回路とに接続され、前記オペアンプの正側の電源端子に接続された第1カレントミラー回路と、負側の電源と前記ダイヤモンドバッファ回路とに接続され、前記オペアンプの負側の電源端子に接続された第2カレントミラー回路と、を有することを特徴とする。
第3の発明の増幅装置は、第2の発明の増幅装置において、前記ダイヤモンドバッファ回路は、コレクタが、正側の電源に接続され、エミッタが、第1抵抗を介して、負荷に接続され、ベースが、第4抵抗を介して、第3バイポーラトランジスタのエミッタに接続された、npn型の第1バイポーラトランジスタと、コレクタが、負側の電源に接続され、エミッタが、第2抵抗を介して、前記負荷に接続され、ベースが、第5抵抗を介して、第4バイポーラトランジスタのエミッタに接続された、pnp型の第2バイポーラトランジスタと、コレクタが、負側の電源に接続され、エミッタが、前記第4抵抗を介して、前記第1バイポーラトランジスタのベースと、前記第1カレントミラー回路と、に接続され、ベースが、前記オペアンプの出力端子に接続された、pnp型の前記第3バイポーラトランジスタと、コレクタが、正側の電源に接続され、エミッタが、前記第5抵抗を介して、前記第2バイポーラトランジスタのベースと、前記第2カレントミラー回路と、に接続され、ベースが、前記オペアンプの前記出力端子に接続された、npn型の前記第4バイポーラトランジスタと、を有することを特徴とする。
第4の発明の増幅装置は、第3の発明の増幅装置において、前記第1カレントミラー回路は、コレクタが、前記ダイヤモンドバッファ回路に接続され、エミッタが、第13抵抗を介して、正側の電源に接続され、ベースが、第6バイポーラトランジスタのベースとコレクタとに接続された、pnp型の第5バイポーラトランジスタと、コレクタが、ベースと、前記オペアンプの正側の電源端子と、前記第5バイポーラトランジスタのベースと、に接続され、エミッタが、第12抵抗を介して、正側の電源に接続され、ベースが、コレクタと、前記第5バイポーラトランジスタのベースと、に接続された、pnp型の前記第6バイポーラトランジスタと、を有し、前記第2カレントミラー回路は、コレクタが、前記ダイヤモンドバッファ回路に接続され、エミッタが、第15抵抗を介して、負側の電源に接続され、ベースが、第8バイポーラトランジスタのベースとコレクタとに接続された、npn型の第7バイポーラトランジスタと、コレクタが、ベースと、前記オペアンプの負側の電源端子と、前記第7バイポーラトランジスタのベースと、に接続され、エミッタが、第14抵抗を介して、負側の電源に接続され、ベースが、コレクタと、前記第7バイポーラトランジスタのベースと、に接続された、npn型の前記第8バイポーラトランジスタと、を有することを特徴とする。
第5の発明の増幅装置は、第1〜第4のいずれかの発明の増幅装置において、前記オペアンプは、負側の入力端子に、第11抵抗を介して、信号が入力され、正側の入力端子が、基準電位に接続され、出力端子が、負荷に接続され、出力端子と負側の入力端子との間に第6抵抗が接続されていることを特徴とする。
本発明によれば、エネルギー消費が大きくなることなく、歪特性が悪化することがない。
本発明の実施形態に係る増幅装置の回路構成を示す図である。 バイポーラトランジスタQ3のベース−エミッタ間電圧等を示すグラフである。 負荷に流れる電流等を示すグラフである。 従来のダイヤモンドバッファ回路を用いた増幅装置の構成を示す図である 従来の増幅装置での立ち上がりを示した図である。 本実施形態の増幅装置での立ち上がりを示した図である。 負荷に流れる電流等を示すグラフである。 ダイヤモンドバッファ回路の構成を示す図である。 負荷に流れる電流等を示すグラフである。 ダイヤモンドバッファ回路を改良した回路の構成を示す図である。 負荷に流れる電流等を示すグラフである。
以下、本発明の実施形態について説明する。図1は、本発明の実施形態に係る増幅装置の回路構成を示す図である。図1に示すように、増幅装置1は、オペアンプU1と、ダイヤモンドバッファ回路2と、カレントミラー回路3、4と、を備える。
