JP2018501757A - 高温rf用途のための静電チャック - Google Patents

高温rf用途のための静電チャック Download PDF

Info

Publication number
JP2018501757A
JP2018501757A JP2017529626A JP2017529626A JP2018501757A JP 2018501757 A JP2018501757 A JP 2018501757A JP 2017529626 A JP2017529626 A JP 2017529626A JP 2017529626 A JP2017529626 A JP 2017529626A JP 2018501757 A JP2018501757 A JP 2018501757A
Authority
JP
Japan
Prior art keywords
pack
chuck
electrostatic chuck
inductor
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017529626A
Other languages
English (en)
Other versions
JP2018501757A5 (ja
JP6796066B2 (ja
Inventor
リャン ハンソン
リャン ハンソン
マンジュナサ コッパ
マンジュナサ コッパ
ヴィジェイ ディー パーケ
ヴィジェイ ディー パーケ
ジョン シー フォースター
ジョン シー フォースター
キース エイ ミラー
キース エイ ミラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2018501757A publication Critical patent/JP2018501757A/ja
Publication of JP2018501757A5 publication Critical patent/JP2018501757A5/ja
Application granted granted Critical
Publication of JP6796066B2 publication Critical patent/JP6796066B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

静電チャックは、基板が上に配設されたとき基板を支持する支持表面と、反対の第2の表面とを有するパックであり、1つまたは複数のチャック電極がパックに埋め込まれる、パックと、パックを支持するためにパックの第2の表面に結合される支持表面を有する本体と、パックの支持表面に配設されたDC電圧感知回路と、本体に配設され、本体の支持表面に隣接するインダクタであり、インダクタがDC電圧感知回路に電気的に結合され、インダクタが、基板のDC電位を正確に測定するために高周波電流流れをフィルタ処理するように構成される、インダクタとを含む。【選択図】図2

