JP2018522136A - 金属粉末材料を製造するための方法及び装置 - Google Patents

金属粉末材料を製造するための方法及び装置 Download PDF

Info

Publication number
JP2018522136A
JP2018522136A JP2017558978A JP2017558978A JP2018522136A JP 2018522136 A JP2018522136 A JP 2018522136A JP 2017558978 A JP2017558978 A JP 2017558978A JP 2017558978 A JP2017558978 A JP 2017558978A JP 2018522136 A JP2018522136 A JP 2018522136A
Authority
JP
Japan
Prior art keywords
hearth
atomization
molten material
metal powder
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017558978A
Other languages
English (en)
Other versions
JP2018522136A5 (ja
JP6883525B2 (ja
Inventor
フォーブス・ジョーンズ,ロビン・エム
アーノルド,マシュー・ジェイ
ミニサンドラム,ラメッシュ・エス
クラッケ,アーサー・エイ
Original Assignee
エイティーアイ・プロパティーズ・エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイティーアイ・プロパティーズ・エルエルシー filed Critical エイティーアイ・プロパティーズ・エルエルシー
Publication of JP2018522136A publication Critical patent/JP2018522136A/ja
Publication of JP2018522136A5 publication Critical patent/JP2018522136A5/ja
Application granted granted Critical
Publication of JP6883525B2 publication Critical patent/JP6883525B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • B22F2009/0852Electroslag melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • B22F2009/0856Skull melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0888Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting construction of the melt process, apparatus, intermediate reservoir, e.g. tundish, devices for temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Furnace Details (AREA)
  • Powder Metallurgy (AREA)

Abstract

金属粉末材料を製造する方法は、供給材料を溶融炉床に供給し、溶融炉床の供給材料を第1加熱源により溶融し、所要の化学組成を有する溶融材料を提供することを包含する。溶融材料の少なくとも一部が溶融炉床から直接または間接的に霧化炉床に送られ、ここで、第2加熱源を使用して加熱される。霧化炉床からの溶融材料の少なくとも一部が溶融状態で霧化装置に送られ、これは溶融材料から液滴噴霧を形成する。該液滴噴霧の少なくとも一部は凝固され、金属粉末材料を提供する。【選択図】図1