オペアンプU1は、入力される信号を増幅する。オペアンプU1の負側の入力端子に、信号が入力される。また、オペアンプU1の負側の入力端子には、抵抗R11(第11抵抗)が接続されている。オペアンプU1の正側の入力端子は、基準電位(グラウンド)に接続されている。オペアンプU1の出力端子は、負荷R3(抵抗R1と抵抗R2との間)に接続されている。オペアンプU1の出力端子と、負側の入力端子と、の間に、抵抗R6(第6抵抗)が接続されている。すなわち、オペアンプU1と抵抗R6、R11とにより、反転増幅回路が構成されている。
ダイヤモンドバッファ回路2は、オペアンプU1により増幅された信号が入力される。バイポーラトランジスタQ1〜Q4、抵抗R1、R2、R4、R5を有する。バイポーラトランジスタQ1(第1バイポーラトランジスタ)は、npn型のバイポーラトランジスタである。バイポーラトランジスタQ1のコレクタは、正側の電源V1(+VCC)に接続されている。バイポーラトランジスタQ1のエミッタは、抵抗R1(第1抵抗)を介して、負荷R3に接続されている。バイポーラトランジスタQ1のベースは、抵抗R4(第4抵抗)を介して、パイポーラトランジスタQ3のエミッタに接続されている。
バイポーラトランジスタQ2(第2バイポーラトランジスタ)は、pnp型のバイポーラトランジスタである。バイポーラトランジスタQ2(第2バイポーラトランジスタ)のコレクタは、負側の電源V2(−VCC)に接続されている。バイポーラトランジスタQ2のエミッタは、抵抗R2(第2抵抗)を介して、負荷R3に接続されている。バイポーラトランジスタQ2のベースは、抵抗R5(第5抵抗)を介して、バイポーラトランジスタQ4のエミッタに接続されている。
バイポーラトランジスタQ3(第3バイポーラトランジスタ)は、pnp型のバイポーラトランジスタである。バイポーラトランジスタQ3のコレクタは、負側の電源V2(−VCC)に接続されている。バイポーラトランジスタQ3のエミッタは、抵抗R4を介して、バイポーラトランジスタQ1のベースと、カレントミラー回路3と、に接続されている。
バイポーラトランジスタQ4(第4バイポーラトランジスタ)は、npn型のバイポーラトランジスタである。バイポーラトランジスタQ4のコレクタは、正側の電源V1(+VCC)に接続されている。バイポーラトランジスタQ4のエミッタが、抵抗R5を介して、バイポーラトランジスタQ2のベースと、カレントミラー回路4と、に接続されている。バイポーラトランジスタQ4のベースは、オペアンプU1の出力端子に接続されている。
カレントミラー回路3(第1カレントミラー回路)は、正側の電源V1(+VCC)とダイヤモンドバッファ回路2とに接続されている。また、カレントミラー回路3は、オペアンプU1の正側の電源端子に接続されている。カレントミラー回路3は、バイポーラトランジスタQ5、Q6と、抵抗R12、R13と、を有する。
バイポーラトランジスタQ5(第5バイポーラトランジスタ)は、pnp型のバイポーラトランジスタである。バイポーラトランジスタQ5のコレクタは、ダイヤモンドバッファ回路2(抵抗R4)に接続されている。バイポーラトランジスタQ5のエミッタは、抵抗R13(第13抵抗)を介して、正側の電源V1(+VCC)に接続されている。バイポーラトランジスタQ5のベースは、バイポーラトランジスタQ6のベースとコレクタとに接続されている。
バイポーラトランジスタQ6(第6バイポーラトランジスタ)は、pnp型のバイポーラトランジスタである。バイポーラトランジスタQ6のコレクタは、ベースと、オペアンプU1の正側の電源端子と、バイポーラトランジスタQ5のベースと、に接続されている。バイポーラトランジスタQ6のエミッタは、抵抗R12(第12抵抗)を介して、正側の電源V1(+VCC)に接続されている。バイポーラトランジスタQ6のベースは、コレクタと、バイポーラトランジスタQ5のベースと、に接続されている。
カレントミラー回路4(第2カレントミラー回路)は、負側の電源V2(−VCC)とダイヤモンドバッファ回路2とに接続されている。また、カレントミラー回路4は、オペアンプU1の負側の電源端子に接続されている。カレントミラー回路4は、バイポーラトランジスタQ7、Q8と、抵抗R14、R15と、を有する。
バイポーラトランジスタQ7(第7バイポーラトランジスタ)は、npn型のバイポーラトランジスタである。バイポーラトランジスタQ7のコレクタは、ダイヤモンドバッファ回路2(抵抗R5)に接続されている。バイポーラトランジスタQ7のエミッタは、抵抗R15(第15抵抗)を介して、負側の電源V2(−VCC)に接続されている。バイポーラトランジスタQ7のベースは、バイポーラトランジスタQ8のベースとコレクタとに接続されている。