Description

本開示の実施形態は、一般に、マイクロ電子デバイス製造プロセスにおいて基板を保持するために使用される静電チャックに関する。
高温および高電力レベルで動作する物理的気相堆積(PVD)チャンバは、基板の処理のためのいくつかの利点を提供する。高温および高電力での動作は、膜特性(例えば、応力密度ρなど)を改善し、良好なRF受信機効率を提供するが、高温および高電力は、過熱、基板裏側アーク放電、およびチャンバ変動を引き起こす。具体的には、高温/高電力物理的気相堆積(PVD)用途で現在使用されている既存の静電チャック(ESC)は、RF電力で使用するとき制限がある。それらの制限は、限定はしないが、1)高電力プロセス中に電極のRF電流が高くなる過ぎるときのESC過熱、2)超高周波(VHF)用途においてESCの表面に配設されたDC電圧感知回路(すなわち、本明細書では、Vdc感知端子または中心タップ(cタップ)回路と呼ぶ)への基板裏側アーク放電、ならびに3)ESCに配設されたヒータおよび電極などの様々な構成要素に電力を供給するシールドなし配線によって引き起こされるプロセス変動を含み得る。
前述の制限の観点から、高温/高電力PVDプロセスに関連する前述の問題を除去または軽減するための改善された静電チャックの必要性がある。
静電チャックは、基板が上に配設されたとき基板を支持する支持表面と、反対の第2の表面とを有するパックであり、1つまたは複数のチャック電極がパックに埋め込まれる、パックと、パックを支持するためにパックの第2の表面に結合される支持表面を有する本体と、パックの支持表面に配設されたDC電圧感知回路と、本体に配設され、本体の支持表面に隣接するインダクタであり、インダクタがDC電圧感知回路に電気的に結合され、インダクタが、基板のDC電位を正確に測定するために高周波電流流れをフィルタ処理するように構成される、インダクタとを含む。
いくつかの実施形態では、静電チャックは、基板が上に配設されたとき基板を支持する支持表面と、反対の第2の表面とを有するパックであり、1つまたは複数のチャック電極がパックに埋め込まれ、1つまたは複数のチャック電極の各々の厚さが、1つまたは複数のチャック電極の計算された表皮深さの約3倍〜約5倍である、パックと、パックを支持するためにパックの第2の表面に結合される支持表面を有する本体とを含む。
いくつかの実施形態では、静電チャックは、基板が上に配設されたとき基板を支持する支持表面と、反対の第2の表面とを有するパックであり、1つまたは複数のチャック電極がパックに埋め込まれ、1つまたは複数のチャック電極の各々の厚さが、1つまたは複数のチャック電極の計算された表皮深さの約3倍〜約5倍であり、1つまたは複数のチャック電極が、一組の1つまたは複数の高温同軸ケーブルを介してチャック電力供給部に結合される、パックと、パックを支持するためにパックの第2の表面に結合される支持表面を有する本体と、パックの支持表面に配設されたDC電圧感知回路と、本体に配設され、本体の支持表面に隣接するインダクタであり、インダクタがDC電圧感知回路に電気的に結合され、インダクタが、基板のDC電位を正確に測定するために高周波電流流れをフィルタ処理するように構成される、インダクタとを含む。
上述で簡単に要約し、以下でさらに詳細に論じる本開示の実施形態は、添付図面に示される本開示の例示的な実施形態を参照することによって理解することができる。しかしながら、添付図面は、本開示の典型的な実施形態のみを示しており、それゆえに、本開示が他の等しく効果的な実施形態を認め得るためその範囲を限定すると考えるべきではないことに留意されたい。
本開示のいくつかの実施形態による静電チャックとともに使用するのに好適なプロセスチャンバを示す図である。 本開示のいくつかの実施形態による静電チャックの断面図である。 本開示のいくつかの実施形態による静電チャックのパック表面の上面図である。 本開示のいくつかの実施形態による静電チャックのパック表面の上面図である。 本開示のいくつかの実施形態による図1の同軸ケーブルの一部分の切取斜視図である。
理解しやすくするために、同一の参照番号が、可能である場合、図に共通する同一の要素を指定するために使用されている。図は一定の縮尺で描かれておらず、見やすいように簡単にされていることがある。1つの実施形態の要素および特徴は、さらなる詳述なしに、他の実施形態に有利に組み込むことができることが意図される。
高温RF/VHF静電チャックの実施形態が、本明細書で提供される。本発明の静電チャックは、有利には、過熱を防止し、基板とESC支持表面との間の裏側アーク放電を減少させ、RF用途における再現可能性能およびより高い効率を可能にするように高温および/または高電力環境で動作することができる。具体的には、本明細書で提供されるESCの実施形態には、電流密度を減少させ、過熱することなくより高い電流を可能にするESCのパックのより厚い埋込型電極、RFインピーダンスを増加させ、それにより、より高いRF電力および周波数でのESCパック表面のDC電圧感知を可能にする、ESC DC電圧感知回路のすぐ近くの高温インダクタ、ならびに/またはRF用途における再現可能性能およびより高い効率を可能にする高温配線が含まれ得る。