Description

技術の背景
技術分野
本発明は、金属粉末材料を製造するための方法及び装置に関する。特に、本開示の特定の非限定的態様は、供給材料を受け取るように構成された溶融炉床と、溶融炉床から溶融材料の少なくとも一部を受け取るように配置された霧化炉床とを含む装置を使用する金属粉末材料の製造方法に関する。本開示の方法の特定の非限定的実施形態では、この方法は、溶融材料の少なくとも一部を霧化炉床から溶融状態で、霧化ノズルを有してもよい霧化装置に流すことを包含する。本開示は、更に、本開示の方法及び装置により製造される金属粉末材料及び製品に向けられている。
背景技術の説明
ガスアトマイズ及び熱間等方圧プレス(「HIPing」とも称する)は、伝統的に、金属粉末材料から金属製品を形成するために使用されている。これらの工程では、所要の化学組成を有する溶融物が準備され、溶融組成物は、ガス噴射により溶融組成物が急冷される液滴に分散する霧化装置を通過する。急冷された液滴はばらばらの粉末を形成する。金属粉末材料は、熱間等方圧プレスより金属製品を形成することができる。
金属製品を製造する他の従来方法は、核生成鋳造法である。核生成鋳造法は、ガス噴霧法を使用して鋳型内に堆積される半液状粒子の噴霧を製造する。液滴噴霧の一部、すなわち過剰噴霧は鋳型の頂面に蓄積できることが一般的に理解される。核生成鋳造法と同様に、金属製品が鋳型を使用することなく半液状粒子の噴霧から形成される溶射成形は、一般的な技術である。
従来の核生成鋳造法、溶射成形及びガスアトマイズ/HIPingシーケンスでは、先に所要の化学組成に溶融されて凝固された材料が、再溶融されて溶融材料を霧化装置に供給される。一例では、所要の化学組成を有する凝固された材料は、熱機械的にワイヤに加工され、その後、噴霧用に再溶融される。他の例では、コールドウォール誘導炉が使用され、噴霧工程の前に、先に凝固された材料を溶融し、均質にする。再溶融及び霧化の前に材料が凝固される場合、熱機械加工及び取扱の際などに汚染される可能性がある。固形材料内の汚染物質は、霧化装置に供給される溶融金属流内に混入される可能性がある。凝固された材料を霧化するために再溶融することは、溶融金属の過熱及び流速等の、一貫した噴霧を確実にするために制御されることが必要となり得る工程パラメータを制御する能力を制限する可能性がある。更に、凝固された材料を再溶融及び霧化のために使用することは、噴霧金属粉末の製造に関するコストが増大する可能性がある。
概要
本開示は、部分的には、金属粉末材料を製造する従来のアプローチの特定の制限に対処する方法及び装置に向けられている。本開示の1つの非限定的態様は、金属粉末材料を製造する方法に向けられ、この方法は、溶融炉床に供給材料を供給し、該溶融炉床内の該供給材料を第1熱源により溶融し、これにより所要の組成を有する溶融材料を製造し、該溶融材料の少なくとも一部を霧化炉床に送り、該霧化炉床内の該溶融材料を第2熱源により加熱し、該溶融材料の少なくとも一部を噴霧炉床から溶融状態で直接または間接的に霧化装置に送り、該霧化装置により溶融材料の液滴噴霧を形成することを備える。該液滴噴霧の少なくとも一部は凝固され、金属粉末材料を提供する。この方法の特定の非限定的実施形態では、溶融材料の少なくとも一部が連続的に霧化装置に送られる。この方法の特定の非限定的実施形態では、溶融材料が溶融炉床から霧化炉床に少なくとも1つの追加炉床を介して送られる。
本開示の他の非限定的態様は、金属粉末材料を製造する装置に向けられている。この装置は、供給材料を受け取るように構成される溶融炉床と、該供給材料を該溶融炉床内で溶融し、所要の組成を有する溶融材料を製造するように構成される第1熱源と、該溶融材料の少なくとも一部を該溶融炉床から直接または間接的に受け取るように配置される霧化炉床と、該霧化炉床内で溶融材料を加熱するように構成される第2熱源と、該溶融材料の液滴噴霧を形成するように構成される霧化装置と、該霧化炉床及び該霧化装置に連結される移送ユニットと、該霧化装置から該液滴噴霧を受け取るように構成される収集器とを備える。該移送ユニットは、該霧化炉床から該霧化装置に溶融状態で溶融材料を送るように構成される。
本明細書に記載の方法及び合金製品の特徴及び利点は、添付図面を参照することにより、より良好に理解することができる。
本開示による金属粉末材料を製造する方法の非限定的実施形態のフローチャートである。 本開示による金属粉末材料を製造する装置の非限定的実施形態を示す概略的な断面側面図である。 図1の装置の概略的な平面図である。 本開示による金属粉末材料を製造する装置の他の非限定的実施形態の概略的な平面図である。 図1の装置の拡大した部分断面側面図である。 本開示による金属粉末材料を製造する装置の非限定的実施形態を示す他の概略的な断面側面図である。
本発明は、上述の図面に示す実施形態のその用途に限定されるものでないことを理解すべきである。読者は、本開示による方法及び装置の特定の非限定的実施形態の以下の詳細な説明を考慮することで、上述の詳細及びその他の事項を理解することになる。更に、読者は、本明細書に記載の方法及び装置を使用することで、このような追加の詳細を確実に理解することができる。
特定の非限定的実施形態の詳細な説明
非限定的実施形態の本説明及び特許請求の範囲において、操作実施例またはその他に示す箇所以外、含有物及び製品の量または特性、及び、処理条件等を表現する全ての数字は、「約」の用語により、全ての例において変更されるものと理解すべきである。したがって、それとは反対に指示されない限り、以下の説明及び特許請求の範囲に示したあらゆる数値パラメータは、本開示による方法及び装置において得ようとする所要の特性にしたがって変化し得る近似値である。少なくとも、請求の範囲の及ぶ範囲に対する均等論の適用を制限しようと試みるものではなく、それぞれの数値パラメータは、報告された有効数字の数値に照らし、かつ、通常の丸め法を適用することによって解釈されるべきである。
本開示は、部分的には、金属粉末材料を製造する従来のアプローチの特定の制限に対処する方法及び装置に向けられている。図1を参照すると、金属粉末材料を製造する方法の非限定的実施形態を示してある。この方法は、供給材料を溶融炉床に供給し(ブロック100)、溶融炉床内の供給材料を第1熱源により溶融し、これにより、所要の化学組成を有する溶融材料を製造し(ブロック110)、溶融材料の少なくとも一部を直接または間接的に霧化炉床に送り(ブロック120)、負荷炉床内の溶融材料を第2熱源により加熱し(ブロック130)、溶融材料の少なくとも一部を霧化炉床から溶融状態で霧化装置に送り(ブロック140)、霧化装置により溶融材料の液滴噴霧を形成する(ブロック150)ことを包含する。液滴噴霧の少なくとも一部は凝固され、所要の組成を有する金属粉末材料を提供する。
図2〜3を参照すると、図示の金属粉末材料を製造する装置200の非限定的実施形態は、溶融チャンバ210と、溶融チャンバ210内に位置する溶融炉床220及び第1熱源230とを有する。溶融チャンバ210は、内部に空気を維持するように構成される。空気は、大気圧よりも低い圧力、大気圧を超える圧力、または、大気圧である圧力を有する。特定の非限定的実施形態によると、溶融チャンバ210内のガス雰囲気は、溶融チャンバ210内で加熱される材料に対して化学的に不活性とすることができる。特定の非限定的実施形態によると、溶融チャンバ210内のガス雰囲気は、ヘリウム、アルゴン、ヘリウムとアルゴンとの混合物、または、他の不活性ガス若しくはガス混合物としてもよい。他の非限定的実施形態によると、溶融チャンバ210の雰囲気内の他のガスまたはガスの混合物は、溶融チャンバ210内の溶融材料を許容できないほどに汚染しないガスまたはガス混合物であることを条件に存在する。
溶融炉床220は、供給材料240を受け取るように構成される。特定の非限定的実施形態によると、供給材料240は、未使用原材料である。他の非限定的実施形態によると、供給材料240は、スクラップ材料、戻り材、回収材料、及び/または、マスター合金を含みまたはこれから構成される。特定の非限定的実施形態によると、供給材料240は、粒子状材料を包含する。他の非限定的実施形態によると、供給材料240は、例えば、円筒状または四角柱状の形状に先に溶融された材料等、加工されまたは先に溶融された電極の形態の材料を包含しまたはこれから構成される。いずれの場合も、本開示による方法では、溶融炉床220で製造される溶融材料の化学組成は、溶融炉床210に供給材料を選択的に添加することにより、所要の組成に調整される。
