JP2019079636A - スパークプラグの製造方法 - Google Patents

スパークプラグの製造方法 Download PDF

Info

Publication number
JP2019079636A
JP2019079636A JP2017204215A JP2017204215A JP2019079636A JP 2019079636 A JP2019079636 A JP 2019079636A JP 2017204215 A JP2017204215 A JP 2017204215A JP 2017204215 A JP2017204215 A JP 2017204215A JP 2019079636 A JP2019079636 A JP 2019079636A
Authority
JP
Japan
Prior art keywords
edge
tip
chip
center
weld metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017204215A
Other languages
English (en)
Other versions
JP6588066B2 (ja
Inventor
拓也 嶋村
Takuya Shimamura
拓也 嶋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2017204215A priority Critical patent/JP6588066B2/ja
Priority to US16/161,469 priority patent/US10355458B2/en
Priority to CN201811213279.6A priority patent/CN109698468B/zh
Priority to DE102018126220.5A priority patent/DE102018126220A1/de
Publication of JP2019079636A publication Critical patent/JP2019079636A/ja
Application granted granted Critical
Publication of JP6588066B2 publication Critical patent/JP6588066B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30136Metal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/58Testing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Spark Plugs (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

【課題】チップの溶接位置の良否判定の精度を向上できるスパークプラグの製造方法を提供すること。【解決手段】スパークプラグの製造方法は、チップの周りに形成された溶接金属のエッジを検出する溶接金属検出工程と、溶接金属検出工程により検出された溶接金属のエッジに基づいて溶接金属の輪郭の中心Cを算出する中心算出工程と、溶接金属の輪郭よりも中心C側に位置し、中心Cを中心とする環状の第1仮想線により区画された第1範囲内において、チップのエッジを検出するチップ検出工程と、を備え、母材のエッジの位置とチップ検出工程により検出されたチップのエッジの位置に基づいて良否判定を行う。【選択図】図1