図1は、本開示のいくつかの実施形態によるプラズマ処理チャンバの概略断面図である。いくつかの実施形態では、プラズマ処理チャンバはPVD処理チャンバである。しかしながら、他のタイプの処理チャンバが、さらに、本明細書で説明する本発明の静電チャックの実施形態を使用してもよく、または本明細書で説明する本発明の静電チャックの実施形態とともに使用するように変更されてもよい。本明細書で説明するPVD処理チャンバおよびESCは、摂氏約200°〜摂氏約500°の温度で、および約13MHz〜約60MHzの周波数における約5kW〜約10kWの電力の間の電力レベルで動作することができる。
チャンバ100は、高温/高電力基板処理の間チャンバ内部容積部120内の大気未満の圧力を維持するように適切に構成された真空チャンバである。チャンバ100は、チャンバ内部容積部120の上半分に設置された処理容積部119を囲むリッド104によって覆われたチャンバ本体106を含む。チャンバ100は、様々なチャンバ部品とイオン化されたプロセス材料との間の不要な反応を防止するために、そのような部品を取り囲む1つまたは複数のシールド105をさらに含むことができる。チャンバ本体106およびリッド104は、アルミニウムなどの金属で製作することができる。チャンバ本体106は、接地115への結合を介して接地することができる。
基板支持体124は、例えば半導体基板などの基板S、または静電的に保持され得るような他の基板を支持および保持するためにチャンバ内部容積部120内に配設される。基板支持体124は、一般に、静電チャック150(図2〜図4に関して以下でより詳細に説明する)と、静電チャック150を支持するための中空支持シャフト112とを含むことができる。中空支持シャフト112は、例えば、プロセスガス、流体、冷却剤、電力などを静電チャック150に供給する導管を備える。
いくつかの実施形態では、中空支持シャフト112は、上部の処理位置(図1に示すような)と下部の移送位置(図示せず)との間の静電チャック150の垂直移動を行うリフト機構113に結合される。ベローズアセンブリ110が、中空支持シャフト112のまわりに配設され、チャンバ100の内部からの真空の低下を防止しながら静電チャック150の垂直運動を可能にする可撓性密封を設けるために静電チャック150とチャンバ100の底面126との間に結合される。ベローズアセンブリ110は、チャンバの真空の低下を防止するのに役立つように底面126と接触するOリング165または他の好適な密封要素と接触する下部ベローズフランジ164をさらに含む。
中空支持シャフト112は、ヒータ電力供給部142、ガス供給部141、チャック電力供給部140、RF源(例えば、RFプラズマ電力供給部170およびRFバイアス電力供給部117)を静電チャック150に結合するための導管、冷却のための流体/ガス源(図示せず)などを備える。実施形態によっては、RFプラズマ電力供給部170およびRFバイアス電力供給部117は、それぞれのRF整合ネットワーク(RF整合ネットワーク116のみが示されている)を介して静電チャックに結合される。
基板リフト130は、シャフト111に接続されたプラットフォーム108に装着されたリフトピン109を含むことができ、シャフト111は、基板「S」を静電チャック150に置きまたは静電チャック150から取り外すことができるように基板リフト130を上げ下げするために第2のリフト機構132に結合される。静電チャック150は、リフトピン109を受け取るためにスルーホール(以下で説明する)を含む。ベローズアセンブリ131が、基板リフト130の垂直運動の間チャンバ真空を維持する可撓性密封を設けるために基板リフト130と底面126との間に結合される。
チャンバ100は、チャンバ100を排気するために使用されるスロットルバルブ(図示せず)および真空ポンプ(図示せず)を含む真空システム114に結合され流体連結する。チャンバ100内部の圧力は、スロットルバルブおよび/または真空ポンプを調節することによって調整することができる。チャンバ100は、さらに、チャンバ100に配設された基板を処理するためにチャンバ100に1つまたは複数のプロセスガスを供給することができるプロセスガス供給部118に結合され流体連結する。
動作時に、例えば、プラズマ102がチャンバ内部容積部120に作り出されて、1つまたは複数のプロセスを実行することができる。チャンバ内部容積部120に隣接するまたはチャンバ内部容積部120内の1つまたは複数の電極を介してプラズマ電源(例えば、RFプラズマ電力供給部170)からの電力をプロセスガスに結合させて、プロセスガスを点火し、プラズマ102を作り出すことによって、プラズマ102は作り出され得る。実施形態によっては、プラズマからのイオンを基板Sの方に引きつけるために、バイアス電力が、さらに、静電チャック150内に配設された1つまたは複数の電極(以下で説明する)にバイアス電力供給部(例えば、RFバイアス電力供給部117)から容量結合バイアスプレート(以下で説明する)を介して供給され得る。