特定の非限定的実施形態によると、供給材料240は、主としてチタン材料を含む。特定の非限定的実施形態によると、供給材料240は、市販の純チタン、チタン合金(例えば、UNS R56400に規定された組成を有するTi−6Al−4V合金)、及び、チタンアルミナイド合金(例えば、Ti−48Al−2Nb−2Cr合金)の1つの化学組成を有する溶融材料を提供するように選択される。他の非限定的実施形態によると、供給材料240は、重量で約4パーセントのバナジウム、約6パーセントのアルミニウム、及び、残部のチタン及び不純物を含む溶融材料を提供するように選択される(他に指示しない限り、本明細書におけるパーセンテージは、重量パーセントである。)。更に他の非限定的実施形態によると、供給材料240は、市販の純ニッケル、ニッケル合金(例えば、UNS N07718に規定された組成を有する合金718)、市販の純ジルコニウム、ジルコニウム合金(例えば、UNS R60704に規定された組成を有するZr704合金)、市販の純ニオブ、ニオブ合金(例えば、UNS R04261に規定された組成を有するATI Nb1Zr(商標)合金(タイプ3及びタイプ4))、市販の純タンタル、タンタル合金(例えば、UNS 20255に規定する組成を有するタンタル−10%タングステン合金)、市販の純タグステン、及び、タングステン合金(例えば、90−7−3タングステン合金)の1つの化学組成を有する溶融材料を提供するように選択される。本明細書に記載の方法及び装置は、上述の化学組成を有する材料を製造することに限定されないことが理解される。代りに、出発材料は、所要の化学組成及び他の所要の特性を有する溶融組成を提供するように選択してもよい。溶融材料は、本明細書に記載の方法及び装置により霧化され、これにより粉末に霧化される溶融材料の化学組成を有する金属粉末材料を提供する。
特定の非限定的実施形態によると、供給材料240は、例えば供給シュート250等の供給機構を介して溶融炉床220に供給される。特定の非限定的実施形態によると、供給機構は、振動式フィーダ、シュート及びプッシャの少なくとも1つを包含する。他の非限定的実施形態では、供給機構は、供給材料240を溶融炉床220に適切に導入することのできる、他の任意の機構を包含する。
特定の非限定的実施形態によると、第1熱源230は、溶融炉床220に付設され、プラズマトーチ、電子ビーム発生器、電子を発生する他の加熱装置、レーザ、電気アーク装置、及び、誘導コイルから選択される少なくとも1つの加熱装置を包含する。一実施例では、第1加熱源230は、プラズマトーチを用いて溶融炉床220内の供給材料240を溶融し、これにより、所要の化学組成を有する溶融材料260を製造するように構成される。第1熱源230は、溶融炉床220内の供給材料を少なくとも供給材料240の溶融温度(液相線)と同じ温度まで加熱し、これらの材料を溶融炉床220内で溶融状態に維持するように構成されて位置決めされる。特定の非限定的実施形態では、第1熱源230は、溶融炉床220内に形成された溶融材料を加熱し、溶融材料を少なくとも部分的に精製する。特定の非限定的実施形態によると、第1熱源230は、溶融炉床220の上面の約100mmから約250mm上側に位置決めしてもよい。他の非限定的実施形態によると、第1熱源230は、溶融炉床220内の溶融材料の頂面に対して所定高さに位置決めされる第1プラズマトーチを備え、この第1プラズマトーチにより生じる高温プラズマのプルームの縁部が材料を適切に加熱する。特定の非限定的実施形態によると、第1加熱源230の出力レベル、溶融炉床220に対する位置、及び、他のパラメータは、溶融炉床220内の溶融材料260を、材料の液相線を含み、材料の融点より約500℃上までの温度範囲に、加熱するように選択される。更なる実施形態によると、第1熱源230の出力レベル、位置、及び、他のパラメータは、材料の液相線の約50℃上から材料の液相線の約300℃上までの温度を含む温度範囲に、溶融炉床220内の材料を過熱するように最適化される。他の実施形態によると、第1熱源230の出力レベル、位置、及び、他のパラメータは、第1熱源230が材料を蒸発、及び/または、望ましくない態様に溶融材料の化学的性質を変化させない限り、任意の適切な程度で材料の液相線を越える温度まで材料を過熱するように最適化される。
特定の非限定的実施形態によると、霧化炉床270が溶融材料260の少なくとも一部を溶融炉床220から直接または間接的に受け取るように配置される。一旦、溶融されかつ適切に加熱されると、溶融炉床220内の溶融材料260は溶融炉床220から排出され、直接または間接的に(例えば、少なくとも1つの追加の炉床を通って)霧化炉床270に送られてもよい。霧化炉床270は直接または間接的に溶融材料260を霧化炉床270から集め、溶融材料260が霧化炉床270から、更に後述するように、霧化装置310の霧化ノズルに送られる際に、溶融材料260の少なくとも一部を保持してもよい。これに関して、霧化炉床270は、溶融材料260に対する「サージバッファ」として作用し、霧化装置310への溶融材料260の流れを調節する。特定の非限定的実施形態によると、霧化炉床270は、溶融炉床220と共に溶融チャンバ210内に配置される。他の実施形態によると、霧化炉床270は、溶融炉床220と共に単一のチャンバ内にではなく、代わりに、隣接チャンバ等の他のチャンバ内に配置してもよい。
種々の非限定的実施形態によると、少なくとも1つの追加炉床が溶融炉床220と霧化炉床260との間に配置され、溶融材料が溶融炉床260から、少なくとも1つの追加炉床を介して、霧化炉床270内に送られる。この配置は、溶融炉床から間接的に霧化炉床への溶融材料の通路を含むこととして、本明細書に記載されている。
特定の非限定的実施形態にしたがい、図5を参照すると、溶融炉床220及び霧化炉床270の双方は、水冷の銅炉床である。存在する場合、種々の非限定的実施形態における1つまたは複数の追加炉床が水冷銅炉床であってもよい。他の非限定的実施形態によると、溶融炉床220と、霧化炉床270と、存在する場合には、1または複数の追加炉床との少なくとも1つが、他の任意の適切な材料及び組成で構成され、更に、冷却され、または、それ以外により、材料がその中で加熱される際に炉床の溶融を阻止するように構成される。特定の非限定的実施形態によると、溶融材料260の一部が溶融炉床220の冷却壁に接触して凝固し、溶融材料260の残部が溶融炉床220の壁に接触するのを阻止する第1スカル280を形成し、これにより、溶融炉床220の壁を溶融材料260から隔離してもよい。更に、特定の実施形態では、溶融材料260の一部は、溶融材料260が溶融炉床220から霧化炉床270内に流れるときに、霧化炉床270の冷却壁に接触し、壁上で凝固し、溶融材料260の残部が霧化炉床270の壁に接触するのを阻止する第2スカル290を形成し、これにより霧化炉床270の壁を溶融材料260から隔離してもよい。特定の非限定的実施形態では、存在する場合には、1または複数の追加炉床が、溶融材料と炉床壁との望ましくない接触を阻止するために、同様な態様に機能してもよい。
特別な方法または装置200に対する使用要件または選択にしたがって、溶融炉床220、霧化炉床270、及び、存在する場合には、1または複数の炉床上の材料は、加熱されるときに精製及び/または均質化されることがある。例えば、溶融材料の精製中に、溶融材料中の高密度固形含有物及び他の固形汚染物質は、特定の炉床内の溶融材料の底部に沈下し、炉床壁のスカル内に混入することがある。ある程度の低密度固形含有物または他の固形汚染物質は、特定の炉床内の溶融材料の表面に浮遊し、付設された熱源により気化されることがある。他の低密度固体含有物または他の固体汚染物質は、中立的に浮揚し、溶融材料の表面の僅かに下側に浮遊し、炉床内の溶融材料内に溶解することがある。このように、溶融材料260は固形含有物として精製され、他の固形汚染物は溶融材料260から除去されまたは溶解される。