Description

本発明はスパークプラグの製造方法に関し、特に接地電極の母材にチップが溶接されたスパークプラグの製造方法に関するものである。
接地電極の耐火花消耗性を向上させるため、接地電極の母材にチップが溶接されたスパークプラグが知られている。特許文献1には、接地電極のうちチップが溶接された面に関する画像データを取得した後、母材およびチップの各エッジ(濃淡変化の境界)を検出し、各エッジの位置に基づいてチップの溶接位置の良否判定を行う技術が開示されている。
特開平11−121143号公報
しかしながら上記従来の技術では、母材の表面の傷や溶接金属の凹凸がノイズとなってチップのエッジの検出精度が低下し、チップの溶接位置の良否判定の精度が低下するおそれがある。
本発明はこの問題点を解決するためになされたものであり、チップの溶接位置の良否判定の精度を向上できるスパークプラグの製造方法を提供することを目的としている。
この目的を達成するために、母材にチップが溶接された接地電極を備える本発明のスパークプラグの製造方法は、接地電極のうちチップが溶接された面に関する画像データを取得する画像取得工程と、画像取得工程により取得された画像データを解析する画像解析工程と、画像解析工程により解析された画像データに基づいてチップの溶接位置の良否判定を行う検査工程と、を備えている。画像解析工程は、チップの周りに形成された溶接金属のエッジを検出する溶接金属検出工程と、溶接金属検出工程により検出された溶接金属のエッジに基づいて溶接金属の輪郭の中心(以下「中心C」と称す)を算出する中心算出工程と、溶接金属の輪郭よりも中心C側に位置し、中心Cを中心とする環状の第1仮想線により区画された第1範囲内において、チップのエッジを検出するチップ検出工程と、を備え、検査工程では、画像取得工程により取得された母材のエッジの位置とチップ検出工程により検出されたチップのエッジの位置に基づいて良否判定を行う。
請求項1記載のスパークプラグの製造方法によれば、画像取得工程により、接地電極のうちチップが溶接された面に関する画像データが取得され、画像解析工程により画像データが解析される。検査工程により、解析された画像データに基づいてチップの溶接位置の良否判定が行われる。画像解析工程では、まず、溶接金属検出工程により、チップの周りに形成された溶接金属のエッジが検出される。次に、中心算出工程により、溶接金属のエッジに基づいて溶接金属の輪郭の中心Cが算出された後、チップ検出工程により、溶接金属の輪郭よりも中心C側に位置し、中心Cを中心とする環状の第1仮想線により区画された第1範囲内において、チップのエッジが検出される。これにより、第1範囲の外側にある母材の表面の傷などによるノイズの影響を受けることなくチップのエッジを検出できる。検査工程では、画像取得工程により取得された母材のエッジの位置とチップ検出工程により検出されたチップのエッジの位置に基づいて良否判定が行われるので、チップの溶接位置の良否判定の精度を向上できる。
請求項2記載のスパークプラグの製造方法によれば、画像解析工程では、輪郭算出工程により、溶接金属の輪郭の中心Cを中心として、チップの溶接前の既知の寸法に基づいてチップの仮の輪郭の位置が算出され、第1仮想線は仮の輪郭よりも外側に位置する。よって、請求項1の効果に加え、チップのエッジの検出精度をさらに向上できる。
請求項3記載のスパークプラグの製造方法によれば、チップ検出工程により、第1仮想線よりも溶接金属の輪郭の中心C側に位置し中心Cを中心とする環状の第2仮想線の外側の第2範囲と第1範囲とが重複する範囲内において、チップのエッジが検出される。これにより、第2仮想線の内側にあるチップの表面の傷などによるノイズの影響を受けることなくチップのエッジを検出できる。よって、請求項1又は2の効果に加え、チップのエッジの検出精度をさらに向上できる。
請求項4記載のスパークプラグの製造方法によれば、画像解析工程では、輪郭算出工程により、溶接金属の輪郭の中心Cを中心として、チップの溶接前の既知の寸法に基づいてチップの仮の輪郭の位置が算出され、第2仮想線は仮の輪郭よりも内側に位置する。よって、請求項3の効果に加え、チップのエッジの検出精度をさらに向上できる。
請求項5記載のスパークプラグの製造方法によれば、画像解析工程では、輪郭算出工程により、溶接金属の輪郭の中心Cを中心として、チップの溶接前の既知の寸法に基づいてチップの仮の輪郭の位置が算出される。検査工程では、溶接金属の輪郭の中心Cの周りを複数に分割した領域のうち、チップのエッジを示すデータが検出されなかった領域内において、仮の輪郭上にチップの仮のエッジを示すデータがあるとみなす。よって、エッジに関するデータを各領域に存在させることができる。次いで、チップ検出工程により検出されたチップのエッジを示すデータと仮のエッジを示すデータに基づいて良否判定が行われる。従って、請求項1から4のいずれかの効果に加え、チップのエッジを示すデータが中心Cの周りに偏在していても、チップの溶接位置を算出する精度を確保できる。
請求項6記載のスパークプラグの製造方法によれば、チップ検出工程において検出されるチップのエッジを示すデータの数は2個以下である。従って、仮の輪郭上にチップの仮のエッジを示すデータがあるとみなすことにより、チップ検出工程により検出されたチップのエッジを示すデータの数と仮のエッジを示すデータの数とを合わせて3個以上にできる。その結果、請求項5の効果に加え、チップの溶接位置を算出する精度をさらに向上できる。
本発明の一実施の形態におけるスパークプラグの接地電極を検査する検査装置の電気的構成を示したブロック図である。 チップが溶接された接地電極の母材の正面図である。 検査処理のフローチャートである。 画像データの模式図である。 画像データの模式図である。 画像データの模式図である。
