JP2018513957A - 排気再循環を有するガスタービンシステム内の酸化剤通路のためのシステム及び方法 - Google Patents

排気再循環を有するガスタービンシステム内の酸化剤通路のためのシステム及び方法 Download PDF

Info

Publication number
JP2018513957A
JP2018513957A JP2017555450A JP2017555450A JP2018513957A JP 2018513957 A JP2018513957 A JP 2018513957A JP 2017555450 A JP2017555450 A JP 2017555450A JP 2017555450 A JP2017555450 A JP 2017555450A JP 2018513957 A JP2018513957 A JP 2018513957A
Authority
JP
Japan
Prior art keywords
exhaust gas
oxidant
turbine
gas
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017555450A
Other languages
English (en)
Other versions
JP2018513957A5 (ja
Inventor
ジョナサン ケイ アレン
ジョナサン ケイ アレン
ジェシー エドウィン トラウト
ジェシー エドウィン トラウト
イルヤ アレクサンドロヴィッチ スロボディアンスキー
イルヤ アレクサンドロヴィッチ スロボディアンスキー
ブラッドフォード デイヴィッド ボルヒェルト
ブラッドフォード デイヴィッド ボルヒェルト
マイケル ヴイ カザキス
マイケル ヴイ カザキス
イゴル ペトロヴィッチ シドコ
イゴル ペトロヴィッチ シドコ
Original Assignee
エクソンモービル アップストリーム リサーチ カンパニー
エクソンモービル アップストリーム リサーチ カンパニー
ジョナサン ケイ アレン
ジョナサン ケイ アレン
ジェシー エドウィン トラウト
ジェシー エドウィン トラウト
イルヤ アレクサンドロヴィッチ スロボディアンスキー
イルヤ アレクサンドロヴィッチ スロボディアンスキー
ブラッドフォード デイヴィッド ボルヒェルト
ブラッドフォード デイヴィッド ボルヒェルト
マイケル ヴイ カザキス
マイケル ヴイ カザキス
イゴル ペトロヴィッチ シドコ
イゴル ペトロヴィッチ シドコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エクソンモービル アップストリーム リサーチ カンパニー, エクソンモービル アップストリーム リサーチ カンパニー, ジョナサン ケイ アレン, ジョナサン ケイ アレン, ジェシー エドウィン トラウト, ジェシー エドウィン トラウト, イルヤ アレクサンドロヴィッチ スロボディアンスキー, イルヤ アレクサンドロヴィッチ スロボディアンスキー, ブラッドフォード デイヴィッド ボルヒェルト, ブラッドフォード デイヴィッド ボルヒェルト, マイケル ヴイ カザキス, マイケル ヴイ カザキス, イゴル ペトロヴィッチ シドコ, イゴル ペトロヴィッチ シドコ filed Critical エクソンモービル アップストリーム リサーチ カンパニー
Publication of JP2018513957A publication Critical patent/JP2018513957A/ja
Publication of JP2018513957A5 publication Critical patent/JP2018513957A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/045Air inlet arrangements using pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00001Arrangements using bellows, e.g. to adjust volumes or reduce thermal stresses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00005Preventing fatigue failures or reducing mechanical stress in gas turbine components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00012Details of sealing devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

システムは、タービン燃焼器を含む。タービン燃焼器は、燃焼チャンバの周りに配置された燃焼器ライナと、フロースリーブと、半径方向通路とを有する。フロースリーブは、通路を定めるように燃焼器ライナの周りにオフセットで配置され、通路は、排気ガス流れをタービン燃焼器のヘッド端部に向けるように構成される。半径方向通路は、フロースリーブと燃焼器ライナの間を延び、半径方向通路は、タービン燃焼器の第1の作動条件及び第2の作動条件に対して半径方向通路を通る酸化剤流れを通路を通る排気ガス流れから隔離するように構成される。第1の作動条件での燃焼器ライナとフロースリーブの間のオフセットは、第2の作動条件での燃焼器ライナとフロースリーブの間のオフセットよりも大きい。【選択図】図7