図4を更に参照すると、図示の非限定的実施形態によれば、少なくとも1つの追加炉床292が溶融炉床220と霧化炉床270との間に位置する。溶融炉床220の溶融材料260の少なくとも一部は、霧化炉床270内に送られる前に、1または複数の追加炉床(複数可)292を介して送られる。特定の非限定的実施形態では、追加炉床(複数可)292は、溶融材料260の精製と均質化との少なくとも一方に使用してもよい。「精製」及び「均質化」は専門用語であり、金属粉末材料の製造における当業者に容易に理解される。一般に、炉床部材に関連して、精製は、炉床内の溶融材料から不純物または望ましくない成分を除去、溶解または捕捉すること、及び、不純物または望ましくない成分が下流側に進行するのを阻止することを包含してもよい。均質化は、材料がより均一な組成を有するように、溶融材料を混合または混和することを包含してもよい。特定の非限定的実施形態によると、1または複数の追加炉床(複数可)292が溶融及び霧化炉床220,270と直列に位置決めされ、全体的に直線状、または、全体的にジグザグ形状路、全体的にL字状路及び全体的にC字状路から選択した他の形状に溶融材料260の流路を形成する。特定の非限定的実施形態によると、追加加熱源(図示しない)が1または複数の追加炉床(複数可)292に付設される。特定の非限定的実施形態によると、追加熱源は、プラズマトーチ、電子ビーム発生器、電子を発生する他の加熱装置、レーザ、電気アーク装置、及び、誘導コイルから選択される1または複数の加熱装置を包含する。
特定の非限定的実施形態によると、第2加熱源300は、霧化炉床270内の溶融材料260を加熱するように構成される。特定の非限定的実施形態によると、第2加熱源300は、プラズマトーチと、電子銃と、電子発生する加熱装置と、レーザと、電気アークと、誘導コイルとから選択される少なくとも1つの熱源を有する。第2熱源300は、霧化炉床270内の溶融材料の頂面を少なくとも材料の溶融温度(液相線)と同じ温度まで加熱するように位置決めされる。特定の非限定的実施形態によると、第2加熱源300は、霧化炉床270の約100mmから約250mm上方に位置決めしてもよい。他の非限定的実施形態によると、第2熱源300は、高温プラズマのプルームの縁部が材料を適切に加熱するように、霧化炉床270の溶融材料の頂面に対して所定高さに位置決めされるプラズマトーチを備える。特定の非限定的実施形態によると、第2加熱源300の出力レベル、霧化炉床270に対する位置、及び、他のパラメータは、噴霧炉床270上の材料を、材料の液相線より約50℃上から材料の液相線より約400℃上の温度の範囲に過熱するように選定される。更なる実施形態によると、第1熱源300の出力レベル、位置、及び、他のパラメータは、材料の液相線の約100℃上から、材料の液相線の約200℃上の温度範囲に、霧化炉床270内の材料を過熱するように最適化される。他の実施形態によると、第2熱源300の出力レベル、位置、及び、他のパラメータは、第2熱源300が材料を蒸発、及び/または、望ましくない態様に溶融材料の化学的性質を変化させない限り、任意の適切な程度で液相線を越える温度まで材料を過熱するように最適化される。
特定の非限定的実施形態によると、霧化装置310は、溶融材料260の液滴噴霧を形成するように構成される霧化ノズルを有し、移送ユニット320が霧化装置310の上流側に設けられる。例えば、移送ユニット320は、溶融材料を霧化ノズルに直接送ることができる。移送ユニット320は、霧化炉床270と霧化装置310とに連結される。第2熱源300は、移送ユニット320に流れる溶融材料260を溶融状態に維持するようにデザインされ、移送ユニット320は、溶融材料260の少なくとも一部を霧化炉床270から霧化装置310に溶融状態で送るように構成される。図示の装置200では、単一の移送ユニットと単一の霧化装置との組合わせのみが含まれているが、複数の霧化ノズル等の複数の霧化装置を含む実施形態が有益となり得ることが意図されている。例えば、複数の移送ユニット320と、霧化炉床270の下流側の1つまたは複数の霧化ノズルまたは他の霧化装置310とを採用する装置においては、処理速度を増大することができ、材料製造コストを低減することができる。
図5を参照すると、図示の非限定的実施形態によれば、移送ユニット320は、冷間誘導ガイド(CIG)である。図6は、本開示の他の非限定的実施形態による装置200′を示す。装置200′の移送ユニット320は、CIG388に加え、オプションとして注入樋384とセグメント化された誘導モールド386とを包含する誘導ガイド382を包含する。図示の装置200′の非限定的実施形態では、追加の加熱源390が注入樋384及びセグメント化された誘導モールド386に付設される。
移送ユニット320は、溶融炉床220で製造され、霧化炉床270から霧化装置310に送る溶融材料260の純度を、外気から溶融材料260を保護することにより、維持する。移送ユニットは更に、従来の霧化ノズルを使用することにより生ずる可能性のある酸素による汚染から、溶融材料を保護するように構成してもよい。移送ユニット320は、更に後述するように、霧化炉床270から霧化装置310への溶融材料260の流れを計量するために使用してもよい。当業者であれば、本説明を考慮することにより、本装置及び方法の実施形態で採用されるように、霧化炉床と霧化装置との間で溶融状態を維持し、移送ユニット及び溶融材料260を制御可能に移送することのできる関連する設備について、種々の可能性のある他のデザインを提供することが可能である。本開示の方法及び装置に組込み得るこのような移送ユニットのデザインの全ては、本発明に包含される。
特定の非限定的実施形態によると、移送ユニット320は、霧化炉床270に近接する入口330と、霧化装置310に近接する出口340とを有し、1つまたは複数の導電性コイル350が入口330に位置する。電流源(図示しない)が、導電性コイル350に選択的に電気接続され、溶融材料260を加熱し、溶融材料260の少なくとも一部の霧化装置310への流れを起こす。特定の非限定的実施形態によると、導電性コイル350は、溶融材料260を、材料の液相線から液相線の500℃上までの範囲内の温度に加熱するように構成される。
特定の非限定的実施形態によると、移送ユニット320は、溶融材料260を受け取る溶融コンテナ360を有し、移送ユニット320の移送領域は、溶融コンテナ360から溶融材料260を受け取るように構築された通路370を包含するように構成される。通路370の壁部は、流体冷却される多数の金属セグメントにより画定される。特定の非限定的実施形態によると、移送ユニット320は、出口340に位置する1つまたは複数の導電性コイル380を有する。コイル380は、水または他の熱伝導流体等の適切な冷媒を出口340に付設された通路を通して循環することにより、冷却される。溶融材料260の一部が、移送ユニット320の通路370の冷却された壁部に接触して凝固し、壁部に溶融材料260の残部との接触を阻止するスカルを形成する。炉床壁の冷却及びスカルの形成は、移送ユニット320の内壁を形成する材料により、溶融物が汚染されないことを確保する。
溶融材料260が移送ユニット320の溶融コンテナ360から通路370を通して流れる際、溶融材料260を誘導加熱して溶融形態に維持するのに十分な強さの電流が導電性コイル380に流れる。コイル380は、誘導加熱コイルとして作用し、移送ユニット320の出口340を通過する溶融材料260を調節可能に加熱する。特定の非限定的実施形態によると、導電性コイル380は、溶融材料260を、材料の液相線の50℃上から液相線の400℃上までの範囲内の温度に加熱するように構成される。更なる実施形態によると、導電性コイル380は、溶融材料260を、材料の液相線温度から液相線の500℃上までの範囲内の温度に加熱するように構成される。特定の非限定的実施形態によると、導電性コイル380は、霧化装置310への溶融材料260の通過を選択的に阻止するように構成される。