以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は本発明の一実施の形態におけるスパークプラグ10の接地電極16を検査する検査装置20の電気的構成を示したブロック図である。図1には軸線Oを境にしたスパークプラグ10の片側断面図が図示されている。図1では、紙面上側をスパークプラグ10の先端側、紙面下側をスパークプラグ10の後端側という。図1に示すようにスパークプラグ10は、絶縁体11、中心電極13及び接地電極16を備えている。
絶縁体11は、高温下の絶縁性や機械的特性に優れるアルミナ等により形成された円筒状の部材であり、軸線Oに沿って貫通する軸孔12が形成されている。軸孔12の先端側に中心電極13が配置される。中心電極13は、軸線Oに沿って延びる棒状の部材であり、銅または銅を主成分とする芯材がニッケル又はニッケル基合金で覆われている。中心電極13は絶縁体11に保持され、先端が軸孔12から露出する。
端子金具14は、高圧ケーブル(図示せず)が接続される棒状の部材であり、導電性を有する金属材料(例えば低炭素鋼等)によって形成されている。端子金具14は、先端側が軸孔12に挿入された状態で、絶縁体11の後端に固定されている。絶縁体11の外周に主体金具15が固定されている。主体金具15は、導電性を有する金属材料(例えば低炭素鋼等)によって形成された略円筒状の部材である。主体金具15の先端に接地電極16が接合されている。
接地電極16は、主体金具15に端部が接合された棒状の金属製(例えばニッケル基合金製)の母材17と、母材17の正面18の先端部に溶接されたチップ19と、を備えている。チップ19は貴金属を含有する。接地電極16は、母材17の中に、銅または銅を主成分とする芯材が埋め込まれていても良い。スパークプラグ10は、接地電極16の母材17が屈曲されチップ19と中心電極13との間に火花ギャップが形成される。図1では、接地電極16の母材17が屈曲される前の状態が図示されている。
スパークプラグ10は、例えば、以下のような方法によって製造される。まず、中心電極13を絶縁体11の軸孔12に挿入し、中心電極13の先端が軸孔12から外部に露出するように配置する。次いで、軸孔12に端子金具14を挿入し、端子金具14と中心電極13との導通を確保した後、直線状の母材17が予め接合された主体金具15を絶縁体11の外周に組み付ける。母材17の正面18にチップ19を溶接してスパークプラグ10の半製品(以下「ワーク」と称す)を製造した後、検査装置20を用いてチップ19の位置を検査する。検査の結果、チップ19が母材17の正規の位置に溶接されていると判別されたワークについて、軸線O方向においてチップ19が中心電極13と対向するように母材17を屈曲させる。これにより、接地電極16のチップ19と中心電極13とが火花ギャップを介して対向したスパークプラグ10が得られる。
検査装置20は、チップ19が溶接された母材17の正面18の画像データを取得し、その画像データに基づいてチップ19の溶接位置の良否判定を行う装置である。検査装置20は、CPU21、ROM22及びRAM23を備え、それらがバスライン24を介して入出力ポート25に接続されている。入出力ポート25には、母材17を照らすライト26やカメラ27、移送装置28等の各種装置が接続されている。
CPU21は、バスライン24により接続された各部を制御する演算装置である。ROM22は、CPU21により実行される制御プログラム(例えば図3に図示されるフローチャートのプログラム)や固定値データ等を記憶する書き換え不能な不揮発性のメモリである。RAM23は、制御プログラムの実行時に各種のデータを書き換え可能に記憶するためのメモリである。
カメラ27は、母材17及びチップ19を所定の焦点距離の位置に結像する光学系、その焦点距離の位置に配置されたCCD等の撮像素子、撮像素子が検出した画像データを一時記憶するメモリ、及び、メモリが一時記憶した画像データをCPU21へ出力する出力装置(いずれも図示せず)を備えている。カメラ27は、例えば640×480画素(VGA)のグレースケールの画像データとして、母材17及びチップ19の画像をCPU21へ出力する。RAM23は、カメラ27が出力した画像データを記憶する。
移送装置28は、カメラ27が母材17及びチップ19を撮像できるようにワーク(スパークプラグ10の半製品)を保持すると共に、CPU21が良品と判定したワークを次工程へ移送し、不良品と判定したワークを排出する。他の入出力装置29は、キーボードやマウス等の入力装置、カメラ27が撮像した画像やCPU21が良否判定したワークの数などを表示するモニタ等が例示される。
図2はチップ19が溶接された接地電極16の母材17の正面図である。図2では、母材17のうちチップ19が溶接された部分が図示されている。チップ19は、チップ19の周りの少なくとも一部に形成された溶接金属30により、母材17に接合されている。溶接金属30は、溶接のときに母材17及びチップ19が溶融・凝固した金属であり、母材17及びチップ19の成分からなる。本実施形態ではチップ19の形状は円盤状であり、抵抗溶接によってチップ19の全周に形成された溶接金属30により、チップ19は母材17に接合されている。
抵抗溶接では、母材17の正面18にチップ19を重ねて電極(図示せず)で挟み、電極間に通電して、チップ19と母材17とが接触する部分を抵抗発熱させる。通電時の電流密度は、一般に、チップ19と母材17とが接触する部分のうちチップ19の縁の部分が高くなる。その結果、チップ19の縁の部分から温度が上昇し始め溶融領域が広がり、チップ19の輪郭19aの周りにナゲット(溶接金属30)が形成される。