いくつかの実施形態において、例えば、チャンバ100がPVDチャンバである場合、基板Sに堆積させるべき原材料を含むターゲット166が、チャンバ内部容積部120内で基板の上方に配設され得る。ターゲット166は、誘電体アイソレータを介して、チャンバ100の接地された導電性部分、例えばアルミニウムアダプタによって支持され得る。他の実施形態では、チャンバ100は、同じチャンバを使用して異なる材料の層を堆積させるためにマルチカソード配列で複数のターゲットを含むことができる。
制御可能なDC電源168をチャンバ100に結合して、電圧またはバイアスをターゲット166に印加することができる。本明細書で説明する本発明のESCと矛盾しないいくつかの実施形態では、DC電源168は、約2MHz〜約162MHzの周波数で約5kW〜約10kWの電力を供給することができる。本明細書で説明する本発明のESCと矛盾しないいくつかの実施形態では、DC電源168は、40MHzで7kWの電力を供給することができる。
RFバイアス電力供給部117を基板支持体124に結合して、基板Sに負のDCバイアスを誘起することができる。いくつかの実施形態では、RFバイアス電力供給部117は、ESC150に埋め込まれた電極に13.566MHzバイアス電力を供給する。加えて、いくつかの実施形態では、負のDC自己バイアスが処理の間基板Sに発生し得る。いくつかの実施形態では、RFプラズマ電力供給部170をさらにチャンバ100に結合して、RF電力をターゲット166に印加し、それにより、基板Sへの堆積速度の半径方向分布を制御しやすくすることができる。動作時に、チャンバ100に作り出されるプラズマ102中のイオンは、ターゲット166からの原材料と反応する。この反応により、ターゲット166は原材料の原子を追い出し、次いで、原材料の原子は、基板Sの方に導かれ、それにより、材料が堆積される。
図2は、本開示の実施形態による静電チャック(ESC150)の断面図を示している。ESC150は、基板を支持する支持表面と、反対の底部の第2の表面とを有するパック202を含む。ESCには、パックを支持するために、パック202の底部の第2の表面に結合され、パック202の底部の第2の表面から延びる本体203がさらに含まれる。いくつかの実施形態では、本体は、誘電体パックの下に配設された高周波(RF)バイアスプレートとして働く。さらに、ESC150によって使用される構成要素のうちのいくつかを収納する/統合するペデスタル統合ボックス220が図2に示されている。
いくつかの実施形態では、パック202は、セラミック材料から製作された誘電体円板である。パック202は、1つまたは複数の埋込型チャック電極204、206を含む。1つまたは複数の埋込型チャック電極204、206は、パック202の第1の側に配設されたA電極(例えば、204)と、パックの第2の側に配設されたB電極(例えば、206)とを含むことができる。電極の各々は、各電極に反対の電圧を供給して所望の静電力を作り出し、それにより、基板を保持するように独立に制御することができる。いくつかの実施形態では、1つまたは複数の埋込型チャック電極204、206は、約40MHzを受け取り、約13.56MHzを送り出すように構成される。
典型的な薄型電極は高電力印加の間抵抗加熱要素のように過熱し作用することを発明者等は発見した。本明細書で使用する薄型電極は、厚さが約1表皮深さである電極である。RF電流は、主として、外側表面と、表皮深さと呼ばれる平面との間の導体の「表皮」のところで流れる。表皮深さは、電気伝導が導体中でどの程度の深さまで生じるかの尺度であり、周波数の関数である。表皮深さは、さらに、導体(すなわち、1つまたは複数の電極)の材料特性ならびに使用される周波数の関数である。周波数が低いほど、表皮深さは大きい。いくつかの実施形態では、チャック電極204、206は、タングステンから製作される。40MHzでのタングステン電極の典型的な薄型電極は約18μmである。タングステンの場合、約3〜5表皮深さ、すなわち、約50μm〜約90μmとなるように電極の厚さを増加させ、RF電流をより大きい表皮深さによって広げることによって、電極はそれほど加熱しないことを発明者等は発見した。すなわち、チャック電極204、206をより厚くすることによって、電流密度が減少し、それゆえに、電極の加熱効果が減少する。より厚い電極では、RF電流の約60%は第1の表皮深さで流れ、RF電流の20%は第2の表皮深さで流れ、RF電流の10%は第3の表皮深さで流れ、RF電流の5%は第4の表皮深さで流れるなどである。他の実施形態では、チャック電極204、206は、例えばステンレス鋼などのような他の導電性材料から製作することができる。いくつかの実施形態では、電極の厚さは、電極の選択された材料に対する計算された表皮深さと、使用されることになる周波数とに基づいて選択されることになる。