特定の非限定的実施形態によると、溶融材料260の少なくとも一部が連続的に霧化装置310に送られる。そのような非限定的実施形態では、溶融材料260は、溶融炉床220から霧化炉床270まで移送ユニット320を介して連続的に流れ、移送ユニット320の出口340を出て霧化装置310内に入る。特定の非限定的実施形態では、霧化炉床270への溶融材料260の流れは不連続、すなわち複数の開始と複数の停止があってもよい。種々の非限定的実施形態では、溶融材料260は、溶融炉床220から少なくとも1つの追加炉床を介して、更に、霧化炉床270まで移送ユニット320を介して流れ、移送ユニット320の出口340を出て霧化装置310に入る。特定の非限定的実施形態によると、霧化装置310は、所定のポイントに集束する複数のプラズマ霧化トーチであって溶融材料260の液滴噴霧を形成する複数のプラズマ霧化トーチを有する霧化ノズルを備える。更なる非限定的実施形態によると、霧化ノズルは、均一に分散して相互間に約120°の角度を画定する3つのプラズマトーチを有する。そのような実施形態では、プラズマトーチのそれぞれは、霧化ノズルの軸線に対して30°の角度を形成するように位置してもよい。特定の非限定的実施形態によると、霧化装置310は、20〜40kWの範囲の出力で作用するD.C.ガンにより発生するプラズマジェットを有する霧化ノズルを備える。特定の非限定的実施形態によると、霧化装置310は、溶融材料260を分散して液滴噴霧を形成する少なくとも1つのガスジェットを形成する霧化ノズルを備える。
その結果の液滴噴霧は、収集器400に導かれる。特定の非限定的実施形態によると、霧化ノズルまたは他の霧化装置310に対する収集器400の位置は、調節可能である。霧化のポイントと収集器400との間の距離は、収集器400内に堆積される材料の固形物の割合を制御することができる。したがって、材料が堆積するときに、霧化ノズルまたは他の霧化装置310に対する収集器400の位置が、収集器400内に収集した材料の表面と霧化ノズルまたは他の霧化装置310との間の距離が適切に維持されるように、調節することができる。特定の非限定的実施形態によると、収集器400は、チャンバ、モールド、及び、回転マンドレルから選択される。例えば、特定の非限定的実施形態では、材料が収集器400に堆積されるときに、収集器400が回転し、収集器400の表面上に液滴をより確実に均等に堆積することができる。
装置200の上述の説明は、溶融炉床220、霧化炉床270、霧化装置310、移送ユニット320、及び、収集器400を、直列に結合した相対的に別個のユニットまたは装置の構成部材として参照しているが、装置200は、このように構築することが必要でないことが理解される。別個の分離可能な溶融(及び/または、溶融/精製)、移送、霧化及び収集器ユニットに構築せずに、むしろ、装置200等の本開示による装置は、別個の個々に作動可能な装置またはユニットに分解可能とすることなく、これらのユニットのそれぞれの本質的な特徴を備える要素または領域を組み込んでもよい。したがって、溶融炉床、霧化炉床、霧化装置、移送ユニット、及び、収集器に対する添付の特許請求の範囲における言及は、このような別個のユニットが、操作性を損なうことなく、請求される装置から分離され得ることを意味すると解釈すべきではない。
特定の非限定的実施形態では、本明細書に開示された方法の種々の非限定的実施形態にしたがい、または、装置の種々の非限定的実施形態により製造される金属粉末材料は、10〜150ミクロンの平均粒子サイズを有する。特定の非限定的実施形態では、本明細書に開示された方法の種々の非限定的実施形態にしたがい、または、装置の種々の非限定的実施形態により製造される金属粉末材料は、40〜120ミクロンの粒子サイズ分布(すなわち、実質的に全ての粉末粒子の粒子サイズが40〜120ミクロンの範囲に入る)を有する。40〜120ミクロンの粒子サイズ分布を有する金属粉末材料は、特に、電子ビーム積層造形の用途に有益である。特定の非限定的実施形態では、本明細書に開示された方法の種々の非限定的実施形態にしたがい、または、装置の種々の非限定的実施形態により製造される金属粉末材料は、15〜45ミクロンの粒子サイズ分布(すなわち、実質的に全ての粉末粒子の粒子サイズが15〜45ミクロンの範囲に入る)を有する。15〜45ミクロンの粒子サイズ分布を有する金属粉末材料は、特に、レーザ積層造形の用途に有益である。特定の非限定的実施形態によると、金属粉末材料は、球状粒子を有する。特定の他の非限定的実施形態では、金属粉末材料の少なくとも一部は、限定されるものではないが、フレーク、チップ、針、及び、これらの組合わせを含む他の幾何学形状を有する。
特定の非限定的実施形態によると、金属粉末材料は、従来の溶解鋳造法、例えば、溶解・鋳造技術により容易に製造することはできない組成を有する。すなわち、本明細書に記載の方法は、過度の偏析傾向があるか、または、従来の溶解鋳造法により鋳造するのが阻害される特性を有する組成を備えた金属粉末材料を製造することができる。特定の非限定的実施形態によると、金属粉末材料のホウ素含有量は、全粉末材料重量をベースにして10ppmよりも多い。従来のインゴット溶解及び鋳造法では、10ppmより上のホウ素レベルは、有害なホウ化物を製造する可能性がある。対照的に、本明細書に記載の方法の種々の非限定的実施形態は、10ppmより多くのホウ素含有量を有する金属粉末材料を、受け入れがたい有害な相または特性を示すことなく製造することを可能とする。これは、製造可能な金属粉末材料の組成に対する可能性を拡張する。
本開示の方法及び装置にしたがって造られる金属粉末材料は、本方法及び装置を使用して適切に製造される任意の組成を有することができる。特定の非限定的実施形態によると、金属粉末材料は、市販の純チタン、チタン合金(例えば、UNS R56400に規定された組成を有するTi−6Al−4V合金)、及び、チタンアルミナイド合金(例えば、Ti−48Al−2Nb−2Cr合金)の1つの化学組成を有する。他の非限定的実施形態によると、金属粉末材料は、重量で、約4パーセントのバナジウム、約6パーセントのアルミニウム、及び、残部のチタン及び不純物を含む化学組成材料を有する(他に指示しない限り、ここの全てのパーセンテージは、重量パーセントである。)。更に他の非限定的実施形態によると、金属粉末材料は、市販の純ニッケル、ニッケル合金(例えば、UNS N07718に規定された組成を有する合金718)、市販の純ジルコニウム、ジルコニウム合金(例えば、UNS R60704に規定された組成を有するZr704合金)、市販の純ニオブ、ニオブ合金(例えば、UNS R04261に規定された組成を有するATI Nb1Zr(商標)合金(タイプ3及びタイプ4))、市販の純タンタル、タンタル合金(例えば、UNS 20255に規定する組成を有するタンタル−10%タングステン合金)、市販の純タグステン、及び、タングステン合金(例えば、90−7−3タングステン合金)の1つの化学組成を有する。本明細書に記載の方法及び装置は、上述の化学組成を有する金属粉末材料を製造することに限定されないことが理解される。代りに、出発材料は、所要の化学組成及び他の所要の特性を有する金属粉末材料を提供するように選択してもよい。
本方法により及び/または本装置を使用して造られる金属粉末材料は、熱間等方圧プレス及び冶金粉末から製品を形成する他の適切な従来技術により、金属(例えば、金属及び金属合金)製品とすることができる。このような他の適切な技術は、本開示を考慮することにより、当業者に容易に明らかとなる。
上記説明は、やむを得ず限られた数の実施形態のみを提示したに過ぎないが、関連分野の当業者であれば、本明細書に記載しかつ説明した方法及び装置、及び、実施例の他の細部における種々の変更が当業者によって行われ得ること、並びに、このような変更の全ては、本明細書及び添付の特許請求の範囲に表されるように、本開示の原理及び範囲に留まるものであることが明らかである。したがって、本発明は、本明細書に開示しまたは組込まれる特定の実施形態に限定されるものではなく、特許請求の範囲によって規定されるように、本発明の原理および範囲内にある変更を包含することを意図する。当業者であれば、その広い発明の概念から逸脱することなく、上述の実施形態に対する変更が可能なことも理解される。