検査装置20(図1参照)は、接地電極16の正面18のうちチップ19が溶接された部分の画像データを取得した後、画像処理によって母材17及びチップ19の各エッジ(濃淡変化の境界)を検出し、各エッジの位置に基づいてチップ19の溶接位置の良否判定を行う。しかし、チップ19のエッジ検出のときに、チップ19のエッジ以外に、母材17の正面18の傷や溶接金属30の凹凸によって濃淡変化が生じていると、その部分がノイズとなってチップ19のエッジ検出の検出精度が低下するおそれがある。そこで、検査装置20は、図3に示す検査処理をワーク毎に実行する。
以下、図3から図6を参照して検査処理について説明する。図3は検査処理のフローチャートであり、図4から図6は画像データの模式図である。検査処理を実行する前に、検査装置20(図1参照)の入力装置(他の入出力装置29)から、溶接前のチップ19の形状や寸法などの既知のデータが入力される。本実施形態では、溶接前のチップ19の形状(円形)及びチップ19の直径が入力される。RAM23は、入力された溶接前のチップ19のデータを記憶する。
図3及び図4に示すように、CPU21は検査処理に関し、まず、チップ19が溶接された母材17(図1参照)の正面18に関する画像データを取得する(S1)。次にCPU21は、取得した画像データに基づき、母材17の輪郭17a(図2参照)のエッジ及び溶接金属30の輪郭31のエッジを検出する(S2,S3)。エッジの検出は、投影処理、微分処理、サブピクセル処理等の公知の画像処理により行われる。画像上の母材17の輪郭17aや溶接金属30の輪郭31の付近は明るさや色が急激に変化するので、母材17の傷や溶接金属30の凹凸などによる明るさや色の変化の影響をほとんど受けることなく、母材17及び溶接金属30のエッジを検出できる。よって、母材17及び溶接金属30のエッジの検出精度は確保される。
次いでCPU21は、検出された溶接金属30のエッジ(複数の画素が作る輪郭31)に基づき、溶接金属30の輪郭31の中心32(中心C)の位置を算出する(S4)。S4の処理において、CPU21は、輪郭31を平面図形としたときの重心を求め、この平面図形の重心を中心32とする。重心は、輪郭31を構成する座標の算術平均、平面図形のモーメント等を用いた公知の方法によって求められる。
次にCPU21は、RAM23が記憶する溶接前のチップ19の形状や寸法などのデータに基づき、中心32を中心とするチップ19の仮の輪郭33の位置を算出する(S5)。本実施形態では、溶接前のチップ19の形状は円盤状なので、チップ19の仮の輪郭33は円形である。一般に、チップ19は溶接の前後で形状がほとんど変化しないので、図3では、溶接後のチップ19の輪郭19aと仮の輪郭33とはほぼ同じ位置に図示されている。
次いでCPU21は、中心32の周りを複数の領域に分割する(S6)。本実施形態では、CPU21は、中心32を通る第1直線34、及び、第1直線34に直交しつつ中心32を通る第2直線35を設定する。第1直線34は、矩形状の正面18(図1参照)の短辺と平行な直線(軸線Oと直交する直線)であり、第2直線35は、正面18の長辺と平行な直線(軸線Oと平行な直線)である。これにより、中心32の周りは、第1直線34及び第2直線35によって区画された第1領域36、第2領域37、第3領域38及び第4領域39の4つの領域に分割される。
次にCPU21は、チップ19の仮の輪郭33の外側かつ溶接金属30の輪郭31の内側の所定の位置に、中心32(中心C)を中心とする環状の第1仮想線40を設定する(S7)。第1仮想線40は、チップ19のエッジ検出を行う第1範囲41を区画する外縁である。これにより、溶接後のチップ19の輪郭19aが第1範囲41に存在する確率を高められるので、チップ19のエッジの検出精度を向上できる。本実施形態では溶接前のチップ19の形状は円盤状なので、第1仮想線40はチップ19と相似する円形に設定される。
次いでCPU21は、チップ19の仮の輪郭33の内側の所定の位置に、中心32(中心C)を中心とする環状の第2仮想線42を設定する(S8)。第2仮想線42は、チップ19のエッジ検出を行う第2範囲43を区画する内縁である。これにより、溶接後のチップ19の輪郭19aが第2範囲43に存在する確率を高められるので、チップ19のエッジの検出精度を向上できる。本実施形態では溶接前のチップ19の形状は円盤状なので、第2仮想線43はチップ19と相似する円形に設定される。
図5に示すように、第1仮想線40と第2仮想線42とに囲まれた範囲44に、CPU21は前処理フィルタを設定する(S9)。前処理フィルタとしては、例えば膨張フィルタ、収縮フィルタ、エッジ抽出フィルタ、エッジ強調フィルタ、差分フィルタ、コントラスト変換フィルタ等の公知のフィルタが挙げられる。前処理は範囲44の全画素において実行される。範囲44を構成する画素は画像データの全画素に比べて少ないので、画像データの全画素に前処理を行う場合に比べて、前処理に要する時間を短縮できる。
次にCPU21は、第1仮想線40の内側の第1範囲41と第2仮想線42の外側の第2範囲43とが重複する範囲44内のエッジを検出する(S10)。エッジの検出は、投影処理、微分処理、サブピクセル処理等の公知の画像処理により行われる。図5では、第1領域36、第2領域37、第3領域38及び第4領域39の全てに、エッジを示すデータ(エッジ成分45)が存在し、エッジ成分45(ハッチングが付された部分)に非エッジ成分46が隣接している。非エッジ成分46は、エッジを示すデータが存在しない部分である。
S10の処理において、CPU21は範囲44内のエッジを検出するので、範囲44の外にある母材17やチップ19の表面の傷、溶接金属30の凹凸等による濃淡変化(ノイズ)が、チップ19のエッジ検出の妨げにならないようにできる。よって、チップ19のエッジの検出精度を向上できる。また、S10の処理では、S9の処理における前処理フィルタの設定によって画像データのコントラストの強調やノイズ除去がされているので、チップ19のエッジ検出を容易にできる。