表皮深さのよく知られた式は、以下の通りであり、(表皮深さ)は、3つの変数、すなわち、周波数(f)、抵抗(ρ)、および比透磁率(μR)の関数である。
Figure 2018501757
ただし、
ρ=バルク抵抗(オーム−メートル)
f=周波数(ヘルツ)
μ0=透磁率定数(ヘンリー/メートル)=4π×10-7
μr=比透磁率(通常約1)
各電極に反対の電圧を供給することに加えて、パックの既存の表面電荷を補償するために1つまたは複数のチャック電極204、206の各々に異なる電力レベルを供給することができる。一般に、基板の底面と接触するDC電圧感知回路214(すなわち、中心タップまたはcタップ)を使用して、基板の既存のDC電位を決定/測定する。基板の決定/測定された既存のDC電位を使用して、チャック電力供給部140によってA電極(例えば、204)およびB電極(例えば、206)の各々に供給されるチャック電力を、基板の直径全体にわたって基板を均一にチャックできるように調節する。本開示と矛盾しない実施形態において、DC電圧感知回路214は、パック表面に近接してESC150の本体203に配設されたインダクタ216に端子215を介して結合される。いくつかの実施形態では、インダクタ216は、パック202の中心から半径方向外側に約0.5インチ〜約2.5インチに配設される。いくつかの実施形態では、インダクタ216は、パック202の上面から約0.25インチ〜約5インチに配設される。RFフィルタ/インダクタがESCの下側部分のパック表面から12インチを超えて離れたところに設置される典型的なcタップ構成では、高電力印加(すなわち、13MHz以上)の間、基板と、ESC支持表面のcタップ回路トレースとの間の裏側アーク放電が生じることを発明者等は発見した。DC電圧感知回路214およびインダクタ216(すなわち、フィルタ)をパックの表面により近接して設けることによって、本開示と矛盾しない実施形態は、有利には、裏側アーク放電を避けるかまたは少なくとも大幅に減少させる。いくつかの実施形態では、インダクタ216はセラミックインダクタである。いくつかの実施形態では、インダクタ216は、約1インチの高さである。インダクタ216は、基板のDC電位を正確に測定するために、RF電流が流れないようにし、高周波電流流れをフィルタ処理する。
図3Aおよび図3Bは、本開示のいくつかの実施形態による、インダクタ216に結合される端子215に結合されたDC電圧感知回路214トレースを含むパック表面304の上面図を示している。いくつかの実施形態では、パック表面304は、例えば、裏側冷却を行い、および/またはデチャックガス圧を供給するために、裏側ガスチャネル306、ガス孔308、およびガスチューブ218をさらに含むことができる。
チャック電力供給部140は、高温配線ケーブル207を介して、1つまたは複数の埋込型チャック電極204、206に結合され得る。同様に、ヒータ電力供給部142は、高温配線ケーブル213を介して、1つまたは複数の埋込型抵抗加熱器に結合され得る。1つまたは複数の埋込型抵抗加熱器は、独立に制御される外側ヒータ210および内側ヒータ212を含むことができる。本開示と矛盾しない実施形態において、高温配線ケーブル207および/または213は、高温同軸ケーブル(すなわち、RFシールドケーブル)である。特に、ESCに埋め込まれた電極におよびESCに埋め込まれた電極からRFを伝導するためのシールドなしケーブルはインピーダンス変動を引き起こすことがあることを発明者等は発見した。シールドなし配線および配線をどのように引き回すかに基づくこれらの変動は、チャンバ間は言うまでもなく、同じチャンバ内でのプロセスの再現性を極端に困難にする。すなわち、シールドなしケーブルを使用したチャンバは、シールドなしケーブルの引き回しの変動に敏感であり、基板均一性および一貫性に関する問題が生じる。したがって、発明者等は、高温用途(すなわち、摂氏約200°〜摂氏約500°)のために特別に設計されたシールド同軸ケーブル(すなわち、高温ワイヤケーブル207、213)を使用することにより、RF用途における再現可能チャンバ性能およびより高い効率が可能になることを論じた。
図4は、本開示のいくつかの実施形態による図1の高温配線ケーブル207の一部分の切取斜視図を示している。具体的には、高温配線ケーブル207は、摂氏約200°〜摂氏約500°の温度に耐えることができる高温ジャケット402を含む同軸ケーブルである。いくつかの実施形態では、高温ジャケット402は、高温に耐えるセラミック誘電絶縁体である。高温配線ケーブル207は、金属材料から形成されたRFシールド404を含むことができる。いくつかの実施形態では、RFシールドは固体金属チューブシールドである。高温配線ケーブル207は、誘電体コア406と中心導体408とをさらに含む。
前述は本開示の実施形態に関するが、本開示の他のおよびさらなる実施形態がその基本範囲から逸脱することなく考案され得る。