Claims (44)

  1. 供給材料を溶融炉床に供給し、
    前記溶融炉床内の前記供給材料を熱源により溶融し、これにより溶融材料を製造し、
    前記溶融材料の少なくとも一部を前記溶融炉床から直接または間接的に霧化炉床に送り、
    前記霧化炉床内の前記溶融材料を第2熱源により加熱し、
    前記溶融材料を前記霧化炉床から溶融状態で霧化ノズルに送り、
    前記溶融材料の液滴噴霧を前記霧化ノズルにより形成し、この後、前記液滴噴霧の少なくとも一部を凝固して金属粉末材料を提供すること、を備える金属粉末材料を製造する方法。
  2. 前記溶融材料の少なくとも一部を、前記霧化炉床に入る前に、前記溶融炉床から少なくとも1つの追加炉床を介して送る、請求項1に記載の方法。
  3. 前記第1熱源と前記第2熱源とは、それぞれ独立して、プラズマトーチと、電子ビーム発生器と、電子を発生する加熱装置と、レーザと、電気アーク装置と、誘導コイルとの少なくとも1つを備える、請求項1に記載の方法。
  4. 前記溶融材料は、霧化ノズルに入る前に精製及び均質化の少なくとも1つがおこなわれる、請求項1に記載の方法。
  5. 更に、前記溶融材料の少なくとも一部を、前記霧化ノズルの上流の冷間誘導ガイドを通して送る、請求項1に記載の方法。
  6. 前記冷間誘導ガイドは、前記霧化炉床に近接した入口と、前記霧化ノズルに近接した出口とを有し、導電性コイルが前記入口に位置し、溶融材料を加熱して前記溶融材料の少なくとも一部を加熱し、前記溶融材料の少なくとも一部の前記霧化炉床から前記霧化ノズルへの送りを開始する、請求項5に記載の方法。
  7. 前記導電性コイルは、前記溶融材料を、前記材料の液相線から液相線の500℃上までの範囲内で加熱するように構成されている、請求項6に記載の方法。
  8. 前記冷間誘導ガイドは、前記霧化炉床に近接した入口と、前記霧化ノズルに近接した出口とを有し、導電性コイルが前記出口に位置し、前記溶融材料を調節可能に加熱するように構成されている、請求項5に記載の方法。
  9. 前記導電性コイルは、前記溶融材料を、前記材料の液相線から液相線の500℃上までの範囲内で加熱するように構成されている、請求項8に記載の方法。
  10. 前記冷間誘導ガイドは、前記霧化炉床に近接した入口と、前記霧化ノズルに近接した出口とを有し、導電性コイルが前記出口に位置し、前記霧化ノズルへの前記溶融材料の通過を停止するように構成されている、請求項5に記載の方法。
  11. 前記霧化ノズルは、所定のポイントに集束するとともに前記溶融材料から液滴噴霧を形成する、プラズマジェットを形成する複数のプラズマ霧化トーチを有する、請求項1に記載の方法。
  12. 前記霧化ノズルは、前記溶融材料を液滴噴霧に分散する少なくとも1つのガスジェットを形成する、請求項1に記載の方法。
  13. 前記溶融材料の少なくとも一部は、前記霧化ノズルに連続的に送られる、請求項1に記載の方法。
  14. 前記金属粉末材料の組成は、市販の純チタン、チタン合金、チタンアルミナイド合金、市販の純ニッケル、ニッケル合金、市販の純ジルコニウム、ジルコニウム合金、市販の純ニオブ、ニオブ合金、市販の純タンタル、タンタル合金、市販の純タングステン、及び、タンタル合金から選択される、請求項1に記載の方法。
  15. 前記金属粉末材料の組成は、10ppmより多くのホウ素を有する、請求項1に記載の方法。
  16. 前記金属粉末材料の組成は、重量で約4パーセントのバナジウム、約6パーセントのアルミニウム、及び、残部のチタン及び不純物を有する、請求項1に記載の方法。
  17. 前記金属粉末材料の平均粒子サイズは、10ミクロンから150ミクロンの範囲である、請求項1に記載の方法。
  18. 前記金属粉末材料の粒子サイズ分布は、40ミクロンから120ミクロンである、請求項1に記載の方法。
  19. 前記金属粉末材料の粒子サイズ分布は、15ミクロンから45ミクロンである、請求項1に記載の方法。
  20. 請求項1に記載の方法により製造される金属粉末材料。
  21. 前記金属粉末材料の組成は、市販の純チタン、チタン合金、チタンアルミナイド合金、市販の純ニッケル、ニッケル合金、市販の純ジルコニウム、ジルコニウム合金、市販の純ニオブ、ニオブ合金、市販の純タンタル、タンタル合金、市販の純タングステン、及び、タンタル合金から選択される、請求項20に記載の金属粉末材料。
  22. 前記金属粉末材料の組成は、重量で約4パーセントのバナジウム、約6パーセントのアルミニウム、及び、残部のチタン及び不純物を有する、請求項20に記載の金属粉末材料。
  23. 前記金属粉末材料の平均粒子サイズは、10ミクロンから150ミクロンである、請求項20に記載の金属粉末材料。
  24. 前記金属粉末材料の粒子サイズ分布は、40ミクロンから120ミクロンである、請求項20に記載の金属粉末材料。
  25. 前記金属粉末材料の粒子サイズ分布は、15ミクロンから45ミクロンである、請求項20に記載の金属粉末材料。
  26. 前記金属粉末材料は、10ppmより多いホウ素を有する、請求項20に記載の金属粉末材料。
  27. 供給材料を受入れるように構成された溶融炉床と、
    供給材料を溶融して溶融材料を提供するように構成された第1加熱源と、
    前記溶融材料の少なくとも一部を前記溶融炉床から直接または間接的に受け取るように配置された霧化炉床と、
    前記霧化炉床内の溶融材料を加熱するように構成された第2熱源と、
    前記溶融材料から液滴噴霧を形成するように構成された霧化ノズルと、
    前記霧化炉床及び前記霧化ノズルに連結された移送ユニットとを備え、前記移送ユニットは溶融材料を前記霧化炉床から前記霧化ノズルに溶融状態で送るように構成されており、更に、
    前記液滴噴霧を受け取るように構成された収集器を備える、金属粉末材料を製造する装置。
  28. 更に、前記溶融炉床と前記霧化炉床との間にあり、かつ連通した少なくとも1つの追加炉床を備える、請求項27に記載の装置。
  29. 前記溶融炉床、前記霧化炉床、及び、前記少なくとも1つの追加炉床は、一列に位置する、請求項28に記載の装置。
  30. 前記溶融炉床、前記霧化炉床、及び、前記少なくとも1つの追加炉床は、ジグザグ配置、L字状配置、及び、C字状配置から選択されるパターンで位置する、請求項28に記載の装置。
  31. 前記溶融炉床、前記霧化炉床、及び、前記少なくとも1つの追加炉床の少なくとも1つは、溶融材料の精製と均質化との少なくとも1つを行うように構成されている、請求項28に記載の装置。
  32. 第1加熱源が前記溶融炉床に付設されており、第2加熱源が前記霧化炉床に付設されている、請求項27に記載の装置。
  33. 前記第1熱源と前記第2熱源とは、それぞれ独立して、プラズマトーチと、電子ビーム発生器と、電子を発生する加熱装置と、レーザと、電気アーク装置と、誘導コイルとの少なくとも1つを備える、請求項32に記載の装置。
  34. 追加加熱源が前記少なくとも1つの追加炉床に関連し、前記追加熱源は、プラズマトーチと、電子ビーム発生器と、電子を発生する加熱装置と、レーザと、電気アーク装置と、誘導コイルとの少なくとも1つを備える、請求項28に記載の装置。
  35. 前記移送ユニットは、冷間誘導ガイドを備える、請求項27に記載の装置。
  36. 前記冷間誘導ガイドは、前記霧化炉床に近接する入口と、前記霧化ノズルに近接する出口とを有し、導電性コイルが、前記入口に位置し、溶融材料を加熱して前記溶融材料の少なくとも一部を加熱し、前記溶融材料の少なくとも一部の前記霧化炉床から前記霧化ノズルへの送りを開始する、請求項35に記載の装置。
  37. 前記導電性コイルは、前記溶融材料を、前記材料の液相線から液相線の500℃上までの範囲内で加熱するように構成されている、請求項36に記載の装置。
  38. 前記冷間誘導ガイドは、前記霧化炉床に近接する入口と、前記霧化ノズルに近接する出口とを有し、導電性コイルが、前記出口に位置し、前記溶融材料を調節可能に加熱するように構成されている、請求項35に記載の装置。
  39. 前記導電性コイルは、前記溶融材料を、前記材料の液相線から液相線の500℃上までの範囲内で加熱するように構成されている、請求項38に記載の装置。
  40. 前記冷間誘導ガイドは、前記霧化炉床に近接する入口と、前記霧化ノズルに近接する出口とを有し、導電性コイルが、前記出口に位置し、前記霧化ノズルへの前記溶融材料の通過を停止するように構成されている、請求項38に記載の装置。
  41. 前記霧化ノズルは、所定のポイントに集束するとともに前記溶融材料から液滴噴霧を形成する、プラズマジェットを形成する複数のプラズマ霧化トーチを有する、請求項27に記載の装置。
  42. 前記霧化ノズルは、前記溶融材料を液滴噴霧に分散する少なくとも1つのガスジェットを形成する、請求項27に記載の装置。
  43. 前記霧化ノズルに対して前記収集器の位置が調節可能である、請求項27に記載の装置。
  44. 前記収集器は、チャンバ、モールド、及び、回転マンドレルから選択される、請求項27に記載の装置。
JP2017558978A 2015-05-14 2016-03-16 金属粉末材料を製造するための方法及び装置 Active JP6883525B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/712,103 US20160332232A1 (en) 2015-05-14 2015-05-14 Methods and apparatuses for producing metallic powder material
US14/712,103 2015-05-14
PCT/US2016/022544 WO2016182631A1 (en) 2015-05-14 2016-03-16 Methods and apparatuses for producing metallic powder material