次いでCPU21は、エッジを示すデータ(エッジ成分45)の数が2個以下であるか否かを判断する(S11)。図5に示すように、エッジ成分45の数が3個以上である場合には(S11:No)、エッジ成分45の回帰分析によって円(チップ19の輪郭19a)の方程式を算出できる。しかし、回帰分析の精度をさらに高めるため、CPU21はエッジ成分45が検出されなかった領域があるか否かを判断する(S12)。その結果、図5に示すように、エッジ成分45が検出されなかった領域が無い場合には(S12:No)、エッジ成分45は中心32(中心C)の周りに偏在していないと考えられるので、CPU21はエッジ成分45を回帰分析して、円形のチップ19の輪郭19aの位置を算出する(S14)。
これに対し、図6に示すように、エッジ成分45が検出されなかった領域(本実施形態では第1領域36及び第2領域37)がある場合には(S12:Yes)、CPU21は、エッジ成分45が検出されなかった第1領域36及び第2領域37に、チップ19の仮のエッジを示すデータ(みなし成分49)があるとみなす(S13)。本実施の形態では、CPU21は、中心32(中心C)を通る第2領域37及び第4領域39の二等分線47と仮の輪郭33との交点、並びに、中心32を通る第1領域36及び第3領域38の二等分線48と仮の輪郭33との交点に、みなし成分49をそれぞれプロットする。次いでCPU21は、エッジ成分45及びみなし成分49を回帰分析して、チップ19の輪郭19aの位置を算出する(S14)。
S13の処理により、エッジ成分45が検出されなかった領域にみなし成分49が置かれるので、回帰分析が行われるデータ(エッジ成分45及びみなし成分49)を各領域に配置できる。その結果、回帰分析が行われるデータの偏在を抑制し、回帰分析の精度を向上できるので、チップ19の輪郭19aの位置精度を向上できる。
また、みなし成分49は二等分線47,48上にプロットされるので、エッジ成分45が検出されなかった領域の中央にみなし成分49を配置できる。その結果、各領域の中にみなし成分49が偏在しないようにできるので、配置されたみなし成分49による回帰分析の精度の低下を抑制できる。さらに、みなし成分49はエッジ成分45が検出されなかった領域に1個ずつプロットされるので、溶接前のチップ19に依存するみなし成分49の影響を受けて溶接後のチップ19の輪郭19aの位置精度が低下しないようにできる。
一方、S11の処理の結果、図6に示すように、エッジ成分45の数が2個以下の場合には(S11:Yes)、CPU21はS12の処理をスキップして、エッジ成分45が検出されなかった領域にみなし成分49をプロットする(S13)。これにより、エッジ成分45の数が2個以下の場合であっても、エッジ成分45及びみなし成分49の回帰分析によって円(チップ19の輪郭19a)の方程式を算出し、チップ19の輪郭19aの位置を算出する(S14)。
次いでCPU21は、チップ19の輪郭19aの位置は、母材17の所定の範囲内にあるか否かを判定する(S15)。この処理は、S2の処理によって検出された母材17(図2参照)のエッジ、及び、S14の処理によって算出されたチップ19の輪郭19aに基づき、母材17の輪郭17aからチップ19の輪郭19aまでの距離W1,W3(母材17の短辺方向の幅)の差が所定の範囲内にあるか否かを判定する。その結果、チップ19の輪郭19aの位置が母材17の所定の範囲内に無い場合には(S15:No)、チップ19の溶接位置は不適切なので、CPU21はワークを不良品と判定する(S18)。次いで、前処理フィルタを解除し(S19)、この検査処理を終了する。
これに対し、チップ19の輪郭19aの位置が母材17の所定の範囲内にある場合には(S15:Yes)、CPU21は、チップ19の輪郭19aの大きさは所定の範囲内にあるか否かを判定する(S16)。この処理は、S14の処理によって算出されたチップ19の輪郭19aに基づき、チップ19の幅W2が所定の範囲内にあるか否かを判定する。その結果、チップ19の輪郭19aの大きさが所定の範囲内に無い場合には(S16:No)、チップ19の溶融量が過多なので、CPU21はワークを不良品と判定する(S18)。次いで、前処理フィルタを解除し(S19)、この検査処理を終了する。不良品と判定されたワークは、移送装置28(図1参照)によって排出される。
一方、S16の処理の結果、チップ19の輪郭19aの大きさが所定の範囲内にある場合には(S16:Yes)、溶接のときのチップ19の溶融量は適切なので、CPU21はワークを良品と判定する(S17)。次いで、前処理フィルタを解除し(S19)、この検査処理を終了する。良品と判定されたワークは、移送装置28(図1参照)によって次工程へ移送される。
この検査処理では、チップ19の溶接位置の良否判定(S15)に加え、チップ19の輪郭19aの大きさの良否判定(S16)が行われるので、溶融量過多による融合不良などの溶接欠陥の有無も判別もできる。
なお、図3に示すフローチャートにおいて、請求項に記載の画像取得工程としてはS1の処理が、画像解析工程としてはS2からS14の処理が、検査工程としてはS15,S16の処理が該当する。画像解析工程のうち溶接金属検出工程としてはS3の処理が、中心算出工程としてはS4の処理が、輪郭算出工程としてはS5の処理が、チップ検出工程としてはS10からS14の処理が該当する。
以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。
実施の形態では、母材17が接合された主体金具15を絶縁体11の外周に組み付けた後、母材17にチップ19を溶接し、そのチップ19の溶接位置を検査する場合について説明したが、必ずしもこれに限られるものではない。例えば、主体金具15に接合された母材17にチップ19を溶接した後、チップ19の溶接位置を検査し、次いで主体金具15を絶縁体11に組み付けることは当然可能である。また、母材17にチップ19を溶接し、チップ19の溶接位置を検査した後、主体金具15に母材17を接合することは当然可能である。要するに、チップ19が母材17に溶接された後であれば、スパークプラグ10の製造工程の任意の段階においてチップ19の溶接位置の良否判定ができる。