Description

〔関連出願への相互参照〕
本出願は、全ての目的に対してその全体が本明細書に引用によって組み込まれている2015年1月12日出願の「SYSTEM AND METHOD FOR AN OXIDANT PASSAGEWAY IN A GAS TURBINE SYSTEM WITH EXHAUST GAS RECIRCULATION」という名称の米国仮特許出願第62/102,388号に対する優先権及びその利益を主張するものである。
本明細書に開示する主題は、ガスタービンシステムに関し、より具体的には、排気再循環を有するガスタービンに関する。
ガスタービンエンジンは、発電、航空機、及び様々な機械装置のような広範な用途に使用されている。ガスタービンエンジンは、一般的に、燃焼器セクションにおいて酸化剤(例えば、空気)と共に燃料を燃焼させて高温の燃焼生成物を発生させ、これは、次に、タービンセクションの1又は2以上のタービン段を駆動する。次に、タービンセクションは、圧縮機セクションの1又は2以上の圧縮機段を駆動し、それによって燃料と共に燃焼器セクションの中に吸入するための酸化剤を圧縮する。ここでもまた、燃料及び酸化剤が燃焼器セクションにおいて混合し、次に、燃焼して高温燃焼生成物を生成する。これらの燃焼生成物は、未燃燃料、残留酸化剤、及び燃焼の条件に依存して様々な排出物(例えば、窒素酸化物)を含む場合がある。更に、ガスタービンエンジンは、典型的には、酸化剤として大量の空気を消費し、かなりの量の排気ガスを大気中に排出する。換言すると、排気ガスは、典型的には、ガスタービン作動の副産物として無駄になっている。
当初の特許請求の範囲に記載された発明と同等の一実施形態を以下に要約する。これらの実施形態は、特許請求する本発明の技術的範囲を限定することを意図するものではなく、むしろこれらの実施形態は、本発明の実施可能な形態の簡潔な概要を示すことのみを意図している。当然のことながら、本発明は、以下に記載する実施形態と同様の実施形態、又は実施形態とは異なるものとすることができる様々な形態を含むことができる。
実施形態において、タービン燃焼器を有するシステムを提供する。タービン燃焼器は、燃焼チャンバの周りに配置された燃焼器ライナと、フロースリーブと、半径方向通路とを有する。フロースリーブは、通路を定めるように燃焼器ライナの周りにオフセットで配置され、通路は、排気ガス流れをタービン燃焼器のヘッド端部に向けるように構成される。半径方向通路は、フロースリーブと燃焼器ライナの間を延び、半径方向通路は、タービン燃焼器の第1の作動条件及び第2の作動条件に対して半径方向通路を通る酸化剤流れを通路を通る排気ガス流れから隔離するように構成される。第1の作動条件での燃焼器ライナとフロースリーブの間のオフセットは、第2の作動条件での燃焼器ライナとフロースリーブの間のオフセットよりも大きい。
別の実施形態において、システムを提供する。システムは、ガスタービンエンジンのタービン燃焼器の燃焼ライナとフロースリーブの間の通路に装着されるように構成されたシンブルシステムを含む。シンブルシステムは、酸化剤通路を有する少なくとも1つのスリーブを含み、少なくとも1つのスリーブは、燃焼ライナとフロースリーブの間を移動して酸化剤通路と通路の間の流体連通を遮断するように構成される。
別の実施形態において、方法を提供する。本方法は、ガスタービンエンジンのタービン燃焼器の燃焼ライナとフロースリーブの間の通路に配置されたシンブルシステム内で酸化剤通路を通して酸化剤を調節可能に経路指定する段階を含む。調節可能に経路指定する段階は、酸化剤通路と通路の間の流体連通を遮断しながら、燃焼ライナとフロースリーブの間のシンブルシステムの少なくとも1つのスリーブを選択的に移動する段階を含む。
本発明のこれら及び他の特徴、態様、及び利点は、図面全体を通して同じ文字が同じ部分を表す添付の図面を参照して以下の詳細説明を読むとより良く理解されることになるであろう。
炭化水素生成システムに連結されたタービンベースのサービスシステムを有するシステムの実施形態の図である。 制御システム及び複合サイクルシステムを更に示す図1のシステムの実施形態の図である。 ガスタービンエンジン、排気ガス供給システム、及び排気ガス処理システムの詳細を更に示す図1及び図2のシステムの実施形態の図である。 図1〜図3のシステムを作動させるための工程の実施形態のフローチャートである。 排気再循環を有するガスタービンエンジンの燃焼器部分とフロースリーブとライナの間に配置された可撓性シンブルシステムとの実施形態の概略図である。 1又は2以上の混合孔と位置合わせした可撓性シンブルシステムを示す図5のガスタービンエンジンの燃焼部分の実施形態の概略図である。 可撓性シンブルシステムがバネ荷重式シンブルシステムである図5の可撓性シンブルシステムの実施形態の概略図である。 可撓性シンブルシステムが機械保持式シンブルシステムである図5の可撓性シンブルシステムの実施形態の概略図である。
本発明の1又は2以上の特定の実施形態について以下に説明する。これらの実施形態の簡潔な説明を行う取り組みの一環として、本明細書では、実際の実施構成の全ての特徴については説明しない場合がある。技術又は設計プロジェクトと同様に、このような何らかの実際の実施構成の開発において、システム及び/又はビジネスに関連した制約への準拠など、実施構成毎に異なる可能性のある特定の目標を達成するために多数の実施時固有の決定が行われる点は理解されたい。その上、このような努力は、複雑で多大な時間を必要とする場合があるが、それにも関わらず、本開示の利点を有する当業者にとっては、設計、製作、及び製造の日常的な業務である点を理解されたい。
詳細な例示的実施形態を本明細書に説明する。しかし、本明細書に開示する特定の構造及び機能の詳細は、例示的実施形態を説明する目的に対して代表的なものに過ぎない。しかし、本発明の実施形態は、多くの代わりの形態に具現化することができ、本明細書に説明する実施形態だけに限定すると解釈すべきではない。
従って、例示的実施形態は、様々な修正及び代わりの形態のものが可能であるが、それらの実施形態は、図に例として示されており、本明細書で詳細に説明する。しかし、例示的実施形態を開示する特定の形態に限定するように考えられているものではなく、それとは反対に、例示的実施形態は、本発明の範囲に含まれる全ての修正物、均等物、及び代替物を包含することになることは理解されるものとする。
本明細書に使用する専門用語は、特定の実施形態のみを説明するためのものであり、例示的実施形態を限定するように考えられているものではない。本明細書に使用される場合に、単数形の名詞は、それ以外の異なる指示がない限り、複数形も含むことを意図している。用語「備えている」、「備える」、「有する」、及び/又は「含む」は、本明細書に使用する時に、図示した特徴、整数、段階、作動、要素、及び/又は構成要素の存在を識別するが、1又は2以上の他の特徴、整数、段階、作動、要素、構成要素、及び/又はそれらの群の存在又は追加を排除しない。
用語「第1」、「第2」、「1次」、「2次」、その他を本明細書に使用して様々な要素を説明することができるが、それらの要素をそれらの用語に限定すべきではない。それらの用語は、一方の要素を別の要素と区別するのに使用されるに過ぎない。例えば、以下に限定されるものではないが、例示的実施形態の範囲から逸脱することなく、第1の要素は第2の要素と呼ぶことができ、同様に、第2の要素は第1の要素と呼ぶことができる。本明細書に使用される場合に、用語「及び/又は」は、関連して挙げた品目のうちの1又は2以上のいずれか及び全ての組合せを含む。
ある一定の専門用語は、読者の便宜のためだけに本明細書に使用される場合があり、本発明の範囲を限定すると取るべきではない。例えば、「上側」、「下側」、「左」、「右」、「前」、「後」、「上部」、「底部」、「水平」、「垂直」、「上流」、「下流」、「前方」、及び「後方」などのような表現は、図に示す構成を説明するに過ぎない。当然のことながら、本発明の実施形態の1又は複数の要素は、あらゆる方向に向けることができ、従って、専門用語は、具体的にそれ以外の定義をした場合を除き、そのような変形を包含することは理解されるものとする。
以下で詳細に検討されるように、開示する実施形態は、全体的に、排気ガス再循環(EGR)を有するガスタービンシステムに関し、より詳細には、EGRを用いたガスタービンシステムの量論的作動に関する。例えば、ガスタービンシステムは、排気ガス再循環経路に沿って排気ガスを再循環させ、再循環された排気ガスの少なくとも一部と共に燃料及び酸化剤を量論的に燃焼させ、かつ様々な目標システムにおいて使用するために排気ガスを取り込むよう構成することができる。量論的燃焼と共に排気ガスを再循環することによって、排気ガス中の二酸化炭素(CO2)の濃度レベルを上昇させるのに役立ち、種々の目標システムで使用するためにCO2及び窒素(N2)を分離及び精製するよう後処理することができる。ガスタービンシステムはまた、排気ガス再循環経路に沿って種々の排気ガス処理(例えば、熱回収、触媒反応、その他)を利用し、これによりCO2の濃度レベルを上昇させ、他のエミッション(例えば、一酸化炭素、窒素酸化物、及び未燃炭化水素)の濃度レベルを低下させ、エネルギー回収(例えば、熱回収ユニットを用いて)を向上させることができる。更に、ガスタービンエンジンは、1又は2以上の拡散火炎(例えば、拡散燃料ノズルを用いて)、予混合火炎(例えば、予混合燃料ノズルを用いて)、又はこれらの何らかの組合せを用いて燃料及び酸化剤を燃焼させるように構成することができる。特定の実施形態において、拡散火炎は、量論的燃焼の一定の限度内に安定性及び作動を維持するのに役立つことができ、これは次に、CO2の生成を増加させるのに役立つ。例えば、拡散火炎で作動するガスタービンシステムは、予混合火炎で作動するガスタービンシステムと比べてより大量のEGRを可能にすることができる。次に、EGRの増量は、CO2生成を増加させるのに役立つ。可能な目標システムは、原油二次回収(EOR)システムなどのパイプライン、貯蔵タンク、炭素隔離システム、及び炭化水素生成システムを含む。
以下に説明するように、量論的排気再循環(SEGR)ガスタービンシステムの一部の実施形態は、酸化剤及び燃料を燃焼器のヘッド端部分から燃焼チャンバの中に供給することができる。更に、SEGRガスタービンシステムは、不活性ガス(例えば、排気ガス)を燃焼器の反対側のタービン端部分にある燃焼器に個別に供給して、燃焼器ライナ及び燃焼チャンバ内の燃焼ガスを冷却することができる。例えば、フロースリーブ(例えば、中間壁)は、不活性ガス(例えば、排気ガス)が燃焼チャンバの外側に沿って流れることを可能にする燃焼器ライナの周りに通路を形成する。通路は、ヘッド端部分に開くことができる。一部の実施形態において、酸化剤の一部分は、ヘッド端部分から燃焼ガスに対して下流方向に酸化剤セクションに入る。酸化剤セクションは、少なくとも部分的に燃焼ライナと不活性ガスを有する通路との周りに(例えば、半径方向外側に)配置することができる。不活性ガス(例えば、排気ガス)は、燃焼器のタービン端部分から燃焼ガスに対して上流方向に通路の冷却部分に入る。一般的に、対向する流れ(例えば、酸化剤セクションの下流方向の酸化剤、通路の上流方向の不活性ガス)の間の混合及び相互作用量を低減して、不活性ガスの酸化剤組成の低減を維持することが利益になる場合がある。
従って、ある一定のSEGRガスタービンシステムにおいて、下流方向に流れる酸化剤を酸化剤セクションから燃焼器の燃焼チャンバの中に向けて経路指定する1又は2以上のシンブルシステムを提供することができる。特に、シンブルシステムは、酸化剤を酸化剤セクションから不活性ガス通路及び燃焼ライナを通じて燃焼器の燃焼チャンバの中に向ける酸化剤通路を含むことができる。しかし、ある一定の実施形態において、シンブルシステムは、燃焼ライナとフロースリーブの間にある不活性ガスのための通路(例えば、中間空間)に開かれている酸化剤セクション内の間隙を含むことができる。間隙は、フロースリーブと燃焼ライナの間の設置を容易にすることができる。しかし、開示する実施形態なしでは、シンブルシステム内の間隙は、通路内の酸化剤の一部分と不活性ガスの間で不要な混合を可能にする場合がある。従って、本発明の開示の特徴は、不活性ガスを有する通路に開かれているフロースリーブと燃焼ライナの間の間隙を取り除くシンブルシステムの実施形態を提供する。ある一定の実施形態において、シンブルシステムは、図7に関連して以下で更に説明するように、1又は2以上の傾斜路を通じて燃焼ライナとフロースリーブの間に設置することができるバネ荷重式シンブルシステムである。ある一定の実施形態において、シンブルシステムは、図8に関連して更に説明するように、浮遊式カラーシステムを通じて燃焼ライナとフロースリーブの間に設置することができる機械荷重式シンブルシステムである。
一部の実施形態において、燃焼器は、酸化剤及び1又は2以上の燃料を燃焼チャンバの中に注入するように個別に供給かつ制御された燃料ノズルセットを有することができる。一部の実施形態において、酸化剤は、火炎ゾーンの近くに集中して燃焼効率を改善し、それによって当量比に影響を与える。当量比を約1.0(例えば、0.95〜1.05)に調節することで、SEGRガスタービンシステムの排気ガス内の酸化剤、燃料、及び/又は他の成分(例えば、窒素、酸化物、水)の濃度を低下させることができる。しかし、燃焼温度はまた、1.0又はその近くの当量比(例えば、実質的に量論的燃焼)により上昇する場合がある。燃焼温度が上昇する時に、窒素酸化物(NOx)排出のようなより多い排出を生じる場合がある。不活性ガス(例えば、排気ガス)は、燃焼器及び/又は燃焼ガスのためのヒートシンクとすることができる。換言すると、不活性ガス(例えば、排気ガス)は、燃焼ガスの温度を低下させるのを補助し、それによって燃焼ガスの中により多くの酸化剤(例えば、酸素)導入することなくNOx排出を低減することができる。一部の実施形態において、当量比を約1.0に調節することで、原油2次回収システムにおいて利用することができる二酸化炭素の濃度を上昇させることができ、一方、希釈剤としての排気ガスの使用は、燃焼ガスにおいて低レベルのNOx、酸素、及び燃料を維持する。排気ガス、又は排気ガスから抽出される二酸化炭素は、原油2次回収のために流体注入システムによって利用することができる。
図1は、タービンベースのサービスシステム14に関連する炭化水素生成システム12を有するシステム10の実施形態の図である。以下でより詳細に検討するように、タービンベースのサービスシステム14の種々の実施形態は、電力、機械的パワー、及び流体(例えば、排気ガス)などの種々のサービスを炭化水素生成システム12に提供し、オイル及び/又はガスの生成又は取り出しを促進するよう構成される。図示の実施形態において、炭化水素生成システム12は、オイル/ガス抽出システム16及び原油二次回収(EOR)システム18を含み、これらは、地下リザーバ20(例えば、オイル、ガス、又は炭化水素リザーバ)に連結される。オイル/ガス抽出システム16は、オイル/ガス井戸26に連結されたクリスマスツリー又は生産ツリー24のような様々な坑外設備22を含む。更に、井戸26は、地中32にある掘削ボア30を通って地下リザーバ20まで延びる1又は2以上の管体28を含むことができる。ツリー24は、地下リザーバ20との間で圧力を調節し流れを制御する、1又は2以上のバルブ、チョーク、分離スリーブ、噴出防止装置、及び種々の流れ制御装置を含む。ツリー24は、一般に、地下リザーバ20の外への生産流体(例えば、オイル又はガス)の流れを制御するのに使用されるが、EORシステム18は、1又は2以上の流体を地下リザーバ20内に注入することによりオイル又はガスの生産を増大させることができる。
従って、EORシステム18は、地中32にあるボア38を通って地下リザーバ20内に延びる1又は2以上の管体36を有する流体注入システム34を含むことができる。例えば、EORシステム18は、1又は2以上の流体40(ガス、蒸気、水、化学物質、又はこれらの何らかの組合せ)を流体注入システム34に送ることができる。例えば、以下でより詳細に検討するように、EORシステム18は、タービンベースのサービスシステム14に連結され、その結果、システム14は、排気ガス42(例えば、実質的に又は完全に酸素を伴わない)をEORシステム18に送り、注入流体40として用いることができるようになる。流体注入システム34は、矢印44で示されるように、流体40(例えば、排気ガス42)を1又は2以上の管体36を通って地下リザーバ20に送る。注入流体40は、オイル/ガス井戸26の管体28からオフセット距離46だけ離れた管体36を通って地下リザーバ20に流入する。従って、注入流体40は、地下リザーバ20内に配置されたオイル/ガス48を移動させ、矢印50で示されるように、オイル/ガス48を炭化水素生成システム12の1又は2以上の管体28を通って上方に送り出す。以下でより詳細に検討するように、注入流体40は、炭化水素生成システム12によって必要に応じて施設内で排気ガス42を発生させることができるタービンベースのサービスシステム14から生じた排気ガス42を含むことができる。換言すると、タービンベースのシステム14は、1又は2以上のサービス(例えば、電力、機械的パワー、蒸気、水(例えば、脱塩水)と、炭化水素生成システム12が使用する排気ガス(例えば、実質的に酸素を伴わない)とを同時に発生させ、これによりこのようなサービスの外部供給源への依存を低減又は排除することができる。
図示の実施形態において、タービンベースのサービスシステム14は、量論的排気ガス再循環(SEGR)ガスタービンシステム52及び排気ガス(EG)処理システム54を含む。ガスタービンシステム52は、燃料リーン制御モード又は燃料リッチ制御モードのような、量論的燃焼作動モード(例えば、量論的制御モード)及び非量論的燃焼作動モード(例えば、非量論的制御モード)で作動するよう構成することができる。量論的制御モードにおいては、燃焼は、全体的に、燃料及び酸化剤の実質的に化学量論比で生じ、これにより実質的に量論的燃焼を生じることになる。特に、量論的燃焼は、一般に、燃焼生成物が実質的に又は完全に未燃燃料及び酸化剤を含まないように、燃焼反応において燃料及び酸化剤の実質的に全てを消費することを伴う。量論的燃焼の1つの尺度は、当量比すなわちファイ(Φ)であり、量論的燃料/酸化剤比に対する実際の燃料/酸化剤比の割合である。1.0よりも大きい当量比は、燃料及び酸化剤の燃料リッチ燃焼をもたらし、他方、1.0よりも小さい当量比は、燃料及び酸化剤の燃料リーン燃焼をもたらす。対照的に、当量比1.0は、燃料リッチでもなく燃料リーンでもない燃焼をもたらし、従って、燃焼反応において燃料及び酸化剤の全てを実質的に消費する。開示する実施形態の文脈において、用語「量論的」又は「実質的に量論」とは、約0.95〜約1.05の当量比を指すことができる。しかし、開示する実施形態はまた、当量比1.0±0.01、0.02、0.03、0.04、0.05、又はそれ以上を含むことができる。ここでもまた、タービンベースのサービスシステム14における燃料及び酸化剤の量論的燃焼は、残存する未燃燃料又は酸化剤が実質的に存在しない燃焼生成物又は排気ガス(例えば、42)をもたらすことができる。例えば、排気ガス42は、1、2、3、4、又は5容積パーセント未満の酸化剤(例えば、酸素)、未燃燃料又は炭化水素(例えば、HC)、窒素酸化物(例えば、NOx)、一酸化炭素(CO)、硫黄酸化物(例えば、SOx)、水素、及び他の不完全燃焼生成物を有することができる。別の実施例によれば、排気ガス42は、約10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、2000、3000、4000、又は5000ppmv(百万分の1体積)未満の酸化剤(例えば、酸素)、未燃燃料又は炭化水素(例えば、HC)、窒素酸化物(例えば、NOx)、一酸化炭素(CO)、硫黄酸化物(例えば、SOX)、水素、及び他の不完全燃焼生成物を有することができる。しかし、開示する実施形態はまた、排気ガス42中の他の範囲の残留燃料、酸化剤、及び他のエミッションレベルを生成する。本明細書で使用される場合、用語「エミッション」、「エミッションレベル」、及び「エミッション目標」は、特定の燃焼生成物(例えば、NOx、CO、SOx、O2、N2、H2、HCs、その他)の濃度レベルを指すことができ、これらは、再循環されたガスストリーム、放出されたガスストリーム(例えば、大気中に排気された)、及び種々の目標システム(例えば、炭化水素生成システム12)において使用されるガスストリーム中に存在することができる。
SEGRガスタービンシステム52及びEG処理システム54は、異なる実施形態において様々な構成要素を含むことができるが、図示のEG処理システム54は、熱回収蒸気発電機(HRSG)56及び排気ガス再循環(EGR)システム58を含み、これらは、SEGRガスタービンシステム52から生じた排気60を受け入れて処理する。HRSG56は、1又は2以上の熱交換器、凝縮機、及び種々の熱回収設備を含むことができ、これらは全体として、排気60からの熱を水ストリームに伝達して蒸気62を発生させるよう機能する。蒸気62は、1又は2以上の蒸気タービン、EORシステム18、又は炭化水素生成システム12の他のいずれかの部分において用いることができる。例えば、HRSG56は、低圧、中圧、及び/又は高圧の蒸気62を生成することができ、これらは、低圧、中圧、及び高圧蒸気タービン段又はEORシステム18の異なる用途に選択的に適用することができる。蒸気62に加えて、脱塩水のような処理水64は、HRSG56、EGRシステム58、及び/又はEG処理システム54又はSEGRガスタービンシステム52の別の部分によって生成することができる。処理水64(例えば、脱塩水)は、内陸又は砂漠地帯などの水不足の領域において特に有用とすることができる。処理水64は、SEGRガスタービンシステム52内で燃料の燃焼を生じる大量の空気によって少なくとも部分的に生成することができる。蒸気62及び水64の施設内での生成は、多くの用途(炭化水素生成システム12を含む)で有益であるが、排気ガス42、60の施設内での生成は、SEGRガスタービンシステム52から生成される低酸素含有、高圧及び熱に起因して、EORシステム18に特に有益とすることができる。従って、HRSG56、EGRシステム58、及び/又はEG処理システム54の別の部分は、排気ガス66をSEGRガスタービンシステム52に出力又は再循環できると同時に、排気ガス42を炭化水素生成システム12と共に使用するためにEORシステム18に送ることができる。同様に、排気ガス42は、炭化水素生成システム12のEORシステム18にて使用するためにSEGRガスタービンシステム52から直接(すなわち、EG処理システム54を通過することなく)抽出することができる。
排気ガス再循環は、EG処理システム54のEGRシステム58により行われる。例えば、EGRシステム58は、1又は2以上の導管、バルブ、ブロア、排気ガス処理システム(例えば、フィルタ、粒子状物質除去ユニット、ガス分離ユニット、ガス精製ユニット、熱交換器、熱回収ユニット、除湿ユニット、触媒ユニット、化学物質注入ユニット、又はその組合せ)、及び制御部を含み、排気ガス再循環経路に沿ってSEGRガスタービンシステム52の出力(例えば、排気された排気60)から入力(例えば、吸入された排気ガス66)まで排気ガスを再循環するようにする。図示の実施形態において、SEGRガスタービンシステム52は、1又は2以上の圧縮機を有する圧縮機セクションに排気ガス66を吸入させ、これにより排気ガス66を圧縮して、酸化剤68及び1又は2以上の燃料70の吸入と共に燃焼器セクションにおいて使用する。酸化剤68は、周囲空気、純酸素、酸素富化空気、酸素低減空気、酸素−窒素混合気、又は燃料70の燃焼を促進する何らかの好適な酸化剤を含むことができる。燃料70は、1又は2以上のガス燃料、液体燃料、又は何らかのこれらの組合せを含むことができる。例えば、燃料70は、天然ガス、液化天然ガス(LNG)、シンガス、メタン、エタン、プロパン、ブタン、ナフサ、ケロシン、ディーゼル燃料、エタノール、メタノール、バイオ燃料、又は何らかのこれらの組合せを含むことができる。
SEGRガスタービンシステム52は、燃焼器セクションにおいて排気ガス66、酸化剤68、及び燃料70を混合して燃焼させ、これによりタービンセクションにおいて1又は2以上のタービン段を駆動する高温の燃焼ガス又は排気60を発生する。特定の実施形態において、燃焼器セクションにおける各燃焼器は、1又は2以上の予混合燃料ノズル、1又は2以上の拡散燃料ノズル、又は何らかのこれらの組合せを含む。例えば、各予混合燃料ノズルは、燃料ノズルの内部で、及び/又は燃料ノズルの部分的に上流側で酸化剤68と燃料70を混合し、これにより予混合燃焼(例えば、予混合火炎)のため酸化剤−燃料混合気を燃料ノズルから燃焼ゾーンに注入するよう構成することができる。別の実施例によれば、各拡散燃料ノズルは、酸化剤68及び燃料70の流れを燃料ノズル内で分離し、これにより拡散燃焼(例えば、拡散火炎)のため酸化剤68及び燃料70を燃料ノズルから燃焼ゾーンに個別に注入するよう構成することができる。特に、拡散燃料ノズルによって提供される拡散燃焼は、初期燃焼のポイントすなわち火炎領域まで酸化剤68及び燃料70の混合を遅延させる。拡散燃料ノズルを利用する実施形態において、拡散火炎は、一般に酸化剤68及び燃料70の別個のストリームの間(すなわち、酸化剤68及び燃料70が混合される時に)の化学量論ポイントにて形成されるので、火炎安定性を向上させることができる。特定の実施形態において、1又は2以上の希釈剤(例えば、排気60、蒸気、窒素、又は別の不活性ガス)は、拡散燃料ノズル又は予混合燃料ノズルの何れかにおいて酸化剤68、燃料70、又は両方と予混合することができる。これに加えて、1又は2以上の希釈剤(例えば、排気60、蒸気、窒素、又は別の不活性ガス)は、各燃焼器内での燃焼ポイントにて又はその下流側にて燃焼器内に注入することができる。これらの希釈剤を使用することにより、火炎(例えば、予混合火炎又は拡散火炎)の調質を助け、これにより一酸化窒素(NO)及び二酸化窒素(NO2)などのNOxエミッションの低減を助けることができる。火炎のタイプに関係なく、燃焼は、高温の燃焼ガス又は排気60を生成して、1又は2以上のタービン段を駆動する。各タービン段が排気60によって駆動されると、SEGRガスタービンシステム52は、機械的パワー72及び/又は電力74(例えば、発電機を通じて)を発生する。システム52はまた、排気60を出力し、更に水64を出力することができる。ここでもまた、水64は、脱塩水などの処理水とすることができ、これは、設備内又は設備外での様々な用途で有用とすることができる。
排気ガスの抽出はまた、1又は2以上の抽出ポイント76を用いてSEGRガスタービンシステム52により提供される。例えば、図示の実施形態は、抽出ポイント76から排気ガス42を受け入れ、該排気ガス42を処理して、次いで、種々の目標システムに排気ガス42を供給又は分配する排気ガス(EG)抽出システム80及び排気ガス(EG)処理システム82を有する排気ガス(EG)供給システム78を含む。目標システムは、EORシステム18、及び/又はパイプライン86、貯蔵タンク88、又は炭素隔離システム90などの他のシステムを含むことができる。EG抽出システム80は、1又は2以上の導管、バルブ、制御部、及び流れ分離装置を含むことができ、これらは、排気ガス42を酸化剤68、燃料70、及び他の汚染物質から隔離すると同時に、抽出した排気ガス42の温度、圧力、及び流量を制御するのを可能にする。EG処理システム82は、1又は2以上の熱交換器(例えば、熱回収蒸気発電機などの熱回収ユニット、凝縮機、冷却器、又はヒーター)、触媒システム(例えば、酸化触媒システム)、粒子状物質及び/又は水除去システム(例えば、ガス脱水ユニット、慣性力選別装置、凝集フィルタ、水不透過性フィルタ、及び他のフィルタ)、化学物質注入システム、溶剤ベース処理システム(例えば、吸収器、フラッシュタンク、その他)、炭素捕捉システム、ガス分離システム、ガス精製システム、及び/又は溶剤ベース処理システム、排気ガス圧縮機、これらのいずれかの組合せを含むことができる。EG処理システム82のこれらのサブシステムにより、温度、圧力、流量、水分含有量(例えば、水分除去量)、粒子状物質含有量(例えば、粒子状物質除去量)、及びガス組成(例えば、CO2、N2、その他の割合)の制御が可能となる。
抽出した排気ガス42は、目標システムに応じて、EG処理システム82の1又は2以上のサブシステムにより処理される。例えば、EG処理システム82は、炭素捕捉システム、ガス分離システム、ガス精製システム、及び/又は溶剤ベース処理システムを通じて排気ガス42の一部又は全てを向けることができ、種々の目標システムで使用するために炭素含有ガス(例えば、二酸化炭素)92及び/又は窒素(N2)94を分離及び精製するよう制御される。例えば、EG処理システム82の実施形態は、ガス分離及び精製を実施し、第1のストリーム96、第2のストリーム97、及び第3のストリーム98のような排気ガス42の複数の異なるストリーム95を生成することができる。第1のストリーム96は、二酸化炭素リッチ及び/又は窒素リーン(例えば、CO2リッチ・N2リーンストリーム)である第1の組成を有することができる。第2のストリーム97は、二酸化炭素及び/又は窒素の中間濃度レベル(例えば、中間濃度CO2・N2ストリーム)である第2の組成を有することができる。第3のストリーム98は、二酸化炭素リーン及び/又は窒素リッチ(例えば、CO2リーン・N2リッチストリーム)である第3の組成を有することができる。各ストリーム95(例えば、96、97、及び98)は、目標システムへのストリーム95の送出を促進するために、ガス脱水ユニット、フィルタ、ガス圧縮機、又はその組合せを含むことができる。特定の実施形態において、CO2リッチ・N2リーンストリーム96は、約70、75、80、85、90、95、96、97、98、又は99容積パーセントよりも大きいCO2純度又は濃度レベルと、約1、2、3、4、5、10、15、20、25、又は30容積パーセントよりも小さいN2純度又は濃度レベルとを有することができる。対照的に、CO2リーン・N2リッチストリーム98は、約1、2、3、4、5、10、15、20、25、又は30容積パーセントよりも小さいCO2純度又は濃度レベルと、約70、75、80、85、90、95、96、97、98、又は99容積パーセントよりも大きいN2純度又は濃度レベルとを有することができる。中間濃度CO2・N2ストリーム97は、約30〜70、35〜65、40〜60、又は45〜55容積パーセントのCO2純度又は濃度レベル及び/又はN2純度又は濃度レベルを有することができる。上述の範囲は、単に非限定的な例に過ぎず、CO2リッチ・N2リーンストリーム96及びCO2リーン・N2リッチストリーム98は、EORシステム18及び他のシステム84と共に使用するのに特に好適とすることができる。しかし、これらのリッチ、リーン、又は中間の濃度のCO2ストリーム95の何れかは、単独で、又は様々な組合せでEORシステム18及び他のシステム84と共に使用することができる。例えば、EORシステム18及び他のシステム84(例えば、パイプライン86、貯蔵タンク88、及び炭素隔離システム90)は各々、1又は2以上のCO2リッチ・N2リーンストリーム96、1又は2以上のCO2リーン・N2リッチストリーム98、1又は2以上の中間濃度CO2・N2ストリーム97、及び1又は2以上の未処理排気ガス42ストリーム(すなわち、EG処理システム82をバイパスした)を受け入れることができる。
EG抽出システム80は、圧縮機セクション、燃焼器セクション、及び/又はタービンセクションに沿った1又は2以上の抽出ポイント76にて排気ガス42を抽出し、排気ガス42が、好適な温度及び圧力でEORシステム18及び他のシステム84において使用できるようにする。EG抽出システム80及び/又はEG処理システム82はまた、EG処理システム54との間で流体流れ(例えば、排気ガス42)を循環させることができる。例えば、EG処理システム54を通過する排気ガス42の一部は、EORシステム18及び他のシステム84で使用するためにEG抽出システム80によって抽出することができる。特定の実施形態において、EG供給システム78及びEG処理システム54は、独立しているか、又は互いに一体化することができ、従って、独立したサブシステム又は共通のサブシステムを用いることができる。例えば、EG処理システム82は、EG供給システム78及びEG処理システム54両方によって用いることができる。EG処理システム54から抽出される排気ガス42は、EG処理システム54における1又は2以上のガス処理段及びその後に続くEG処理システム82における1又は2以上の追加のガス処理段のような、複数のガス処理段を受けることができる。
各抽出ポイント76において、抽出した排気ガス42は、EG処理システム54において実質的に量論的燃焼及び/又はガス処理に起因して、実質的に酸化剤68及び燃料70(例えば、未燃燃料又は炭化水素)が存在しない場合がある。更に、目標システムに応じて、抽出した排気ガス42は、EG供給システム78のEG処理システム82において更なる処理を受け、これにより何らかの残留する酸化剤68、燃料70、又は他の望ましくない燃焼生成物を更に低減することができる。例えば、EG処理システム82の処理の前又は後で、抽出した排気ガス42は、1、2、3、4、又は5容積パーセントよりも少ない酸化剤(例えば、酸素)、未燃燃料又は炭化水素(例えば、HC)、窒素酸化物(例えば、NOx)、一酸化炭素(CO)、硫黄酸化物(例えば、SOx)、水素、及び他の不完全燃焼生成物を有することができる。別の実施例によれば、EG処理システム82の処理の前又は後で、抽出した排気ガス42は、約10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、2000、3000、4000、又は5000ppmv(百万分の1体積)よりも少ない酸化剤(例えば、酸素)、未燃燃料又は炭化水素(例えば、HC)、窒素酸化物(例えば、NOx)、一酸化炭素(CO)、硫黄酸化物(例えば、SOx)、水素、及び他の不完全燃焼生成物を有することができる。従って、排気ガス42は、EORシステム18と共に使用するのに特に好適である。
タービンシステム52のEGR作動は、具体的には、複数の位置76での排気ガス抽出を可能にする。例えば、システム52の圧縮機セクションを用いて、どのような酸化剤68もなしで排気ガス66を圧縮する(すなわち、排気ガス66の圧縮のみ)ことができ、その結果、酸化剤68及び燃料70の流入前に圧縮機セクション及び/又は燃焼器セクションから実質的に酸素を含まない排気ガス42を抽出することができるようになる。抽出ポイント76は、隣接する圧縮機段の間の段間ポートにて、圧縮機排気ケーシングに沿ったポートにて、燃焼器セクションにおける各燃焼器に沿ったポートにて、又はその組合せに位置付けることができる。特定の実施形態において、排気ガス66は、燃焼器セクションにおける各燃焼器のヘッド端部部分に達するまでは、酸化剤68及び燃料70と混合しないようにすることができる。更に、1又は2以上の流れ分離器(例えば、壁、仕切り、バッフル、又は同様のもの)を用いて、酸化剤68及び燃料70を抽出ポイント76から隔離することができる。これらの流れ分離器を用いると、抽出ポイント76は、燃焼器セクションにおける各燃焼器の壁に沿って直接配置することができる。
酸化剤68、及び燃料70がヘッド端部部分を通って(例えば、燃料ノズルを通って)各燃焼器の燃焼部分(例えば、燃焼チャンバ)に流入し、かつ排気ガス66が各チャンバの同じ燃焼部分に流入した状態で、SEGRガスタービンシステム52は、排気ガス66、酸化剤68、及び燃料70の実質的に量論的な燃焼をもたらすよう制御される。例えば、システム52は、約0.95〜約1.05の当量比を維持することができる。結果として、各燃焼器内の排気ガス66、酸化剤68、及び燃料70の混合気の燃焼生成物は、実質的に酸素及び未燃燃料を含まない。従って、燃焼生成物(又は排気ガス)は、EORシステム18に送られる排気ガス42として使用するためにSEGRガスタービンシステム52のタービンセクションから抽出することができる。タービンセクションに沿って、抽出ポイント76は、隣接するタービン段の間の段間ポートなどのいずれかのタービン段に位置付けることができる。従って、上述の抽出ポイント76の何れかを用いて、タービンベースのサービスシステム14は、排気ガス42を生成及び抽出し、炭化水素生成システム12(例えば、EORシステム18)に送出して、地下リザーバ20からのオイル/ガス48の生成に用いることができる。
図2は、タービンベースのサービスシステム14及び炭化水素生成システム12に連結された制御システム100を示す図1のシステム10の実施形態の図である。図示の実施形態において、タービンベースのサービスシステム14は、複合サイクルシステム102を含み、これは、トッピングサイクルとしてSEGRガスタービンシステム52と、ボトミングサイクルとして蒸気タービン104と、排気60から熱を回収して蒸気タービン104を駆動するための蒸気62を発生させるHRSG56とを含む。ここでもまた、SEGRガスタービンシステム52は、排気66、酸化剤68、及び燃料70を受け入れて混合し、量論的燃焼(例えば、予混合及び/又は拡散火炎)をして、これにより排気60、機械的パワー72、電力74、及び/又は水64を生成する。例えば、SEGRガスタービンシステム52は、発電機、酸化剤圧縮機(例えば、主空気圧縮機)、ギアボックス、ポンプ、炭化水素生成システム12の設備、又はそのあらゆる組合せなどの1又は2以上の負荷又は機械装置106を駆動することができる。一部の実施形態において、機械装置106は、SEGRガスタービンシステム52と縦一列に配列された発電機又は蒸気タービン(例えば、蒸気タービン104)などの他の駆動装置を含むことができる。従って、SEGRガスタービンシステム52(及び何らかの追加の駆動装置)によって駆動される機械装置106の出力は、機械的パワー72及び電力74を含むことができる。機械的パワー72及び/又は電力74は、炭化水素生成システム12に動力を供給するために施設内で用いることができ、電力74は、送電網又はそのあらゆる組合せに配電することができる。機械装置106の出力はまた、SEGRガスタービンシステム52の燃焼セクションに吸入するために圧縮酸化剤68(例えば、空気又は酸素)などの圧縮流体を含むことができる。これらの出力(例えば、排気60、機械的パワー72、電力74、及び/又は水64)の各々は、タービンベースのサービスシステム14の1つのサービスとみなすことができる。
SEGRガスタービンシステム52は、実質的に酸素を伴わない場合がある排気ガス42、60を生成し、排気ガス42、60は、EG処理システム54及び/又はEG供給システム78に送られる。EG供給システム78は、排気ガス42(例えば、ストリーム95)を処理して炭化水素生成システム12及び/又は他のシステム84に送出することができる。上記で検討したように、EG処理システム54は、HRSG56及びEGRシステム58を含むことができる。HRSG56は、1又は2以上の熱交換器、凝縮機、及び種々の熱回収設備を含むことができ、これらを用いて排気60から熱を回収し又は水108に伝達し、蒸気タービン104を駆動するための蒸気62を発生することができる。SEGRガスタービンシステム52と同様に、蒸気タービン104は、1又は2以上の負荷又は機械装置106を駆動し、これにより機械的パワー72及び電力74を生成することができる。図示の実施形態において、SEGRガスタービンシステム52及び蒸気タービン104は、縦一列の形態で配列されて、同じ機械装置106を駆動する。しかし、他の実施形態において、SEGRガスタービンシステム52及び蒸気タービン104は、異なる機械装置106を個別に駆動し、機械的パワー72及び/又は電力74を独立に生成することができる。蒸気タービン104がHRSG56からの蒸気62により駆動されると、蒸気62の温度及び圧力が漸次的に低下する。従って、蒸気タービン104は、使用した蒸気62及び/又は水108をHRSG56に戻すよう再循環し、排気60からの熱回収を通じて追加の蒸気を発生させる。蒸気発生に加えて、HRSG56、EGRシステム58、及び/又はEG処理システム54の別の部分は、水64、炭化水素生成システム12と共に用いるための排気ガス42、及びSEGRガスタービンシステム52への入力として使用する排気66を生成することができる。例えば、水64は、他の用途で使用するための脱塩水のような処理水64とすることができる。脱塩水は、水の利便性が低い領域で特に有用とすることができる。排気60に関しては、EG処理システム54の実施形態は、排気60をHRSG56に通過させるかどうかに関係なく、EGRシステム58を通じて排気60を再循環させるよう構成することができる。