Publications (3)

Publication Number Publication Date
JP2018522136A true JP2018522136A (ja) 2018-08-09
JP2018522136A5 JP2018522136A5 (ja) 2019-04-25
JP6883525B2 JP6883525B2 (ja) 2021-06-09

Family

ID=55650718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017558978A Active JP6883525B2 (ja) 2015-05-14 2016-03-16 金属粉末材料を製造するための方法及び装置

Country Status (18)

Country Link
US (3) US20160332232A1 (ja)
EP (1) EP3294482B1 (ja)
JP (1) JP6883525B2 (ja)
KR (1) KR102401270B1 (ja)
CN (1) CN107635701B (ja)
AU (1) AU2016260949B2 (ja)
BR (1) BR112017024489B1 (ja)
CA (1) CA2983669A1 (ja)
ES (1) ES2862420T3 (ja)
IL (1) IL255324B (ja)
MX (1) MX2017014320A (ja)
RU (1) RU2714718C2 (ja)
SA (1) SA517390308B1 (ja)
SG (1) SG11201708554YA (ja)
TW (1) TWI677387B (ja)
UA (1) UA122691C2 (ja)
WO (1) WO2016182631A1 (ja)
ZA (1) ZA201707460B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021518490A (ja) * 2018-03-17 2021-08-02 パイロジェネシス・カナダ・インコーポレーテッド 溶融原料から高純度球状金属粉末を製造する方法および装置
JP2022096622A (ja) * 2020-12-17 2022-06-29 江蘇博遷新材料有限公司 プラズマアーク噴霧法超微細粉末製造装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108883407A (zh) 2015-12-16 2018-11-23 阿马斯坦技术有限责任公司 球状脱氢金属和金属合金颗粒
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
US10583492B2 (en) * 2016-12-21 2020-03-10 Carpenter Technology Corporation Titanium powder production apparatus and method
TWI618589B (zh) * 2016-12-23 2018-03-21 悅城科技股份有限公司 製造材料粉末的方法及裝置
JP6955354B2 (ja) * 2017-03-31 2021-10-27 株式会社フジミインコーポレーテッド 粉末積層造形に用いるための造形用材料
JP6544836B2 (ja) * 2017-07-03 2019-07-17 株式会社 東北テクノアーチ 金属粉末の製造装置及びその製造方法
US20170305065A1 (en) * 2017-07-07 2017-10-26 Cheng Kuan Wu Manufacturing process
KR20200141043A (ko) 2018-04-13 2020-12-17 타니오비스 게엠베하 3d-프린팅을 위한 금속 분말
CA3104080A1 (en) 2018-06-19 2019-12-26 6K Inc. Process for producing spheroidized powder from feedstock materials
JP2020100880A (ja) * 2018-12-21 2020-07-02 昭和電工株式会社 金属粉末の製造方法
CN113646116A (zh) * 2019-02-07 2021-11-12 埃奎斯费雷斯公司 用于包括再熔工艺的应用的具有低沉淀物密度的合金及其制备方法
AU2020266556A1 (en) 2019-04-30 2021-11-18 6K Inc. Lithium lanthanum zirconium oxide (LLZO) powder
SG11202111576QA (en) 2019-04-30 2021-11-29 6K Inc Mechanically alloyed powder feedstock
RU2743474C2 (ru) * 2019-07-03 2021-02-18 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ плазменного производства порошков неорганических материалов и устройство для его осуществления
WO2021118762A1 (en) 2019-11-18 2021-06-17 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
CN110756818A (zh) * 2019-11-28 2020-02-07 天钛隆(天津)金属材料有限公司 一种制备球形钛粉的雾化装备及方法
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
WO2021123896A1 (en) * 2019-12-20 2021-06-24 Arcelormittal Metal powder for additive manufacturing
EP4076802A1 (en) * 2019-12-20 2022-10-26 ArcelorMittal Metal powder for additive manufacturing
CN111112634A (zh) * 2020-01-17 2020-05-08 上海理工大学 一种制备金属粉末的装置及方法
JP2023532457A (ja) 2020-06-25 2023-07-28 シックスケー インコーポレイテッド 微細複合合金構造体
CN111633216B (zh) * 2020-07-15 2021-03-16 湖南省天心博力科技有限公司 一种铜粉水雾化系统及其雾化结构
WO2022067303A1 (en) 2020-09-24 2022-03-31 6K Inc. Systems, devices, and methods for starting plasma
AU2021371051A1 (en) 2020-10-30 2023-03-30 6K Inc. Systems and methods for synthesis of spheroidized metal powders
RU2765285C1 (ru) * 2020-12-08 2022-01-28 Федеральное государственное бюджетное образовательное учреждение высшего образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") Способ трехмерной печати изделий из электропроводящего сырья
CN112872361A (zh) * 2021-01-13 2021-06-01 南京工业大学 一种基于熔体温度的钛及钛合金液体精加工连锁精密调控方法
CN114921673B (zh) * 2022-06-06 2022-11-22 核工业西南物理研究院 一种纳米氧化物颗粒弥散强化铜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925554B1 (ja) * 1969-05-16 1974-07-01
JPH03183706A (ja) * 1989-11-09 1991-08-09 Crucible Materials Corp チタン粒子の製造法
JPH06128611A (ja) * 1990-04-09 1994-05-10 Leybold Ag 湯流の形成方法及び装置
US5516081A (en) * 1994-07-18 1996-05-14 General Electric Company Water-cooled molten metal refining hearth
JPH08199207A (ja) * 1995-01-30 1996-08-06 Sumitomo Sitix Corp 金属粉末の製造方法およびその装置
US5707419A (en) * 1995-08-15 1998-01-13 Pegasus Refractory Materials, Inc. Method of production of metal and ceramic powders by plasma atomization
JP2001293552A (ja) * 2000-02-23 2001-10-23 General Electric Co <Ge> 鋳造物に粉末を添加する核生成鋳造システムおよび方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925554A (ja) * 1972-09-27 1974-03-07
SU529005A1 (ru) * 1975-06-19 1976-09-25 Предприятие П/Я Г-4236 Установка дл получени порошка центробежным распылением расплавов
US5263689A (en) * 1983-06-23 1993-11-23 General Electric Company Apparatus for making alloy power
US4778516A (en) * 1986-11-03 1988-10-18 Gte Laboratories Incorporated Process to increase yield of fines in gas atomized metal powder
US4932635A (en) * 1988-07-11 1990-06-12 Axel Johnson Metals, Inc. Cold hearth refining apparatus
US5272718A (en) * 1990-04-09 1993-12-21 Leybold Aktiengesellschaft Method and apparatus for forming a stream of molten material
US5201359A (en) * 1990-09-24 1993-04-13 General Motors Corporation Rapid solidification apparatus
US5366204A (en) * 1992-06-15 1994-11-22 General Electric Company Integral induction heating of close coupled nozzle
JPH06346115A (ja) * 1993-06-03 1994-12-20 Mitsubishi Materials Corp 金属粉末の製造装置及び製造方法
US5769151A (en) * 1995-12-21 1998-06-23 General Electric Company Methods for controlling the superheat of the metal exiting the CIG apparatus in an electroslag refining process
US6425504B1 (en) * 1999-06-29 2002-07-30 Iowa State University Research Foundation, Inc. One-piece, composite crucible with integral withdrawal/discharge section
US6219372B1 (en) * 1999-12-29 2001-04-17 General Electric Company Guide tube structure for flux concentration
US6358466B1 (en) * 2000-04-17 2002-03-19 Iowa State University Research Foundation, Inc. Thermal sprayed composite melt containment tubular component and method of making same
US6496529B1 (en) * 2000-11-15 2002-12-17 Ati Properties, Inc. Refining and casting apparatus and method
US7913884B2 (en) * 2005-09-01 2011-03-29 Ati Properties, Inc. Methods and apparatus for processing molten materials
CN100488671C (zh) * 2007-02-09 2009-05-20 北京蓝景创新科技有限公司 金属粉末制备装置
US20160144435A1 (en) * 2014-11-24 2016-05-26 Ati Properties, Inc. Atomizing apparatuses, systems, and methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925554B1 (ja) * 1969-05-16 1974-07-01
JPH03183706A (ja) * 1989-11-09 1991-08-09 Crucible Materials Corp チタン粒子の製造法
JPH06128611A (ja) * 1990-04-09 1994-05-10 Leybold Ag 湯流の形成方法及び装置
US5516081A (en) * 1994-07-18 1996-05-14 General Electric Company Water-cooled molten metal refining hearth
JPH08199207A (ja) * 1995-01-30 1996-08-06 Sumitomo Sitix Corp 金属粉末の製造方法およびその装置
US5707419A (en) * 1995-08-15 1998-01-13 Pegasus Refractory Materials, Inc. Method of production of metal and ceramic powders by plasma atomization
JP2001293552A (ja) * 2000-02-23 2001-10-23 General Electric Co <Ge> 鋳造物に粉末を添加する核生成鋳造システムおよび方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021518490A (ja) * 2018-03-17 2021-08-02 パイロジェネシス・カナダ・インコーポレーテッド 溶融原料から高純度球状金属粉末を製造する方法および装置
JP2022096622A (ja) * 2020-12-17 2022-06-29 江蘇博遷新材料有限公司 プラズマアーク噴霧法超微細粉末製造装置
JP7386839B2 (ja) 2020-12-17 2023-11-27 江蘇博遷新材料股▲ふん▼有限公司 プラズマアーク噴霧法超微細粉末製造装置

Also Published As

Publication number Publication date
SG11201708554YA (en) 2017-11-29
BR112017024489B1 (pt) 2021-08-03
CA2983669A1 (en) 2016-11-17
MX2017014320A (es) 2018-03-07
ZA201707460B (en) 2022-06-29
RU2714718C2 (ru) 2020-02-20
WO2016182631A1 (en) 2016-11-17
RU2017143576A3 (ja) 2019-08-30
TW201703902A (zh) 2017-02-01
UA122691C2 (uk) 2020-12-28
ES2862420T3 (es) 2021-10-07
RU2017143576A (ru) 2019-06-17
TWI677387B (zh) 2019-11-21
BR112017024489A2 (pt) 2018-07-24
US20160332232A1 (en) 2016-11-17
IL255324A0 (en) 2017-12-31
EP3294482A1 (en) 2018-03-21
AU2016260949B2 (en) 2020-11-19
CN107635701B (zh) 2021-06-18
KR20180006385A (ko) 2018-01-17
US20190381571A1 (en) 2019-12-19
JP6883525B2 (ja) 2021-06-09
SA517390308B1 (ar) 2021-06-01
IL255324B (en) 2021-08-31
US20220288684A1 (en) 2022-09-15
KR102401270B1 (ko) 2022-05-23
NZ738183A (en) 2021-08-27
CN107635701A (zh) 2018-01-26
EP3294482B1 (en) 2020-12-16
AU2016260949A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
US20220288684A1 (en) Methods and apparatuses for producing metallic powder material
Sun et al. Review of the methods for production of spherical Ti and Ti alloy powder
JP4733908B2 (ja) 精製と鋳造を行う装置およびその方法
US7803212B2 (en) Apparatus and method for clean, rapidly solidified alloys
KR101812841B1 (ko) 분무화된 금속 및 합금으로부터 생성물을 형성하기 위한 방법 및 장치
JP2018522136A5 (ja)
KR20140027335A (ko) 구형 티타늄 및 티타늄 합금 파우더를 제조하기 위한 저비용 공정
JP2004523359A5 (ja)
JP2017075386A (ja) 金属粉末の製造装置及びその製造方法
US20060230876A1 (en) Method for producing alloy ingots
JP2010018825A (ja) 金属粒子の製造方法および製造装置、並びに製造された金属粒子
JP2001293552A (ja) 鋳造物に粉末を添加する核生成鋳造システムおよび方法
AU2018400808B2 (en) Methods of forming spherical metallic particles
NZ738183B2 (en) Methods and apparatuses for producing metallic powder material
JPH0270010A (ja) 高純度金属粉末の製造方法および装置
JP4959897B2 (ja) 液体金属の離心供給源を備える鋳造装置及び方法
WO2021157156A1 (ja) チタン合金粉末の製造方法
JPH0610012A (ja) 金属粉末の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200220

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210127

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R150 Certificate of patent or registration of utility model

Ref document number: 6883525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250