実施の形態では、円盤状のチップ19が抵抗溶接によって母材17に接合される場合について説明したが、必ずしもこれに限られるものではない。チップ19の形状や溶接の手段は一例である。例えば、矩形板状や方形板状等の正面18から見て多角形のチップ19を採用することは当然可能である。この場合には、仮の輪郭33、第1仮想線40及び第2仮想線42はチップ19の外形と相似の矩形や方形等の多角形に設定されることが好ましい。
また、チップ19をレーザ溶接によって母材17に接合することは当然可能である。レーザ溶接によって形成された溶接金属のエッジが、カメラ27が出力した画像データから検出できれば、実施の形態と同様に、チップ19の溶接位置などの良否判定ができるからである。
実施の形態では、所定の焦点距離の位置に結像する光学系および撮像素子を備えるカメラ27を用いて画像を取得する場合について説明したが、必ずしもこれに限られるのではない。例えば、光学式距離センサを用いて三次元の画像を取得することは当然可能である。光学式距離センサとしては、例えばレーザを接地電極16に照射し、その反射光を半導体素子で検出するものが挙げられる。また、ステレオ方式による視差情報で立体の距離認識ができるステレオカメラを用いて画像を取得することは当然可能である。
実施の形態では、第1仮想線40や第2仮想線42がチップ19の外形と相似形である場合について説明したが、必ずしもこれに限られるものではない。チップ19の外形と相似形ではない任意の第1仮想線40や第2仮想線42を採用することは当然可能である。
実施の形態では、中心32の周りが4つの領域(第1領域36から第4領域39)に分割される場合について説明したが、必ずしもこれに限られるものではない。中心32の周りを分割する領域の数は適宜設定される。但し、3つ以上の領域に分割されるのが好ましい。領域が3つ以上あれば、エッジを示すデータ(エッジ成分45)が検出されなかった領域に仮のエッジを示すデータ(みなし成分49)を配置した後、エッジ成分45及びみなし成分49に基づくチップ19の輪郭19aの算出の精度を確保できるからである。
実施の形態では、図3に示すフローチャートのS5の処理においてチップ19の仮の輪郭33の位置を算出する場合について説明したが、S5の処理を省略することは当然可能である。S5の処理を省略した場合には、S7の処理において溶接金属30の輪郭31の内側に第1仮想線40を設定し、S8の処理において第1仮想線40の内側に第2仮想線42を設定する。S5の処理を省略しても、第1仮想線40の内側の第1範囲41内でエッジを検出できるので、第1仮想線40の外側にある母材17の表面の傷などによるノイズの影響を受けることなくチップ19のエッジを検出できる。
実施の形態では、図3に示すフローチャートのS8の処理において第2仮想線42を設定する場合について説明したが、S8の処理を省略することは当然可能である。S8の処理を省略しても、第1仮想線40の内側の第1範囲41内でエッジを検出できるので、第1仮想線40の外側にある母材17の表面の傷などによるノイズの影響を受けることなくチップ19のエッジを検出できるからである。
実施の形態では、図3に示すフローチャートのS9の処理において前処理フィルタを設定する場合について説明したが、S9の処理を省略することは当然可能である。S9の処理を省略しても、第1仮想線40の内側の第1範囲41内でエッジを検出できるので、第1仮想線40の外側にある母材17の表面の傷などによるノイズの影響を受けることなくチップ19のエッジを検出できるからである。
実施の形態では、図3に示すフローチャートのS11の処理において、エッジを示すデータ(エッジ成分45)が2個以下であるかを判定したが、これはチップ19が円盤状だからである。即ち、エッジ成分45が3個あれば、3個のエッジ成分45を通る円の方程式を算出できるからである。従って、閾値となるエッジ成分45の数は、チップ19の形状によって適宜設定される。例えば、チップ19が矩形板状や方形板状の場合には、S11の処理において、エッジ成分45が3個以下であるかを判定するのが望ましい。
実施の形態では、図3に示すフローチャートのS13の処理において、エッジ成分45が検出されなかった領域の中の二等分線47,48上にみなし成分49を1つずつ配置する場合について説明したが、必ずしもこれに限られるものではない。例えば、各領域を三等分や四等分などに分割し中心32を通る任意の等分線上、第1直線34上や第2直線35上にみなし成分49を配置することは当然可能である。また、各領域にみなし成分49を配置する数は、みなし成分49が計算結果に与える影響が大きくなり過ぎない範囲内で適宜設定できる。
実施の形態では、S15の処理において、母材17の輪郭17aからチップ19の輪郭19aまでの距離W1,W3の差が所定の範囲内にあるか否かを判定する場合について説明したが、必ずしもこれに限られるものではない。例えば、検出したチップ19のエッジからそのエッジの中心の位置を算出し、その中心の位置と母材17との位置関係からチップ19の溶接位置の良否判定をすることは当然可能である。
10 スパークプラグ
16 接地電極
17 母材
18 正面(チップが溶接された面)
19 チップ
30 溶接金属
31 溶接金属の輪郭
32 中心
33 チップの仮の輪郭
36 第1領域
37 第2領域
38 第3領域
39 第4領域
40 第1仮想線
41 第1範囲
42 第2仮想線
43 第2範囲
44 重複する範囲
45 エッジ成分(チップのエッジを示すデータ)
49 みなし成分(チップの仮のエッジを示すデータ)
O 軸線