Claims (15)

  1. 基板が上に配設されたとき前記基板を支持する支持表面と、反対の第2の表面とを有するパックであり、1つまたは複数のチャック電極が前記パックに埋め込まれる、パックと、
    前記パックを支持するために前記パックの前記第2の表面に結合される支持表面を有する本体と、
    前記パックの支持表面に配設されたDC電圧感知回路と、
    前記本体に配設され、前記本体の前記支持表面に隣接するインダクタであり、前記インダクタがDC電圧感知回路に電気的に結合され、前記インダクタが、前記基板のDC電位を正確に測定するために高周波電流流れをフィルタ処理するように構成される、インダクタと
    を含む静電チャック。
  2. 前記パックが誘電体円板である、請求項1に記載の静電チャック。
  3. 前記DC電圧感知回路には、前記パックの中心部に隣接し、前記パックの中心部のまわりに部分的に配設された導電性金属トレースが含まれる、請求項1に記載の静電チャック。
  4. 前記導電性金属トレースが、前記パックの前記中心部から半径方向外側に約0.5インチから約2.5インチまで延びる直線トレース部分を含み、前記直線トレース部分が電気端子に電気的に結合され、前記電気端子が前記インダクタに電気的に結合される、請求項3に記載の静電チャック。
  5. 前記インダクタが、前記パックの前記支持表面から約0.5インチ〜約2.5インチに配設される、請求項1に記載の静電チャック。
  6. 前記インダクタがセラミックインダクタである、請求項1から5のいずれかに記載の静電チャック。
  7. 前記1つまたは複数のチャック電極が、前記パックに埋め込まれた2つの独立に制御される電極を含む、請求項1から5のいずれかに記載の静電チャック。
  8. 前記1つまたは複数のチャック電極の各々の厚さが、前記1つまたは複数のチャック電極の計算された表皮深さの約3倍〜約5倍である、請求項1から5のいずれかに記載の静電チャック。
  9. 前記1つまたは複数のチャック電極が、約13.56MHz電力〜約40MHz電力を搬送するように構成される、請求項1から5のいずれかに記載の静電チャック。
  10. 前記1つまたは複数のチャック電極の各々が、タングステンから製作され、約50μm〜約90μmの厚さを有する、請求項1から5のいずれかに記載の静電チャック。
  11. 前記1つまたは複数のチャック電極が、第1の組の1つまたは複数の高温同軸ケーブルを介してチャック電力供給部に結合される、請求項1から5のいずれかに記載の静電チャック。
  12. 前記第1の組の1つまたは複数の高温同軸ケーブルが、摂氏約200°〜摂氏約500°の温度に耐えることができる高温ジャケットと、固体金属RFシールドと、誘電体コアと、中心導体とを含む、請求項1から5のいずれかに記載の静電チャック。
  13. 基板が上に配設されたとき前記基板を支持する支持表面と、反対の第2の表面とを有するパックであり、1つまたは複数のチャック電極が前記パックに埋め込まれ、前記1つまたは複数のチャック電極の各々の厚さが、前記1つまたは複数のチャック電極の計算された表皮深さの約3倍〜約5倍である、パックと、
    前記パックを支持するために前記パックの前記第2の表面に結合される支持表面を有する本体と、
    を含む静電チャック。
  14. 前記1つまたは複数のチャック電極の各々が、タングステンから製作され、約50μm〜約90μmの厚さを有する、請求項13に記載の静電チャック。
  15. 基板が上に配設されたとき前記基板を支持する支持表面と、反対の第2の表面とを有するパックであり、1つまたは複数のチャック電極が前記パックに埋め込まれ、前記1つまたは複数のチャック電極の各々の厚さが、前記1つまたは複数のチャック電極の計算された表皮深さの約3倍〜約5倍であり、前記1つまたは複数のチャック電極が、一組の1つまたは複数の高温同軸ケーブルを介してチャック電力供給部に結合される、パックと、
    前記パックを支持するために前記パックの前記第2の表面に結合される支持表面を有する本体と、
    前記パックの支持表面に配設されたDC電圧感知回路と、
    前記本体に配設され、前記本体の前記支持表面に隣接するインダクタであり、前記インダクタがDC電圧感知回路に電気的に結合され、前記インダクタが、前記基板のDC電位を正確に測定するために高周波電流流れをフィルタ処理するように構成される、インダクタと
    を含む静電チャック。
JP2017529626A 2014-12-11 2015-12-08 高温rf用途のための静電チャック Active JP6796066B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462090858P 2014-12-11 2014-12-11
US62/090,858 2014-12-11
US14/962,446 2015-12-08
PCT/US2015/064494 WO2016094404A1 (en) 2014-12-11 2015-12-08 Electrostatic chuck for high temperature rf applications
US14/962,446 US9984911B2 (en) 2014-12-11 2015-12-08 Electrostatic chuck design for high temperature RF applications

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020146736A Division JP7069262B2 (ja) 2014-12-11 2020-09-01 高温rf用途のための静電チャック

Publications (3)

Publication Number Publication Date
JP2018501757A true JP2018501757A (ja) 2018-01-18
JP2018501757A5 JP2018501757A5 (ja) 2019-01-24
JP6796066B2 JP6796066B2 (ja) 2020-12-02

Family

ID=56108058

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017529626A Active JP6796066B2 (ja) 2014-12-11 2015-12-08 高温rf用途のための静電チャック
JP2020146736A Active JP7069262B2 (ja) 2014-12-11 2020-09-01 高温rf用途のための静電チャック

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020146736A Active JP7069262B2 (ja) 2014-12-11 2020-09-01 高温rf用途のための静電チャック

Country Status (5)

Country Link
US (1) US9984911B2 (ja)
JP (2) JP6796066B2 (ja)
KR (1) KR102498784B1 (ja)
TW (1) TWI676235B (ja)
WO (1) WO2016094404A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892180B2 (en) * 2014-06-02 2021-01-12 Applied Materials, Inc. Lift pin assembly
KR102322767B1 (ko) * 2017-03-10 2021-11-08 삼성디스플레이 주식회사 기판과 스테이지 간의 분리 기구가 개선된 기판 처리 장치 및 그것을 이용한 기판 처리 방법
US10147610B1 (en) 2017-05-30 2018-12-04 Lam Research Corporation Substrate pedestal module including metallized ceramic tubes for RF and gas delivery
KR102098129B1 (ko) * 2018-04-23 2020-04-07 주식회사 엠와이에스 정전기 척
WO2020013938A1 (en) * 2018-07-07 2020-01-16 Applied Materials, Inc. Semiconductor processing apparatus for high rf power process
CN111383894B (zh) * 2018-12-29 2022-12-30 中微半导体设备(上海)股份有限公司 一种等离子处理器以及静电夹盘加热方法
CN113661558B (zh) * 2019-04-03 2024-02-06 应用材料公司 溅射沉积源、溅射沉积设备和为溅射沉积源供电的方法
US11587773B2 (en) * 2019-05-24 2023-02-21 Applied Materials, Inc. Substrate pedestal for improved substrate processing
JP7341043B2 (ja) * 2019-12-06 2023-09-08 東京エレクトロン株式会社 基板処理方法及び基板処理装置
US11784080B2 (en) 2020-03-10 2023-10-10 Applied Materials, Inc. High temperature micro-zone electrostatic chuck
US11482444B2 (en) 2020-03-10 2022-10-25 Applied Materials, Inc. High temperature micro-zone electrostatic chuck

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188645A (ja) * 1989-12-18 1991-08-16 Ulvac Japan Ltd 静電チャック電極
JPH0453134A (ja) * 1990-06-15 1992-02-20 Sumitomo Metal Ind Ltd 高周波バイアス電位測定用装置及び該装置の使用方法
JPH08191099A (ja) * 1994-09-30 1996-07-23 Nec Corp 静電チャック及びその製造方法
JPH08335567A (ja) * 1995-06-07 1996-12-17 Tokyo Electron Ltd プラズマ処理装置
JPH11330218A (ja) * 1998-05-12 1999-11-30 Ulvac Corp 加熱冷却装置及びこれを用いた真空処理装置
JP2000507745A (ja) * 1996-03-29 2000-06-20 ラム リサーチ コーポレイション 動的フィードバック静電ウエハ・チャック
JP2001338917A (ja) * 2000-03-24 2001-12-07 Hitachi Ltd 半導体製造装置および処理方法、およびウエハ電位プローブ
US6673636B2 (en) * 2001-05-18 2004-01-06 Applied Materails Inc. Method of real-time plasma charging voltage measurement on powered electrode with electrostatic chuck in plasma process chambers
US20040018127A1 (en) * 2000-12-19 2004-01-29 Tokyo Electron Limited Wafer bias drive for plasma source
KR100819078B1 (ko) * 2006-11-27 2008-04-02 삼성전자주식회사 정전 척에서 웨이퍼를 디척킹하는 장치 및 방법
US20090178764A1 (en) * 2008-01-11 2009-07-16 Hitachi High-Technologies Corporation Plasma processing apparatus including electrostatic chuck with built-in heater
JP2009188342A (ja) * 2008-02-08 2009-08-20 Tokyo Electron Ltd 載置台及びプラズマ処理装置
JP2013041954A (ja) * 2011-08-15 2013-02-28 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法
JP2013535842A (ja) * 2010-08-06 2013-09-12 アプライド マテリアルズ インコーポレイテッド 静電チャック及びその使用方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124998A (ja) * 1992-10-12 1994-05-06 Tadahiro Omi プラズマ処理装置
JP3306677B2 (ja) * 1993-05-12 2002-07-24 東京エレクトロン株式会社 自己バイアス測定方法及び装置並びに静電吸着装置
JP4402862B2 (ja) * 1999-07-08 2010-01-20 ラム リサーチ コーポレーション 静電チャックおよびその製造方法
JP4590031B2 (ja) 2000-07-26 2010-12-01 東京エレクトロン株式会社 被処理体の載置機構
JP4928817B2 (ja) 2006-04-07 2012-05-09 株式会社日立ハイテクノロジーズ プラズマ処理装置
US8192576B2 (en) * 2006-09-20 2012-06-05 Lam Research Corporation Methods of and apparatus for measuring and controlling wafer potential in pulsed RF bias processing
US7750645B2 (en) 2007-08-15 2010-07-06 Applied Materials, Inc. Method of wafer level transient sensing, threshold comparison and arc flag generation/deactivation
US7750644B2 (en) * 2007-08-15 2010-07-06 Applied Materials, Inc. System with multi-location arc threshold comparators and communication channels for carrying arc detection flags and threshold updating
US7733095B2 (en) * 2007-08-15 2010-06-08 Applied Materials, Inc. Apparatus for wafer level arc detection at an RF bias impedance match to the pedestal electrode
US7737702B2 (en) 2007-08-15 2010-06-15 Applied Materials, Inc. Apparatus for wafer level arc detection at an electrostatic chuck electrode
WO2010019430A2 (en) * 2008-08-12 2010-02-18 Applied Materials, Inc. Electrostatic chuck assembly
KR101123584B1 (ko) * 2009-09-17 2012-03-22 주성엔지니어링(주) 플라즈마 처리장치 및 처리방법
US20110209995A1 (en) * 2010-03-01 2011-09-01 Applied Materials, Inc. Physical Vapor Deposition With A Variable Capacitive Tuner and Feedback Circuit
US10049948B2 (en) * 2012-11-30 2018-08-14 Lam Research Corporation Power switching system for ESC with array of thermal control elements
US9631919B2 (en) * 2013-06-12 2017-04-25 Applied Materials, Inc. Non-contact sheet resistance measurement of barrier and/or seed layers prior to electroplating

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188645A (ja) * 1989-12-18 1991-08-16 Ulvac Japan Ltd 静電チャック電極
JPH0453134A (ja) * 1990-06-15 1992-02-20 Sumitomo Metal Ind Ltd 高周波バイアス電位測定用装置及び該装置の使用方法
JPH08191099A (ja) * 1994-09-30 1996-07-23 Nec Corp 静電チャック及びその製造方法
JPH08335567A (ja) * 1995-06-07 1996-12-17 Tokyo Electron Ltd プラズマ処理装置
JP2000507745A (ja) * 1996-03-29 2000-06-20 ラム リサーチ コーポレイション 動的フィードバック静電ウエハ・チャック
JPH11330218A (ja) * 1998-05-12 1999-11-30 Ulvac Corp 加熱冷却装置及びこれを用いた真空処理装置
JP2001338917A (ja) * 2000-03-24 2001-12-07 Hitachi Ltd 半導体製造装置および処理方法、およびウエハ電位プローブ
US20040018127A1 (en) * 2000-12-19 2004-01-29 Tokyo Electron Limited Wafer bias drive for plasma source
US6673636B2 (en) * 2001-05-18 2004-01-06 Applied Materails Inc. Method of real-time plasma charging voltage measurement on powered electrode with electrostatic chuck in plasma process chambers
KR100819078B1 (ko) * 2006-11-27 2008-04-02 삼성전자주식회사 정전 척에서 웨이퍼를 디척킹하는 장치 및 방법
US20090178764A1 (en) * 2008-01-11 2009-07-16 Hitachi High-Technologies Corporation Plasma processing apparatus including electrostatic chuck with built-in heater
JP2009170509A (ja) * 2008-01-11 2009-07-30 Hitachi High-Technologies Corp ヒータ内蔵静電チャックを備えたプラズマ処理装置
JP2009188342A (ja) * 2008-02-08 2009-08-20 Tokyo Electron Ltd 載置台及びプラズマ処理装置
JP2013535842A (ja) * 2010-08-06 2013-09-12 アプライド マテリアルズ インコーポレイテッド 静電チャック及びその使用方法
JP2013041954A (ja) * 2011-08-15 2013-02-28 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法

Also Published As

Publication number Publication date
JP6796066B2 (ja) 2020-12-02
JP7069262B2 (ja) 2022-05-17
WO2016094404A1 (en) 2016-06-16
US9984911B2 (en) 2018-05-29
KR102498784B1 (ko) 2023-02-09
JP2021002666A (ja) 2021-01-07
TWI676235B (zh) 2019-11-01
KR20170093955A (ko) 2017-08-16
TW201633449A (zh) 2016-09-16
US20160172227A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
JP7069262B2 (ja) 高温rf用途のための静電チャック
TWI785805B (zh) 用於靜電夾頭的陶瓷層
US9853579B2 (en) Rotatable heated electrostatic chuck
US10490434B2 (en) Biasable rotatable electrostatic chuck
JP5160802B2 (ja) プラズマ処理装置
KR102487342B1 (ko) 정전척 어셈블리 및 이를 구비하는 플라즈마 처리장치
US10784139B2 (en) Rotatable electrostatic chuck having backside gas supply
KR20010043180A (ko) 피가공재 처리 시스템 내부에 있는 피가공재에 대한바이어싱 및 보유 능력을 개선하기 위한 장치
JP2017085111A (ja) 環状のバッフル
JP2011091361A (ja) 静電チャック
WO2015041978A1 (en) Extended dark space shield
CN107004628B (zh) 用于高温rf应用的静电吸盘
KR102449986B1 (ko) Rf 전달을 위해 임베딩된 패러데이 케이지를 포함하는 세라믹 정전 척 및 동작, 모니터링, 및 제어를 위한 연관된 방법들

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200901

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200901

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200916

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201113

R150 Certificate of patent or registration of utility model

Ref document number: 6796066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250