図示の実施形態において、SEGRガスタービンシステム52は、システム52の排気出口から排気入口まで延びる排気ガス再循環経路110を有する。排気60は、経路110に沿って、図示の実施形態においてHRSG56及びEGRシステム58を含むEG処理システム54を通過する。EGRシステム58は、経路110に沿って直列及び/又は並列配列で、1又は2以上の導管、バルブ、ブロア、ガス処理システム(例えば、フィルタ、粒子状物質除去ユニット、ガス分離ユニット、ガス精製ユニット、熱交換器、熱回収蒸気発電機などの熱回収ユニット、除湿ユニット、触媒ユニット、化学物質注入ユニット、又はそのあらゆる組合せ)を含むことができる。換言すると、EGRシステム58は、システム52の排気ガス出口と排気ガス入口との間の排気ガス再循環経路110に沿って、何れかの流れ制御構成要素、圧力制御構成要素、温度制御構成要素、湿度制御構成要素、及びガス組成制御構成要素を含むことができる。従って、経路110に沿ってHRSG56を有する実施形態において、HRSG56は、EGRシステム58の1つの構成要素とみなすことができる。しかし、特定の実施形態において、HRSG56は、排気ガス再循環経路110とは独立して排気ガス経路に沿って配置することができる。HRSG56がEGRシステム58と別個の経路に沿っているか又は共通の経路に沿っているかに関係なく、HRSG56及びEGRシステム58は、排気60を吸入して、再循環される排気60、EG供給システム78(例えば、炭化水素生成システム12及び/又は他のシステム84のため)と共に使用するための排気ガス42、又は別の出力の排気ガスを出力する。ここでもまた、SEGRガスタービンシステム52は、排気66、酸化剤68、及び燃料70(例えば、予混合火炎及び/又は拡散火炎)を吸入して混合し、量論的燃焼して、EG処理システム54、炭化水素生成システム12、又は他のシステム84に分配するために実質的に酸素及び燃料を含まない排気60を生成する。
図1を参照しながら上述したように、炭化水素生成システム12は、地下リザーバ20からオイル/ガス井戸26を通るオイル/ガス48の回収又は生成を促進する様々な設備を含むことができる。例えば、炭化水素生成システム12は、流体注入システム34を有するEORシステム18を含むことができる。図示の実施形態において、流体注入システム34は、排気ガス注入EORシステム112及び蒸気注入EORシステム114を含む。流体注入システム34は、様々な供給源から流体を受け入れることができるが、図示の実施形態は、タービンベースのサービスシステム14から排気ガス42及び蒸気62を受け入れることができる。タービンベースのサービスシステム14により生成される排気ガス42及び/又は蒸気62はまた、他のオイル/ガスシステム116で使用するため炭化水素生成システム12に送ることができる。
排気ガス42及び蒸気62の量、品質、及び流れは、制御システム100により制御することができる。制御システム100は、タービンベースのサービスシステム14に完全に専用とすることができ、又は制御システム100は、任意選択的に、炭化水素生成システム12及び/又は他のシステム84の制御を行うことができる。図示の実施形態において、制御システム100は、プロセッサ120、メモリ122、蒸気タービン制御部124、SEGRガスタービンシステム制御部126、及び機械制御部128を有するコントローラ118を含む。プロセッサ120は、タービンベースのサービスシステム14を制御するために単一のプロセッサ又はトリプル冗長プロセッサのような2又は3以上の冗長プロセッサを含むことができる。メモリ122は、揮発性及び/又は不揮発性メモリを含むことができる。例えば、メモリ122は、1又は2以上のハードドライブ、フラッシュメモリ、読み取り専用メモリ、ランダムアクセスメモリ、又はそのあらゆる組合せを含むことができる。制御部124、126、及び128は、ソフトウェア及び/又はハードウェア制御部を含むことができる。例えば、制御部124、126、及び128は、メモリ122上に格納されてプロセッサ120により実行可能な種々の命令又はコードを含むことができる。制御部124は、蒸気タービン104の作動を制御するよう構成され、SEGRガスタービンシステム制御部126は、システム52を制御するよう構成され、機械制御部128は、機械装置106を制御するよう構成される。従って、コントローラ118(例えば、制御部124、126、及び128)は、タービンベースのサービスシステム14の種々のサブシステムを協働させて炭化水素生成システム12に排気ガス42の好適なストリームを提供するよう構成することができる。
制御システム100の一実施形態において、図面において示され又は本明細書で説明される各要素(例えば、システム、サブシステム、及び構成要素)は、(例えば、このような要素の直接内部に、上流側に、又は下流側に)センサ及び制御デバイスのような1又は2以上の工業用制御特徴要素を含み、これらは、コントローラ118と共に工業用制御ネットワークを通じて互いに通信可能に連結される。例えば、各要素に関連する制御デバイスは、専用のデバイスコントローラ(例えば、プロセッサ、メモリ、及び制御命令を含む)、1又は2以上のアクチュエータ、バルブ、スイッチ、及び工業用制御機器を含むことができ、これらは、センサフィードバック130、コントローラ118からの制御信号、ユーザからの制御信号、又はそのあらゆる組合せに基づいて制御を可能にする。従って、本明細書で説明する制御機能の何れも、コントローラ118、各要素に関連する専用のデバイスコントローラ、又はその組合せにより格納され及び/又は実行可能な制御命令を用いて実施することができる。
このような制御機能を可能にするために、制御システム100は、種々の制御部(例えば、制御部124、126、及び128)の実行の際に使用するセンサフィードバック130を達成するためにシステム10全体にわたって分配された1又は2以上のセンサを含む。例えば、センサフィードバック130は、SEGRガスタービンシステム52、機械装置106、EG処理システム54、蒸気タービン104、炭化水素生成システム12、又はタービンベースのサービスシステム14又は炭化水素生成システム12にわたる他の何れかの構成要素にわたって分配されたセンサから取得することができる。例えば、センサフィードバック130は、温度フィードバック、圧力フィードバック、流量フィードバック、火炎温度フィードバック、燃焼動力学フィードバック、吸入酸化剤組成フィードバック、吸入燃料組成フィードバック、排気ガス組成フィードバック、機械的パワー72の出力レベル、電力74の出力レベル、排気ガス42、60の出力量、水64の出力量又は品質、又はそのあらゆる組合せを含むことができる。例えば、センサフィードバック130は、SEGRガスタービンシステム52において量論的燃焼を可能にする排気ガス42、60の組成を含むことができる。例えば、センサフィードバック130は、酸化剤68の酸化剤供給経路に沿った1又は2以上の吸入酸化剤センサ、燃料70の燃料供給経路に沿った1又は2以上の吸入燃料センサ、及び排気ガス再循環経路110に沿って配置され及び/又はSEGRガスタービンシステム52内部に配置された1又は2以上の排気エミッションセンサからのフィードバックを含むことができる。吸入酸化剤センサ、吸入燃料センサ、及び排気エミッションセンサは、温度センサ、圧力センサ、流量センサ、及び組成センサを含むことができる。エミッションセンサは、窒素酸化物(例えば、NOxセンサ)、炭素酸化物(例えば、COセンサ及びCO2センサ)、硫黄酸化物(例えば、SOxセンサ)、水素(例えば、H2センサ)、酸素(例えば、O2センサ)、未燃炭化水素(例えば、HCセンサ)、又は他の不完全燃焼生成物、又はそのあらゆる組合せに対するセンサを含むことができる。
このフィードバック130を用いて、制御システム100は、当量比を好適な範囲内、例えば、約0.95〜約1.05、約0.95〜約1.0、約1.0〜約1.05、又は実質的に1.0に維持するように、(他の作動パラメータの中でも特に)SEGRガスタービンシステム52への排気66、酸化剤68、及び/又は燃料70の吸入流を調節(例えば、増大、減少、又は維持)することができる。例えば、制御システム100は、フィードバック130を分析して、排気エミッション(例えば、窒素酸化物、CO及びCO2などの炭素酸化物、硫黄酸化物、水素、酸素、未燃炭化水素、及び他の不完全燃焼生成物の濃度レベル)を監視し及び/又は当量比を決定し、次いで、1又は2以上の構成要素を制御して、排気エミッション(例えば、排気ガス42の濃度レベル)及び/又は当量比を調節することができる。制御される構成要素は、限定ではないが、酸化剤68、燃料70、及び排気66のための供給経路に沿ったバルブ;EG処理システム54における酸化剤圧縮機、燃料ポンプ、又は何れかの構成要素;SEGRガスタービンシステム52の何れかの構成要素;又はそのあらゆる組合せを含む図面を参照して例示かつ説明した構成要素の何れかを含むことができる。制御される構成要素は、SEGRガスタービンシステム52内で燃焼する酸化剤68、燃料70、及び排気66の流量、温度、圧力、又はパーセンテージ(例えば、当量比)を調節(例えば、増大、減少、又は維持)することができる。制御される構成要素はまた、触媒ユニット(例えば、酸化触媒ユニット)、触媒ユニットのための供給源(例えば、酸化燃料、熱、電気、その他)、ガス精製及び/又は分離ユニット(例えば、溶剤ベース分離器、吸収器、フラッシュタンク、その他)、及び濾過ユニットなど、1又は2以上のガス処理システムを含むことができる。ガス処理システムは、排気ガス再循環経路110、通気経路(例えば、大気中に排気される)、又はEG供給システム78への抽出経路に沿った種々の排気エミッションの低減を助けることができる。
実施形態において、制御システム100は、フィードバック130を分析して、約10、20、30、40、50、100、200、300、400、500、1000、2000、3000、4000、5000、又は10000ppmv(百万分の1体積)未満のような目標範囲にエミッションレベル(例えば、排気ガス42、60、95の濃度レベル)を維持又は低減するよう1又は2以上の構成要素を制御することができる。これらの目標範囲は、排気エミッション(例えば、窒素酸化物、一酸化炭素、硫黄酸化物、水素、酸素、未燃炭化水素、及び他の不完全燃焼生成物の濃度レベル)の各々に対して同じか又は異なる可能性がある。例えば、当量比に応じて、制御システム100は、酸化剤(例えば、酸素)の排気エミッション(例えば、濃度レベル)を約10、20、30、40、50、60、70、80、90、100、250、500、750、又は1000ppmv未満の目標範囲内に、一酸化炭素(CO)の排気エミッション(例えば、濃度レベル)を約20、50、100、200、500、1000、2500、又は5000ppmv未満の目標範囲内に、及び窒素酸化物(NOx)の排気エミッション(例えば、濃度レベル)を約50、100、200、300、400、又は500ppmv未満の目標範囲内に選択的に制御することができる。実質的に量論的当量比で作動する特定の実施形態において、制御システム100は、酸化剤(例えば、酸素)の排気エミッション(例えば、濃度レベル)を約10、20、30、40、50、60、70、80、90、又は100ppmv未満の目標範囲内に、かつ一酸化炭素(CO)の排気エミッションを約500、1000、2000、3000、4000、又は5000ppmv未満の目標範囲内に選択的に制御することができる。燃料リーン当量比(例えば、約0.95〜1.0)で作動する特定の実施形態において、制御システム100は、酸化剤(例えば、酸素)の排気エミッション(例えば、濃度レベル)を約500、600、700、800、900、1000、1100、1200、1300、1400、又は1500ppmv未満の目標範囲内に、一酸化炭素(CO)の排気エミッションを約10、20、30、40、50、60、70、80、90、100、150、又は200ppmv未満の目標範囲内に、かつ窒素酸化物(例えば、NOx)の排気エミッションを約50、100、150、200、250、300、350、又は400ppmv未満の目標範囲内に選択的に制御することができる。上述の目標範囲は、単に例示に過ぎず、開示する実施形態の範囲を限定するものではない。
制御システム100はまた、ローカルインタフェース132及びリモートインタフェース134に連結することができる。例えば、ローカルインタフェース132は、タービンベースのサービスシステム14及び/又は炭化水素生成システム12にて施設内に配置されたコンピュータワークステーションを含むことができる。対照的に、リモートインタフェース134は、インターネット接続などを通じて、タービンベースのサービスシステム14及び炭化水素生成システム12の施設外に配置されたコンピュータワークステーションを含むことができる。これらのインタフェース132及び134は、センサフィードバック130、作動パラメータ、及びその他の1又は2以上のグラフィック表示を通じてなど、タービンベースのサービスシステム14の監視及び制御を可能にする。
ここでもまた、上述のように、コントローラ118は、タービンベースのサービスシステム14の制御を可能にする様々な制御部124、126、128を含む。蒸気タービン制御部124は、センサフィードバック130を受け入れ、蒸気タービン104の作動を可能にする制御コマンドを出力することができる。例えば、蒸気タービン制御部124は、HRSG56、機械装置106、蒸気62の経路に沿った温度及び圧力センサ、水108の経路に沿った温度及び圧力センサ、及び機械的パワー72及び電力74を示す種々のセンサからセンサフィードバック130を受け入れることができる。同様に、SEGRガスタービンシステム制御部126は、SEGRガスタービンシステム52、機械装置106、EG処理システム54、又はそのあらゆる組合せに沿って配置された1又は2以上のセンサからセンサフィードバック130を受け入れることができる。例えば、センサフィードバック130は、SEGRガスタービンシステム52の内部又は外部に配置された温度センサ、圧力センサ、クリアランスセンサ、振動センサ、火炎センサ、燃料組成センサ、排気ガス組成センサ、又はそのあらゆる組合せから得ることができる。最後に、機械制御部128は、機械的パワー72及び電力74に関連する種々のセンサ並びに機械装置106内に配置されたセンサからセンサフィードバック130を受け入れることができる。これらの制御部124、126、及び128の各々は、センサフィードバック130を用いてタービンベースのサービスシステム14の作動を改善する。
図示の実施形態において、SEGRガスタービンシステム制御部126は、EG処理システム54、EG供給システム78、炭化水素生成システム12、及び/又は他のシステム84における排気ガス42、60、95の量及び品質を制御する命令を実行することができる。例えば、SEGRガスタービンシステム制御部126は、排気60中の酸化剤(例えば、酸素)及び/又は未燃燃料のレベルを排気ガス注入EORシステム112と共に用いるのに好適な閾値未満に維持することができる。特定の実施形態において、この閾値レベルは、排気ガス42、60の容積で酸化剤(例えば、酸素)及び/又は未燃燃料が1、2、3、4、又は5パーセント未満とすることができ、又は、酸化剤(例えば、酸素)及び/又は未燃燃料(及び他の排気エミッション)の閾値レベルは、排気ガス42、60中に約10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、2000、3000、4000、又は5000ppmv(百万分の1体積)未満とすることができる。別の実施例によれば、酸化剤(例えば、酸素)及び/又は未燃燃料のこれらの低いレベルを達成するために、SEGRガスタービンシステム制御部126は、SEGRガスタービンシステム52における燃焼において約0.95〜約1.05の当量比を維持することができる。SEGRガスタービンシステム制御部126はまた、排気ガス42、60、95の温度、圧力、流量、及びガス組成を排気ガス注入EORシステム112、パイプライン86、貯蔵タンク88、及び炭素隔離システム90に好適な範囲内に維持するようにEG抽出システム80及びEG処理システム82を制御することができる。上記で検討したように、EG処理システム82は、CO2リッチ・N2リーンストリーム96、中間濃度CO2・N2ストリーム97、及びCO2リーン・N2リッチストリーム98のような1又は2以上のガスストリーム95内への排気ガス42を精製及び/又は分離するよう制御することができる。排気ガス42、60、及び95の制御に加えて、制御部124、126、及び128は、機械的パワー72を好適な出力範囲内に維持し、又は電力74を好適な周波数及び出力範囲内に維持するように1又は2以上の命令を実行することができる。
図3は、炭化水素生成システム12及び/又は他のシステム84と共に使用するためのSEGRガスタービンシステム52の詳細を更に示すシステム10の実施形態の図である。図示の実施形態において、SEGRガスタービンシステム52は、EG処理システム54に連結されたガスタービンエンジン150を含む。図示のガスタービンエンジン150は、圧縮機セクション152、燃焼器セクション154、及び膨張器セクション又はタービンセクション156を含む。圧縮機セクション152は、直列配列で配置された回転圧縮機ブレードの1〜20段のような1又は2以上の排気ガス圧縮機又は圧縮機段158を含む。同様に、燃焼器セクション154は、SEGRガスタービンシステム52の回転軸線162の周りで円周方向に分配された1〜20の燃焼器160のような1又は2以上の燃焼器160を含む。更に、各燃焼器160は、排気66、酸化剤68、及び/又は燃料70を注入するように構成された1又は2以上の燃料ノズル164を含むことができる。例えば、各燃焼器160のヘッド端部部分166は、1、2、3、4、5、6、又はそれ以上の燃料ノズル164を収容することができ、燃料ノズル164は、排気66、酸化剤68、及び/又は燃料70のストリーム又は混合気を燃焼器160の燃焼部168(例えば、燃焼室)に注入することができる。
燃料ノズル164は、予混合燃料ノズル164(例えば、酸化剤/燃料予混合火炎の生成のため酸化剤68及び燃料70を予混合するよう構成される)及び/又は拡散燃料ノズル164(例えば、酸化剤/燃料拡散火炎の生成のため酸化剤68及び燃料70の別個の流れを注入するよう構成される)の何れかの組合せを含むことができる。予混合燃料ノズル164の実施形態は、燃焼室168における注入及び燃焼の前に、ノズル164内で酸化剤68及び燃料70を内部で混合するためのスワールベーン、混合チャンバ、又は他の特徴要素を含むことができる。予混合燃料ノズル164はまた、少なくとも一部が部分的に混合された酸化剤68及び燃料70を受け入れることができる。特定の実施形態において、各拡散燃料ノズル164は、注入ポイントまで酸化剤68及び燃料70の流れを隔離すると同時に、注入ポイントまで1又は2以上の希釈剤(例えば、排気66、蒸気、窒素、又は別の不活性ガス)の流れも隔離することができる。他の実施形態において、各拡散燃料ノズル164は、注入ポイントまで酸化剤68及び燃料70の流れを隔離するが、注入ポイントの前に1又は2以上の希釈剤(例えば、排気66、蒸気、窒素、又は別の不活性ガス)を酸化剤68及び/又は燃料70と部分的に混合することができる。これに加えて、1又は2以上の希釈剤(例えば、排気66、蒸気、窒素、又は別の不活性ガス)は、燃焼ゾーンにて又はその下流側で燃焼器内(例えば、高温の燃焼生成物内)に注入され、これにより高温の燃焼生成物の温度を低下させ、NOx(例えば、NO及びNO2)のエミッションを低減するのを助けることができる。燃料ノズル164のタイプに関係なく、SEGRガスタービンシステム52は、酸化剤68及び燃料70の実質的に量論的燃焼を提供するよう制御することができる。
拡散燃料ノズル164を用いた拡散燃焼の実施形態において、燃料70及び酸化剤68は、一般に、拡散火炎の上流側では混合せず、むしろ、燃料70及び酸化剤68は、火炎表面にて直接混合及び反応し、及び/又は火炎表面が燃料70及び酸化剤68間の混合位置に存在する。詳細には、燃料70及び酸化剤68は、火炎表面(又は拡散境界/界面)に個別に接近し、次いで、火炎表面(又は拡散境界/界面)に沿って拡散し(例えば、分子及び粘性拡散を通じて)、拡散火炎を発生する。燃料70及び酸化剤68は、この火炎表面(又は拡散境界/界面)に沿って実質的に量論比にあるものとすることができる点は注目すべきであり、その結果、この火炎表面に沿ってより高い火炎温度(例えば、ピーク火炎温度)を生じることができる。量論的燃料/酸化剤比は、一般に、燃料リーン又は燃料リッチの燃料/酸化剤比と比べて、高い火炎温度(例えば、ピーク火炎温度)をもたらす。結果として、拡散火炎は、予混合火炎よりも実質的により安定することができ、これは、燃料70及び酸化剤68の拡散が、火炎表面に沿った量論比(及びより高温)を維持するのを助けることに起因する。火炎温度がより高いほど、NOxエミッションのような排気エミッションをより多く生じる可能性があるが、開示の実施形態では、1又は2以上の希釈剤を用いて、燃料70及び酸化剤68の何れかの予混合を依然として回避しながら、温度及びエミッションを制御するのを助けることができる。例えば、開示する実施形態は、燃料70及び酸化剤68とは個別に(例えば、燃焼ポイントの後及び/又は拡散火炎から下流側で)1又は2以上の希釈剤を導入することができ、これにより、温度を低下させ、拡散火炎により生じたエミッションを低減するのを助けることができる。
作動時には、図示のように、圧縮機セクション152は、EG処理システム54からの排気66を受け入れて圧縮し、圧縮排気ガス170を燃焼器セクション154における燃焼器160の各々に出力する。各燃焼器160内で燃料70、酸化剤68、及び排気ガス170が燃焼すると、追加の排気ガス又は燃焼生成物172(すなわち、燃焼ガス)がタービンセクション156に送られる。圧縮機セクション152と同様に、タービンセクション156は、一連の回転タービンブレードを含むことができる1又は2以上のタービン又はタービン段174を含む。次いで、これらのタービンブレードは、燃焼器セクション154において発生した燃焼生成物172により駆動され、これにより機械装置106に連結されたシャフト176の回転を駆動する。ここでもまた、機械装置106は、タービンセクション156に連結された機械装置106、178及び/又は圧縮機セクション152に連結された機械装置106、180など、SEGRガスタービンシステム52の何れかの端部に連結された様々な機器を含むことができる。特定の実施形態において、機械装置106、178、180は、1又は2以上の発電機、酸化剤68用の酸化剤圧縮機、燃料70用の燃料ポンプ、ギアボックス、又はSEGRガスタービンシステム52に連結された追加の駆動装置(例えば、蒸気タービン104、電気モータ、その他)を含むことができる。以下では、表1を参照しながら、非限定的な例を更に詳細に検討する。図示のように、タービンセクション156は、排気60を出力して、排気ガス再循環経路110に沿ってタービンセクション156の排気ガス出口182から排気ガス入口184に再循環して圧縮機セクション152内に入る。排気ガス再循環経路110に沿って、排気60は、上記で詳細に検討したようにEG処理システム54(例えば、HRSG56及び/又はEGRシステム58)を通過する。
ここでもまた、燃焼器セクション154における各燃焼器160は、圧縮排気ガス170、酸化剤68、及び燃料70を受け入れて混合して、量論的に燃焼し、追加の排気ガス又は燃焼生成物172を生成して、タービンセクション156を駆動する。特定の実施形態において、酸化剤68は、1又は2以上の酸化剤圧縮機(MOC)を有する主酸化剤圧縮(MOC)システム(例えば、主空気圧縮機(MAC)システム)のような酸化剤圧縮機システム186により圧縮される。酸化剤圧縮機システム186は、駆動装置190に連結された酸化剤圧縮機188を含む。例えば、駆動装置190は、電気モータ、燃焼エンジン、又はそのあらゆる組合せを含むことができる。特定の実施形態において、駆動装置190は、ガスタービンエンジン150のようなタービンエンジンとすることができる。従って、酸化剤圧縮機システム186は、機械装置106の一体化部分とすることができる。換言すると、圧縮機188は、ガスタービンエンジン150のシャフト176により供給される機械的パワー72によって直接的又は間接的に駆動することができる。このような実施形態においては、圧縮機188は、タービンエンジン150からの出力に依存するので、駆動装置190は除外してもよい。しかし、1つよりも多い酸化剤圧縮機を利用する特定の実施形態において、第1の酸化剤圧縮機(例えば、低圧(LP)酸化剤圧縮機)は、駆動装置190により駆動することができるが、シャフト176は、第2の酸化剤圧縮機(例えば、高圧(HP)酸化剤圧縮機)を駆動し、又は、その逆もまた可能である。例えば、別の実施形態において、HP MOCは、駆動装置190により駆動され、LP酸化剤圧縮機は、シャフト176により駆動される。図示の実施形態において、酸化剤圧縮機システム186は、機械装置106から分離されている。これらの実施形態の各々において、圧縮機システム186は、酸化剤68を圧縮して燃料ノズル164及び燃焼器160に供給する。従って、機械装置106、178、180の一部又は全ては、圧縮機システム186(例えば、圧縮機188及び/又は追加の圧縮機)の作動効率を向上させるように構成することができる。
要素番号106A、106B、106C、106D、106E、及び106Fで示される機械装置106の様々な構成要素は、1又は2以上の直列配列、並列配列、又は直列配列と並列配列の何らかの組合せで、シャフト176の軸線に沿って及び/又はシャフト176の軸線に平行に配置することができる。例えば、機械装置106、178、180(例えば、106Aから106F)は、あらゆる順序で、1又は2以上のギアボックス(例えば、平行シャフト、遊星ギアボックス)、1又は2以上の圧縮機(例えば、酸化剤圧縮機、EGブースター圧縮機のようなブースター圧縮機)、1又は2以上の発電ユニット(例えば、発電機)、1又は2以上の駆動装置(例えば、蒸気タービンエンジン、電気モータ)、熱交換ユニット(例えば、直接式又は間接式熱交換器)、クラッチ、又はそのあらゆる組合せの何れかの直列及び/又は並列配列を含むことができる。圧縮機は、軸方向圧縮機、半径方向又は遠心式圧縮機、又はそのあらゆる組合せを含むことができ、各々が1又は2以上の圧縮段を有する。熱交換器に関しては、直接式熱交換器は、ガス流れを直接冷却するためにガス流れ(例えば、酸化剤流れ)に液体噴霧を注入する噴霧冷却器(例えば、噴霧中間冷却器)を含むことができる。間接式熱交換器は、冷却剤流(例えば、水、空気、冷媒、又は他の何れかの液体又は気体冷却剤)から流体流れ(例えば、酸化剤流れ)を分離するような第1及び第2の流れを分離する少なくとも1つの壁(例えば、シェル及び管体熱交換器)を含むことができ、ここで冷却剤流は、どのような直接接触もなく流体流れから熱を伝達する。間接式熱交換器の実施例は、中間冷却器熱交換器、及び熱回収蒸気発電機のような熱回収ユニットを含む。熱交換器はまた、ヒーターを含むことができる。以下でより詳細に検討するように、これらの機械構成要素の各々は、表1に記載される非限定的な例によって示される様々な組合せで用いることができる。
一般に、機械装置106、178、180は、例えば、システム186における1又は2以上の酸化剤圧縮機の作動速度を調節し、冷却を通じて酸化剤68の圧縮を促進させ、及び/又は余剰出力を抽出することにより、圧縮機システム186の効率を向上させるよう構成することができる。開示する実施形態は、直列及び並列配列の機械装置106、178、180における上述の構成要素の何れか及び全ての並び換えを含むことを意図しており、構成要素の1つ、1つよりも多く、又は全てがシャフト176から出力を引き出しており、又は全てが引き出していない。以下で示すように、表1は、圧縮機及びタービンセクション152、156に近接して配置及び/又は連結された機械装置106、178、180の配列の幾つかの非限定的な例を示している。
(表1)
Figure 2018513957
表1において上に示すように、冷却ユニットはCLRで表され、クラッチはCLUで表され、駆動装置はDRVで表され、ギアボックスはGBXで表され、発電機はGENで表され、加熱ユニットはHTRで表され、主酸化剤圧縮機ユニットはMOCで表され、低圧及び高圧変形形態は、それぞれLP MOC及びHP MOCで表され、蒸気発電機ユニットは、STGNで表されている。表1は、圧縮機セクション152又はタービンセクション156に向けて機械装置106、178、180を順次的に示しているが、表1はまた、逆順の機械装置106、178、180も包含することを意図している。表1において、2又は3以上の構成要素を含む何れのセルも、構成要素の並列配列を包含することを意図している。表1は、機械装置106、178、180の図示していない何らかの並び換えを排除することを意図するものではない。機械装置106、178、180のこれらの構成要素は、ガスタービンエンジン150に送られる酸化剤68の温度、圧力、及び流量のフィードバック制御を可能にすることができる。以下でより詳細に検討するように、酸化剤68及び燃料70は、排気ガス170の品質を劣化させる何らかの酸化剤68又は燃料70なしで、圧縮排気ガス170の分離及び抽出を可能にするように特別に選択された位置においてガスタービンエンジン150に供給することができる。
図3に示すように、EG供給システム78は、ガスタービンエンジン150と目標システム(例えば、炭化水素生成システム12及び他のシステム84)との間に配置される。詳細には、EG供給システム78(例えば、EG抽出システム(EGES)80)は、圧縮機セクション152、燃焼器セクション154、及び/又はタービンセクション156に沿った1又は2以上の抽出ポイント76にてガスタービンエンジン150に連結することができる。例えば、抽出ポイント76は、圧縮機段の間の2、3、4、5、6、7、8、9、又は10の段間抽出ポイント76のように、隣接する圧縮機段の間に配置することができる。これらの段間抽出ポイント76の各々は、異なる温度及び圧力の抽出排気ガス42を提供する。同様に、抽出ポイント76は、タービン段の間の2、3、4、5、6、7、8、9、又は10の段間抽出ポイント76のように、隣接するタービン段の間に配置することができる。これらの段間抽出ポイント76の各々は、異なる温度及び圧力の抽出排気ガス42を提供する。別の実施例によれば、抽出ポイント76は、燃焼器セクション154全体にわたって多数の位置に配置することができ、これらは、異なる温度、圧力、流量、及びガス組成を提供することができる。これらの抽出ポイント76の各々は、EG抽出導管、1又は2以上のバルブ、センサ、及び制御部を含むことができ、これらは、EG供給システム78に対して抽出排気ガス42の流れを選択的に制御するのに用いることができる。
EG供給システム78によって分配される抽出した排気ガス42は、目標システム(例えば、炭化水素生成システム12及び他のシステム84)に好適な制御された組成を有する。例えば、これらの抽出ポイント76の各々において、排気ガス170は、酸化剤68及び燃料70の注入ポイント(又は流れ)から実質的に隔離することができる。換言すると、EG供給システム78は、どのような酸化剤68又は燃料70の追加もなしに排気ガス170をガスタービンエンジン150から抽出するように特別に設計することができる。更に、燃焼器160の各々における量論的燃焼の観点で、抽出した排気ガス42は、実質的に酸素及び燃料を含まないものとすることができる。EG供給システム78は、原油二次回収、炭素隔離、貯蔵、又は施設外の場所への輸送など、種々の工程で使用するために抽出した排気ガス42を炭化水素生成システム12及び/又は他のシステム84に直接的又は間接的に送ることができる。しかし、特定の実施形態において、EG供給システム78は、目標システムと共に使用する前に排気ガス42を更に処理するためのEG処理システム(EGTS)82を含む。例えば、EG処理システム82は、CO2リッチ・N2リーンストリーム96、中間濃度CO2・N2ストリーム97、及びCO2リーン・N2リッチストリーム98などの1又は2以上のストリーム95への排気ガス42を精製及び/又は分離することができる。これらの処理された排気ガスストリーム95は、炭化水素生成システム12及び他のシステム84(例えば、パイプライン86、貯蔵タンク88、及び炭素隔離システム90)とは個別に又は何らかの組合せで用いることができる。
EG供給システム78において実施された排気ガスの処理と同様に、EG処理システム54は、要素番号194、196、198、200、202、204、206、208、及び210により示されるような複数の排気ガス(EG)処理構成要素192を含むことができる。これらのEG処理構成要素192(例えば、194〜210)は、1又は2以上の直列配列、並列配列、又は直列配列と並列配列の何らかの組合せで排気ガス再循環経路110に沿って配置することができる。例えば、EG処理構成要素192(例えば、194〜210)は、あらゆる順序で、1又は2以上の熱交換器(例えば、熱回収蒸気発電機などの熱回収ユニット、凝縮機、冷却器、又はヒーター)、触媒システム(例えば、酸化触媒システム)、粒子状物質及び/又は水除去システム(例えば、慣性力選別装置、凝集フィルタ、水不透過性フィルタ、及び他のフィルタ)、化学物質注入システム、溶剤ベース処理システム(例えば、吸収器、フラッシュタンク、その他)、炭素捕捉システム、ガス分離システム、ガス精製システム、及び/又は溶剤ベース処理システム、又はそのあらゆる組合せの何れかの直列及び/又は並列配列を含むことができる。特定の実施形態において、触媒システムは、酸化触媒、一酸化炭素還元触媒、窒素酸化物還元触媒、アルミニウム酸化物、ジルコニウム酸化物、シリコーン酸化物、チタン酸化物、プラチナ酸化物、パラジウム酸化物、コバルト酸化物、又は混合金属酸化物、又はそのあらゆる組合せを含むことができる。開示する実施形態は、直列及び並列配列の上述の構成要素192の何れかの及び全ての並び換えを含むことを意図している。以下に示すように、表2は、排気ガス再循環経路110に沿った構成要素192の配列の幾つかの非限定的な例を示している。
(表2)
Figure 2018513957
表2
上記表2に示すように、触媒ユニットはCUで表され、酸化触媒ユニットはOCUで表され、ブースターブロアはBBで表され、熱交換器はHXで表され、熱回収ユニットはHRUで表され、熱回収蒸気発電機はHRSGで表され、凝縮機はCONDで表され、蒸気タービンはSTで表され、粒子状物質除去ユニットはPRUで表され、除湿ユニットはMRUで表され、フィルタはFILで表され、凝集フィルタはCFILで表され、水不透過性フィルタはWFILで表され、慣性力選別装置はINERで表され、希釈剤供給システム(例えば、蒸気、窒素、又は他の不活性ガス)はDILで表される。表2は、タービンセクション156の排気ガス出口182から圧縮機セクション152の排気ガス入口184に向けて構成要素192を順次的に示しているが、表2はまた、図示の構成要素192の逆順も包含することを意図している。表2において、2又は3以上の構成要素を含む何れのセルも、構成要素を有する一体的ユニット、構成要素の並列配列、又はそのあらゆる組合せを包含することを意図している。更に、表2において、HRU、HRSG、及びCONDは、HEの実施例であり、HRSGは、HRUの実施例であり、COND、WFIL、及びCFILは、WRUの実施例であり、INER、FIL、WFIL、及びCFILは、PRUの実施例であり、WFIL及びCFILは、FILの実施例である。ここでもまた、表2は、構成要素192の図示していない何らかの並び換えを排除することを意図するものではない。特定の実施形態において、図示の構成要素192(例えば、194〜210)は、HRSG56、EGRシステム58、又はそのあらゆる組合せに部分的に又は完全に一体化することができる。これらのEG処理構成要素192は、温度、圧力、流量、及びガス組成のフィードバック制御を可能にすると同時に、排気60から水分及び粒子状物質を除去することができる。更に、処理された排気60は、EG供給システム78で使用するために1又は2以上の抽出ポイント76にて抽出され、及び/又は圧縮機セクション152の排気ガス入口184に再循環することができる。
処理された再循環排気66が圧縮機セクション152を通過すると、SEGRガスタービンシステム52は、1又は2以上の管路212(例えば、ブリード導管又はバイパス導管)に沿って圧縮排気ガスの一部を抜き取ることができる。各管路212は、排気ガスを1又は2以上の熱交換器214(例えば、冷却ユニット)に送り、これによりSEGRガスタービンシステム52への再循環のために排気ガスを冷却することができる。例えば、熱交換器214を通過した後、冷却された排気ガスの一部は、タービンケーシング、タービンシュラウド、軸受、及び他の構成要素の冷却及び/又はシールのため管路212に沿ってタービンセクション156に送ることができる。このような実施形態において、SEGRガスタービンシステム52は、冷却及び/又はシール目的でタービンセクション156を通って何らかの酸化剤68(又は他の可能性のある汚染物質)を送らず、従って、冷却された排気ガスの何らかの漏洩が、タービンセクション156のタービン段を流動してそれを駆動する高温の燃焼生成物(例えば、作動排気ガス)を汚染することはない。別の実施例によれば、熱交換器214を通過した後、冷却された排気ガスの一部は、管路216(例えば、戻り導管)に沿って圧縮機セクション152の上流側圧縮機段に送られ、これにより圧縮機セクション152による圧縮効率を向上させることができる。このような実施形態において、熱交換器214は、圧縮機セクション152における段間冷却ユニットとして構成することができる。このようにして、冷却された排気ガスは、SEGRガスタービンシステム52の作動効率を向上させるのを助けると同時に、排気ガスの純度(例えば、実質的に酸化剤及び燃料を含まない)を維持するのを助ける。
図4は、図1〜図3に示したシステム10の作動工程220の実施形態のフローチャートである。ある一定の実施形態において、工程220は、コンピュータに実装された工程とすることができ、メモリ122上に格納された1又は2以上の命令にアクセスして、図2に示すコントローラ118のプロセッサ120上で命令を実行する。例えば、工程220の各段階は、図2を参照して説明した制御システム100のコントローラ118によって実行可能な命令を含むことができる。