Claims (6)

  1. 母材にチップが溶接された接地電極を備えるスパークプラグを製造する製造方法であって、
    前記接地電極のうち前記チップが溶接された面に関する画像データを取得する画像取得工程と、
    前記画像取得工程により取得された前記画像データを解析する画像解析工程と、
    前記画像解析工程により解析された前記画像データに基づいて前記チップの溶接位置の良否判定を行う検査工程と、を備え、
    前記画像解析工程は、前記チップの周りに形成された溶接金属のエッジを検出する溶接金属検出工程と、
    前記溶接金属検出工程により検出された前記溶接金属のエッジに基づいて前記溶接金属の輪郭の中心を算出する中心算出工程と、
    前記溶接金属の輪郭よりも前記中心側に位置し、前記中心を中心とする環状の第1仮想線により区画された第1範囲内において、前記チップのエッジを検出するチップ検出工程と、を備え、
    前記検査工程では、前記画像取得工程により取得された前記母材のエッジの位置と前記チップ検出工程により検出された前記チップのエッジの位置に基づいて前記良否判定を行うスパークプラグの製造方法。
  2. 前記画像解析工程は、前記溶接金属の前記輪郭の前記中心を中心として、前記チップの溶接前の既知の寸法に基づいて前記チップの仮の輪郭の位置を算出する輪郭算出工程を備え、
    前記第1仮想線は、前記仮の輪郭よりも外側に位置する請求項1記載のスパークプラグの製造方法。
  3. 前記チップ検出工程では、前記第1仮想線よりも前記溶接金属の前記輪郭の前記中心側に位置し前記中心を中心とする環状の第2仮想線の外側の第2範囲と、前記第1範囲と、が重複する範囲内において、前記チップのエッジを検出する請求項1又は2に記載のスパークプラグの製造方法。
  4. 前記画像解析工程は、前記溶接金属の前記輪郭の前記中心を中心として、前記チップの溶接前の既知の寸法に基づいて前記チップの仮の輪郭の位置を算出する輪郭算出工程を備え、
    前記第2仮想線は、前記仮の輪郭よりも内側に位置する請求項3記載のスパークプラグの製造方法。
  5. 前記画像解析工程は、前記溶接金属の前記輪郭の前記中心を中心として、前記チップの溶接前の既知の寸法に基づいて前記チップの仮の輪郭の位置を算出する輪郭算出工程を備え、
    前記チップ検出工程では、前記溶接金属の前記輪郭の前記中心の周りを複数に分割した領域のうち、前記チップのエッジを示すデータが検出されなかった領域内において、前記仮の輪郭上に前記チップの仮のエッジを示すデータがあるとみなし、
    前記検査工程では、前記チップ検出工程により検出された前記チップのエッジを示すデータと前記仮のエッジを示すデータに基づいて前記良否判定を行う請求項1から4のいずれかに記載のスパークプラグの製造方法。
  6. 前記チップ検出工程において検出される前記チップのエッジを示すデータの数は2個以下である請求項5記載のスパークプラグの製造方法。
JP2017204215A 2017-10-23 2017-10-23 スパークプラグの製造方法 Expired - Fee Related JP6588066B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017204215A JP6588066B2 (ja) 2017-10-23 2017-10-23 スパークプラグの製造方法
US16/161,469 US10355458B2 (en) 2017-10-23 2018-10-16 Production method of spark plug
CN201811213279.6A CN109698468B (zh) 2017-10-23 2018-10-18 火花塞的制造方法
DE102018126220.5A DE102018126220A1 (de) 2017-10-23 2018-10-22 Verfahren zur Herstellung einer Zündkerze