バイポーラトランジスタQ8(第8バイポーラトランジスタ)は、npn型のバイポーラトランジスタである。バイポーラトランジスタQ8のコレクタは、ベースと、オペアンプU1の負側の電源端子と、バイポーラトランジスタQ7のベースと、に接続されている。バイポーラトランジスタQ8のエミッタは、抵抗R14(第14抵抗)を介して、負側の電源V2(−VCC)に接続されている。バイポーラトランジスタQ8のベースは、コレクタと、バイポーラトランジスタQ7のベースと、に接続されている。
上述したように、カレントミラー回路3は、正側の電源V1(+VCC)とダイヤモンドバッファ回路2とに接続されている。また、カレントミラー回路3は、オペアンプU1の正側の電源端子に接続されている。ここで、オペアンプU1の電源電流は、入力信号に相似している。従って、入力信号が大きいときは、オペアンプU1の電源電流が大きくなる。このため、バイポーラトランジスタQ6に流れる電流が大きくなり、バイポーラトランジスタQ5に流れる電流も大きくなる。これにより、抵抗R13を流れるバイアス電流が大きくなり、バイポーラトランジスタQ1のベースに十分な電流を流すことができるため、無信号時のバイアス電流が小さくても、歪特性が悪化することがない。
また、入力信号が小さいときは、オペアンプU1の電源電流が小さくなり、カレントミラー回路3により、抵抗R13を流れるバイアス電流が小さくなる。これにより、エネルギー消費が大きくなることがない。
負側においても、カレントミラー回路4は、負側の電源V2(−VCC)とダイヤモンドバッファ回路2とに接続されている。また、カレントミラー回路3は、オペアンプU1の負側の電源端子に接続されている。このため、正側と同様の動きが発生する。
図2は、バイポーラトランジスタQ3のベース−エミッタ間電圧等を示すグラフである。上から1番目のグラフは、バイポーラトランジスタQ3のベース−エミッタ間電圧を示している。2番目のグラフは、バイポーラトランジスタQ3のベース電流を示している。3番目のグラフは、バイポーラトランジスタQ3のコレクタ電流を示している。4番目のグラフは、バイポーラトランジスタQ1のベース電流を示している。5番目のグラフは、出力電圧を示している。
上述したように、オペアンプU1の出力端子は、ダイヤモンドバッファ回路2の負荷R3への出力端子である抵抗R1と抵抗R2の接続点に接続されている。これにより、オペアンプU1の出力上昇とともに、バイポーラトランジスタQ3のベース電位が上昇し、バイポーラトランジスタQ3のベース−エミッタ間電圧は、下がる。このため、バイポーラトランジスタQ3のベース電流は低下し、バイポーラトランジスタQ3のコレクタ電流も低下する。一方、バイポーラトランジスタQ6とバイポーラトランジスタQ5とによるカレントミラー回路3は、オペアンプU1の電源電流に合わせて、電流を上昇させる。このとき、バイポーラトランジスタQ3のコレクタ電流は、減少しているため、カレントミラー回路3で供給された電流は、出力電圧の増加に伴い増えるバイポーラトランジスタQ1のベース電流を供給するために流しておくバイポーラトランジスタQ1のバイアス電流を効果的に増加させることができる。
図3は、負荷電流等を示すグラフである。上のグラフは、抵抗R13に流れるバイアス電流を示している。真ん中のグラフは、負荷R3に流れる出力負荷電流を示している。下のグラフは、出力電圧を示している。図2に示すように、負荷電流が増加すると、バイアス電流も増加している。
図4は、従来の定電流源を使用したダイヤモンドバッファ回路を用いた増幅装置の構成を示す図である。増幅装置101は、本実施形態の増幅装置1と比較して、オペアンプU1の正側の電源端子が、直接、正側の電源V1(+VCC)に接続されている点、オペアンプU1の負側の電源端子が、直接、負側の電源V2(−VCC)に接続されている点、カレントミラー回路3(バイポーラトランジスタQ6のコレクタ)が電流源I1に接続されている点、カレントミラー回路4(バイポーラトランジスタQ8のコレクタ)が電流源I2に接続されている点が異なる。
ここで、負荷R3を比較的重い8Ω、5mWの負荷とし、増幅装置101では、バイアス電流を1.99mAとし、増幅装置1では、増幅装置101とほぼ同じか小さい値として、バイアス電流を1.95mAとした。このとき、増幅装置101において、バイポーラトランジスタQ1のコレクタ電流は、24mAであった。また、増幅装置1において、バイポーラトランジスタQ1のコレクタ電流は、それよりも小さい18.5mAであった。そして、増幅装置101の歪率は、0.003610%、増幅装置1の歪率は、0.000885%であった。
バイアス電流が信号に応じて増減されることで、負荷への電流供給能力も、改善されていると考えられる。入力に方形波を用いて、立ち上がり(反転出力なので、立ち下がり)の時間を測定し、比較する。条件として、バイアス電流をそろえて比較している。図5は、従来の増幅装置での立ち上がりを示した図である。図6は、本実施形態の増幅装置での立ち上がりを示した図である。増幅装置101での立ち上がり時間は、4.6μS(10%−90%)である。増幅装置1での立ち上がり時間は、3.7μS(10%−90%)である。このように、増幅装置1では、増幅装置101よりも、出力の立ち下がりが高速化できている。
また、増幅装置1と従来の増幅装置101とにおいて、同等負荷条件で、同等歪率のときの、抵抗R13を流れる電流を比較した。増幅装置101の抵抗R13を流れる電流は、1.99mAであった。一方、増幅装置1の抵抗R13を流れる電流は、それよりも小さい1.39mAであった。このように、増幅装置1は、従来回路と同等性能を維持しながら、無信号時の消費電力を抑えることができている。
なお、オペアンプU1の出力端子は、負荷R3に接続されているが、負荷R3への電流は、ほとんど、バイポーラトランジスタQ1、Q2から供給されている(図7参照。)。図7において、上のグラフは、オペアンプ1からの負荷電流供給量を示し、真ん中のグラフは、バイポーラトランジスタQ1、Q2からの負荷電流供給量を示し、下のグラフは、負荷電流を示している。
以上説明したように、本実施形態では、カレントミラー回路3、4は、電源とダイヤモンドバッファ回路2とに接続されている。また、カレントミラー回路3、4は、オペアンプU1の電源端子に接続されている。オペアンプU1の電源電流は、入力信号に相似している。従って、入力信号が大きいときは、オペアンプの電源電流が大きくなり、カレントミラー回路3、4により、ダイヤモンドバッファ回路2に流れる電流が大きくなる。これにより、十分な電流を流すことができるため、歪特性が悪化することがない。
また、入力信号が小さいときは、オペアンプU1の電源電流が小さくなり、カレントミラー回路3、4により、ダイヤモンドバッファ回路2に流れる電流が小さくなる。これにより、エネルギー消費が大きくなることがない。
このように、本実施形態によれば、エネルギー消費が大きくなることなく、歪特性が悪化することがない。
以上、本発明の実施形態について説明したが、本発明を適用可能な形態は、上述の実施形態には限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることが可能である。
本発明は、信号を増幅する増幅装置に好適に採用され得る。
1 増幅装置
2 ダイヤモンドバッファ回路
3 カレントミラー回路(第1カレントミラー回路)
4 カレントミラー回路(第2カレントミラー回路)
Q1 バイポーラトランジスタ(第1バイポーラトランジスタ)
Q2 バイポーラトランジスタ(第2バイポーラトランジスタ)
Q3 バイポーラトランジスタ(第3バイポーラトランジスタ)
Q4 バイポーラトランジスタ(第4バイポーラトランジスタ)
Q5 バイポーラトランジスタ(第5バイポーラトランジスタ)
Q6 バイポーラトランジスタ(第6バイポーラトランジスタ)
Q7 バイポーラトランジスタ(第7バイポーラトランジスタ)
Q8 バイポーラトランジスタ(第8バイポーラトランジスタ)
R1 抵抗(第1抵抗)
R2 抵抗(第2抵抗)
R3 負荷
R4 抵抗(第4抵抗)
R5 抵抗(第5抵抗)
R6 抵抗(第6抵抗)
R11 抵抗(第11抵抗)
R12 抵抗(第12抵抗)
R13 抵抗(第13抵抗)
R14 抵抗(第14抵抗)
R15 抵抗(第15抵抗)
R4 抵抗(第5抵抗)
R5 抵抗(第1抵抗)
R6 負荷
R7 抵抗(第2抵抗)
V1 正側の電源
V2 負側の電源

Claims (5)

  1. 入力される信号を増幅するオペアンプと、
    前記オペアンプにより増幅された信号が入力されるダイヤモンドバッファ回路と、
    電源と前記ダイヤモンドバッファ回路とに接続され、前記オペアンプの電源端子に接続されたカレントミラー回路と、を備えることを特徴とする増幅装置。
  2. 前記カレントミラー回路は、
    正側の電源と前記ダイヤモンドバッファ回路とに接続され、前記オペアンプの正側の電源端子に接続された第1カレントミラー回路と、
    負側の電源と前記ダイヤモンドバッファ回路とに接続され、前記オペアンプの負側の電源端子に接続された第2カレントミラー回路と、を有することを特徴とする請求項1に記載の増幅装置。
  3. 前記ダイヤモンドバッファ回路は、
    コレクタが、正側の電源に接続され、
    エミッタが、第1抵抗を介して、負荷に接続され、
    ベースが、第4抵抗を介して、第3バイポーラトランジスタのエミッタに接続された、npn型の第1バイポーラトランジスタと、
    コレクタが、負側の電源に接続され、
    エミッタが、第2抵抗を介して、前記負荷に接続され、
    ベースが、第5抵抗を介して、第4バイポーラトランジスタのエミッタに接続された、pnp型の第2バイポーラトランジスタと、
    コレクタが、負側の電源に接続され、
    エミッタが、前記第4抵抗を介して、前記第1バイポーラトランジスタのベースと、前記第1カレントミラー回路と、に接続され、
    ベースが、前記オペアンプの出力端子に接続された、pnp型の前記第3バイポーラトランジスタと、
    コレクタが、正側の電源に接続され、
    エミッタが、前記第5抵抗を介して、前記第2バイポーラトランジスタのベースと、前記第2カレントミラー回路と、に接続され、
    ベースが、前記オペアンプの前記出力端子に接続された、npn型の前記第4バイポーラトランジスタと、を有することを特徴とする請求項2に記載の増幅装置。
  4. 前記第1カレントミラー回路は、
    コレクタが、前記ダイヤモンドバッファ回路に接続され、
    エミッタが、第13抵抗を介して、正側の電源に接続され、
    ベースが、第6バイポーラトランジスタのベースとコレクタとに接続された、pnp型の第5バイポーラトランジスタと、
    コレクタが、ベースと、前記オペアンプの正側の電源端子と、前記第5バイポーラトランジスタのベースと、に接続され、
    エミッタが、第12抵抗を介して、正側の電源に接続され、
    ベースが、コレクタと、前記第5バイポーラトランジスタのベースと、に接続された、pnp型の前記第6バイポーラトランジスタと、を有し、
    前記第2カレントミラー回路は、
    コレクタが、前記ダイヤモンドバッファ回路に接続され、
    エミッタが、第15抵抗を介して、負側の電源に接続され、
    ベースが、第8バイポーラトランジスタのベースとコレクタとに接続された、npn型の第7バイポーラトランジスタと、
    コレクタが、ベースと、前記オペアンプの負側の電源端子と、前記第7バイポーラトランジスタのベースと、に接続され、
    エミッタが、第14抵抗を介して、負側の電源に接続され、
    ベースが、コレクタと、前記第7バイポーラトランジスタのベースと、に接続された、npn型の前記第8バイポーラトランジスタと、を有することを特徴とする請求項3に記載の増幅装置。
  5. 前記オペアンプは、
    負側の入力端子に、第11抵抗を介して、信号が入力され、
    正側の入力端子が、基準電位に接続され、
    出力端子が、負荷に接続され、
    出力端子と負側の入力端子との間に第6抵抗が接続されていることを特徴とする請求項1〜4のいずれか1項に記載の増幅装置。
JP2017241395A 2017-12-18 2017-12-18 増幅装置 Active JP7096478B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017241395A JP7096478B2 (ja) 2017-12-18 2017-12-18 増幅装置
EP18212465.1A EP3499714A1 (en) 2017-12-18 2018-12-13 Amplification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017241395A JP7096478B2 (ja) 2017-12-18 2017-12-18 増幅装置

Publications (2)

Publication Number Publication Date
JP2019110413A true JP2019110413A (ja) 2019-07-04
JP7096478B2 JP7096478B2 (ja) 2022-07-06

Family

ID=64665496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017241395A Active JP7096478B2 (ja) 2017-12-18 2017-12-18 増幅装置

Country Status (2)

Country Link
EP (1) EP3499714A1 (ja)
JP (1) JP7096478B2 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038907A (ja) * 1983-07-05 1985-02-28 ナシヨナル・セミコンダクター・コーポレーシヨン 大スイングcmos電力増幅器
JPS6055711A (ja) * 1983-09-06 1985-04-01 Sony Corp 電力増幅器
JPS60173912A (ja) * 1984-02-17 1985-09-07 Onkyo Corp 音量調節回路
JPH0233207A (ja) * 1988-07-22 1990-02-02 Yokogawa Electric Corp バッファ回路
JPH02266690A (ja) * 1989-04-06 1990-10-31 Seiko Epson Corp カラーテレビシステム
JPH08222974A (ja) * 1995-02-17 1996-08-30 Hitachi Ltd オーディオ・パワーアンプ
US20040090270A1 (en) * 2002-11-12 2004-05-13 Charles Parkhurst Apparatus and method for indicating a difference between first and second voltage signals
JP2005217949A (ja) * 2004-01-30 2005-08-11 Advantest Corp ドライバ回路
US20090115465A1 (en) * 2007-11-05 2009-05-07 Matsushita Electric Industrial Co., Ltd. Low power, high slew rate ccd driver

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136404A (ja) * 1983-12-26 1985-07-19 Hitachi Ltd 増幅回路
JP5423477B2 (ja) 2010-03-01 2014-02-19 オンキヨー株式会社 パルス幅変調回路
US8988145B2 (en) * 2011-03-18 2015-03-24 Barbu Popescu High fidelity current dumping audio amplifier with combined feedback-clean feedback

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038907A (ja) * 1983-07-05 1985-02-28 ナシヨナル・セミコンダクター・コーポレーシヨン 大スイングcmos電力増幅器
JPS6055711A (ja) * 1983-09-06 1985-04-01 Sony Corp 電力増幅器
JPS60173912A (ja) * 1984-02-17 1985-09-07 Onkyo Corp 音量調節回路
JPH0233207A (ja) * 1988-07-22 1990-02-02 Yokogawa Electric Corp バッファ回路
JPH02266690A (ja) * 1989-04-06 1990-10-31 Seiko Epson Corp カラーテレビシステム
JPH08222974A (ja) * 1995-02-17 1996-08-30 Hitachi Ltd オーディオ・パワーアンプ
US20040090270A1 (en) * 2002-11-12 2004-05-13 Charles Parkhurst Apparatus and method for indicating a difference between first and second voltage signals
JP2005217949A (ja) * 2004-01-30 2005-08-11 Advantest Corp ドライバ回路
US20090115465A1 (en) * 2007-11-05 2009-05-07 Matsushita Electric Industrial Co., Ltd. Low power, high slew rate ccd driver

Also Published As

Publication number Publication date
EP3499714A1 (en) 2019-06-19
JP7096478B2 (ja) 2022-07-06

Similar Documents

Publication Publication Date Title
JP2990889B2 (ja) 磁気ヘッドドライブ回路
JP3340250B2 (ja) バッファ回路
JP7206472B2 (ja) 増幅装置
JP2019110413A (ja) 増幅装置
JP6365119B2 (ja) 保護回路
JP2008205738A (ja) 演算増幅器
JPS6214731Y2 (ja)
JP3922906B2 (ja) 広帯域差動増幅回路
JP2914145B2 (ja) パルス出力回路
JPH08204477A (ja) リミッタ回路
JPH0425210A (ja) 出力電圧制御回路
JP2623954B2 (ja) 利得可変増幅器
JPH04257106A (ja) 電流電圧変換回路
JPS6034284B2 (ja) 増幅回路
JPS6150403B2 (ja)
JPS5922599Y2 (ja) 折線出力装置
JP4736237B2 (ja) 増幅回路
JPS6338889B2 (ja)
KR20060073782A (ko) 델타 결합 차동증폭기
JPS5855452Y2 (ja) 負荷接地型定電流装置
JPH01126566A (ja) 電界検出回路
JP2019106679A (ja) 増幅装置
JP2000151319A (ja) リミッタ回路
JPS6129573B2 (ja)
JPS63304706A (ja) リミタ増幅回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R150 Certificate of patent or registration of utility model

Ref document number: 7096478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350