工程220は、ブロック222で示されるように、図1〜図3のSEGRガスタービンシステム52の始動モードを開始する段階で始まることができる。例えば、始動モードは、熱勾配、振動、及びクリアランス(例えば、回転部品と固定部品間の)を許容可能閾値内に維持するように、SEGRガスタービンシステム52の漸次的な立ち上がりを含むことができる。例えば、始動モード222中に、工程220は、ブロック224で示されるように、圧縮酸化剤68を燃焼器セクション154の燃焼器160及び燃料ノズル164に供給するのを開始することができる。特定の実施形態において、圧縮酸化剤は、圧縮空気、酸素、酸素富化空気、酸素低減空気、酸素−窒素混合気、又はそのあらゆる組合せを含むことができる。例えば、酸化剤68は、図3に示す酸化剤圧縮機システム186により圧縮することができる。工程220はまた、ブロック226で示されるように、始動モード222中に、燃焼器160及び燃料ノズル164に燃料を供給するのを開始することができる。始動モード222中に、工程220はまた、ブロック228で示されるように、燃焼器160及び燃料ノズル164に排気ガス(利用可能な時)を供給するのを開始することができる。例えば、燃料ノズル164は、1又は2以上の拡散火炎、予混合火炎、又は拡散火炎と予混合火炎の組合せを生成することができる。始動モード222中に、ガスタービンエンジン156により生成される排気60は、量及び/又は品質が不十分又は不安定になる可能性がある。従って、始動モード中に、工程220は、1又は2以上の貯蔵ユニット(例えば、貯蔵タンク88)、パイプライン86、他のSEGRガスタービンシステム52、又は他の排気ガス供給源から排気66を供給することができる。
次いで、工程220は、1又は2以上の拡散火炎、予混合火炎、又は拡散及び予混合火炎の組合せにより、ブロック230で示されるように、燃焼器160において圧縮酸化剤、燃料、及び排気ガスの混合気を燃焼させて高温燃焼ガス172を生成することができる。詳細には、工程220は、燃焼器セクション154の燃焼器160において混合気の量論的燃焼(例えば、量論的拡散燃焼、予混合燃焼、又は両方)を可能にするように、図2の制御システム100により制御することができる。しかし、始動モード222中に、混合気の量論的燃焼を維持することが特に困難となる可能性がある(かつひいては低レベルの酸化剤及び未燃燃料が高温燃焼ガス172中に存在する可能性がある)。結果として、始動モード222において、高温燃焼ガス172は、以下で更に詳細に検討するように、定常状態モード中よりも多くの量の残留酸化剤68及び/又は燃料70を有する可能性がある。このために、工程220は、始動モード中に高温燃焼ガス172中の残留酸化剤68及び/又は燃料70を低減又は排除するよう1又はそれ以上の制御命令を実行することができる。
次いで、工程220は、ブロック232で示されるように、高温燃焼ガス172を用いてタービンセクション156を駆動する。例えば、高温燃焼ガス172は、タービンセクション156内に配置された1又は2以上のタービン段174を駆動することができる。タービンセクション156の下流側では、工程220は、ブロック234で示されるように、最終タービン段174からの排気60を処理することができる。例えば、排気ガス処理段階234は、濾過、何らかの残留酸化剤68及び/又は燃料70の触媒反応、化学的処理、HRSG56を用いた熱回収、及びその他を含むことができる。工程220はまた、ブロック236で示されるように、SEGRガスタービンシステム52の圧縮機セクション152に排気60の少なくとも一部を再循環させることができる。例えば、排気ガスの再循環段階236は、図1〜図3に示すように、EG処理システム54を有する排気ガス再循環経路110の通過を含むことができる。
次いで、ブロック238で示されるように、圧縮機セクション152において再循環された排気66を圧縮することができる。例えば、SEGRガスタービンシステム52は、圧縮機セクション152の1又は2以上の圧縮機段158において再循環された排気66を順次的に圧縮することができる。続いて、圧縮排気ガス170は、ブロック228で示されるように、燃焼器160及び燃料ノズル164に供給することができる。次いで、ブロック240で示されるように、工程220が最終的に定常状態モードに移行するまで、段階230、232、234、236、及び238を繰り返すことができる。移行240時に、工程220は、引き続き段階224〜238を実施することができるが、ブロック242で示されるように、EG供給システム78を通じて排気ガス42の抽出を開始することもできる。例えば、排気ガス42は、図3に示すように、圧縮機セクション152、燃焼器セクション154、及びタービンセクション156に沿った1又は2以上の抽出ポイント76から抽出することができる。次いで、工程220は、ブロック244で示されるように、抽出した排気ガス42をEG供給システム78から炭化水素生成システム12に供給することができる。次に、炭化水素生成システム12は、ブロック246で示されるように、原油二次回収のために排気ガス42を地中32に注入することができる。例えば、抽出した排気ガス42は、図1〜図3に示されるEORシステム18の排気ガス注入EORシステム112によって用いることができる。
SEGRガスタービンシステム52の一部の実施形態において、排気ガス42を再循環させて、ガスタービンエンジン150の圧縮機セクション154を冷却するのに使用する。図5は、図6〜図8に詳細に示されている様々な特徴を含む圧縮機セクション154の概略図である。以前の図に示すものと共通する図5の要素は、同じ参照番号でラベル付けされる。燃焼器160の軸線方向は矢印94で示されており、半径方向は矢印296で示されており、かつ周方向は矢印298で示されている。
図5に示すように、酸化剤圧縮システム186は、燃焼器160のヘッド端部分302での様々な位置に提供することができる圧縮酸化剤300を発生させる。燃料70は、タービン燃焼器160のヘッド端部分302において1又は2以上の燃料ノズル164に提供される。上記で議論したように、酸化剤300及び燃料70は、1又は2以上の予混合燃料ノズルを通じて燃焼器160の中に注入する前に混合することができ、1又は2以上の拡散火炎ノズルを通じて燃焼チャンバ160において混合することができ、又はそれらの何らかの組合せとすることができる。従って、燃料ノズル164は、拡散燃料ノズル、予混合燃料ノズル、又はそれらの何らかの組合せとすることができる。圧縮酸化剤300は、空気、酸素、酸素富化空気、貧酸素空気、又は酸素窒素混合気を含むことができる。一部の実施形態において、圧縮酸化剤300は、容積で約10パーセント、5パーセント、又は1パーセント未満の排気ガス42の濃度を有することができる。
上記で議論したように、SEGRガスタービンシステム52は、圧縮機セクション152及び圧縮機セクション154の少なくとも一部(例えば、1又は2以上の燃焼器160)を通じて排気ガス(例えば、圧縮排気ガス170)の一部分を再循環させることができる。以下で議論する実施形態の一部において、不活性ガス又は実質的に不活性ガス304(例えば、排気ガス42)は、燃焼器160のヘッド端部分302を通じて再循環しない。圧縮機セクション152からの圧縮排気ガス170及び/又は比較的不活性なガス304は、ヘッド端部分302に直接ではなくて燃焼器160のタービン端部分310に供給され、従って、酸化剤300と不活性ガス304の間の隔離を維持するのを助けることができる。一部の実施形態において、不活性ガス304(例えば、排気ガス42)は、酸化剤300(例えば、酸素(O2))の容積で約10パーセント、5パーセント、又は1パーセント未満又はそれ未満を有することができる。1又は2以上の燃料70は、燃料ノズル164に供給することができる。例えば、燃料70は、以下に限定されるものではないが、気体燃料(例えば、天然ガス、処理ガス、メタン、水素、一酸化炭素)、液体燃料(例えば、軽量蒸留物、ケロシン、灯油)、又はそれらの何らかの組合せを含むことができる。
圧縮機セクション152は、不活性ガス304(例えば、排気ガス42)を圧縮機放出ケーシング305に供給し、これは、圧縮機セクション154(例えば、燃焼チャンバ168)の燃焼器160の少なくとも一部を封入する。不活性ガス304は、酸化剤300に対して実質的に不活性(例えば、非反応性)とすることができる。燃焼チャンバ168は、ヘッド端部分302の燃焼器キャップ306及び燃焼器160の軸線294に沿った燃焼器ライナ308(例えば、内壁)によって部分的に封入される。燃焼器ライナ308は、燃焼チャンバ168の周りを周方向298に延びる。燃焼器160のタービン端部分310は、酸化剤300及び燃料70の燃焼からの燃焼ガス172を下流方向312にタービンセクション156に案内する。一部の実施形態において、燃焼器160を出る燃焼ガス172は、酸化剤300及び燃料70の容積で約10、5、3、2、又は1パーセント未満の濃度であり、実質的に酸化剤300及び燃料70を伴わない場合がある。フロースリーブ314(例えば、中間壁)は、流体(例えば、排気ガス170のような不活性ガス304)が燃焼チャンバ168の外側に沿って流れることを可能にする燃焼器ライナ308の周りの通路316を形成する。通路316は、燃焼器ライナ308の周りを周方向298に延び、フロースリーブ314は、通路316の周りを周方向298に延びる。一部の実施形態において、不活性ガス304は、燃焼チャンバ168のための1次冷却媒体及び/又は燃焼ガス172のためのヒートシンクである。
一部の実施形態において、抽出スリーブ326は、フロースリーブ314及び燃焼器ライナ308の少なくとも一部の周りを周方向298に延びる。抽出スリーブ326は、フロースリーブ314と流体連通状態にあり、それによってフロースリーブ314内の不活性ガス304(例えば、圧縮排気ガス170)の一部を排気ガス抽出システム80に抽出することを可能にする。不活性ガス304は、抽出スリーブ326に抽気され、通路316内の不活性ガス304の流量を制御することができる。上記の一部の実施形態において上述したように、圧縮排気ガス170は、SEGRガスタービンシステム52を通じて再循環することができ、及び/又は原油2次回収のために流体注入システム36によって利用することができる。
一部の実施形態において、圧縮酸化剤300は、燃焼器160のヘッド端部分302に提供され、燃焼キャップ306を通して経路指定され、かつ燃焼ライナ308の中に向けられる。これに加えて又はこれに代えて、酸化剤300の一部分は、燃焼キャップ306の外側及びフロースリーブ314の周りの領域の中に経路指定される。酸化剤300のこの部分は、図6に関連して更に説明するように、1又は2以上の混合孔332を通じて燃焼チャンバ168に入るように構成することができる。特に、フロースリーブ314の周りに経路指定された酸化剤300は、フロースリーブ314の周りの酸化剤セクション318に入り、燃料ノズル164の下流の燃焼チャンバ168の燃料酸化剤混合気領域319に流入することができる。燃焼チャンバ168の中に向けられた酸化剤300は、ヘッド端部分302からタービンセクション156に向けて燃焼ガス172と共に下流方向312に流れることができる。不活性ガス304(例えば、排気ガス170)は、上流方向322に通路316の冷却部分320に入る。通路内の不活性ガス304の一部分は、冷却部分320において燃焼チャンバ168に入り、それによって燃焼ライナ308及び下流方向312に流れる燃焼ガス172を冷却することができる。通路316及び不活性ガス304は、燃焼器キャップ306で終端することができる。ある一定の実施形態において、シンブルシステム330は、酸化剤セクション318に対して近位のフロースリーブ314と燃焼ライナ308の間に配置することができる。特に、シンブルシステム330は、酸化剤300を酸化剤セクション318から経路指定して燃焼チャンバ168の酸化剤混合領域319に向けるように構成することができる(例えば、フロースリーブ314を通じて及び燃焼ライナ308を通じて)。特に、酸化剤300は、酸化剤通路334(例えば、導管)を通して経路指定することができ、酸化剤通路334は、通路316(例えば、フロースリーブ314と燃焼ライナ308の間の中間空間)において酸化剤300と不活性ガス304の間の露出及び混合を遮断することができる。すなわち、酸化剤通路334は、通路316の不活性ガス304と流体連通状態でない場合がある。このようにして、シンブルシステム330は、通路316内の酸化剤300と不活性ガス304の間の混合を低減するように構成することができる。特に、シンブルシステム330は、通路316に開かれている酸化剤通路334(例えば、導管)内にいずれの半径方向間隙もない場合がある。これに代えて、シンブルシステム330は、通路316内の酸化剤300と不活性ガス304の間のどのような混合及び/又は相互作用もなしに酸化剤300が燃焼チャンバ168の中に経路指定される連続酸化剤通路334を提供することができる。
ある一定の実施形態において、シンブルシステム330は、軸線方向294及び半径方向296に沿って何らかの移動及び可撓性を可能にする可撓性システム(例えば、可撓性、弾性、膨脹可能、及び/又は収縮可能導管)とすることができる。特に、フロースリーブ314と燃焼ライナ308の間のオフセット距離301は、通路316の半径方向長さを定めることができる。例えば、オフセット距離301は、フロースリーブ314の内面303と燃焼ライナ308の外面307の間の距離である。具体的には、オフセット距離301は、燃焼器160を組み立てる時にフロースリーブ314への燃焼ライナ308の設置を容易にすることができる。更に、燃焼器160の作動中に、燃焼チャンバ168内の高い温度及び圧力は、半径方向296にフロースリーブ314及び燃焼ライナ308の一部を膨脹させ、それによって燃焼ライナ308とフロースリーブ314の間のオフセット距離301において僅かに半径方向調節を引き起こすことができる。例えば、燃焼ライナ308とフロースリーブ314の間のオフセット距離301の変動は、全オフセット距離301の約5%〜15%で異なる場合がある。ある一定の実施形態において、オフセット距離301の変動は、全オフセット距離301の約1%〜20%で異なる場合がある。従って、シンブルシステム330は、必要に応じて、フロースリーブ314及び/又は燃焼ライナ308の膨脹部分と共に半径方向296に移動するほど十分に可撓性とすることができる(例えば、膨脹及び/又は収縮)。一部の実施形態において、燃焼器160の作動中の燃焼チャンバ168の変動はまた、軸線方向294及び/又は半径方向296に移動を引き起こす場合がある。それらの状況では、シンブルシステム330は、燃焼器160の構成要素(例えば、フロースリーブ314及び/又は燃焼ライナ308)と共に軸線方向294に移動するほど十分に可撓性とすることができる(例えば、横方向に曲がる、屈曲する、又は幾何学的に調節する)。従って、シンブルシステム330の特徴は、図7及び8に関連して更に説明するように、通路316内で酸化剤300及び不活性ガス304を混合することなく燃焼器160の作動中に軸線方向294又は半径方向296の何らかの移動を可能にすることができる。ある一定の実施形態において、シンブルシステム330の特徴は、これに加えて、周方向298の何らかの移動を可能にすることができる。
図6は、1又は2以上の混合孔332と位置合わせした1又は2以上のシンブルシステム330を示す図5のガスタービンエンジンの燃焼部分168の実施形態の概略図である。上述のように、酸化剤300及び燃料70は、ヘッド端部分302及び燃料ノズル164に供給される。更に、酸化剤300の一部分は、ヘッド端部分302から燃焼器160の酸化剤セクション318に1又は2以上の混合孔332を通して経路指定することができる。上述のように、酸化剤セクション318は、燃焼キャップ306の下流のフロースリーブ314の周りに配置することができる。
ある一定の実施形態において、1又は2以上の混合孔332は、酸化剤300を酸化剤セクション318から燃焼チャンバ168の中に向け、燃料ノズル164からの酸化剤300及び燃料70を混合及び/又は燃焼(例えば、均一に混合)し、1又は2以上のノズル164からの火炎(例えば、拡散火炎及び/又は予混合火炎)を安定化させ、及び/又は燃焼チャンバ168内の火炎348を成形することができる。一部の実施形態において、燃焼器ライナ308は、ヘッド端部分302に対して近位に1又は2以上の列の混合孔332を有することができる。特に、各混合孔332は、特定の燃料ノズル164に関連付けることができ、その結果、酸化剤300は、その特定の燃料ノズル164に位置合わせするようになる。例えば、ある一定の実施形態において、燃焼ライナ308は、各々がMの燃料ノズル164のうちの1つに関連付けられたMの混合孔332の単一列を有することができ、Mは、1、2、3、4、5、6よりも多いか又はそれに等しく、又はそれよりも多い。更に別の例として、燃焼ライナ308は、各列にMの混合孔332を有するR列の混合孔332を含むことができ、Rは、2、3、4、5よりも多いか又はそれに等しく、又はそれよりも多い。燃焼器160は、酸化剤混合領域319においてあらゆる数(例えば、1、2、3、4、5、6、又はそれよりも多く)の列内にあらゆる数(例えば、1、2、3、4、5、6、7、8、9、10、又はそれよりも多く)の混合孔332を含むことができることに注意しなければならない。混合孔332は、軸線方向298に交互配置又は整列することができる。更に別の例として、ある一定の実施形態において、燃焼器ライナ308は、燃焼器ライナ308の周りに約1〜1000、1〜500、1〜100、1〜10、又はあらゆる他の数の列の混合孔332を有することができ、各列は、約1〜1000又はそれよりも多くの孔332を含むことができる。一部の実施形態において、混合孔332は、燃焼器ライナ308の周りに対称に離間している。一部の実施形態において、混合孔332の位置、形状、及び/又はサイズは、少なくとも部分的に燃焼器キャップ306からの間隔に基づいて異なる場合がある。混合孔332の形状は、以下に限定されるものではないが、円形、スロット、又はシェブロン、又はそれらの何らかの組合せを含むことができる。
ある一定の実施形態において、各混合孔332は、特定のシンブルシステム330に関連付けることができる。例えば、各シンブルシステム330は、特定の混合孔332に位置合わせすることができる。混合孔332は、フロースリーブ314を通して、通路316を通して、燃焼ライナ308を通して燃焼チャンバ168の中に酸化剤300を経路指定するように構成することができる。上述のように、1又は2以上のシンブルシステム330の各々(フロースリーブ314と燃焼ライナ308の間に配置された)は、特定の混合孔332内に整列及び/又は配置することができる。シンブルシステム330は、不活性ガス304と相互作用及び/又は混合することなく酸化剤セクション318から通路316を通じて酸化剤300を経路指定する連続酸化剤通路334(例えば、可撓性導管)を含むことができる。当然のことながら、燃料ノズル164に関連付けられて酸化剤セクション318から酸化剤300を受け入れるように構成された各混合孔332がシンブルシステム330を含むことは有用である場合があり、その結果、酸化剤300は、通路316内で不活性ガス304と混合することなく通路316を通じて酸化剤300を経路指定するように構成された酸化剤通路334を有するようになる。
図7は、シンブルシステムがバネ荷重式シンブルシステム350である図5のシンブルシステム330の実施形態の概略図である。図示の実施形態において、バネ荷重式シンブルシステム350は、バネ荷重式シンブル351、酸化剤通路334、バネシステム352、導入傾斜路354(例えば、先細、湾曲、及び/又は傾斜するガイド又はカン)、支持壁356(例えば、環状壁)、固定板358(例えば、環状板)、及び保持特徴要素361を含む。特に、バネ荷重式シンブルシステム350(及び特にバネ荷重式シンブルシステム350のバネシステム352)は、以下により詳細に説明するように、可撓性を提供して軸線方向294及び/又は半径方向296に沿ってある程度の移動を可能にする。更に、バネ荷重式シンブルシステム350の酸化剤通路334は、燃焼チャンバ168の酸化剤セクション318から酸化剤混合領域319の中に経路指定された酸化剤300に連続的かつ間隙なしの通路(例えば、チャネル又は導管)を提供するように構成される。特に、バネ荷重式シンブル350は、通路316に開かれるいずれの間隙も含むことはできない。例えば、酸化剤通路334の両端(例えば、第1の端部313及び第2の端部315)は、ライナ308及びフロースリーブ314で固定又は密封することができ、その結果、通路334は、通路316に対して完全に閉鎖して密封されるようになる。このようにして、バネ荷重式シンブルシステム350は、酸化剤300を燃焼チャンバ168の中に連続的に経路指定するように構成され、一方、通路316において酸化剤300と不活性ガス304の間の混合及び/又は相互作用量を最小にする。説明する配置は、図示して説明する方式で又は説明するものと逆の方式で構成することができ、その結果、燃焼ライナ308に結合された構成要素は、代わりにフロースリーブ314に結合することができる(及びその逆も可能である)ことに注意しなければならない。
ある一定の実施形態において、バネ荷重式シンブルシステム350の導入傾斜路354は、設置中に燃焼ライナ308をフロースリーブ314の中に挿入する時に利用することができる。具体的には、導入傾斜路354は、そうでなければシンブルシステム330を分割することがある酸化剤通路334内のどのような半径方向又は軸線方向間隙なしで、バネ荷重式シンブルシステム350を燃焼器160内に設置することを可能にすることができる。例えば、ある一定の実施形態において、シンブルシステム330は、シンブルシステム330をフロースリーブ314に結合された第1の半分と燃焼ライナ308に結合された第2の半分に分離するための軸線方向間隙を含まない。当然のことながら、図示の実施形態において、シンブルシステム330は、通路316において不活性ガス304とのどのような相互作用又は混合なしで酸化剤300を酸化剤セクション318から燃焼チャンバ168の中に経路指定する連続酸化剤通路334を提供するように構成される。更に、以下に更に説明するように、燃焼ライナをフロースリーブ314の中に軸線方向294に挿入する時に導入傾斜路354を設置工程中に利用することができる。
ある一定の実施形態において、バネ荷重式シンブル351は、円筒形空間容積とすることができる酸化剤通路334、内壁360(例えば、環状壁)、及び外壁362を含むことができる。バネ荷重式シンブル351の設置中に、酸化剤通路334、内壁360、及び外壁362は、支持壁356内に配置することができる。具体的には、ある一定の実施形態において、外壁362は、外壁362を支持壁356に対して固定するように構成された支持突起364(例えば、環状突起又はフランジ)を含むことができる。特に、支持壁356、内壁360、外壁362、及び支持突起364は、移動又は可撓性を制限することなくバネ荷重式シンブルシステム350に対して支持するように構成することができる。例えば、特定の状況下で、支持突起364は、燃焼チャンバ168の様々な作動パラメータにより支持壁356に対して半径方向296の少量の移動を可能にすることができる。例えば、支持突起364は、燃焼ライナ308とフロースリーブ314の間の通路316のオフセット距離301を増減するように半径方向296に移動することができる。更に、バネシステム352は、燃焼器160を組み立てる時に、復元力を提供して支持突起364及びそれによってバネ荷重式シンブルシステム350をフロースリーブ314と燃焼ライナ308の間のオフセット距離301のようなオリジナルオフセット距離301に戻すように構成することができる。
ある一定の実施形態において、支持壁356、内壁360、外壁362、及びバネシステム352は、何らかの移動及び可撓性を提供するように互いに対して同軸上に又は同心に配置することができる。更に、ある一定の実施形態において、1又は2以上のスリーブは、入れ子式スリーブアセンブリに提供され、ここで各スリーブは、内壁360及び外壁362を含む。具体的には、1又は2以上のスリーブを同心に配置して、互いに対する入れ子移動において重なり、密封し、延び、後退し、かつ一般的に係合することができる。入れ子式スリーブアセンブリは、上述のように支持壁356及びバネシステム352に対して配置することができる。
更に、バネシステム352のようなバネ荷重式シンブルシステム350、固定板358、及び保持特徴要素361のうちの1又は2以上の構成要素はまた、支持壁356内に配置することができる。特に、固定板358は、バネ荷重式シンブルシステム350の配置を固定するように構成することができる。例えば、固定板358は、外壁362と支持壁356の間にバネシステム352を軸線方向に固定するように構成することができる。同様に、保持特徴要素361は、支持壁356内及びフロースリーブ314内にバネ荷重式シンブルシステム350を半径方向に保持するように構成することができる。ある一定の実施形態において、保持特徴要素361は、フロースリーブ314と燃焼ライナ308の間及び支持壁356内に配置することができることに注意しなければならない。更に、ある一定の実施形態において、保持特徴要素361は、フロースリーブ314及びバネ荷重式シンブルシステム350の上に配置することができ、かつフロースリーブ314内にバネ荷重式シンブルシステム350を半径方向に保持するように構成することができる。例えば、支持突起364が支持壁356に対して半径方向296に少量の移動で係合することができる状況下で、保持特徴要素361は、バネ荷重式シンブルシステム350のフロースリーブ314を過ぎる半径方向296の移動を阻止するように構成することができる。保持特徴要素は、バネ荷重式シンブルシステム350の配置及び位置を保持するネジ付きファスナ、ボルト、スナップリング、支持構造、溶接部などのようなあらゆるタイプのファスナとすることができる。
具体的には、ある一定の実施形態において、導入傾斜路354は、燃焼ライナ308に結合することができる。更に、支持壁356は、フロースリーブ314に結合することができる。ある一定の実施形態において、導入傾斜路354及び支持壁356は、溶接、ろう付け、接着剤、ファスナ、その他によりそれぞれ燃焼ライナ308及びフロースリーブ314に結合することができる。特に、支持壁356に結合されたフロースリーブ314は、最初に配置することができる。更に、バネシステム352及び外壁362は、バネシステム352を同軸上にかつ外壁362と支持壁356の間に配置するように配置することができる。上述のように、固定板358及び1又は2以上の保持特徴要素361は、支持壁356内に配置することができる。これに加えて、ある一定の実施形態において、導入傾斜路354に結合された燃焼ライナ308は、フロースリーブ314の中に挿入することができる。特に、導入傾斜路354は、フロースリーブ314に結合されて燃焼器160のタービン端部分310に向けることができる。更に、燃焼ライナ308は、下流方向312にフロースリーブ314の中に挿入することができ、その結果、導入傾斜路354は、最初にフロースリーブ314の中に挿入されるようになる。このようにして、導入傾斜路354は、最初にバネ荷重式シンブルシステム350の底端部366と係合し、半径方向296にバネ荷重式シンブルシステム350を押圧してバネ荷重式シンブルシステム350に荷重をかける。バネシステム352は、導入傾斜路354に対して復元力を提供し、それによって燃焼器160の作動中にバネ荷重式シンブルシステム350の底端部366と燃焼ライナ308の間の接点を固定することができる。
図8は、シンブルシステム330が機械保持式シンブルシステム370である図5のシンブルシステム330の実施形態の概略図である。図示の実施形態において、機械保持式シンブルシステム370は、機械保持式シンブル371、酸化剤通路334、浮遊式カラー372(例えば、環状カラー)、フロースリーブ314に結合された支持壁356、1又は2以上の保持特徴要素361、内壁360、及び外壁362を含む。図示の実施形態において、浮遊式カラー372は、以下で更に説明するように、可撓性を有する機械保持式シンブルシステム370を提供することができ、軸線方向294及び/又は半径方向296に沿って何らかの移動を可能にすることができる。更に、機械保持式シンブルシステム370の酸化剤通路334は、燃焼チャンバ168の酸化剤セクション318から酸化剤混合領域319の中に経路指定される酸化剤300に連続的かつ実質的に間隙なしの通路(例えば、チャネル又は導管)を提供するように構成される。特に、機械保持式シンブルシステム370は、通路316に開かれるいずれの間隙も含むことはできない。例えば、酸化剤通路334の両端(例えば、第1の端部313及び第2の端部315)は、ライナ308及びフロースリーブ314で固定又は密封することができ、その結果、通路334は、通路316に対して完全に閉鎖かつ密封されるようになる。このようにして、機械保持式シンブルシステム370は、通路316において酸化剤300と不活性ガス304の間の混合及び/又は相互作用を低減又は取り除きながら、酸化剤300を燃焼チャンバ168の中に連続的に経路指定するように構成される。説明する配置は、図示して説明する方式で又は説明するものと逆の方式で構成することができ、その結果、燃焼ライナ308に結合された構成要素は、代わりにフロースリーブ314に結合することができる(及びその逆も可能である)ことに注意しなければならない。
ある一定の実施形態において、機械保持式シンブルシステム370の浮遊式カラー372は、設置工程中に利用されてフロースリーブ314と燃焼ライナ308の間に機械保持式シンブルシステム370を組み立てることができる。具体的には、浮遊式カラー372は、燃焼ライナ308に結合された外側カップ374を含むことができる。ある一定の実施形態において、外側カップ374は、燃焼ライナ308に溶接又は他に確実に固定することができる。更に、固定カラー378(例えば、環状カラー)は、外側カップ374上に配置することができる。ある一定の実施形態において、この配置は、平坦板380(例えば、環状板)で固定することができる。特に、固定カラー378は、平坦板380と係合するように構成された突出部分382(例えば、環状フランジ)と外側カップ374とを含むことができる。更に、固定カラー378は、外壁362と接触するように構成された接触壁384(例えば、環状壁)を含むことができる。更に、間隙376は、外側カップ372、突出部分382、及び外壁362の間に配置することができる。しかし、固定カラー378は、外壁362に固定又は結合されず、それによって機械保持式シンブル371を固定カラー378に対して半径方向296に移動する(例えば、カラー378の軸線に沿って)ことを可能にすることができることに注意しなければならない。
詳細には、ある一定の実施形態において、浮遊式カラー372は、燃焼ライナ308に固定又は結合することができ、支持壁356は、フロースリーブ314に固定又は結合することができる。特に、設置工程中に、機械保持式シンブル371は、半径方向296に浮遊式カラー372の中に挿入することができる。詳細には、支持カラー378の接触壁384は、それを保持カラー378の中に挿入すると機械保持式シンブル371を支持するように構成することができる。このようにして、浮遊式カラー372は、機械保持式シンブルシステムの移動又は可撓性を制限することなく機械保持式シンブル371に対して支持するように構成することができる。
ある一定の実施形態において、支持壁356、内壁360、及び外壁362は、何らかの移動及び可撓性を提供するように互いに対して同軸上に又は同心に配置することができる。更に、ある一定の実施形態において、1又は2以上のスリーブは、入れ子式スリーブアセンブリに提供され、ここで各スリーブは、内壁360及び外壁362を含む。具体的には、1又は2以上のスリーブを同心に配置して、互いに対する入れ子移動において重なり、密封し、延び、後退し、かつ一般的に係合することができる。入れ子式スリーブアセンブリは、上述のように支持壁356に対してかつ浮遊式カラー372内に配置することができる。
本発明の手法の技術的効果は、下流方向312に流れる酸化剤300を燃焼器160の燃焼チャンバ168の酸化剤セクション318から燃酸化剤混合領域319の中に向けて経路指定するように構成されたシンブルシステム330を含む。特に、シンブルシステム330は、酸化剤300を酸化剤セクション318から燃焼ライナ308を通して燃焼器160の燃焼チャンバ168の中に向ける酸化剤通路334を含むことができる。ある一定の実施形態において、シンブルシステム330は、酸化剤セクション318から燃焼チャンバ168の中に経路指定される酸化剤300のための連続的かつ実質的に間隙なしの通路を提供するように構成されたバネ荷重式シンブルシステム350を含む。ある一定の実施形態において、シンブルシステム330は、酸化剤セクション318から燃焼チャンバ168の中に経路指定される酸化剤300のための連続的かつ実質的に間隙なしの通路を提供するように構成された機械保持式シンブルシステム370を含む。特に、バネ荷重式シンブルシステム350及び機械保持式シンブルシステム370の一部の実施形態は、通路316に開かれるいずれの間隙も含むことはできない。このようにして、バネ荷重式シンブルシステム350及び機械保持式シンブルシステム370は、通路316において酸化剤300と不活性ガス304の間の混合及び/又は相互作用を低減又は取り除きながら、酸化剤300を燃焼チャンバ168の中に連続的に経路指定するように構成することができる。
補足説明
実施形態1.タービン燃焼器を有するシステム。タービン燃焼器は、燃焼チャンバの周りに配置された燃焼器ライナと、フロースリーブと、半径方向通路とを有する。フロースリーブは、通路を定めるように燃焼器ライナの周りにオフセットで配置され、通路は、排気ガス流れをタービン燃焼器のヘッド端部に向けるように構成される。半径方向通路は、フロースリーブと燃焼器ライナの間を延び、半径方向通路は、タービン燃焼器の第1の作動条件及び第2の作動条件に対して通路を通る排気ガス流れから半径方向通路を通る酸化剤流れを隔離するように構成される。第1の作動条件での燃焼器ライナとフロースリーブの間のオフセットは、第2の作動条件での燃焼器ライナとフロースリーブの間のオフセットよりも大きい。
実施形態2.タービン燃焼器が、第1の燃料流れを燃焼チャンバの中に向けるように構成された第1の燃料ノズルと、第2の燃料流れを燃焼チャンバの中に向けるように構成された第2の燃料ノズルとを含み、第1の燃料ノズルが、第2の燃料ノズルとは個別に制御される実施形態1のシステム。
実施形態3.排気ガスが、酸化剤又は燃料の容積で約5パーセント未満を構成する実施形態1のシステム。
実施形態4.第1の作動条件での燃焼ライナの温度が、第2の作動条件での燃焼ライナの温度よりも低い実施形態1のシステム。
実施形態5.半径方向通路が、フロースリーブと燃焼ライナとに結合されたシンブルシステムを含む実施形態1のシステム。シンブルシステムは、シンブルと、半径方向にシンブルを付勢してタービン燃焼器の作動中に半径方向範囲の運動を可能にするように構成されたバネシステムとを含む。
実施形態6.燃焼ライナが、シンブルの端部と係合して徐々にバネシステムを圧縮するように構成された導入傾斜路を含む実施形態5のシステム。
実施形態7.導入傾斜路が、タービン燃焼器に沿って軸線方向に徐々に高さを変化させる実施形態5のシステム。
実施形態8.半径方向通路が、フロースリーブと燃焼ライナとに結合されたシンブルシステムを含む実施形態1のシステム。シンブルシステムは、シンブルと、シンブルの端部分の周りに配置されたカップとを含む。
実施形態9.タービン燃焼器と、タービン燃焼器からの燃焼ガスによって駆動されて排気ガスを出力するタービンと、タービンによって駆動される排気ガス圧縮機とを有するガスタービンエンジンを含み、排気ガス圧縮機が、排気ガスを圧縮してそれをタービン燃焼器まで経路指定するように構成される実施形態1のシステム。
実施形態10.ガスタービンエンジンが、量論的排気再循環(SEGR)ガスタービンエンジンである実施形態9のシステム。
実施形態11.ガスタービンエンジンに結合された排気ガス抽出システムと排気ガス抽出システムに結合された炭化水素生成システムとを含む実施形態9のシステム。
実施形態12.ガスタービンエンジンのタービン燃焼器の燃焼ライナとフロースリーブの間の通路に装着されるように構成されたシンブルシステムを含むシステム。シンブルシステムは、酸化剤通路を有する少なくとも1つのスリーブを含み、少なくとも1つのスリーブは、燃焼ライナとフロースリーブの間を移動して酸化剤通路と通路の間の流体連通を遮断するように構成される。
実施形態13.シンブルシステムが、燃焼ライナとフロースリーブの間の通路にわたって半径方向に膨脹及び収縮するように構成される実施形態12のシステム。
実施形態14.少なくとも1つのスリーブが、バネによるバネ荷重式である実施形態12のシステム。
実施形態15.少なくとも1つのスリーブが、浮遊式カラーを含む実施形態12のシステム。
実施形態16.少なくとも1つのスリーブが、入れ子配置の第1及び第2のスリーブを含む実施形態12のシステム。
実施形態17.第1及び第2のスリーブが、それぞれ互いに対して移動するように構成される実施形態16のシステム。
実施形態18.燃焼ライナ、フロースリーブ、及び燃焼ライナとフロースリーブの間の通路に配置されたシンブルシステムを有するタービン燃焼器を含む実施形態12のシステム。
実施形態19.タービン燃焼器を有するガスタービンエンジンを含む実施形態18のシステム。
実施形態20.ガスタービンエンジンが、タービン燃焼器からの燃焼ガスによって駆動されて排気ガスを出力するタービンと、タービンによって駆動される排気ガス圧縮機とを含み、排気ガス圧縮機が、排気ガスを圧縮してそれをタービン燃焼器まで経路指定するように構成され、通路が、燃焼ライナとフロースリーブの間に排気ガスを流すように構成される実施形態19のシステム。
実施形態21.ガスタービンエンジンのタービン燃焼器の燃焼ライナとフロースリーブの間の通路に配置されたシンブルシステム内で酸化剤通路を通して酸化剤を調節可能に経路指定する段階を含む方法。調節可能に経路指定する段階は、酸化剤通路と通路の間の流体連通を遮断しながら、燃焼ライナとフロースリーブの間のシンブルシステムの少なくとも1つのスリーブを選択的に移動する段階を含む。
実施形態22.選択的に移動する段階が、燃焼ライナとフロースリーブの間の通路にわたって半径方向にシンブルシステムを膨脹又は収縮する段階を含む実施形態21の方法。
実施形態23.選択的に移動する段階が、燃焼ライナとフロースリーブの間の通路にわたって半径方向に少なくとも1つのスリーブをバネ付勢する段階を含む実施形態21の方法。
実施形態24.選択的に移動する段階が、シンブルシステムの少なくとも1つのスリーブの第2のスリーブに対して第1のスリーブを入れ子式に移動する段階を含む実施形態21の方法。
実施形態25.タービン燃焼器からの燃焼ガスでガスタービンエンジンのタービンを駆動する段階と、タービンから排気ガスを出力する段階とを含む実施形態21の方法。実施形態21の本方法は、ガスタービンエンジンの圧縮機に排気ガスを再循環させる段階と、圧縮機内の排気ガスを圧縮して圧縮排気ガスを発生させる段階と、燃焼ライナとフロースリーブの間の通路を通して圧縮排気ガスを経路指定する段階と、タービン燃焼器内で酸化剤と共に燃料を燃焼させる段階とを含む。
本書の説明は、最良モードを含む本発明を開示するために、かつ同じくあらゆる当業者がいずれかのデバイス又はシステムを作り、使用していずれかの組み込まれた方法を実行することを含む本発明を実施することを可能にするために実施例を使用している。本発明の特許請求可能な範囲は、特許請求の範囲によって定められ、かつ当業者に想起される他の実施例を含む場合がある。そのような他の実施例は、それらが、特許請求の範囲の文字通りの言語と異ならない構造要素を有する場合、又はそれらが、特許請求の範囲の文字通りの言語からの差異が実質的でない均等構造要素を含む場合には、特許請求の範囲内であるように意図している。

Claims (25)

  1. システムであって、
    タービン燃焼器を備え、
    前記タービン燃焼器は、
    燃焼チャンバの周りに配置された燃焼器ライナと、
    排気ガス流れを前記タービン燃焼器のヘッド端部に向けるように構成された通路を定めるように前記燃焼器ライナの周りにオフセットで配置されたフロースリーブと、
    前記フロースリーブと前記燃焼器ライナとの間を延びる半径方向通路であって、前記タービン燃焼器の第1の作動条件及び第2の作動条件に対して該半径方向通路を通る酸化剤流れを前記通路を通る前記排気ガス流れから隔離するように構成され、前記第1の作動条件での前記燃焼器ライナと前記フロースリーブの間の前記オフセットが、前記第2の作動条件での前記燃焼器ライナと前記フロースリーブの間の前記オフセットよりも大きい前記半径方向通路と、を有している、
    ことを特徴とするシステム。
  2. 前記タービン燃焼器は、第1の燃料流れを前記燃焼チャンバの中に向けるように構成された第1の燃料ノズルと、第2の燃料流れを前記燃焼チャンバの中に向けるように構成された第2の燃料ノズルとを有し、
    前記第1の燃料ノズルは、前記第2の燃料ノズルとは別に制御される、
    請求項1に記載のシステム。
  3. 排気ガスが、酸化剤又は燃料の容積で約5パーセント未満を構成する、
    請求項1に記載のシステム。
  4. 前記第1の作動条件での前記燃焼ライナの温度が、前記第2の作動条件での前記燃焼ライナの該温度よりも低い、
    請求項1に記載のシステム。
  5. 前記半径方向通路は、
    前記フロースリーブと前記燃焼ライナとに結合されたシンブルシステム、を有し、
    前記シンブルシステムは、
    シンブルと、
    半径方向に前記シンブルを付勢し、かつ前記タービン燃焼器の作動中に半径方向範囲の運動を可能にするように構成されたバネシステムと、を有している、
    請求項1に記載のシステム。
  6. 前記燃焼ライナは、前記シンブルの端部と係合して前記バネシステムを徐々に圧縮するように構成された導入傾斜路を含む、
    請求項5に記載のシステム。
  7. 前記導入傾斜路は、前記タービン燃焼器に沿って軸線方向に高さを徐々に変化させる、
    請求項5に記載のシステム。
  8. 前記半径方向通路は、
    前記フロースリーブと前記燃焼ライナとに結合されたシンブルシステムを有し、
    前記シンブルシステムは、
    シンブルと、
    前記シンブルの端部分の周りに配置されたカップと、を有している、
    請求項1に記載のシステム。
  9. 前記タービン燃焼器と、該タービン燃焼器からの燃焼ガスによって駆動されて排気ガスを出力するタービンと、該タービンによって駆動される排気ガス圧縮機とを有するガスタービンエンジンを有し、
    前記排気ガス圧縮機は、前記排気ガスを圧縮してそれを前記タービン燃焼器まで経路指定するように構成されている、
    請求項1に記載のシステム。
  10. 前記ガスタービンエンジンは、量論的排気再循環(SEGR)ガスタービンエンジンである、
    請求項9に記載のシステム。
  11. 前記ガスタービンエンジンに結合された排気ガス抽出システムと、該排気ガス抽出システムに結合された炭化水素生成システムとを備えている、
    請求項9に記載のシステム。
  12. ガスタービンエンジンのタービン燃焼器の燃焼ライナとフロースリーブの間の通路に装着されるように構成されたシンブルシステムであって、該シンブルシステムが、酸化剤通路を有する少なくとも1つのスリーブを備え、該少なくとも1つのスリーブが、前記燃焼ライナと前記フロースリーブの間を移動して前記酸化剤通路と前記通路の間の流体連通を遮断するように構成されているシンブルシステムを備えている、
    ことを特徴とするシステム。
  13. 前記シンブルシステムは、前記燃焼ライナと前記フロースリーブの間の前記通路にわたって半径方向に膨脹かつ収縮するように構成される、
    請求項12に記載のシステム。
  14. 前記少なくとも1つのスリーブは、バネによるバネ荷重式である、
    請求項12に記載のシステム。
  15. 前記少なくとも1つのスリーブは、浮遊式カラーを有している、
    請求項12に記載のシステム。
  16. 前記少なくとも1つのスリーブは、入れ子配置の第1及び第2のスリーブを有している、
    請求項12に記載のシステム。
  17. 前記第1及び第2のスリーブは、互いに対して入れ子式に移動するように構成されている、
    請求項16に記載のシステム。
  18. 前記燃焼ライナと、前記フロースリーブと、前記燃焼ライナと前記フロースリーブと間の前記通路に配置された前記シンブルシステムとを有する前記タービン燃焼器を有している、
    請求項12に記載のシステム。
  19. 前記タービン燃焼器を有する前記ガスタービンエンジンを有している、
    請求項18に記載のシステム。
  20. ガスタービンエンジンが、前記タービン燃焼器からの燃焼ガスによって駆動されて排気ガスを出力するタービンと、該タービンによって駆動される排気ガス圧縮機とを有し、
    前記排気ガス圧縮機は、前記排気ガスを圧縮してそれを前記タービン燃焼器まで経路指定するように構成され、前記通路は、前記排気ガスを前記燃焼ライナと前記フロースリーブの間に流すように構成されている、
    請求項19に記載のシステム。
  21. ガスタービンエンジンのタービン燃焼器の燃焼ライナとフロースリーブの間の通路に配置されたシンブルシステム内の酸化剤通路を通して酸化剤を調節可能に経路指定する段階であって、調節可能に経路指定する段階が、前記酸化剤通路と前記通路との間の流体連通を遮断しながら、前記燃焼ライナと前記フロースリーブの間で前記シンブルシステムの少なくとも1つのスリーブを選択的に移動する段階を含む、
    ことを特徴とする方法。
  22. 選択的に移動する段階は、前記燃焼ライナと前記フロースリーブとの間の前記通路にわたって前記シンブルシステムを半径方向に膨脹又は収縮させる段階を含む、
    請求項21に記載の方法。
  23. 選択的に移動する段階は、前記燃焼ライナと前記フロースリーブとの間の前記通路にわたって前記少なくとも1つのスリーブを半径方向にバネ付勢する段階を含む、
    請求項21に記載の方法。
  24. 選択的に移動する段階は、前記シンブルシステムの前記少なくとも1つのスリーブの第2のスリーブに対して第1のスリーブを入れ子式に移動する段階を含む、
    請求項21に記載の方法。
  25. 前記タービン燃焼器からの燃焼ガスで前記ガスタービンエンジンのタービンを駆動する段階と、
    前記タービンから排気ガスを出力する段階と、
    前記排気ガスを前記ガスタービンエンジンの圧縮機まで再循環させる段階と、
    前記圧縮機内で前記排気ガスを圧縮して圧縮排気ガスを発生させる段階と、
    前記圧縮排気ガスを前記燃焼ライナと前記フロースリーブの間の前記通路を通して経路指定する段階と、
    前記タービン燃焼器内で酸化剤と共に燃料を燃焼させる段階と、を含む、
    請求項21に記載の方法。
JP2017555450A 2015-01-12 2016-01-12 排気再循環を有するガスタービンシステム内の酸化剤通路のためのシステム及び方法 Pending JP2018513957A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562102388P 2015-01-12 2015-01-12
US62/102,388 2015-01-12
US14/992,827 US10788212B2 (en) 2015-01-12 2016-01-11 System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US14/992,827 2016-01-11
PCT/US2016/013071 WO2016115152A1 (en) 2015-01-12 2016-01-12 System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation

Publications (2)

Publication Number Publication Date
JP2018513957A true JP2018513957A (ja) 2018-05-31
JP2018513957A5 JP2018513957A5 (ja) 2019-02-21

Family

ID=56367285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017555450A Pending JP2018513957A (ja) 2015-01-12 2016-01-12 排気再循環を有するガスタービンシステム内の酸化剤通路のためのシステム及び方法

Country Status (5)

Country Link
US (1) US10788212B2 (ja)
EP (1) EP3247943B1 (ja)
JP (1) JP2018513957A (ja)
CN (1) CN107850307A (ja)
WO (1) WO2016115152A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10161312B2 (en) * 2012-11-02 2018-12-25 General Electric Company System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9650958B2 (en) * 2014-07-17 2017-05-16 General Electric Company Combustor cap with cooling passage
US10253690B2 (en) * 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10316746B2 (en) * 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) * 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
FR3106653B1 (fr) * 2020-01-23 2022-01-07 Safran Aircraft Engines Ensemble pour une turbomachine
US11905817B2 (en) 2021-12-16 2024-02-20 Saudi Arabian Oil Company Method and system for managing carbon dioxide supplies using machine learning

Family Cites Families (695)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2488911A (en) 1946-11-09 1949-11-22 Surface Combustion Corp Combustion apparatus for use with turbines
GB776269A (en) 1952-11-08 1957-06-05 Licentia Gmbh A gas turbine plant
US2884758A (en) 1956-09-10 1959-05-05 Bbc Brown Boveri & Cie Regulating device for burner operating with simultaneous combustion of gaseous and liquid fuel
US3631672A (en) 1969-08-04 1972-01-04 Gen Electric Eductor cooled gas turbine casing
US3643430A (en) 1970-03-04 1972-02-22 United Aircraft Corp Smoke reduction combustion chamber
US3705492A (en) 1971-01-11 1972-12-12 Gen Motors Corp Regenerative gas turbine system
US3841382A (en) 1973-03-16 1974-10-15 Maloney Crawford Tank Glycol regenerator using controller gas stripping under vacuum
US3911672A (en) * 1974-04-05 1975-10-14 Gen Motors Corp Combustor with ceramic liner
US3949548A (en) 1974-06-13 1976-04-13 Lockwood Jr Hanford N Gas turbine regeneration system
GB1490145A (en) 1974-09-11 1977-10-26 Mtu Muenchen Gmbh Gas turbine engine
US4043395A (en) 1975-03-13 1977-08-23 Continental Oil Company Method for removing methane from coal
US4018046A (en) 1975-07-17 1977-04-19 Avco Corporation Infrared radiation suppressor for gas turbine engine
NL7612453A (nl) 1975-11-24 1977-05-26 Gen Electric Geintegreerde lichtgasproduktieinstallatie en werkwijze voor de opwekking van elektrische energie.
US4077206A (en) 1976-04-16 1978-03-07 The Boeing Company Gas turbine mixer apparatus for suppressing engine core noise and engine fan noise
US4204401A (en) 1976-07-19 1980-05-27 The Hydragon Corporation Turbine engine with exhaust gas recirculation
US4380895A (en) 1976-09-09 1983-04-26 Rolls-Royce Limited Combustion chamber for a gas turbine engine having a variable rate diffuser upstream of air inlet means
US4066214A (en) 1976-10-14 1978-01-03 The Boeing Company Gas turbine exhaust nozzle for controlled temperature flow across adjoining airfoils
US4117671A (en) 1976-12-30 1978-10-03 The Boeing Company Noise suppressing exhaust mixer assembly for ducted-fan, turbojet engine
US4165609A (en) 1977-03-02 1979-08-28 The Boeing Company Gas turbine mixer apparatus
US4092095A (en) 1977-03-18 1978-05-30 Combustion Unlimited Incorporated Combustor for waste gases
US4112676A (en) 1977-04-05 1978-09-12 Westinghouse Electric Corp. Hybrid combustor with staged injection of pre-mixed fuel
US4271664A (en) 1977-07-21 1981-06-09 Hydragon Corporation Turbine engine with exhaust gas recirculation
RO73353A2 (ro) 1977-08-12 1981-09-24 Institutul De Cercetari Si Proiectari Pentru Petrol Si Gaze,Ro Procedeu de desulfurare a fluidelor din zacamintele de hidrocarburi extrase prin sonde
US4101294A (en) 1977-08-15 1978-07-18 General Electric Company Production of hot, saturated fuel gas
US4160640A (en) 1977-08-30 1979-07-10 Maev Vladimir A Method of fuel burning in combustion chambers and annular combustion chamber for carrying same into effect
US4222240A (en) 1978-02-06 1980-09-16 Castellano Thomas P Turbocharged engine
DE2808690C2 (de) 1978-03-01 1983-11-17 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Einrichtung zur Erzeugung von Heißdampf für die Gewinnung von Erdöl
US4236378A (en) 1978-03-01 1980-12-02 General Electric Company Sectoral combustor for burning low-BTU fuel gas
US4253301A (en) 1978-10-13 1981-03-03 General Electric Company Fuel injection staged sectoral combustor for burning low-BTU fuel gas
US4498288A (en) 1978-10-13 1985-02-12 General Electric Company Fuel injection staged sectoral combustor for burning low-BTU fuel gas
US4345426A (en) 1980-03-27 1982-08-24 Egnell Rolf A Device for burning fuel with air
GB2080934B (en) 1980-07-21 1984-02-15 Hitachi Ltd Low btu gas burner
US4352269A (en) 1980-07-25 1982-10-05 Mechanical Technology Incorporated Stirling engine combustor
GB2082259B (en) 1980-08-15 1984-03-07 Rolls Royce Exhaust flow mixers and nozzles
US4442665A (en) 1980-10-17 1984-04-17 General Electric Company Coal gasification power generation plant
US4852355A (en) * 1980-12-22 1989-08-01 General Electric Company Dispensing arrangement for pressurized air
US4480985A (en) 1980-12-22 1984-11-06 Arkansas Patents, Inc. Pulsing combustion
US4479484A (en) 1980-12-22 1984-10-30 Arkansas Patents, Inc. Pulsing combustion
US4488865A (en) 1980-12-22 1984-12-18 Arkansas Patents, Inc. Pulsing combustion
US4637792A (en) 1980-12-22 1987-01-20 Arkansas Patents, Inc. Pulsing combustion
US4344486A (en) 1981-02-27 1982-08-17 Standard Oil Company (Indiana) Method for enhanced oil recovery
US4399652A (en) 1981-03-30 1983-08-23 Curtiss-Wright Corporation Low BTU gas combustor
US4414334A (en) 1981-08-07 1983-11-08 Phillips Petroleum Company Oxygen scavenging with enzymes
US4434613A (en) 1981-09-02 1984-03-06 General Electric Company Closed cycle gas turbine for gaseous production
US4445842A (en) 1981-11-05 1984-05-01 Thermal Systems Engineering, Inc. Recuperative burner with exhaust gas recirculation means
GB2117053B (en) 1982-02-18 1985-06-05 Boc Group Plc Gas turbines and engines
US4498289A (en) 1982-12-27 1985-02-12 Ian Osgerby Carbon dioxide power cycle
US4548034A (en) 1983-05-05 1985-10-22 Rolls-Royce Limited Bypass gas turbine aeroengines and exhaust mixers therefor
US4528811A (en) 1983-06-03 1985-07-16 General Electric Co. Closed-cycle gas turbine chemical processor
GB2149456B (en) 1983-11-08 1987-07-29 Rolls Royce Exhaust mixing in turbofan aeroengines
US4561245A (en) 1983-11-14 1985-12-31 Atlantic Richfield Company Turbine anti-icing system
US4602614A (en) 1983-11-30 1986-07-29 United Stirling, Inc. Hybrid solar/combustion powered receiver
SE439057B (sv) 1984-06-05 1985-05-28 United Stirling Ab & Co Anordning for forbrenning av ett brensle med syrgas och inblandning av en del av de vid forbrenningen bildade avgaserna
EP0169431B1 (en) 1984-07-10 1990-04-11 Hitachi, Ltd. Gas turbine combustor
US4606721A (en) 1984-11-07 1986-08-19 Tifa Limited Combustion chamber noise suppressor
US4653278A (en) 1985-08-23 1987-03-31 General Electric Company Gas turbine engine carburetor
US4651712A (en) 1985-10-11 1987-03-24 Arkansas Patents, Inc. Pulsing combustion
NO163612C (no) 1986-01-23 1990-06-27 Norsk Energi Fremgangsmaate og anlegg for fremstilling av nitrogen for anvendelse under hoeyt trykk.
US4858428A (en) 1986-04-24 1989-08-22 Paul Marius A Advanced integrated propulsion system with total optimized cycle for gas turbines
US4753666A (en) 1986-07-24 1988-06-28 Chevron Research Company Distillative processing of CO2 and hydrocarbons for enhanced oil recovery
US4684465A (en) 1986-10-10 1987-08-04 Combustion Engineering, Inc. Supercritical fluid chromatograph with pneumatically controlled pump
US4681678A (en) 1986-10-10 1987-07-21 Combustion Engineering, Inc. Sample dilution system for supercritical fluid chromatography
US4817387A (en) 1986-10-27 1989-04-04 Hamilton C. Forman, Trustee Turbocharger/supercharger control device
US4762543A (en) 1987-03-19 1988-08-09 Amoco Corporation Carbon dioxide recovery
US5084438A (en) 1988-03-23 1992-01-28 Nec Corporation Electronic device substrate using silicon semiconductor substrate
US4883122A (en) 1988-09-27 1989-11-28 Amoco Corporation Method of coalbed methane production
JP2713627B2 (ja) 1989-03-20 1998-02-16 株式会社日立製作所 ガスタービン燃焼器、これを備えているガスタービン設備、及びこの燃焼方法
US4946597A (en) 1989-03-24 1990-08-07 Esso Resources Canada Limited Low temperature bitumen recovery process
US4976100A (en) 1989-06-01 1990-12-11 Westinghouse Electric Corp. System and method for heat recovery in a combined cycle power plant
US5135387A (en) 1989-10-19 1992-08-04 It-Mcgill Environmental Systems, Inc. Nitrogen oxide control using internally recirculated flue gas
US5044932A (en) 1989-10-19 1991-09-03 It-Mcgill Pollution Control Systems, Inc. Nitrogen oxide control using internally recirculated flue gas
SE467646B (sv) 1989-11-20 1992-08-24 Abb Carbon Ab Saett vid roekgasrening i pfbc-anlaeggning
US5123248A (en) 1990-03-28 1992-06-23 General Electric Company Low emissions combustor
JP2954972B2 (ja) 1990-04-18 1999-09-27 三菱重工業株式会社 ガス化ガス燃焼ガスタービン発電プラント
US5271905A (en) 1990-04-27 1993-12-21 Mobil Oil Corporation Apparatus for multi-stage fast fluidized bed regeneration of catalyst
JPH0450433A (ja) 1990-06-20 1992-02-19 Toyota Motor Corp 直列2段過給内燃機関の排気ガス再循環装置
US5141049A (en) 1990-08-09 1992-08-25 The Badger Company, Inc. Treatment of heat exchangers to reduce corrosion and by-product reactions
US5098282A (en) 1990-09-07 1992-03-24 John Zink Company Methods and apparatus for burning fuel with low NOx formation
US5154596A (en) 1990-09-07 1992-10-13 John Zink Company, A Division Of Koch Engineering Company, Inc. Methods and apparatus for burning fuel with low NOx formation
US5197289A (en) 1990-11-26 1993-03-30 General Electric Company Double dome combustor
US5144793A (en) * 1990-12-24 1992-09-08 United Technologies Corporation Integrated connector/airtube for a turbomachine's combustion chamber walls
US5085274A (en) 1991-02-11 1992-02-04 Amoco Corporation Recovery of methane from solid carbonaceous subterranean of formations
FR2674317B1 (fr) * 1991-03-20 1993-05-28 Snecma Chambre de combustion de turbomachine comportant un reglage du debit de comburant.
DE4110507C2 (de) 1991-03-30 1994-04-07 Mtu Muenchen Gmbh Brenner für Gasturbinentriebwerke mit mindestens einer für die Zufuhr von Verbrennungsluft lastabhängig regulierbaren Dralleinrichtung
US5073105A (en) 1991-05-01 1991-12-17 Callidus Technologies Inc. Low NOx burner assemblies
US5147111A (en) 1991-08-02 1992-09-15 Atlantic Richfield Company Cavity induced stimulation method of coal degasification wells
US5255506A (en) 1991-11-25 1993-10-26 General Motors Corporation Solid fuel combustion system for gas turbine engine
US5183232A (en) 1992-01-31 1993-02-02 Gale John A Interlocking strain relief shelf bracket
US5195884A (en) 1992-03-27 1993-03-23 John Zink Company, A Division Of Koch Engineering Company, Inc. Low NOx formation burner apparatus and methods
US5238395A (en) 1992-03-27 1993-08-24 John Zink Company Low nox gas burner apparatus and methods
US5634329A (en) 1992-04-30 1997-06-03 Abb Carbon Ab Method of maintaining a nominal working temperature of flue gases in a PFBC power plant
US5332036A (en) 1992-05-15 1994-07-26 The Boc Group, Inc. Method of recovery of natural gases from underground coal formations
US5295350A (en) 1992-06-26 1994-03-22 Texaco Inc. Combined power cycle with liquefied natural gas (LNG) and synthesis or fuel gas
US5687572A (en) * 1992-11-02 1997-11-18 Alliedsignal Inc. Thin wall combustor with backside impingement cooling
US5355668A (en) 1993-01-29 1994-10-18 General Electric Company Catalyst-bearing component of gas turbine engine
US5628184A (en) 1993-02-03 1997-05-13 Santos; Rolando R. Apparatus for reducing the production of NOx in a gas turbine
US5361586A (en) 1993-04-15 1994-11-08 Westinghouse Electric Corporation Gas turbine ultra low NOx combustor
US5388395A (en) 1993-04-27 1995-02-14 Air Products And Chemicals, Inc. Use of nitrogen from an air separation unit as gas turbine air compressor feed refrigerant to improve power output
US5444971A (en) 1993-04-28 1995-08-29 Holenberger; Charles R. Method and apparatus for cooling the inlet air of gas turbine and internal combustion engine prime movers
US5359847B1 (en) 1993-06-01 1996-04-09 Westinghouse Electric Corp Dual fuel ultra-flow nox combustor
US5628182A (en) 1993-07-07 1997-05-13 Mowill; R. Jan Star combustor with dilution ports in can portions
US5572862A (en) 1993-07-07 1996-11-12 Mowill Rolf Jan Convectively cooled, single stage, fully premixed fuel/air combustor for gas turbine engine modules
US5638674A (en) 1993-07-07 1997-06-17 Mowill; R. Jan Convectively cooled, single stage, fully premixed controllable fuel/air combustor with tangential admission
PL171012B1 (pl) 1993-07-08 1997-02-28 Waclaw Borszynski Uklad do mokrego oczyszczania spalin z procesów spalania, korzystnie wegla, koksu,oleju opalowego PL
US5794431A (en) 1993-07-14 1998-08-18 Hitachi, Ltd. Exhaust recirculation type combined plant
US5535584A (en) 1993-10-19 1996-07-16 California Energy Commission Performance enhanced gas turbine powerplants
US5345756A (en) 1993-10-20 1994-09-13 Texaco Inc. Partial oxidation process with production of power
US5394688A (en) 1993-10-27 1995-03-07 Westinghouse Electric Corporation Gas turbine combustor swirl vane arrangement
KR100370910B1 (ko) 1993-12-10 2003-03-31 트랙테블 엘엔지 노쓰 아메리카 엘엘씨 Lng조합싸이클플랜트시스템및조합싸이클플랜트의용량및효율을향상하기위한방법
US5458481A (en) 1994-01-26 1995-10-17 Zeeco, Inc. Burner for combusting gas with low NOx production
US5542840A (en) 1994-01-26 1996-08-06 Zeeco Inc. Burner for combusting gas and/or liquid fuel with low NOx production
NO180520C (no) 1994-02-15 1997-05-07 Kvaerner Asa Fremgangsmåte til fjerning av karbondioksid fra forbrenningsgasser
JP2950720B2 (ja) 1994-02-24 1999-09-20 株式会社東芝 ガスタービン燃焼装置およびその燃焼制御方法
US5439054A (en) 1994-04-01 1995-08-08 Amoco Corporation Method for treating a mixture of gaseous fluids within a solid carbonaceous subterranean formation
DE4411624A1 (de) 1994-04-02 1995-10-05 Abb Management Ag Brennkammer mit Vormischbrennern
US5581998A (en) 1994-06-22 1996-12-10 Craig; Joe D. Biomass fuel turbine combuster
US5402847A (en) 1994-07-22 1995-04-04 Conoco Inc. Coal bed methane recovery
JPH10505145A (ja) 1994-08-25 1998-05-19 クリーン エナジー システムズ, インコーポレイテッド 汚染を減少した動力発生システム及びそのためのガス発生機
US5640840A (en) 1994-12-12 1997-06-24 Westinghouse Electric Corporation Recuperative steam cooled gas turbine method and apparatus
US5836164A (en) 1995-01-30 1998-11-17 Hitachi, Ltd. Gas turbine combustor
US5657631A (en) 1995-03-13 1997-08-19 B.B.A. Research & Development, Inc. Injector for turbine engines
AU5662296A (en) 1995-03-24 1996-10-16 Ultimate Power Engineering Group, Inc. High vanadium content fuel combustor and system
US5685158A (en) 1995-03-31 1997-11-11 General Electric Company Compressor rotor cooling system for a gas turbine
CN1112505C (zh) 1995-06-01 2003-06-25 特雷克特贝尔Lng北美公司 液化天然气作燃料的混合循环发电装置及液化天然气作燃料的燃气轮机
JPH09119641A (ja) 1995-06-05 1997-05-06 Allison Engine Co Inc ガスタービンエンジン用低窒素酸化物希薄予混合モジュール
US5680764A (en) 1995-06-07 1997-10-28 Clean Energy Systems, Inc. Clean air engines transportation and other power applications
US6170264B1 (en) 1997-09-22 2001-01-09 Clean Energy Systems, Inc. Hydrocarbon combustion power generation system with CO2 sequestration
US5992388A (en) 1995-06-12 1999-11-30 Patentanwalt Hans Rudolf Gachnang Fuel gas admixing process and device
US5722230A (en) 1995-08-08 1998-03-03 General Electric Co. Center burner in a multi-burner combustor
US5724805A (en) 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
US5725054A (en) 1995-08-22 1998-03-10 Board Of Supervisors Of Louisiana State University And Agricultural & Mechanical College Enhancement of residual oil recovery using a mixture of nitrogen or methane diluted with carbon dioxide in a single-well injection process
US5638675A (en) 1995-09-08 1997-06-17 United Technologies Corporation Double lobed mixer with major and minor lobes
GB9520002D0 (en) 1995-09-30 1995-12-06 Rolls Royce Plc Turbine engine control system
DE19539774A1 (de) 1995-10-26 1997-04-30 Asea Brown Boveri Zwischengekühlter Verdichter
CA2240411C (en) 1995-12-27 2005-02-22 Shell Canada Limited Flameless combustor
DE19549143A1 (de) 1995-12-29 1997-07-03 Abb Research Ltd Gasturbinenringbrennkammer
US6201029B1 (en) 1996-02-13 2001-03-13 Marathon Oil Company Staged combustion of a low heating value fuel gas for driving a gas turbine
US5669958A (en) 1996-02-29 1997-09-23 Membrane Technology And Research, Inc. Methane/nitrogen separation process
GB2311596B (en) 1996-03-29 2000-07-12 Europ Gas Turbines Ltd Combustor for gas - or liquid - fuelled turbine
DE19618868C2 (de) 1996-05-10 1998-07-02 Daimler Benz Ag Brennkraftmaschine mit einem Abgasrückführsystem
US5930990A (en) 1996-05-14 1999-08-03 The Dow Chemical Company Method and apparatus for achieving power augmentation in gas turbines via wet compression
US5901547A (en) 1996-06-03 1999-05-11 Air Products And Chemicals, Inc. Operation method for integrated gasification combined cycle power generation system
US5950417A (en) 1996-07-19 1999-09-14 Foster Wheeler Energy International Inc. Topping combustor for low oxygen vitiated air streams
JPH10259736A (ja) 1997-03-19 1998-09-29 Mitsubishi Heavy Ind Ltd 低NOx燃焼器
US5850732A (en) 1997-05-13 1998-12-22 Capstone Turbine Corporation Low emissions combustion system for a gas turbine engine
US5937634A (en) 1997-05-30 1999-08-17 Solar Turbines Inc Emission control for a gas turbine engine
US6062026A (en) 1997-05-30 2000-05-16 Turbodyne Systems, Inc. Turbocharging systems for internal combustion engines
NO308399B1 (no) 1997-06-06 2000-09-11 Norsk Hydro As Prosess for generering av kraft og/eller varme
NO308400B1 (no) 1997-06-06 2000-09-11 Norsk Hydro As Kraftgenereringsprosess omfattende en forbrenningsprosess
US6256976B1 (en) 1997-06-27 2001-07-10 Hitachi, Ltd. Exhaust gas recirculation type combined plant
US5771867A (en) 1997-07-03 1998-06-30 Caterpillar Inc. Control system for exhaust gas recovery system in an internal combustion engine
US5771868A (en) 1997-07-03 1998-06-30 Turbodyne Systems, Inc. Turbocharging systems for internal combustion engines
SE9702830D0 (sv) 1997-07-31 1997-07-31 Nonox Eng Ab Environment friendly high efficiency power generation method based on gaseous fuels and a combined cycle with a nitrogen free gas turbine and a conventional steam turbine
US6079974A (en) 1997-10-14 2000-06-27 Beloit Technologies, Inc. Combustion chamber to accommodate a split-stream of recycled gases
US6360528B1 (en) 1997-10-31 2002-03-26 General Electric Company Chevron exhaust nozzle for a gas turbine engine
US6032465A (en) 1997-12-18 2000-03-07 Alliedsignal Inc. Integral turbine exhaust gas recirculation control valve
EP0939199B1 (de) 1998-02-25 2004-03-31 ALSTOM Technology Ltd Kraftwerksanlage und Verfahren zum Betrieb einer Kraftwerksanlage mit einem CO2-Prozess
US6082113A (en) 1998-05-22 2000-07-04 Pratt & Whitney Canada Corp. Gas turbine fuel injector
US6082093A (en) 1998-05-27 2000-07-04 Solar Turbines Inc. Combustion air control system for a gas turbine engine
NO982504D0 (no) 1998-06-02 1998-06-02 Aker Eng As Fjerning av CO2 i r°kgass
US6244338B1 (en) 1998-06-23 2001-06-12 The University Of Wyoming Research Corp., System for improving coalbed gas production
US7717173B2 (en) 1998-07-06 2010-05-18 Ecycling, LLC Methods of improving oil or gas production with recycled, increased sodium water
US6089855A (en) 1998-07-10 2000-07-18 Thermo Power Corporation Low NOx multistage combustor
US6125627A (en) 1998-08-11 2000-10-03 Allison Advanced Development Company Method and apparatus for spraying fuel within a gas turbine engine
US6148602A (en) 1998-08-12 2000-11-21 Norther Research & Engineering Corporation Solid-fueled power generation system with carbon dioxide sequestration and method therefor
GB9818160D0 (en) 1998-08-21 1998-10-14 Rolls Royce Plc A combustion chamber
US6314721B1 (en) 1998-09-04 2001-11-13 United Technologies Corporation Tabbed nozzle for jet noise suppression
NO317870B1 (no) 1998-09-16 2004-12-27 Statoil Asa Fremgangsmate for a fremstille en H<N>2</N>-rik gass og en CO<N>2</N>-rik gass ved hoyt trykk
NO319681B1 (no) 1998-09-16 2005-09-05 Statoil Asa Fremgangsmate for fremstilling av en H2-rik gass og en CO2-rik gass ved hoyt trykk
EP0994243B1 (en) 1998-10-14 2005-01-26 Nissan Motor Co., Ltd. Exhaust gas purifying device
NO984956D0 (no) 1998-10-23 1998-10-23 Nyfotek As Brenner
US5968349A (en) 1998-11-16 1999-10-19 Bhp Minerals International Inc. Extraction of bitumen from bitumen froth and biotreatment of bitumen froth tailings generated from tar sands
US6230103B1 (en) 1998-11-18 2001-05-08 Power Tech Associates, Inc. Method of determining concentration of exhaust components in a gas turbine engine
NO308401B1 (no) 1998-12-04 2000-09-11 Norsk Hydro As FremgangsmÕte for gjenvinning av CO2 som genereres i en forbrenningsprosess samt anvendelse derav
US6216549B1 (en) 1998-12-11 2001-04-17 The United States Of America As Represented By The Secretary Of The Interior Collapsible bag sediment/water quality flow-weighted sampler
DE19857234C2 (de) 1998-12-11 2000-09-28 Daimler Chrysler Ag Vorrichtung zur Abgasrückführung
AU2404000A (en) 1999-01-04 2000-07-24 Allison Advanced Development Company Exhaust mixer and apparatus using same
US6183241B1 (en) 1999-02-10 2001-02-06 Midwest Research Institute Uniform-burning matrix burner
NO990812L (no) 1999-02-19 2000-08-21 Norsk Hydro As Metode for Õ fjerne og gjenvinne CO2 fra eksosgass
US6276171B1 (en) 1999-04-05 2001-08-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated apparatus for generating power and/or oxygen enriched fluid, process for the operation thereof
US6202442B1 (en) 1999-04-05 2001-03-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'expoitation Des Procedes Georges Claude Integrated apparatus for generating power and/or oxygen enriched fluid and process for the operation thereof
GB9911867D0 (en) 1999-05-22 1999-07-21 Rolls Royce Plc A combustion chamber assembly and a method of operating a combustion chamber assembly
US6305929B1 (en) 1999-05-24 2001-10-23 Suk Ho Chung Laser-induced ignition system using a cavity
US6283087B1 (en) 1999-06-01 2001-09-04 Kjell Isaksen Enhanced method of closed vessel combustion
US6263659B1 (en) 1999-06-04 2001-07-24 Air Products And Chemicals, Inc. Air separation process integrated with gas turbine combustion engine driver
US6345493B1 (en) 1999-06-04 2002-02-12 Air Products And Chemicals, Inc. Air separation process and system with gas turbine drivers
US6256994B1 (en) 1999-06-04 2001-07-10 Air Products And Chemicals, Inc. Operation of an air separation process with a combustion engine for the production of atmospheric gas products and electric power
US7065953B1 (en) 1999-06-10 2006-06-27 Enhanced Turbine Output Holding Supercharging system for gas turbines
US6324867B1 (en) 1999-06-15 2001-12-04 Exxonmobil Oil Corporation Process and system for liquefying natural gas
SE9902491L (sv) 1999-06-30 2000-12-31 Saab Automobile Förbränningsmotor med avgasåtermatning
US6202574B1 (en) 1999-07-09 2001-03-20 Abb Alstom Power Inc. Combustion method and apparatus for producing a carbon dioxide end product
US6301888B1 (en) 1999-07-22 2001-10-16 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Low emission, diesel-cycle engine
WO2001007765A1 (en) 1999-07-22 2001-02-01 Bechtel Corporation A method and apparatus for vaporizing liquid gas in a combined cycle power plant
US6248794B1 (en) 1999-08-05 2001-06-19 Atlantic Richfield Company Integrated process for converting hydrocarbon gas to liquids
WO2001011215A1 (en) 1999-08-09 2001-02-15 Technion Research And Development Foundation Ltd. Novel design of adiabatic combustors
US6101983A (en) 1999-08-11 2000-08-15 General Electric Co. Modified gas turbine system with advanced pressurized fluidized bed combustor cycle
WO2001013042A1 (fr) 1999-08-16 2001-02-22 Nippon Furnace Kogyo Kaisha, Ltd. Appareil et procede d'alimentation en carburant
US7015271B2 (en) 1999-08-19 2006-03-21 Ppg Industries Ohio, Inc. Hydrophobic particulate inorganic oxides and polymeric compositions containing same
WO2001018371A1 (en) 1999-09-07 2001-03-15 Geza Vermes Ambient pressure gas turbine system
DE19944922A1 (de) 1999-09-20 2001-03-22 Asea Brown Boveri Steuerung von Primärmassnahmen zur Reduktion der thermischen Stickoxidbildung in Gasturbinen
DE19949739C1 (de) 1999-10-15 2001-08-23 Karlsruhe Forschzent Massesensitiver Sensor
US6383461B1 (en) 1999-10-26 2002-05-07 John Zink Company, Llc Fuel dilution methods and apparatus for NOx reduction
US20010004838A1 (en) 1999-10-29 2001-06-28 Wong Kenneth Kai Integrated heat exchanger system for producing carbon dioxide
US6298652B1 (en) 1999-12-13 2001-10-09 Exxon Mobil Chemical Patents Inc. Method for utilizing gas reserves with low methane concentrations and high inert gas concentrations for fueling gas turbines
US6266954B1 (en) 1999-12-15 2001-07-31 General Electric Co. Double wall bearing cone
US6484503B1 (en) 2000-01-12 2002-11-26 Arie Raz Compression and condensation of turbine exhaust steam
DE10001110A1 (de) 2000-01-13 2001-08-16 Alstom Power Schweiz Ag Baden Verfahren zur Rückgewinnung von Wasser aus dem Rauchgas eines Kombikraftwerkes sowie Kombikraftwerk zur Durchführung des Verfahrens
DE10001997A1 (de) 2000-01-19 2001-07-26 Alstom Power Schweiz Ag Baden Verbund-Kraftwerk sowie Verfahren zum Betrieb eines solchen Verbund-Kraftwerkes
US6484505B1 (en) 2000-02-25 2002-11-26 General Electric Company Combustor liner cooling thimbles and related method
US6247315B1 (en) 2000-03-08 2001-06-19 American Air Liquids, Inc. Oxidant control in co-generation installations
US6247316B1 (en) 2000-03-22 2001-06-19 Clean Energy Systems, Inc. Clean air engines for transportation and other power applications
US6405536B1 (en) 2000-03-27 2002-06-18 Wu-Chi Ho Gas turbine combustor burning LBTU fuel gas
US6508209B1 (en) 2000-04-03 2003-01-21 R. Kirk Collier, Jr. Reformed natural gas for powering an internal combustion engine
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
FR2808223B1 (fr) 2000-04-27 2002-11-22 Inst Francais Du Petrole Procede de purification d'un effluent contenant du gaz carbonique et des hydrocarbures par combustion
SE523342C2 (sv) 2000-05-02 2004-04-13 Volvo Teknisk Utveckling Ab Anordning och förfarande för reduktion av en gaskomponent i en avgasström från en förbränningsmotor
WO2001090548A1 (en) 2000-05-12 2001-11-29 Clean Energy Systems, Inc. Semi-closed brayton cycle gas turbine power systems
US6331110B1 (en) * 2000-05-25 2001-12-18 General Electric Company External dilution air tuning for dry low NOx combustors and methods therefor
US6499993B2 (en) * 2000-05-25 2002-12-31 General Electric Company External dilution air tuning for dry low NOX combustors and methods therefor
US6429020B1 (en) 2000-06-02 2002-08-06 The United States Of America As Represented By The United States Department Of Energy Flashback detection sensor for lean premix fuel nozzles
JP3864671B2 (ja) 2000-06-12 2007-01-10 日産自動車株式会社 ディーゼルエンジンの燃料噴射制御装置
US6374594B1 (en) 2000-07-12 2002-04-23 Power Systems Mfg., Llc Silo/can-annular low emissions combustor
US6282901B1 (en) 2000-07-19 2001-09-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated air separation process
US6502383B1 (en) 2000-08-31 2003-01-07 General Electric Company Stub airfoil exhaust nozzle
US6301889B1 (en) 2000-09-21 2001-10-16 Caterpillar Inc. Turbocharger with exhaust gas recirculation
DE10049040A1 (de) 2000-10-04 2002-06-13 Alstom Switzerland Ltd Verfahren zur Regeneration einer Katalysatoranlage und Vorrichtung zur Durchführung des Verfahrens
DE10049912A1 (de) 2000-10-10 2002-04-11 Daimler Chrysler Ag Brennkraftmaschine mit Abgasturbolader und Compound-Nutzturbine
DE10050248A1 (de) 2000-10-11 2002-04-18 Alstom Switzerland Ltd Brenner
GB0025552D0 (en) 2000-10-18 2000-11-29 Air Prod & Chem Process and apparatus for the generation of power
US7097925B2 (en) 2000-10-30 2006-08-29 Questair Technologies Inc. High temperature fuel cell power plant
US6412278B1 (en) 2000-11-10 2002-07-02 Borgwarner, Inc. Hydraulically powered exhaust gas recirculation system
US6412559B1 (en) 2000-11-24 2002-07-02 Alberta Research Council Inc. Process for recovering methane and/or sequestering fluids
DE10064270A1 (de) 2000-12-22 2002-07-11 Alstom Switzerland Ltd Verfahren zum Betrieb einer Gasturbinenanlage sowie eine diesbezügliche Gasturbinenanlage
WO2002055851A1 (en) 2001-01-08 2002-07-18 Catalytica Energy Systems, Inc. CATALYST PLACEMENT IN COMBUSTION CYLINDER FOR REDUCTION OF NOx AND PARTICULATE SOOT
US6467270B2 (en) 2001-01-31 2002-10-22 Cummins Inc. Exhaust gas recirculation air handling system for an internal combustion engine
US6715916B2 (en) 2001-02-08 2004-04-06 General Electric Company System and method for determining gas turbine firing and combustion reference temperatures having correction for water content in fuel
US6606861B2 (en) 2001-02-26 2003-08-19 United Technologies Corporation Low emissions combustor for a gas turbine engine
US7578132B2 (en) 2001-03-03 2009-08-25 Rolls-Royce Plc Gas turbine engine exhaust nozzle
US6821501B2 (en) 2001-03-05 2004-11-23 Shell Oil Company Integrated flameless distributed combustion/steam reforming membrane reactor for hydrogen production and use thereof in zero emissions hybrid power system
US6412302B1 (en) 2001-03-06 2002-07-02 Abb Lummus Global, Inc. - Randall Division LNG production using dual independent expander refrigeration cycles
US6499990B1 (en) 2001-03-07 2002-12-31 Zeeco, Inc. Low NOx burner apparatus and method
GB2373299B (en) 2001-03-12 2004-10-27 Alstom Power Nv Re-fired gas turbine engine
ATE399928T1 (de) 2001-03-15 2008-07-15 Alexei Leonidovich Zapadinski Verfahren zum entwickeln einer kohlenwasserstoff- lagerstätte sowie anlagenkomplex zur ausführung des verfahrens
US6732531B2 (en) 2001-03-16 2004-05-11 Capstone Turbine Corporation Combustion system for a gas turbine engine with variable airflow pressure actuated premix injector
US6745573B2 (en) 2001-03-23 2004-06-08 American Air Liquide, Inc. Integrated air separation and power generation process
US6615576B2 (en) 2001-03-29 2003-09-09 Honeywell International Inc. Tortuous path quiet exhaust eductor system
US6487863B1 (en) 2001-03-30 2002-12-03 Siemens Westinghouse Power Corporation Method and apparatus for cooling high temperature components in a gas turbine
US6449956B1 (en) 2001-04-09 2002-09-17 General Electric Company Bypass air injection method and apparatus for gas turbines
US6991036B2 (en) 2001-04-24 2006-01-31 Shell Oil Company Thermal processing of a relatively permeable formation
US20030079877A1 (en) 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
JP3972599B2 (ja) 2001-04-27 2007-09-05 日産自動車株式会社 ディーゼルエンジンの制御装置
WO2002095852A2 (en) 2001-05-24 2002-11-28 Clean Energy Systems, Inc. Combined fuel cell and fuel combustion power generation systems
WO2002097252A1 (en) 2001-05-30 2002-12-05 Conoco Inc. Lng regasification process and system
EP1262714A1 (de) 2001-06-01 2002-12-04 ALSTOM (Switzerland) Ltd Brenner mit Abgasrückführung
US6484507B1 (en) 2001-06-05 2002-11-26 Louis A. Pradt Method and apparatus for controlling liquid droplet size and quantity in a stream of gas
US6622645B2 (en) 2001-06-15 2003-09-23 Honeywell International Inc. Combustion optimization with inferential sensor
DE10131798A1 (de) 2001-06-30 2003-01-16 Daimler Chrysler Ag Kraftfahrzeug mit Aktivkohlefilter und Verfahren zur Regeneration eines Aktivkohlefilters
US6813889B2 (en) 2001-08-29 2004-11-09 Hitachi, Ltd. Gas turbine combustor and operating method thereof
WO2003021017A1 (en) 2001-08-30 2003-03-13 Tda Research, Inc. Process for the removal of impurities from combustion fullerenes
WO2003018958A1 (en) 2001-08-31 2003-03-06 Statoil Asa Method and plant for enhanced oil recovery and simultaneous synthesis of hydrocarbons from natural gas
US20030221409A1 (en) 2002-05-29 2003-12-04 Mcgowan Thomas F. Pollution reduction fuel efficient combustion turbine
JP2003090250A (ja) 2001-09-18 2003-03-28 Nissan Motor Co Ltd ディーゼルエンジンの制御装置
EP1448880A1 (de) 2001-09-24 2004-08-25 ALSTOM Technology Ltd Gasturbinenanlage für ein arbeitsmedium in form eines kohlendioxid/wasser-gemisches
DE50207526D1 (de) 2001-10-01 2006-08-24 Alstom Technology Ltd Verfahren und vorrichtung zum anfahren von emissionsfreien gasturbinenkraftwerken
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
DE10152803A1 (de) 2001-10-25 2003-05-15 Daimler Chrysler Ag Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführungsvorrichtung
DE10297365B4 (de) 2001-10-26 2017-06-22 General Electric Technology Gmbh Gasturbine
US7143572B2 (en) 2001-11-09 2006-12-05 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine system comprising closed system of fuel and combustion gas using underground coal layer
US6790030B2 (en) 2001-11-20 2004-09-14 The Regents Of The University Of California Multi-stage combustion using nitrogen-enriched air
US6505567B1 (en) 2001-11-26 2003-01-14 Alstom (Switzerland) Ltd Oxygen fired circulating fluidized bed steam generator
WO2003049122A2 (en) 2001-12-03 2003-06-12 Clean Energy Systems, Inc. Coal and syngas fueled power generation systems featuring zero atmospheric emissions
GB2382847A (en) 2001-12-06 2003-06-11 Alstom Gas turbine wet compression
US20030134241A1 (en) 2002-01-14 2003-07-17 Ovidiu Marin Process and apparatus of combustion for reduction of nitrogen oxide emissions
US6743829B2 (en) 2002-01-18 2004-06-01 Bp Corporation North America Inc. Integrated processing of natural gas into liquid products
US6722436B2 (en) 2002-01-25 2004-04-20 Precision Drilling Technology Services Group Inc. Apparatus and method for operating an internal combustion engine to reduce free oxygen contained within engine exhaust gas
US6752620B2 (en) 2002-01-31 2004-06-22 Air Products And Chemicals, Inc. Large scale vortex devices for improved burner operation
US6725665B2 (en) 2002-02-04 2004-04-27 Alstom Technology Ltd Method of operation of gas turbine having multiple burners
US6745624B2 (en) 2002-02-05 2004-06-08 Ford Global Technologies, Llc Method and system for calibrating a tire pressure sensing system for an automotive vehicle
US7284362B2 (en) 2002-02-11 2007-10-23 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Étude et l'Exploitation des Procedes Georges Claude Integrated air separation and oxygen fired power generation system
US6823852B2 (en) 2002-02-19 2004-11-30 Collier Technologies, Llc Low-emission internal combustion engine
US7313916B2 (en) 2002-03-22 2008-01-01 Philip Morris Usa Inc. Method and apparatus for generating power by combustion of vaporized fuel
DE10214570A1 (de) * 2002-04-02 2004-01-15 Rolls-Royce Deutschland Ltd & Co Kg Mischluftloch in Gasturbinenbrennkammer mit Brennkammerschindeln
US6532745B1 (en) 2002-04-10 2003-03-18 David L. Neary Partially-open gas turbine cycle providing high thermal efficiencies and ultra-low emissions
DE60313392T2 (de) 2002-05-16 2007-08-09 Rolls-Royce Plc Gasturbine
US6644041B1 (en) 2002-06-03 2003-11-11 Volker Eyermann System in process for the vaporization of liquefied natural gas
US7491250B2 (en) 2002-06-25 2009-02-17 Exxonmobil Research And Engineering Company Pressure swing reforming
GB2390150A (en) 2002-06-26 2003-12-31 Alstom Reheat combustion system for a gas turbine including an accoustic screen
US6702570B2 (en) 2002-06-28 2004-03-09 Praxair Technology Inc. Firing method for a heat consuming device utilizing oxy-fuel combustion
US6748004B2 (en) 2002-07-25 2004-06-08 Air Liquide America, L.P. Methods and apparatus for improved energy efficient control of an electric arc furnace fume extraction system
US6772583B2 (en) 2002-09-11 2004-08-10 Siemens Westinghouse Power Corporation Can combustor for a gas turbine engine
US6826913B2 (en) 2002-10-31 2004-12-07 Honeywell International Inc. Airflow modulation technique for low emissions combustors
US7143606B2 (en) 2002-11-01 2006-12-05 L'air Liquide-Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etide Et L'exploitation Des Procedes Georges Claude Combined air separation natural gas liquefaction plant
CA2505354C (en) 2002-11-08 2012-04-03 Alstom Technology Ltd. Gas turbine power plant and method of operating the same
US6945029B2 (en) 2002-11-15 2005-09-20 Clean Energy Systems, Inc. Low pollution power generation system with ion transfer membrane air separation
WO2004046514A1 (en) 2002-11-15 2004-06-03 Catalytica Energy Systems, Inc. Devices and methods for reduction of nox emissions from lean burn engines
GB0226983D0 (en) 2002-11-19 2002-12-24 Boc Group Plc Nitrogen rejection method and apparatus
DE10257704A1 (de) 2002-12-11 2004-07-15 Alstom Technology Ltd Verfahren zur Verbrennung eines Brennstoffs
CA2509944C (en) 2002-12-13 2011-03-22 Statoil Asa A method for oil recovery from an oil field
NO20026021D0 (no) 2002-12-13 2002-12-13 Statoil Asa I & K Ir Pat Fremgangsmåte for ökt oljeutvinning
US6731501B1 (en) 2003-01-03 2004-05-04 Jian-Roung Cheng Heat dissipating device for dissipating heat generated by a disk drive module inside a computer housing
US6851413B1 (en) 2003-01-10 2005-02-08 Ronnell Company, Inc. Method and apparatus to increase combustion efficiency and to reduce exhaust gas pollutants from combustion of a fuel
US6920762B2 (en) * 2003-01-14 2005-07-26 General Electric Company Mounting assembly for igniter in a gas turbine engine combustor having a ceramic matrix composite liner
US6929423B2 (en) 2003-01-16 2005-08-16 Paul A. Kittle Gas recovery from landfills using aqueous foam
JP2006515659A (ja) 2003-01-17 2006-06-01 カタリティカ エナジー システムズ, インコーポレイテッド 複数燃焼室触媒ガスタービンエンジンのための動的制御システムおよび方法
US9254729B2 (en) 2003-01-22 2016-02-09 Vast Power Portfolio, Llc Partial load combustion cycles
US8631657B2 (en) 2003-01-22 2014-01-21 Vast Power Portfolio, Llc Thermodynamic cycles with thermal diluent
CN1761588A (zh) 2003-01-22 2006-04-19 瓦斯特能量系统有限公司 使用热稀释剂的热力学循环
US6820428B2 (en) 2003-01-30 2004-11-23 Wylie Inventions Company, Inc. Supercritical combined cycle for generating electric power
GB2398863B (en) 2003-01-31 2007-10-17 Alstom Combustion Chamber
US7618606B2 (en) 2003-02-06 2009-11-17 The Ohio State University Separation of carbon dioxide (CO2) from gas mixtures
US6675579B1 (en) 2003-02-06 2004-01-13 Ford Global Technologies, Llc HCCI engine intake/exhaust systems for fast inlet temperature and pressure control with intake pressure boosting
WO2004072443A1 (en) 2003-02-11 2004-08-26 Statoil Asa Efficient combined cycle power plant with co2 capture and a combustor arrangement with separate flows
US7217303B2 (en) 2003-02-28 2007-05-15 Exxonmobil Research And Engineering Company Pressure swing reforming for fuel cell systems
US7053128B2 (en) 2003-02-28 2006-05-30 Exxonmobil Research And Engineering Company Hydrocarbon synthesis process using pressure swing reforming
US7914764B2 (en) 2003-02-28 2011-03-29 Exxonmobil Research And Engineering Company Hydrogen manufacture using pressure swing reforming
US20040170559A1 (en) 2003-02-28 2004-09-02 Frank Hershkowitz Hydrogen manufacture using pressure swing reforming
US7045553B2 (en) 2003-02-28 2006-05-16 Exxonmobil Research And Engineering Company Hydrocarbon synthesis process using pressure swing reforming
US7637093B2 (en) 2003-03-18 2009-12-29 Fluor Technologies Corporation Humid air turbine cycle with carbon dioxide recovery
US7401577B2 (en) 2003-03-19 2008-07-22 American Air Liquide, Inc. Real time optimization and control of oxygen enhanced boilers
US7074033B2 (en) 2003-03-22 2006-07-11 David Lloyd Neary Partially-open fired heater cycle providing high thermal efficiencies and ultra-low emissions
US7168265B2 (en) 2003-03-27 2007-01-30 Bp Corporation North America Inc. Integrated processing of natural gas into liquid products
WO2004085816A1 (de) 2003-03-28 2004-10-07 Siemens Aktiengesellschaft TEMPERATURMESSEINRICHTUNG UND REGELUNG FÜR DIE HEIßGASTEMPERATUR EINER GASTURBINE
EP1618335A1 (en) 2003-04-29 2006-01-25 Her Majesty the Queen in Right of Canada as Represented by The Minister of Natural Resources In-situ capture of carbon dioxide and sulphur dioxide in a fluidized bed combustor
CA2460292C (en) 2003-05-08 2011-08-23 Sulzer Chemtech Ag A static mixer
US7503948B2 (en) 2003-05-23 2009-03-17 Exxonmobil Research And Engineering Company Solid oxide fuel cell systems having temperature swing reforming
DE10325111A1 (de) 2003-06-02 2005-01-05 Alstom Technology Ltd Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassende Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens
US7056482B2 (en) 2003-06-12 2006-06-06 Cansolv Technologies Inc. Method for recovery of CO2 from gas streams
US7043898B2 (en) 2003-06-23 2006-05-16 Pratt & Whitney Canada Corp. Combined exhaust duct and mixer for a gas turbine engine
DE10334590B4 (de) 2003-07-28 2006-10-26 Uhde Gmbh Verfahren zur Gewinnung von Wasserstoff aus einem methanhaltigen Gas, insbesondere Erdgas und Anlage zur Durchführung des Verfahrens
US7007487B2 (en) 2003-07-31 2006-03-07 Mes International, Inc. Recuperated gas turbine engine system and method employing catalytic combustion
GB0323255D0 (en) 2003-10-04 2003-11-05 Rolls Royce Plc Method and system for controlling fuel supply in a combustion turbine engine
DE10350044A1 (de) 2003-10-27 2005-05-25 Basf Ag Verfahren zur Herstellung von 1-Buten
US6904815B2 (en) 2003-10-28 2005-06-14 General Electric Company Configurable multi-point sampling method and system for representative gas composition measurements in a stratified gas flow stream
NO321817B1 (no) 2003-11-06 2006-07-10 Sargas As Renseanlegg for varmekraftverk
US6988549B1 (en) 2003-11-14 2006-01-24 John A Babcock SAGD-plus
US7032388B2 (en) 2003-11-17 2006-04-25 General Electric Company Method and system for incorporating an emission sensor into a gas turbine controller
US6939130B2 (en) 2003-12-05 2005-09-06 Gas Technology Institute High-heat transfer low-NOx combustion system
US7299619B2 (en) 2003-12-13 2007-11-27 Siemens Power Generation, Inc. Vaporization of liquefied natural gas for increased efficiency in power cycles
US7183328B2 (en) 2003-12-17 2007-02-27 Exxonmobil Chemical Patents Inc. Methanol manufacture using pressure swing reforming
US7124589B2 (en) 2003-12-22 2006-10-24 David Neary Power cogeneration system and apparatus means for improved high thermal efficiencies and ultra-low emissions
DE10360951A1 (de) 2003-12-23 2005-07-28 Alstom Technology Ltd Wärmekraftanlage mit sequentieller Verbrennung und reduziertem CO2-Ausstoß sowie Verfahren zum Betreiben einer derartigen Anlage
US20050144961A1 (en) 2003-12-24 2005-07-07 General Electric Company System and method for cogeneration of hydrogen and electricity
DE10361823A1 (de) 2003-12-30 2005-08-11 Basf Ag Verfahren zur Herstellung von Butadien und 1-Buten
DE10361824A1 (de) 2003-12-30 2005-07-28 Basf Ag Verfahren zur Herstellung von Butadien
US7096669B2 (en) 2004-01-13 2006-08-29 Compressor Controls Corp. Method and apparatus for the prevention of critical process variable excursions in one or more turbomachines
PL1720632T3 (pl) 2004-01-20 2018-03-30 Fluor Technologies Corporation Sposoby i konfiguracje do wzbogacania gazu kwaśnego
US7305817B2 (en) 2004-02-09 2007-12-11 General Electric Company Sinuous chevron exhaust nozzle
JP2005226847A (ja) 2004-02-10 2005-08-25 Ebara Corp 燃焼装置及び燃焼方法
US7468173B2 (en) 2004-02-25 2008-12-23 Sunstone Corporation Method for producing nitrogen to use in under balanced drilling, secondary recovery production operations and pipeline maintenance
DE102004009794A1 (de) 2004-02-28 2005-09-22 Daimlerchrysler Ag Brennkraftmaschine mit zwei Abgasturboladern
US8951951B2 (en) 2004-03-02 2015-02-10 Troxler Electronic Laboratories, Inc. Solvent compositions for removing petroleum residue from a substrate and methods of use thereof
US6971242B2 (en) 2004-03-02 2005-12-06 Caterpillar Inc. Burner for a gas turbine engine
US7752848B2 (en) 2004-03-29 2010-07-13 General Electric Company System and method for co-production of hydrogen and electrical energy
ATE389852T1 (de) 2004-03-30 2008-04-15 Alstom Technology Ltd Vorrichtung und verfahren zur flammenstabilisierung in einem brenner
WO2005095863A1 (de) 2004-03-31 2005-10-13 Alstom Technology Ltd Brenner
US20050241311A1 (en) 2004-04-16 2005-11-03 Pronske Keith L Zero emissions closed rankine cycle power system
US7302801B2 (en) 2004-04-19 2007-12-04 Hamilton Sundstrand Corporation Lean-staged pyrospin combustor
US7185497B2 (en) 2004-05-04 2007-03-06 Honeywell International, Inc. Rich quick mix combustion system
EP1756475B1 (en) 2004-05-06 2012-11-14 New Power Concepts LLC Gaseous fuel burner
ITBO20040296A1 (it) 2004-05-11 2004-08-11 Itea Spa Combustori ad alta efficienza e impatto ambientale ridotto, e procedimenti per la produzione di energia elettrica da esso derivabili
WO2005123237A2 (en) 2004-05-14 2005-12-29 Eco/Technologies, Llc Method and system for sequestering carbon emissions from a combustor/boiler
US20080034727A1 (en) 2004-05-19 2008-02-14 Fluor Technologies Corporation Triple Cycle Power Plant
US7065972B2 (en) 2004-05-21 2006-06-27 Honeywell International, Inc. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions
US7010921B2 (en) 2004-06-01 2006-03-14 General Electric Company Method and apparatus for cooling combustor liner and transition piece of a gas turbine
US6993916B2 (en) 2004-06-08 2006-02-07 General Electric Company Burner tube and method for mixing air and gas in a gas turbine engine
US7197880B2 (en) 2004-06-10 2007-04-03 United States Department Of Energy Lean blowoff detection sensor
US7788897B2 (en) 2004-06-11 2010-09-07 Vast Power Portfolio, Llc Low emissions combustion apparatus and method
US7472550B2 (en) 2004-06-14 2009-01-06 University Of Florida Research Foundation, Inc. Combined cooling and power plant with water extraction
JP5202945B2 (ja) 2004-07-14 2013-06-05 フルオー・テクノロジーズ・コーポレイシヨン Lng再ガス化と統合された発電のための構造及び方法
DE102004039164A1 (de) 2004-08-11 2006-03-02 Alstom Technology Ltd Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassenden Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens
US7498009B2 (en) 2004-08-16 2009-03-03 Dana Uv, Inc. Controlled spectrum ultraviolet radiation pollution control process
DE102004039927A1 (de) 2004-08-18 2006-02-23 Daimlerchrysler Ag Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführeinrichtung
DE102004040893A1 (de) 2004-08-24 2006-03-02 Bayerische Motoren Werke Ag Abgasturbolader
US7000396B1 (en) * 2004-09-02 2006-02-21 General Electric Company Concentric fixed dilution and variable bypass air injection for a combustor
US7137623B2 (en) 2004-09-17 2006-11-21 Spx Cooling Technologies, Inc. Heating tower apparatus and method with isolation of outlet and inlet air
JP4905958B2 (ja) 2004-09-29 2012-03-28 太平洋セメント株式会社 セメントキルン燃焼ガス抽気ダストの処理システム及び処理方法
US7789944B2 (en) 2004-09-29 2010-09-07 Taiheiyo Cement Corporation System and method for treating dust contained in extracted cement kiln combustion gas
JP4626251B2 (ja) 2004-10-06 2011-02-02 株式会社日立製作所 燃焼器及び燃焼器の燃焼方法
US7381393B2 (en) 2004-10-07 2008-06-03 The Regents Of The University Of California Process for sulfur removal suitable for treating high-pressure gas streams
US7434384B2 (en) 2004-10-25 2008-10-14 United Technologies Corporation Fluid mixer with an integral fluid capture ducts forming auxiliary secondary chutes at the discharge end of said ducts
US7762084B2 (en) 2004-11-12 2010-07-27 Rolls-Royce Canada, Ltd. System and method for controlling the working line position in a gas turbine engine compressor
US7357857B2 (en) 2004-11-29 2008-04-15 Baker Hughes Incorporated Process for extracting bitumen
US7506501B2 (en) 2004-12-01 2009-03-24 Honeywell International Inc. Compact mixer with trimmable open centerbody
US7389635B2 (en) 2004-12-01 2008-06-24 Honeywell International Inc. Twisted mixer with open center body
EP1666822A1 (de) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Vorrichtung zur Tieftemperaturzerlegung eines Gasgemisches, insbesondere von Luft
JP2006183599A (ja) 2004-12-28 2006-07-13 Nissan Motor Co Ltd 内燃機関の排気浄化装置
ATE363335T1 (de) 2005-01-17 2007-06-15 Balcke Duerr Gmbh Vorrichtung und verfahren zum mischen eines fluidstroms in einem strömungskanal
US20060183009A1 (en) 2005-02-11 2006-08-17 Berlowitz Paul J Fuel cell fuel processor with hydrogen buffering
CN1847766A (zh) 2005-02-11 2006-10-18 林德股份公司 通过与冷却液体直接热交换而冷却气体的方法和装置
US7875402B2 (en) 2005-02-23 2011-01-25 Exxonmobil Research And Engineering Company Proton conducting solid oxide fuel cell systems having temperature swing reforming
US7137256B1 (en) 2005-02-28 2006-11-21 Peter Stuttaford Method of operating a combustion system for increased turndown capability
CA2538464A1 (en) 2005-03-02 2006-09-02 Champion Technologies Inc. Zone settling aid and method for producing dry diluted bitumen with reduced losses of asphaltenes
US7194869B2 (en) 2005-03-08 2007-03-27 Siemens Power Generation, Inc. Turbine exhaust water recovery system
EP1858803B1 (en) 2005-03-14 2016-07-06 Geoffrey Gerald Weedon A process for the production of hydrogen with co-production and capture of carbon dioxide
US7681394B2 (en) 2005-03-25 2010-03-23 The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency Control methods for low emission internal combustion system
CA2600155C (en) 2005-03-30 2010-04-27 Fluor Technologies Corporation Integrated of lng regasification with refinery and power generation
CN100564858C (zh) 2005-03-30 2009-12-02 弗劳尔科技公司 用于液化天然气再气化和动力设备的热集成的构造和方法
DE102005015151A1 (de) 2005-03-31 2006-10-26 Alstom Technology Ltd. Gasturbinenanlage
US7906304B2 (en) 2005-04-05 2011-03-15 Geosynfuels, Llc Method and bioreactor for producing synfuel from carbonaceous material
WO2006107209A1 (en) 2005-04-05 2006-10-12 Sargas As Low co2 thermal powerplant
DE102005017905A1 (de) 2005-04-18 2006-10-19 Behr Gmbh & Co. Kg Vorrichtung zur gekühlten Rückführung von Abgas einer Brennkraftmaschine eines Kraftfahrzeuges
CA2606756C (en) 2005-05-02 2013-10-08 Vast Power Portfolio, Llc Wet compression apparatus and method
US7827782B2 (en) 2005-05-19 2010-11-09 Ford Global Technologies, Llc Method for remediating emissions
US7874350B2 (en) 2005-05-23 2011-01-25 Precision Combustion, Inc. Reducing the energy requirements for the production of heavy oil
US7789159B1 (en) 2005-05-27 2010-09-07 Bader Mansour S Methods to de-sulfate saline streams
US7980312B1 (en) 2005-06-20 2011-07-19 Hill Gilman A Integrated in situ retorting and refining of oil shale
JP5334576B2 (ja) 2005-06-27 2013-11-06 ソリッド・ガス・テクノロジーズ・リミテッド・ライアビリティ・カンパニー クラスレートハイドレート生成および解離モジュールを用いたガス流の処理方法
US7481048B2 (en) 2005-06-30 2009-01-27 Caterpillar Inc. Regeneration assembly
US7966822B2 (en) 2005-06-30 2011-06-28 General Electric Company Reverse-flow gas turbine combustion system
US7752850B2 (en) 2005-07-01 2010-07-13 Siemens Energy, Inc. Controlled pilot oxidizer for a gas turbine combustor
US7670135B1 (en) 2005-07-13 2010-03-02 Zeeco, Inc. Burner and method for induction of flue gas
US20070044479A1 (en) 2005-08-10 2007-03-01 Harry Brandt Hydrogen production from an oxyfuel combustor
DE112006002198T9 (de) 2005-08-16 2009-02-26 CO2CRC Technologies Pty. Ltd., Parkville Anlage und Verfahren zum Entfernen von Kohlendioxid aus Gasströmen
EP1757778B1 (de) 2005-08-23 2015-12-23 Balcke-Dürr GmbH Abgasführung einer Gasturbine sowie Verfahren zum Vermischen des Abgases der Gasturbine
US7225623B2 (en) 2005-08-23 2007-06-05 General Electric Company Trapped vortex cavity afterburner
US7562519B1 (en) 2005-09-03 2009-07-21 Florida Turbine Technologies, Inc. Gas turbine engine with an air cooled bearing
US7410525B1 (en) 2005-09-12 2008-08-12 Uop Llc Mixed matrix membranes incorporating microporous polymers as fillers
DE102005048911A1 (de) 2005-10-10 2007-04-12 Behr Gmbh & Co. Kg Anordnung zur Rückführung und Kühlung von Abgas einer Brennkraftmaschine
US7690204B2 (en) 2005-10-12 2010-04-06 Praxair Technology, Inc. Method of maintaining a fuel Wobbe index in an IGCC installation
US7513100B2 (en) 2005-10-24 2009-04-07 General Electric Company Systems for low emission gas turbine energy generation
US7493769B2 (en) 2005-10-25 2009-02-24 General Electric Company Assembly and method for cooling rear bearing and exhaust frame of gas turbine
US7827794B1 (en) 2005-11-04 2010-11-09 Clean Energy Systems, Inc. Ultra low emissions fast starting power plant
AU2006310987B2 (en) 2005-11-07 2011-08-11 Specialist Process Technologies Limited Functional fluid and a process for the preparation of the functional fluid
US7765810B2 (en) 2005-11-15 2010-08-03 Precision Combustion, Inc. Method for obtaining ultra-low NOx emissions from gas turbines operating at high turbine inlet temperatures
WO2007073430A1 (en) 2005-11-18 2007-06-28 Exxonmobil Upstream Research Company Method of drilling and producing hydrocarbons from subsurface formations
US20070144747A1 (en) 2005-12-02 2007-06-28 Hce, Llc Coal bed pretreatment for enhanced carbon dioxide sequestration
US7726114B2 (en) 2005-12-07 2010-06-01 General Electric Company Integrated combustor-heat exchanger and systems for power generation using the same
WO2007068682A1 (en) 2005-12-12 2007-06-21 Shell Internationale Research Maatschappij B.V. Enhanced oil recovery process and a process for the sequestration of carbon dioxide
US7634915B2 (en) 2005-12-13 2009-12-22 General Electric Company Systems and methods for power generation and hydrogen production with carbon dioxide isolation
CN101331081A (zh) 2005-12-16 2008-12-24 国际壳牌研究有限公司 冷却热烟气流的方法
US7846401B2 (en) 2005-12-23 2010-12-07 Exxonmobil Research And Engineering Company Controlled combustion for regenerative reactors
US8038773B2 (en) 2005-12-28 2011-10-18 Jupiter Oxygen Corporation Integrated capture of fossil fuel gas pollutants including CO2 with energy recovery
US7909898B2 (en) 2006-02-01 2011-03-22 Air Products And Chemicals, Inc. Method of treating a gaseous mixture comprising hydrogen and carbon dioxide
EP1821035A1 (en) 2006-02-15 2007-08-22 Siemens Aktiengesellschaft Gas turbine burner and method of mixing fuel and air in a swirling area of a gas turbine burner
DE102006024778B3 (de) 2006-03-02 2007-07-19 J. Eberspächer GmbH & Co. KG Statischer Mischer und Abgasbehandlungseinrichtung
EP2040848A1 (en) 2006-03-07 2009-04-01 Marathon Oil Sands (U.S.A.) Inc. Processing asphaltene-containing tailings
US7650744B2 (en) 2006-03-24 2010-01-26 General Electric Company Systems and methods of reducing NOx emissions in gas turbine systems and internal combustion engines
JP4418442B2 (ja) 2006-03-30 2010-02-17 三菱重工業株式会社 ガスタービンの燃焼器及び燃焼制御方法
US7591866B2 (en) 2006-03-31 2009-09-22 Ranendra Bose Methane gas recovery and usage system for coalmines, municipal land fills and oil refinery distillation tower vent stacks
US7654320B2 (en) 2006-04-07 2010-02-02 Occidental Energy Ventures Corp. System and method for processing a mixture of hydrocarbon and CO2 gas produced from a hydrocarbon reservoir
US7644573B2 (en) 2006-04-18 2010-01-12 General Electric Company Gas turbine inlet conditioning system and method
US20070249738A1 (en) 2006-04-25 2007-10-25 Haynes Joel M Premixed partial oxidation syngas generator
US20070245736A1 (en) 2006-04-25 2007-10-25 Eastman Chemical Company Process for superheated steam
DE102006019780A1 (de) 2006-04-28 2007-11-08 Daimlerchrysler Ag Abgasturbolader in einer Brennkraftmaschine
US7886522B2 (en) 2006-06-05 2011-02-15 Kammel Refaat Diesel gas turbine system and related methods
JP4162016B2 (ja) 2006-06-08 2008-10-08 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN101506499A (zh) 2006-06-23 2009-08-12 Bhp比利顿创新公司 动力产生
US7691788B2 (en) 2006-06-26 2010-04-06 Schlumberger Technology Corporation Compositions and methods of using same in producing heavy oil and bitumen
US20080006561A1 (en) 2006-07-05 2008-01-10 Moran Lyle E Dearomatized asphalt
AU2007271132A1 (en) 2006-07-07 2008-01-10 Shell Internationale Research Maatschappij B.V. Process for the manufacture of carbon disulphide and use of a liquid stream comprising carbon disulphide for enhanced oil recovery
KR100735841B1 (ko) 2006-07-31 2007-07-06 한국과학기술원 천연가스 하이드레이트로부터 메탄가스를 회수하는 방법
US8409307B2 (en) 2006-08-23 2013-04-02 Praxair Technology, Inc. Gasification and steam methane reforming integrated polygeneration method and system
US20080047280A1 (en) 2006-08-24 2008-02-28 Bhp Billiton Limited Heat recovery system
JP4265634B2 (ja) 2006-09-15 2009-05-20 トヨタ自動車株式会社 電動パーキングブレーキシステム
CA2663757C (en) 2006-09-18 2014-12-09 Shell Internationale Research Maatschappij B.V. A process for the manufacture of carbon disulphide
US7520134B2 (en) 2006-09-29 2009-04-21 General Electric Company Methods and apparatus for injecting fluids into a turbine engine
JP2008095541A (ja) 2006-10-06 2008-04-24 Toufuji Denki Kk ターボチャージャ
US7942008B2 (en) 2006-10-09 2011-05-17 General Electric Company Method and system for reducing power plant emissions
GB0620883D0 (en) 2006-10-20 2006-11-29 Johnson Matthey Plc Exhaust system for a lean-burn internal combustion engine
US7566394B2 (en) 2006-10-20 2009-07-28 Saudi Arabian Oil Company Enhanced solvent deasphalting process for heavy hydrocarbon feedstocks utilizing solid adsorbent
US7763163B2 (en) 2006-10-20 2010-07-27 Saudi Arabian Oil Company Process for removal of nitrogen and poly-nuclear aromatics from hydrocracker feedstocks
US7721543B2 (en) 2006-10-23 2010-05-25 Southwest Research Institute System and method for cooling a combustion gas charge
US7492054B2 (en) 2006-10-24 2009-02-17 Catlin Christopher S River and tidal power harvester
US7895822B2 (en) 2006-11-07 2011-03-01 General Electric Company Systems and methods for power generation with carbon dioxide isolation
US7827778B2 (en) 2006-11-07 2010-11-09 General Electric Company Power plants that utilize gas turbines for power generation and processes for lowering CO2 emissions
US7739864B2 (en) 2006-11-07 2010-06-22 General Electric Company Systems and methods for power generation with carbon dioxide isolation
US7947115B2 (en) 2006-11-16 2011-05-24 Siemens Energy, Inc. System and method for generation of high pressure air in an integrated gasification combined cycle system
US20080118310A1 (en) 2006-11-20 2008-05-22 Graham Robert G All-ceramic heat exchangers, systems in which they are used and processes for the use of such systems
US7921633B2 (en) 2006-11-21 2011-04-12 Siemens Energy, Inc. System and method employing direct gasification for power generation
US20080127632A1 (en) 2006-11-30 2008-06-05 General Electric Company Carbon dioxide capture systems and methods
US7789658B2 (en) 2006-12-14 2010-09-07 Uop Llc Fired heater
US7856829B2 (en) 2006-12-15 2010-12-28 Praxair Technology, Inc. Electrical power generation method
US7815873B2 (en) 2006-12-15 2010-10-19 Exxonmobil Research And Engineering Company Controlled combustion for regenerative reactors with mixer/flow distributor
US7802434B2 (en) 2006-12-18 2010-09-28 General Electric Company Systems and processes for reducing NOx emissions
EP1944268A1 (en) 2006-12-18 2008-07-16 BP Alternative Energy Holdings Limited Process
US20080155984A1 (en) 2007-01-03 2008-07-03 Ke Liu Reforming system for combined cycle plant with partial CO2 capture
US8281600B2 (en) 2007-01-09 2012-10-09 General Electric Company Thimble, sleeve, and method for cooling a combustor assembly
US7943097B2 (en) 2007-01-09 2011-05-17 Catalytic Solutions, Inc. Reactor system for reducing NOx emissions from boilers
FR2911667B1 (fr) 2007-01-23 2009-10-02 Snecma Sa Systeme d'injection de carburant a double injecteur.
US7819951B2 (en) 2007-01-23 2010-10-26 Air Products And Chemicals, Inc. Purification of carbon dioxide
CA2676088C (en) 2007-01-25 2015-05-26 Shell Canada Limited Process for reducing carbon dioxide emission in a power plant
EP1950494A1 (de) 2007-01-29 2008-07-30 Siemens Aktiengesellschaft Brennkammer für eine Gasturbine
US20080178611A1 (en) 2007-01-30 2008-07-31 Foster Wheeler Usa Corporation Ecological Liquefied Natural Gas (LNG) Vaporizer System
US7841186B2 (en) 2007-01-31 2010-11-30 Power Systems Mfg., Llc Inlet bleed heat and power augmentation for a gas turbine engine
WO2008099313A2 (en) 2007-02-12 2008-08-21 Sasol Technology (Proprietary) Limited Co-production of power and hydrocarbons
EP1959143B1 (en) 2007-02-13 2010-10-20 Yamada Manufacturing Co., Ltd. Oil pump pressure control device
US8356485B2 (en) 2007-02-27 2013-01-22 Siemens Energy, Inc. System and method for oxygen separation in an integrated gasification combined cycle system
US20080251234A1 (en) 2007-04-16 2008-10-16 Wilson Turbopower, Inc. Regenerator wheel apparatus
US20080250795A1 (en) 2007-04-16 2008-10-16 Conocophillips Company Air Vaporizer and Its Use in Base-Load LNG Regasification Plant
CA2614669C (en) 2007-05-03 2008-12-30 Imperial Oil Resources Limited An improved process for recovering solvent from asphaltene containing tailings resulting from a separation process
US8038746B2 (en) 2007-05-04 2011-10-18 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for liquid fuel production
US7654330B2 (en) 2007-05-19 2010-02-02 Pioneer Energy, Inc. Apparatus, methods, and systems for extracting petroleum using a portable coal reformer
US8616294B2 (en) 2007-05-20 2013-12-31 Pioneer Energy, Inc. Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery
US7918906B2 (en) 2007-05-20 2011-04-05 Pioneer Energy Inc. Compact natural gas steam reformer with linear countercurrent heat exchanger
FR2916363A1 (fr) 2007-05-23 2008-11-28 Air Liquide Procede de purification d'un gaz par cpsa a deux paliers de regeneration et unite de purification permettant la mise en oeuvre de ce procede
US20080290719A1 (en) 2007-05-25 2008-11-27 Kaminsky Robert D Process for producing Hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US7874140B2 (en) 2007-06-08 2011-01-25 Foster Wheeler North America Corp. Method of and power plant for generating power by oxyfuel combustion
US8850789B2 (en) 2007-06-13 2014-10-07 General Electric Company Systems and methods for power generation with exhaust gas recirculation
EP2158388B1 (de) 2007-06-19 2019-09-11 Ansaldo Energia IP UK Limited Gasturbinenanlage mit abgasrezirkulation
US20090000762A1 (en) 2007-06-29 2009-01-01 Wilson Turbopower, Inc. Brush-seal and matrix for regenerative heat exchanger, and method of adjusting same
US7708804B2 (en) 2007-07-11 2010-05-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of a gaseous mixture
US8061120B2 (en) 2007-07-30 2011-11-22 Herng Shinn Hwang Catalytic EGR oxidizer for IC engines and gas turbines
CA2638588A1 (en) 2007-08-09 2009-02-09 Tapco International Corporation Exterior trim pieces with weather stripping and colored protective layer
AU2008292143B2 (en) 2007-08-30 2011-12-08 Shell Internationale Research Maatschappij B.V. Process for removal of hydrogen sulphide and carbon dioxide from an acid gas stream
US7845406B2 (en) 2007-08-30 2010-12-07 George Nitschke Enhanced oil recovery system for use with a geopressured-geothermal conversion system
US8127558B2 (en) 2007-08-31 2012-03-06 Siemens Energy, Inc. Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air
US20090056342A1 (en) 2007-09-04 2009-03-05 General Electric Company Methods and Systems for Gas Turbine Part-Load Operating Conditions
US9404418B2 (en) 2007-09-28 2016-08-02 General Electric Company Low emission turbine system and method
US8448443B2 (en) 2007-10-11 2013-05-28 General Electric Company Combustion liner thimble insert and related method
US8167960B2 (en) 2007-10-22 2012-05-01 Osum Oil Sands Corp. Method of removing carbon dioxide emissions from in-situ recovery of bitumen and heavy oil
US7861511B2 (en) 2007-10-30 2011-01-04 General Electric Company System for recirculating the exhaust of a turbomachine
US8220268B2 (en) 2007-11-28 2012-07-17 Caterpillar Inc. Turbine engine having fuel-cooled air intercooling
WO2009070785A2 (en) 2007-11-28 2009-06-04 Brigham Young University Carbon dioxide capture from flue gas
EP2067941A3 (de) 2007-12-06 2013-06-26 Alstom Technology Ltd Kombikraftwerk mit Abgasrückführung und CO2-Abscheidung sowie Verfahren zum Betrieb eines solchen Kombikraftwerks
US8133298B2 (en) 2007-12-06 2012-03-13 Air Products And Chemicals, Inc. Blast furnace iron production with integrated power generation
US8046986B2 (en) 2007-12-10 2011-11-01 General Electric Company Method and system for controlling an exhaust gas recirculation system
US7536252B1 (en) 2007-12-10 2009-05-19 General Electric Company Method and system for controlling a flowrate of a recirculated exhaust gas
US20090157230A1 (en) 2007-12-14 2009-06-18 General Electric Company Method for controlling a flowrate of a recirculated exhaust gas
JP5118496B2 (ja) 2008-01-10 2013-01-16 三菱重工業株式会社 ガスタービンの排気部の構造およびガスタービン
GB0800940D0 (en) 2008-01-18 2008-02-27 Milled Carbon Ltd Recycling carbon fibre
US7695703B2 (en) 2008-02-01 2010-04-13 Siemens Energy, Inc. High temperature catalyst and process for selective catalytic reduction of NOx in exhaust gases of fossil fuel combustion
US20090193809A1 (en) 2008-02-04 2009-08-06 Mark Stewart Schroder Method and system to facilitate combined cycle working fluid modification and combustion thereof
US8176982B2 (en) 2008-02-06 2012-05-15 Osum Oil Sands Corp. Method of controlling a recovery and upgrading operation in a reservoir
CA2715973C (en) 2008-02-12 2014-02-11 Foret Plasma Labs, Llc System, method and apparatus for lean combustion with plasma from an electrical arc
EP2093403B1 (en) 2008-02-19 2016-09-28 C.R.F. Società Consortile per Azioni EGR control system
US8051638B2 (en) 2008-02-19 2011-11-08 General Electric Company Systems and methods for exhaust gas recirculation (EGR) for turbine engines
CA2684817C (en) 2008-12-12 2017-09-12 Maoz Betzer-Zilevitch Steam generation process and system for enhanced oil recovery
US20090223227A1 (en) 2008-03-05 2009-09-10 General Electric Company Combustion cap with crown mixing holes
US8448418B2 (en) 2008-03-11 2013-05-28 General Electric Company Method for controlling a flowrate of a recirculated exhaust gas
US7926292B2 (en) 2008-03-19 2011-04-19 Gas Technology Institute Partial oxidation gas turbine cooling
US8171719B2 (en) * 2008-03-21 2012-05-08 Siemens Energy, Inc. Igniter assembly for a gas turbine
US8001789B2 (en) 2008-03-26 2011-08-23 Alstom Technologies Ltd., Llc Utilizing inlet bleed heat to improve mixing and engine turndown
US7985399B2 (en) 2008-03-27 2011-07-26 Praxair Technology, Inc. Hydrogen production method and facility
MY156350A (en) 2008-03-28 2016-02-15 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
CN101981162B (zh) 2008-03-28 2014-07-02 埃克森美孚上游研究公司 低排放发电和烃采收系统及方法
EP2107305A1 (en) 2008-04-01 2009-10-07 Siemens Aktiengesellschaft Gas turbine system and method
US8459017B2 (en) 2008-04-09 2013-06-11 Woodward, Inc. Low pressure drop mixer for radial mixing of internal combustion engine exhaust flows, combustor incorporating same, and methods of mixing
US8272777B2 (en) 2008-04-21 2012-09-25 Heinrich Gillet Gmbh (Tenneco) Method for mixing an exhaust gas flow
FR2930594B1 (fr) 2008-04-29 2013-04-26 Faurecia Sys Echappement Element d'echappement comportant un moyen statique pour melanger un additif a des gaz d'echappement
US8240153B2 (en) 2008-05-14 2012-08-14 General Electric Company Method and system for controlling a set point for extracting air from a compressor to provide turbine cooling air in a gas turbine
US8397482B2 (en) 2008-05-15 2013-03-19 General Electric Company Dry 3-way catalytic reduction of gas turbine NOx
WO2009141733A1 (en) 2008-05-20 2009-11-26 Osum Oil Sands Corp. Method of managing carbon reduction for hydrocarbon producers
US20090301054A1 (en) 2008-06-04 2009-12-10 Simpson Stanley F Turbine system having exhaust gas recirculation and reheat
US20100003123A1 (en) 2008-07-01 2010-01-07 Smith Craig F Inlet air heating system for a gas turbine engine
US7955403B2 (en) 2008-07-16 2011-06-07 Kellogg Brown & Root Llc Systems and methods for producing substitute natural gas
US20100018218A1 (en) 2008-07-25 2010-01-28 Riley Horace E Power plant with emissions recovery
US8110012B2 (en) 2008-07-31 2012-02-07 Alstom Technology Ltd System for hot solids combustion and gasification
US7753972B2 (en) 2008-08-17 2010-07-13 Pioneer Energy, Inc Portable apparatus for extracting low carbon petroleum and for generating low carbon electricity
US7674443B1 (en) 2008-08-18 2010-03-09 Irvin Davis Zero emission gasification, power generation, carbon oxides management and metallurgical reduction processes, apparatus, systems, and integration thereof
WO2010020655A1 (en) 2008-08-21 2010-02-25 Shell Internationale Research Maatschappij B.V. Improved process for production of elemental iron
US8745978B2 (en) 2008-09-19 2014-06-10 Renault Trucks Mixing device in an exhaust gas pipe
US7931888B2 (en) 2008-09-22 2011-04-26 Praxair Technology, Inc. Hydrogen production method
US8316784B2 (en) 2008-09-26 2012-11-27 Air Products And Chemicals, Inc. Oxy/fuel combustion system with minimized flue gas recirculation
CA2737133C (en) 2008-10-14 2017-01-31 Exxonmobil Upstream Research Company Methods and systems for controlling the products of combustion
US8454350B2 (en) 2008-10-29 2013-06-04 General Electric Company Diluent shroud for combustor
UA103346C2 (ru) 2008-11-24 2013-10-10 Арес Турбине Ас Газовая турбина внешнего сгорания, которая использует ротационный регенеративный теплообменник
EP2192347B1 (en) 2008-11-26 2014-01-01 Siemens Aktiengesellschaft Tubular swirling chamber
CA2646171A1 (en) 2008-12-10 2010-06-10 Her Majesty The Queen In Right Of Canada, As Represented By The Minist Of Natural Resources Canada High pressure direct contact oxy-fired steam generator
US20100170253A1 (en) 2009-01-07 2010-07-08 General Electric Company Method and apparatus for fuel injection in a turbine engine
US20100180565A1 (en) 2009-01-16 2010-07-22 General Electric Company Methods for increasing carbon dioxide content in gas turbine exhaust and systems for achieving the same
JP4746111B2 (ja) 2009-02-27 2011-08-10 三菱重工業株式会社 Co2回収装置及びその方法
US20100326084A1 (en) 2009-03-04 2010-12-30 Anderson Roger E Methods of oxy-combustion power generation using low heating value fuel
US8127936B2 (en) 2009-03-27 2012-03-06 Uop Llc High performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes
US8127937B2 (en) 2009-03-27 2012-03-06 Uop Llc High performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes
US20100300102A1 (en) 2009-05-28 2010-12-02 General Electric Company Method and apparatus for air and fuel injection in a turbine
JP5173941B2 (ja) 2009-06-04 2013-04-03 三菱重工業株式会社 Co2回収装置
US9353940B2 (en) 2009-06-05 2016-05-31 Exxonmobil Upstream Research Company Combustor systems and combustion burners for combusting a fuel
JP5383338B2 (ja) 2009-06-17 2014-01-08 三菱重工業株式会社 Co2回収装置及びco2回収方法
US8436489B2 (en) 2009-06-29 2013-05-07 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8196395B2 (en) 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
EP2284359A1 (en) 2009-07-08 2011-02-16 Bergen Teknologioverføring AS Method of enhanced oil recovery from geological reservoirs
US8348551B2 (en) 2009-07-29 2013-01-08 Terratherm, Inc. Method and system for treating contaminated materials
US8479489B2 (en) 2009-08-27 2013-07-09 General Electric Company Turbine exhaust recirculation
SG178160A1 (en) 2009-09-01 2012-03-29 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
US10001272B2 (en) 2009-09-03 2018-06-19 General Electric Technology Gmbh Apparatus and method for close coupling of heat recovery steam generators with gas turbines
US7937948B2 (en) 2009-09-23 2011-05-10 Pioneer Energy, Inc. Systems and methods for generating electricity from carbonaceous material with substantially no carbon dioxide emissions
EP2301650B1 (en) 2009-09-24 2016-11-02 Haldor Topsøe A/S Process and catalyst system for scr of nox
US8381525B2 (en) 2009-09-30 2013-02-26 General Electric Company System and method using low emissions gas turbine cycle with partial air separation
US20110088379A1 (en) 2009-10-15 2011-04-21 General Electric Company Exhaust gas diffuser
US8337139B2 (en) 2009-11-10 2012-12-25 General Electric Company Method and system for reducing the impact on the performance of a turbomachine operating an extraction system
SG10201407421UA (en) 2009-11-12 2014-12-30 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
US20110126512A1 (en) 2009-11-30 2011-06-02 Honeywell International Inc. Turbofan gas turbine engine aerodynamic mixer
US20110138766A1 (en) 2009-12-15 2011-06-16 General Electric Company System and method of improving emission performance of a gas turbine
US8337613B2 (en) 2010-01-11 2012-12-25 Bert Zauderer Slagging coal combustor for cementitious slag production, metal oxide reduction, shale gas and oil recovery, enviromental remediation, emission control and CO2 sequestration
DE102010009043B4 (de) 2010-02-23 2013-11-07 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Statischer Mischer für eine Abgasanlage einer Brennkraftmaschine
US8438852B2 (en) 2010-04-06 2013-05-14 General Electric Company Annular ring-manifold quaternary fuel distributor
US8635875B2 (en) 2010-04-29 2014-01-28 Pratt & Whitney Canada Corp. Gas turbine engine exhaust mixer including circumferentially spaced-apart radial rows of tabs extending downstream on the radial walls, crests and troughs
US8372251B2 (en) 2010-05-21 2013-02-12 General Electric Company System for protecting gasifier surfaces from corrosion
MY160832A (en) 2010-07-02 2017-03-31 Exxonmobil Upstream Res Co Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
SG186084A1 (en) 2010-07-02 2013-01-30 Exxonmobil Upstream Res Co Low emission triple-cycle power generation systems and methods
TWI564473B (zh) 2010-07-02 2017-01-01 艾克頌美孚上游研究公司 低排放之三循環動力產生系統及方法
CA2801494C (en) 2010-07-02 2018-04-17 Exxonmobil Upstream Research Company Stoichiometric combustion of enriched air with exhaust gas recirculation
CN105863844B (zh) 2010-07-02 2017-11-14 埃克森美孚上游研究公司 低排放动力产生系统和方法
MY156099A (en) 2010-07-02 2016-01-15 Exxonmobil Upstream Res Co Systems and methods for controlling combustion of a fuel
US8268044B2 (en) 2010-07-13 2012-09-18 Air Products And Chemicals, Inc. Separation of a sour syngas stream
US8226912B2 (en) 2010-07-13 2012-07-24 Air Products And Chemicals, Inc. Method of treating a gaseous mixture comprising hydrogen, carbon dioxide and hydrogen sulphide
US8206669B2 (en) 2010-07-27 2012-06-26 Air Products And Chemicals, Inc. Method and apparatus for treating a sour gas
US9097182B2 (en) 2010-08-05 2015-08-04 General Electric Company Thermal control system for fault detection and mitigation within a power generation system
US9019108B2 (en) 2010-08-05 2015-04-28 General Electric Company Thermal measurement system for fault detection within a power generation system
US8627643B2 (en) 2010-08-05 2014-01-14 General Electric Company System and method for measuring temperature within a turbine system
JP6193759B2 (ja) 2010-08-06 2017-09-06 エクソンモービル アップストリーム リサーチ カンパニー 化学量論的燃焼の最適化システム及び方法
WO2012018458A1 (en) 2010-08-06 2012-02-09 Exxonmobil Upstream Research Company System and method for exhaust gas extraction
US8220247B2 (en) 2010-09-13 2012-07-17 Membrane Technology And Research, Inc. Power generation process with partial recycle of carbon dioxide
US8220248B2 (en) 2010-09-13 2012-07-17 Membrane Technology And Research, Inc Power generation process with partial recycle of carbon dioxide
US8166766B2 (en) 2010-09-23 2012-05-01 General Electric Company System and method to generate electricity
US8991187B2 (en) 2010-10-11 2015-03-31 General Electric Company Combustor with a lean pre-nozzle fuel injection system
US8726628B2 (en) 2010-10-22 2014-05-20 General Electric Company Combined cycle power plant including a carbon dioxide collection system
US9074530B2 (en) 2011-01-13 2015-07-07 General Electric Company Stoichiometric exhaust gas recirculation and related combustion control
RU2560099C2 (ru) 2011-01-31 2015-08-20 Дженерал Электрик Компани Топливное сопло (варианты)
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
CN103442783A (zh) 2011-03-22 2013-12-11 埃克森美孚上游研究公司 用于在低排放涡轮机系统中捕获二氧化碳的系统和方法
TW201303143A (zh) 2011-03-22 2013-01-16 Exxonmobil Upstream Res Co 低排放渦輪機系統中用於攫取二氧化碳及產生動力的系統與方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI563164B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated systems incorporating inlet compressor oxidant control apparatus and related methods of generating power
US8101146B2 (en) 2011-04-08 2012-01-24 Johnson Matthey Public Limited Company Catalysts for the reduction of ammonia emission from rich-burn exhaust
US8910485B2 (en) 2011-04-15 2014-12-16 General Electric Company Stoichiometric exhaust gas recirculation combustor with extraction port for cooling air
US8281596B1 (en) 2011-05-16 2012-10-09 General Electric Company Combustor assembly for a turbomachine
CA2742565C (en) 2011-06-10 2019-04-02 Imperial Oil Resources Limited Methods and systems for providing steam
US8919137B2 (en) * 2011-08-05 2014-12-30 General Electric Company Assemblies and apparatus related to integrating late lean injection into combustion turbine engines
US9010120B2 (en) * 2011-08-05 2015-04-21 General Electric Company Assemblies and apparatus related to integrating late lean injection into combustion turbine engines
US20120023954A1 (en) 2011-08-25 2012-02-02 General Electric Company Power plant and method of operation
US8266883B2 (en) 2011-08-25 2012-09-18 General Electric Company Power plant start-up method and method of venting the power plant
US9127598B2 (en) 2011-08-25 2015-09-08 General Electric Company Control method for stoichiometric exhaust gas recirculation power plant
US8245493B2 (en) 2011-08-25 2012-08-21 General Electric Company Power plant and control method
US8245492B2 (en) 2011-08-25 2012-08-21 General Electric Company Power plant and method of operation
US8347600B2 (en) 2011-08-25 2013-01-08 General Electric Company Power plant and method of operation
US8205455B2 (en) 2011-08-25 2012-06-26 General Electric Company Power plant and method of operation
US8266913B2 (en) 2011-08-25 2012-09-18 General Electric Company Power plant and method of use
US8713947B2 (en) 2011-08-25 2014-05-06 General Electric Company Power plant with gas separation system
US8453462B2 (en) 2011-08-25 2013-06-04 General Electric Company Method of operating a stoichiometric exhaust gas recirculation power plant
US8453461B2 (en) 2011-08-25 2013-06-04 General Electric Company Power plant and method of operation
US20130086917A1 (en) 2011-10-06 2013-04-11 Ilya Aleksandrovich Slobodyanskiy Apparatus for head end direct air injection with enhanced mixing capabilities
US9010082B2 (en) * 2012-01-03 2015-04-21 General Electric Company Turbine engine and method for flowing air in a turbine engine
US9157638B2 (en) * 2012-01-31 2015-10-13 General Electric Company Adaptor assembly for removable components
US9097424B2 (en) * 2012-03-12 2015-08-04 General Electric Company System for supplying a fuel and working fluid mixture to a combustor
CA2868732C (en) 2012-03-29 2017-02-14 Exxonmobil Upstream Research Company Turbomachine combustor assembly
WO2013147632A1 (en) 2012-03-29 2013-10-03 General Electric Company Bi-directional end cover with extraction capability for gas turbine combustor
US20130269355A1 (en) 2012-04-12 2013-10-17 General Electric Company Method and system for controlling an extraction pressure and temperature of a stoichiometric egr system
US20130269361A1 (en) 2012-04-12 2013-10-17 General Electric Company Methods relating to reheat combustion turbine engines with exhaust gas recirculation
CA2881606C (en) 2012-04-12 2017-07-04 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US8539749B1 (en) 2012-04-12 2013-09-24 General Electric Company Systems and apparatus relating to reheat combustion turbine engines with exhaust gas recirculation
US20130269357A1 (en) 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a secondary flow system
US20130269358A1 (en) 2012-04-12 2013-10-17 General Electric Company Methods, systems and apparatus relating to reheat combustion turbine engines with exhaust gas recirculation
US20150040574A1 (en) 2012-04-12 2015-02-12 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US20130269356A1 (en) 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a stoichiometric egr system on a regenerative reheat system
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US20130269310A1 (en) 2012-04-12 2013-10-17 General Electric Company Systems and apparatus relating to reheat combustion turbine engines with exhaust gas recirculation
US20130269360A1 (en) 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a powerplant during low-load operations
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
EP2841740B1 (en) 2012-04-26 2020-04-01 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US20140060073A1 (en) 2012-08-28 2014-03-06 General Electric Company Multiple point overboard extractor for gas turbine
US20140182305A1 (en) * 2012-12-28 2014-07-03 Exxonmobil Upstream Research Company System and method for a turbine combustor
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
WO2014071118A1 (en) 2012-11-02 2014-05-08 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US20140182298A1 (en) 2012-12-28 2014-07-03 Exxonmobil Upstream Research Company Stoichiometric combustion control for gas turbine system with exhaust gas recirculation
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US10161312B2 (en) 2012-11-02 2018-12-25 General Electric Company System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US20140182304A1 (en) 2012-12-28 2014-07-03 Exxonmobil Upstream Research Company System and method for a turbine combustor
KR101265883B1 (ko) * 2012-11-22 2013-05-20 에스티엑스중공업 주식회사 점화기 결합구조를 구비하는 마이크로 가스터빈 및 그 조립방법
US9404659B2 (en) 2012-12-17 2016-08-02 General Electric Company Systems and methods for late lean injection premixing
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US10221762B2 (en) 2013-02-28 2019-03-05 General Electric Company System and method for a turbine combustor
WO2014137409A1 (en) * 2013-03-07 2014-09-12 Rolls-Royce Corporation Flexible bellows igniter seal for a gas turbine with a ceramic combustion liner
US9376961B2 (en) * 2013-03-18 2016-06-28 General Electric Company System for controlling a flow rate of a compressed working fluid to a combustor fuel injector
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US20150033751A1 (en) 2013-07-31 2015-02-05 General Electric Company System and method for a water injection system
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation

Also Published As

Publication number Publication date
WO2016115152A1 (en) 2016-07-21
US20160201916A1 (en) 2016-07-14
CN107850307A (zh) 2018-03-27
EP3247943B1 (en) 2020-03-11
US10788212B2 (en) 2020-09-29
EP3247943A1 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6416248B2 (ja) 燃料ノズルのためのシステム及び方法
JP6479003B2 (ja) 排気ガス再循環を備えたガスタービンエンジンにおける燃焼及びエミッションを制御するシステム及び方法
JP6321038B2 (ja) 排気ガス再循環を備えたガスタービンエンジン中の構成要素を保護するためのシステム及び方法
JP6309963B2 (ja) 化学量論的排気ガス再循環ガスタービンシステム内の酸化剤−希釈剤混合を用いた拡散燃焼のためのシステム及び方法
JP6309964B2 (ja) 化学量論的排気ガス再循環ガスタービンシステム内の拡散燃焼を用いた負荷制御のためのシステム及び方法
JP6444880B2 (ja) 量論的排気ガス再循環ガスタービンシステムにおける酸化剤圧縮のためのシステム及び方法
JP6336591B2 (ja) 酸化剤加熱システムのためのシステム及び方法
JP6452684B2 (ja) 排気ガス再循環を有するガスタービンシステムをモニタするためのシステム及び方法
US9631815B2 (en) System and method for a turbine combustor
US9803865B2 (en) System and method for a turbine combustor
JP2016502014A (ja) 排気ガス再循環を備えたガスタービンエンジン中の構成要素を保護するためのシステム及び方法
US20140182305A1 (en) System and method for a turbine combustor
US20140123660A1 (en) System and method for a turbine combustor
JP6615133B2 (ja) 排気再循環を有するガスタービンシステム駆動系の始動の方法及びシステム
US20140182304A1 (en) System and method for a turbine combustor
JP2018513957A (ja) 排気再循環を有するガスタービンシステム内の酸化剤通路のためのシステム及び方法
JP2017508093A (ja) ガスタービンエンジンのためのシステム及び方法
JP2018508735A (ja) 排気再循環を有するガスタービンエンジン内の高い体積酸化剤流量のためのシステム及び方法
JP2015518540A (ja) 量論的egrガスタービンシステムのためのシステム及び方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200706