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017204215A JP6588066B2 (ja) 2017-10-23 2017-10-23 スパークプラグの製造方法

Publications (2)

Publication Number Publication Date
JP2019079636A true JP2019079636A (ja) 2019-05-23
JP6588066B2 JP6588066B2 (ja) 2019-10-09

Family

ID=65996158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017204215A Expired - Fee Related JP6588066B2 (ja) 2017-10-23 2017-10-23 スパークプラグの製造方法

Country Status (4)

Country Link
US (1) US10355458B2 (ja)
JP (1) JP6588066B2 (ja)
CN (1) CN109698468B (ja)
DE (1) DE102018126220A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019209993A1 (de) * 2018-07-11 2020-01-16 Ngk Spark Plug Co., Ltd. Verfahren zur Herstellung von Zündkerzen
EP3957427A1 (de) * 2020-08-20 2022-02-23 FRONIUS INTERNATIONAL GmbH Verfahren und vorrichtung zur überwachung einer nichtabschmelzenden schweisselektrode einer automatisierten lichtbogenschweissvorrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006372A (ja) * 2003-06-03 2004-01-08 Ngk Spark Plug Co Ltd スパークプラグの製造方法及びスパークプラグの製造装置
JP2004031069A (ja) * 2002-06-25 2004-01-29 Ngk Spark Plug Co Ltd スパークプラグの製造方法及び製造装置
US20040192155A1 (en) * 2003-03-28 2004-09-30 Ngk Spark Plug Co., Ltd Method for manufacturing spark plug and apparatus for manufacturing spark plug
JP2007080638A (ja) * 2005-09-13 2007-03-29 Ngk Spark Plug Co Ltd スパークプラグの検査方法およびそれを用いた製造方法
JP2012216448A (ja) * 2011-04-01 2012-11-08 Ngk Spark Plug Co Ltd スパークプラグの製造方法
JP2016009652A (ja) * 2014-06-26 2016-01-18 日本特殊陶業株式会社 スパークプラグの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3479591B2 (ja) 1997-10-09 2003-12-15 日本特殊陶業株式会社 スパークプラグ検査方法及び装置
JP3792918B2 (ja) * 1998-12-16 2006-07-05 日本特殊陶業株式会社 スパークプラグ検査方法及びスパークプラグ製造方法
JP2002231412A (ja) * 2001-01-31 2002-08-16 Ngk Spark Plug Co Ltd スパークプラグの製造方法及び製造装置
WO2009131134A1 (ja) * 2008-04-23 2009-10-29 日本特殊陶業株式会社 スパークプラグの製造方法
JP4746689B2 (ja) * 2009-06-22 2011-08-10 日本特殊陶業株式会社 スパークプラグ及びその製造方法
JP5028508B2 (ja) * 2010-06-11 2012-09-19 日本特殊陶業株式会社 スパークプラグ
JP5325947B2 (ja) * 2011-07-29 2013-10-23 日本特殊陶業株式会社 スパークプラグ
JP5639675B2 (ja) * 2012-05-07 2014-12-10 日本特殊陶業株式会社 スパークプラグ
JP5986592B2 (ja) * 2014-01-24 2016-09-06 日本特殊陶業株式会社 スパークプラグ
JP2017204215A (ja) 2016-05-13 2017-11-16 住友電気工業株式会社 通信装置および移動通信装置
JP6404373B2 (ja) * 2017-01-13 2018-10-10 日本特殊陶業株式会社 スパークプラグの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031069A (ja) * 2002-06-25 2004-01-29 Ngk Spark Plug Co Ltd スパークプラグの製造方法及び製造装置
US20040192155A1 (en) * 2003-03-28 2004-09-30 Ngk Spark Plug Co., Ltd Method for manufacturing spark plug and apparatus for manufacturing spark plug
JP2004006372A (ja) * 2003-06-03 2004-01-08 Ngk Spark Plug Co Ltd スパークプラグの製造方法及びスパークプラグの製造装置
JP2007080638A (ja) * 2005-09-13 2007-03-29 Ngk Spark Plug Co Ltd スパークプラグの検査方法およびそれを用いた製造方法
JP2012216448A (ja) * 2011-04-01 2012-11-08 Ngk Spark Plug Co Ltd スパークプラグの製造方法
JP2016009652A (ja) * 2014-06-26 2016-01-18 日本特殊陶業株式会社 スパークプラグの製造方法

Also Published As

Publication number Publication date
JP6588066B2 (ja) 2019-10-09
US10355458B2 (en) 2019-07-16
US20190123517A1 (en) 2019-04-25
CN109698468B (zh) 2020-10-13
DE102018126220A1 (de) 2019-04-25
CN109698468A (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
JP4653604B2 (ja) スパークプラグの検査方法およびそれを用いた製造方法
US11712758B2 (en) Automated inspection and verification of electric motor weld quality
KR102235832B1 (ko) 포터블형 용접 결함 검사장치 및 검사방법
CN107305190B (zh) 缺陷检查方法和缺陷检查系统
CN107315011A (zh) 图像处理装置、图像处理方法及存储介质
JP6588066B2 (ja) スパークプラグの製造方法
JP4958025B2 (ja) 鋼材の材質判定装置及び鋼材の材質判定方法
JP5357572B2 (ja) 外観検査方法および外観検査装置
US20150202708A1 (en) Image-inspection apparatus and image-inspection method for welded portion
JP3566222B2 (ja) 突起状付着物検出方法及びそれを用いたスパークプラグの製造方法
JP2008224523A (ja) ネジ部品の検査装置および検査方法
JP7157380B2 (ja) 外観検査方法及び電子部品の製造方法
JP6596035B2 (ja) 点火プラグの製造方法
US11780026B2 (en) Welding operation monitoring system and welding operation monitoring method
KR101904241B1 (ko) 스폿 용접기의 전극팁 검사 방법 및 장치
JP6202739B2 (ja) 基板の飛散半田ボール検査方法
JPH11101622A (ja) 圧着端子検査装置
JP2017009469A (ja) 端子圧着不良検出装置
JP4037374B2 (ja) スパークプラグの検査方法及びそれを用いたスパークプラグの製造方法
JPH08190633A (ja) 欠陥判別方法
WO2017188171A1 (ja) 電線の露出芯線部の検査装置
JP5852858B2 (ja) 端子検査装置及び端子検査方法
CN111408858B (zh) 焊机检测方法及系统
JP6036625B2 (ja) 溶接部外観検査装置および溶接部外観検査方法
CN108631159B (zh) 火花塞的制造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190911

R150 Certificate of patent or registration of utility model

Ref document number: 6588066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees