JP2018151188A - 電動式作業車両 - Google Patents

電動式作業車両 Download PDF

Info

Publication number
JP2018151188A
JP2018151188A JP2017045918A JP2017045918A JP2018151188A JP 2018151188 A JP2018151188 A JP 2018151188A JP 2017045918 A JP2017045918 A JP 2017045918A JP 2017045918 A JP2017045918 A JP 2017045918A JP 2018151188 A JP2018151188 A JP 2018151188A
Authority
JP
Japan
Prior art keywords
ground fault
fault detection
voltage
component
frequency component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017045918A
Other languages
English (en)
Inventor
俊彦 石田
Toshihiko Ishida
俊彦 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2017045918A priority Critical patent/JP2018151188A/ja
Priority to US16/330,398 priority patent/US10967744B2/en
Priority to CN201780054839.5A priority patent/CN109690334A/zh
Priority to EP17899530.4A priority patent/EP3594701B1/en
Priority to PCT/JP2017/042119 priority patent/WO2018163524A1/ja
Publication of JP2018151188A publication Critical patent/JP2018151188A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P1/00Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading
    • B60P1/04Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading with a tipping movement of load-transporting element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

【課題】 誤検出を抑制しつつ、直流と交流の両方で地絡状態を検出することができる電動式作業車両を提供する。【解決手段】 ダンプトラック1は、直流母線18の正極ライン18Aと中性点Nとの間の検出電圧Vpと、中性点Nと直流母線18の負極ライン18Bとの間の検出電圧Vnとの差分からなる地絡検出電圧V0を検出し、地絡検出電圧V0に基づいて地絡を検出する地絡検出装置22とを備える。地絡検出装置22は、地絡検出電圧V0から直流成分VLdcを抽出し、直流成分VLdcに基づいて地絡を判定する直流成分判定部25と、地絡検出電圧V0からインバータ17R,17Lの駆動周波数成分VLiR,VLiLを抽出し、駆動周波数成分VLiR,VLiLに基づいて地絡を判定する駆動周波数成分判定部26,27と、を有する。【選択図】 図3

Description

本発明は、インバータおよび電動モータを備えたダンプトラック等のような電動式作業車両に関する。
一般に、大型のダンプトラック等のように、走行用の駆動システムに電気駆動方式を採用した電動式作業車両が知られている。このような電動式作業車両では、正極と負極とからなり直流電圧が印加される直流母線と、直流母線に接続されたインバータと、インバータに接続された電動モータとを備えている(例えば、特許文献1参照)。
一方、インバータおよび電動モータを含む電気回路と接地電位との間の絶縁抵抗が劣化すると、地絡電流が流れる。そこで、このような電気回路に、地絡状態を検出する地絡検出装置を設けたものが知られている(例えば、特許文献2参照)。
特開2010−88289号公報 特許第5535880号公報
ところで、電動式作業車両では、インバータによるPWM制御によって、直流母線に印加された直流電力が、電動モータを駆動するための駆動周波数の交流電力に変換される。モータの制御においては、モータ内部の磁束を決める励磁電流と、この磁束と作用することでモータの出力トルクを決定するトルク電流とに分けて制御することが一般的に行われる。ここで、モータ内部の磁束を制御する励磁電流の制御応答性は低いため、励磁電流は一定の値に制御し、応答性の高いトルク電流を制御するのが一般的である。一定のモータ内部磁束のもとでの可変周波数のモータ駆動においては、モータ回転数が低いとモータ内部に発生する誘起電圧が低いため、これに伴ってインバータを制御するための交流出力電圧は低い。モータ回転数が高くなると、モータ内部に発生する誘起電圧が高くなるため、これに伴ってインバータを制御するための交流出力電圧も高い電圧が必要となってくる。
しかしながら、直流母線電圧に対してインバータが出力できる交流電圧には上限があるため、モータ回転数が高くなり、インバータの交流出力電圧が上限に達すると、これ以上の速度でインバータによる励磁電流を一定にしたモータ制御ができなくなる。この場合、モータの励磁電流を下げて、モータ内部の磁束を低くすることで、同じ回転速度でもモータ内部に発生する誘起電圧を下げる「弱め界磁」と呼ばれる制御が一般的に行われる。この「弱め界磁」の制御では、モータ制御に必要なインバータ交流出力電圧を下げて、より高い回転速度域までモータを制御する。「弱め界磁」制御域では、モータ回転数が上がっても、インバータの交流出力電圧はそれに比例して上がる訳ではなく、ほぼインバータによる出力できる上限電圧に抑制される。このため、回転数を上げても、モータから取り出される出力パワーは増加できなくなる。従って、モータからより多くの出力を取り出すために、モータのインバータ駆動においては、直流母線に対して出力できる交流電圧の上限を高くするための工夫が行われる。
その一つがPWM制御の変調波に3の整数倍の高調波成分を加算する「三次調波重畳」である。インバータの各相に駆動周波数の基本波成分に対し、三次高調波を重畳させることにより、同じ直流母線電圧でも、「三次調波重畳」を行わない場合に比べて、例えば1割程交流出力電圧を増大させることができる。この場合、三相モータの線間電圧には、各相に重畳された三次高調波が相殺されて、基本波成分しか現われない。しかしながら、インバータの中性点と三相モータ全体の平均電圧との間には、各相の三次高調波が加算平均化された成分が現われることになる。
また、もう一つの交流電圧の上限を高くする方法として、PWM制御の過変調制御が行われることがある。通常のPWM制御では、インバータの出力電圧を正弦波にするためにPWMの変調波の振幅を搬送波(キャリア)の振幅以下にすることで、インバータの交流出力に含まれる高調波成分を低く抑制している。しかしながら、この場合には、変調波の振幅が低い分、インバータの交流出力に現われる基本波成分の振幅も小さくなる。これに対し、PWMの変調波の振幅を搬送波の振幅以上にとる(過変調とする)と、インバータの交流出力に含まれる基本波成分の振幅を大きくすることができる。この場合、変調波の振幅が搬送波の振幅より大きい時間領域では、PWMのスイッチングが行われなくなり、インバータ交流出力に三次高調波などの低次の高調波成分が多く含まれるようになる。
このように、モータからより多くの出力を取り出すために、直流母線電圧に対して出力できる交流電圧の上限を高くしようとすると、インバータの交流出力電圧には三次の高調波電圧成分が含まれるようになる。三次の高調波成分は、三相分を足し合わせても相殺されることがない。このため、三次の高調波成分が印加されたモータ全体の平均的電圧は、インバータの中性点に対し、三次の高調波成分で変動するようになる。
これに対し、特許文献2に記載された地絡検出装置は、商用電源で駆動する電動モータの電気回路に接続されており、商用周波数と、インバータの出力周波数との両方で、地絡電流を検出可能としている。しかしながら、特許文献2に記載された地絡検出装置は、インバータの出力周波数に限らず、商用周波数よりも高い周波数の信号を全て用いて地絡状態を検出している。このため、特許文献2に記載された地絡検出装置を、電動式作業車両の電気回路に適用すると、三次高調波の増加分によって地絡状態を誤検出してしまうという問題がある。
特に、大型の電動式作業車両では、直流母線に1000V以上の高圧の直流電圧が印加される。このとき、PWM制御のキャリア周波数を高くすると、インバータのスイッチング動作に伴う電力損失が増加する。このため、PWM制御のキャリア周波数が低くなる傾向があり、インバータの駆動周波数とキャリア周波数とが近くなり易い。この結果、三次高調波に伴う地絡状態の誤検出が顕著になる傾向がある。
本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、誤検出を抑制しつつ、直流と交流の両方で地絡状態を検出することができる電動式作業車両を提供することにある。
上述した課題を解決するために、本発明は、正極と負極とからなり直流電圧が印加される直流母線と、前記直流母線に接続されたインバータと、前記インバータに接続された電動モータと、を有する電動式作業車両であって、前記直流母線の正極と負極とに接続され、前記直流母線に印加される電圧を分圧して中性点を形成する分圧器と、前記直流母線の正極と前記中性点との間の電圧と、前記中性点と前記直流母線の負極との間の電圧との差分からなる地絡検出電圧を検出し、前記地絡検出電圧に基づいて地絡を検出する地絡検出装置と、を備え、前記地絡検出装置は、前記地絡検出電圧から直流成分を抽出し、前記直流成分に基づいて地絡を判定する直流成分判定部と、前記地絡検出電圧から前記インバータの駆動周波数成分を抽出し、前記駆動周波数成分に基づいて地絡を判定する駆動周波数成分判定部と、を有することを特徴としている。
本発明によれば、誤検出を抑制しつつ、直流と交流の両方で地絡状態を検出することができる。
本発明の実施の形態によるダンプトラックを左側からみた側面図である。 図1中のダンプトラックを示す全体構成図である。 図1中のダンプトラックを示す電気回路図である。 図3中の地絡検出装置を示すブロック図である。 交流の地絡電流を示す説明図である。 インバータ各相の電圧の時間変化、および、これら3相の電圧の平均値の時間変化を示す説明図である。 変形例による地絡検出装置を適用したダンプトラックを示す図3と同様な電気回路図である。
以下、本発明の実施の形態による電動式作業車両として、ダンプトラックを例に挙げ、添付図面に従って詳細に説明する。
ここで、図1ないし図4は本発明の実施の形態を示している。図1および図2に示すように、ダンプトラック1は、フレーム構造をなす車体2と、車体2上に起伏可能に搭載された荷台としてのベッセル3とにより大略構成されている。車体2は、車輪としての前輪6R,6Lおよび後輪7R,7Lによって自走する。ベッセル3は、車体2の左,右両側に配設された起伏シリンダ4によって起伏(傾転)する。
キャビン5は、例えば車体2の前部左側に位置して平板状の床板となるデッキ部2A上に配設されている。キャビン5は、ダンプトラック1の運転者(オペレータ)が乗降する運転室を形成している。キャビン5の内部には、運転席、起動スイッチ、アクセルペダル、ブレーキペダル、操舵用のハンドルおよび複数の操作レバー(いずれも図示せず)等が設けられている。
前輪6R,6Lは、ダンプトラック1の運転者によって操舵される操舵輪を構成している。前輪6Rは、車体2の前側下部に位置して、車体2の右側に回転可能に設けられている。前輪6Lは、車体2の前側下部に位置して、車体2の左側に回転可能に設けられている。
後輪7R,7Lは、ダンプトラック1の駆動輪を構成している。後輪7Rは、車体2の後部下側に位置して、車体2の右側に回転可能に設けられている。後輪7Lは、車体2の後部下側に位置して、車体2の左側に回転可能に設けられている。
走行用モータ8R,8Lは、例えば3相誘導電動機、3相ブラシレス直流電動機等からなる大型の電動モータによって構成されている。走行用モータ8R,8Lは、電力制御装置15からの電力供給によって回転駆動される。走行用モータ8Rは、車体2の後部下側に位置して、車体2の右側に設けられている。走行用モータ8Lは、車体2の後部下側に位置して、車体2の左側に設けられている。
図2に示すように、走行用モータ8R,8Lは、左側の後輪7Lと右側の後輪7Rを互いに独立して回転駆動する。右側の走行用モータ8Rは、複数段の遊星歯車減速機構9Rを通じて後輪7Rに連結されている。左側の走行用モータ8Lは、複数段の遊星歯車減速機構9Lを通じて後輪7Lに連結されている。これにより、走行用モータ8R,8Lの回転は、遊星歯車減速機構9R,9Lにより例えば30〜40程度の減速比で減速され、後輪7R,7Lに伝達される。
エンジン10は、キャビン5の下側に位置して車体2内に設けられている。エンジン10は、例えば大型のディーゼルエンジン等により構成されている。図2に示すように、エンジン10は、主発電機12に機械的に連結されている。エンジン10は、主発電機12を駆動して、3相交流電力(例えば、1500kW程度)を発生させる。これに加え、エンジン10は、直流用の副発電機13等を駆動する。副発電機13は、コントローラ19の電源となるバッテリ14に接続され、バッテリ14を充電する。エンジン10には、回転センサ11が設けられている。回転センサ11は、エンジン回転数ωe(回転速度)を検出し、その検出結果をコントローラ19に出力する。
また、エンジン10は、油圧源となる油圧ポンプ(図示せず)等を回転駆動し、起伏シリンダ4、パワーステアリング用の操舵シリンダ(図示せず)等に圧油を供給または排出させる機能も有している。
電力制御装置15は、ダンプトラック1の電力制御をコントローラ19と共に行う。電力制御装置15は、キャビン5の側方に位置して車体2のデッキ部2A上に立設された配電制御盤等により構成されている。図3に示すように、電力制御装置15は、整流器16、インバータ17R,17Lおよび直流母線18を備えている。
整流器16は、交流を直流に変換するコンバータを構成している。整流器16は、例えばダイオード、サイリスタ等の整流素子を用いて構成され、交流電力を全波整流する。整流器16は、主発電機12の出力側に接続され、主発電機12から出力される3相交流電力を直流電力に変換する。このため、整流器16は、主発電機12と一緒に直流電源を構成している。整流器16は、直流母線18を介してインバータ17R,17Lに接続されている。なお、整流器16の出力側(直流母線18側)には、平滑コンデンサを接続してもよい。また、整流器16に限らず、例えば電圧型コンバータを用いて、交流を直流に変換してもよい。
インバータ17R,17Lは、トランジスタ、サイリスタ、絶縁ゲートバイポーラトランジスタ(IGBT)等からなる複数のスイッチング素子(図示せず)を用いて構成されている。インバータ17R,17Lは、ダンプトラック1の走行時には、直流電力を可変な駆動周波数の3相交流電力に変換する。このため、インバータ17R,17Lは、駆動周波数よりも高周波なキャリア周波数Fcで、スイッチング素子のオン(ON)とオフ(OFF)を切り換えると共に、そのパルス幅を駆動周波数に応じて制御する。これにより、インバータ17R,17Lは、整流器16から出力された直流電力を3相交流電力に変換し、この3相交流電力を走行用モータ8R,8Lに供給する。なお、キャリア周波数Fcは、例えば1〜2kHz程度の値に設定されている。
直流母線18は、正極ライン18A(正極p)と負極ライン18B(負極n)とを有し、例えば1000V以上で4000V以下の高圧の直流電圧が印加されている。具体的には、主発電機12から出力された交流電圧は、整流器16によって直流電圧に変換されて、正極ライン18Aと負極ライン18Bとの間に印加される。また、直流母線18は、整流器16とインバータ17R,17Lとの間を電気的に接続している。これにより、主発電機12によって生成された電力は、整流器16、直流母線18およびインバータ17R,17Lを通じて走行用モータ8R,8Lに供給される。
コントローラ19は、マイクロコンピュータ等からなり、ダンプトラック1の走行を制御する走行制御装置を構成している。コントローラ19は、電力制御装置15等に接続され、ダンプトラック1の走行状態等に応じてインバータ17R,17Lのスイッチング素子を切換制御する。ダンプトラック1の走行時には、コントローラ19は、主発電機12からの直流電力を3相交流電力に変換するように、インバータ17R,17Lのインバータ17R,17Lのスイッチング素子を切換制御する。
具体的には、コントローラ19は、例えばオペレータのアクセル操作に応じた出力トルクで走行用モータ8R,8Lが駆動するように、インバータ17R,17Lのスイッチング素子を切換制御する。このとき、コントローラ19は、インバータ17R,17Lに対してPWM信号SpiR,SpiLを出力し、インバータ17R,17Lのスイッチング素子をキャリア周波数Fcでオンまたはオフさせる。これにより、インバータ17R,17Lは、PWM信号SpiR,SpiLに応じてパルス幅が制御された三相交流電流を生成し、走行用モータ8R,8Lを所望のトルクで駆動する。
また、コントローラ19には、回転センサ11からエンジン回転数ωeに応じた検出信号が入力される。このとき、コントローラ19は、エンジン回転数ωeに基づいて、エンジン10に連結された主発電機12の発電電圧を制御する。
さらに、コントローラ19は、PWM信号SpiR,SpiLを作成する基となるインバータ17R,17Lの駆動角周波数ωiR,ωiL(駆動周波数に2πを掛けたもの)に応じた信号を、地絡検出装置22に出力する。このとき、駆動角周波数ωiR,ωiLは、インバータ17R,17Lが生成する三相交流電流・電圧の基本波の角周波数である。これに加えて、コントローラ19は、エンジン回転数ωeに応じた主発電機12の出力角周波数ωg(出力周波数に2πを掛けたもの)を算出し、出力角周波数ωgに応じた信号を地絡検出装置22に出力する。このとき、出力角周波数ωgは、主発電機12が生成する三相交流電流・電圧の基本波の角周波数である。
分圧器20は、直流母線18の正極ライン18Aと負極ライン18Bとに接続され、直流母線18に印加される電圧を分圧して中性点Nを形成する。分圧器20は、分圧抵抗20A,20Bを備えている。分圧抵抗20A,20Bは、正極ライン18Aと負極ライン18Bとの間に直列接続されている。このとき、分圧抵抗20A,20Bは、例えば数十kΩから数MΩのような高抵抗によって形成されると共に、互いに同じ抵抗値に設定されている。これにより、分圧器20は、直流母線18の正極ライン18Aと負極ライン18Bとの間に印加される高電圧を、絶対値が等しい2つの電圧に分圧する。このとき、中性点Nは、グランドとなる車体2に接続されている。
電圧センサ21Aは、正極ライン18Aと中性点Nとの間の電圧(検出電圧Vp)を検出する。電圧センサ21Aは、検出電圧Vpに応じた信号を出力する。電圧センサ21Bは、中性点Nと負極ライン18Bとの間の電圧(検出電圧Vn)を検出する。電圧センサ21Bは、検出電圧Vnに応じた信号を出力する。これらの電圧センサ21A,21Bは、地絡検出装置22に接続されている。
地絡検出装置22は、正極ライン18Aと中性点Nとの間の検出電圧Vpと、中性点Nと負極ライン18Bとの間の検出電圧Vnとの差分からなる地絡検出電圧V0を検出する。地絡検出装置22は、地絡検出電圧V0に基づいて、直流と交流の地絡を検出する。このため、地絡検出装置22は、電圧センサ21A,21Bからの検出電圧Vp,Vnの信号が入力される入力端子22A,22Bを有すると共に、検出電圧Vp,Vnから地絡検出電圧V0を算出する地絡検出電圧算出部として、加算器23を備えている。図4に示すように、加算器23は、地絡検出電圧V0として、検出電圧Vpの信号と検出電圧Vnの信号との差分(差電圧)を演算する。この差電圧(地絡検出電圧V0)は、ノイズ除去のためのローパスフィルタ24(LPF24)に入力され、概ねインバータ17R,17Lのキャリア周波数Fc以上の高周波成分が除去された信号Vrsとなる。
地絡検出装置22は、地絡検出電圧V0に応じた信号Vrsから直流成分VLdcを抽出し、直流成分VLdcに基づいて地絡を判定する直流成分判定部25を備えている。直流成分判定部25は、地絡検出電圧V0から直流成分VLdcを抽出する直流成分抽出部25Aと、直流成分VLdcと予め決められた所定の直流判定値Vtdcとを比較する直流成分比較部25Bとを備えている。
直流成分抽出部25Aは、予め決められた所定時間に亘って地絡検出電圧V0(信号Vrs)の平均値を演算している。これにより、直流成分抽出部25Aは、直流成分VLdcとして信号Vrsの平均値を出力する。このとき、所定時間は、例えばキャリア周波数Fcの1周期よりも長い値に設定されている。これに加え、所定時間は、例えば低速走行におけるインバータ17R,17Lの駆動周波数の1周期よりも長い値であり、かつ低速走行における三次高調波の影響を受けない値に設定されている。具体的には、例えば最大駆動周波数が40Hzとしたときに、低速走行として最大駆動周波数の1/10の周波数まで考慮すればよいと考えると、4Hzまで考慮すればよい。このとき、三次高調波の周波数である12Hzの影響を除去するために、例えばその周期の10倍の時間積分を行うものとすると、その時間は1秒程度になる。従って、所定時間の下限値は、1秒程度である。但し、所定時間が長すぎると、直流成分VLdcの検出が遅延するため、所定時間は、直流成分VLdcの誤差が許容可能な範囲で短い時間に設定されている。具体的には、地絡による人体への影響を考慮して、所定時間の上限値が決められる。この場合、1秒を超える時間領域では、人体への影響は、時間に応じた変化はなく、ほぼ一定である。これらを考慮すると、所定時間は、概ね1秒以上の適切な値に設定されており、例えば0.8〜1.2秒程度に設定されている。なお、所定時間は、上述した値に限らず、車両の仕様等に応じて適宜設定される。
直流成分比較部25Bは、直流成分VLdcと直流判定値Vtdcとを比較し、直流成分VLdcが直流判定値Vtdcを超えて大きくなったときに、地絡検出信号Sdcを「1(true)」に設定する。一方、直流成分比較部25Bは、直流成分VLdcと直流判定値Vtdcとを比較し、直流成分VLdcが直流判定値Vtdcよりも小さいときには、地絡検出信号Sdcを「0(false)」に設定する。このとき、直流判定値Vtdcは、直流成分VLdcによる地絡電流の大きさや影響を考慮して、適宜設定されている。直流成分比較部25Bから出力された地絡検出信号Sdcは、ノイズ誤動作を防止するためのタイマ25Cを介して、論理和ブロック29に入力される。
地絡検出装置22は、地絡検出電圧V0に応じた信号Vrsからインバータ17R,17Lの駆動周波数成分VLiR,VLiLを抽出し、駆動周波数成分VLiR,VLiLに基づいて地絡を判定する駆動周波数成分判定部26,27を備えている。
駆動周波数成分判定部26は、地絡検出電圧V0からインバータ17Rの駆動周波数成分VLiRを抽出する駆動周波数成分抽出部26Aと、駆動周波数成分VLiRと予め決められた所定の交流判定値VtiRとを比較する駆動周波数成分比較部26Bとを備えている。
駆動周波数成分抽出部26Aは、コントローラ19からの信号に基づいて、インバータ17Rの駆動角周波数ωiRを取得する。駆動周波数成分抽出部26Aは、地絡検出電圧V0にインバータ17Rの駆動角周波数ωiRの基本波を掛けて積分演算を行い、地絡検出電圧V0からインバータ17Rの駆動角周波数ωiRの基本波成分を求める。このとき、積分期間は、駆動角周波数ωiRの周期の整数倍に設定されている。これにより、駆動周波数成分抽出部26Aは、駆動周波数成分VLiRとしてインバータ17Rの駆動角周波数ωiRの基本波成分を出力する。具体的には、駆動周波数成分抽出部26Aは、以下の数1に示すフーリエ変換の式に基づいて、駆動周波数成分VLiRとしてのインバータ17Rの駆動角周波数ωiRの基本波成分を求める。
Figure 2018151188
駆動周波数成分比較部26Bは、駆動周波数成分VLiRが交流判定値VtiRを超えて大きくなったときに、地絡検出信号SiRを「1(true)」に設定する。一方、駆動周波数成分比較部26Bは、駆動周波数成分VLiRが交流判定値VtiRよりも小さいときに、地絡検出信号SiRを「0(false)」に設定する。このとき、交流判定値VtiRは、駆動周波数成分VLiRによる地絡電流の大きさや影響を考慮して、適宜設定されている。駆動周波数成分比較部26Bから出力された地絡検出信号SiRは、ノイズ誤動作を防止するためのタイマ26Cを介して、論理和ブロック29に入力される。
駆動周波数成分判定部27は、駆動周波数成分判定部26とほぼ同様に構成されている。このため、駆動周波数成分判定部27は、駆動周波数成分抽出部26A、駆動周波数成分比較部26B、タイマ26Cとほぼ同様な、駆動周波数成分抽出部27A、駆動周波数成分比較部27B、タイマ27Cを備えている。このとき、駆動周波数成分抽出部27Aは、数1の式とほぼ同様な数2に示すフーリエ変換の式に基づいて、駆動周波数成分VLiLとしてのインバータ17Lの駆動角周波数ωiLの基本波成分を求める。このとき、積分期間は、駆動角周波数ωiLの周期の整数倍に設定されている。
Figure 2018151188
駆動周波数成分比較部27Bは、駆動周波数成分VLiLが交流判定値VtiLを超えて大きくなったときに、地絡検出信号SiLを「1(true)」に設定する。一方、駆動周波数成分比較部27Bは、駆動周波数成分VLiLが交流判定値VtiLよりも小さいときに、地絡検出信号SiLを「0(false)」に設定する。このとき、交流判定値VtiLは、駆動周波数成分VLiLによる地絡電流の大きさや影響を考慮して、適宜設定されている。駆動周波数成分比較部27Bから出力された地絡検出信号SiLは、ノイズ誤動作を防止するためのタイマ27Cを介して、論理和ブロック29に入力される。
さらに、地絡検出装置22は、地絡検出電圧V0に応じた信号Vrsから主発電機12の出力周波数成分VLgを抽出し、出力周波数成分VLgに基づいて地絡を判定する出力周波数成分判定部28を備えている。
出力周波数成分判定部28は、地絡検出電圧V0から主発電機12の出力周波数成分VLgを抽出する出力周波数成分抽出部28Aと、出力周波数成分VLgと予め決められた所定の交流判定値Vtgとを比較する出力周波数成分比較部28Bとを備えている。
出力周波数成分抽出部28Aは、コントローラ19からの信号に基づいて、主発電機12の出力角周波数ωgを取得する。出力周波数成分抽出部28Aは、地絡検出電圧V0に主発電機12の出力角周波数ωgの基本波を掛けて積分演算を行い、地絡検出電圧V0から主発電機12の出力角周波数ωgの基本波成分を求める。このとき、積分期間は、出力角周波数ωgの周期の整数倍に設定されている。これにより、出力周波数成分抽出部28Aは、出力周波数成分VLgとして主発電機12の出力角周波数ωgの基本波成分を出力する。具体的には、出力周波数成分抽出部28Aは、以下の数3に示すフーリエ変換の式に基づいて、出力周波数成分VLgとしての主発電機12の出力角周波数ωgの基本波成分を求める。
Figure 2018151188
出力周波数成分比較部28Bは、出力周波数成分VLgが交流判定値Vtgを超えて大きくなったときに、地絡検出信号Sgを「1(true)」に設定する。一方、出力周波数成分比較部28Bは、出力周波数成分VLgが交流判定値Vtgよりも小さいときに、地絡検出信号Sgを「0(false)」に設定する。このとき、交流判定値Vtgは、出力周波数成分VLgによる地絡電流の大きさや影響を考慮して、適宜設定されている。なお、交流判定値VtiR,VtiL,Vtg、直流判定値Vtdcは、互いに同じ値でもよく、異なる値でもよい。
出力周波数成分比較部28Bから出力された地絡検出信号Sgは、ノイズ誤動作を防止するためのタイマ28Cを介して、論理和ブロック29に入力される。なお、タイマ25C,26C,27C,28Cは、例えば高周波のノイズを除去するローパスフィルタとして機能する。このとき、タイマ25C,26C,27C,28Cのカットオフ周波数は、互いに同じ値でもよく、異なる値でもよい。
論理和ブロック29は、地絡検出信号Sdc,SiR,SiL,Sgの論理和を演算する。論理和ブロック29は、この論理和の演算結果を最終的な地絡検出信号SL0として出力する。地絡検出信号SL0が「0(false)」となったときには、地絡検出装置22は、地絡は検出していない。これに対し、地絡検出信号SL0が「1(true)」となったときには、地絡検出装置22は、直流または交流の地絡を検出している。
なお、論理和ブロック29の出力側に、タイマ25C,26C,27C,28Cと同様なタイマを設け、ノイズ誤動作を防止してもよい。即ち、論理和ブロック29の入力側と出力側とには、これらの両方にタイマを設けてもよく、いずれか一方だけにタイマを設けてもよい。
本実施の形態によるダンプトラック1は、上述の如き構成を有するもので、次に、その作動について、図1ないし図6を参照して説明する。
まず、ダンプトラック1のキャビン5に乗り込んだ運転者が、図3に示すエンジン10を起動すると、主発電機12と副発電機13とにより発電が行われる。副発電機13で発生した電力は、バッテリ14を介してコントローラ19に供給される。主発電機12で発生した電力は、電力制御装置15等を介して走行用モータ8R,8L等に供給される。ダンプトラック1の加速時には、コントローラ19は、インバータ17R,17Lを制御し、主発電機12からの直流電力を3相交流電力に変換して走行用モータ8R,8Lに供給する。
また、ダンプトラック1には、地絡検出装置22が搭載されている。この地絡検出装置22は、以下の示す動作によって、直流および交流の地絡を検出する。
例えば走行用モータ8R,8Lを駆動する電気回路において、直流母線18の正極ライン18Aと負極ライン18Bとの間の電位が2200Vであり、分圧抵抗20A,20Bの抵抗値がいずれも30kΩである場合を想定する。その上で、図3に示すように、直流母線18の負極ライン18Bが絶縁劣化部位の地絡抵抗101として3.3kΩで地絡した場合を考える。
この場合、直流母線18の正極ライン18Aと筐体接地電位(車体2の電位)との間の抵抗値は、分圧抵抗20Aの30kΩと地絡抵抗101の3.3kΩとの並列抵抗値となるため、3kΩとなる。従って、直流母線18の直流電圧である2200Vは、30kΩと3kΩの比率に従って、直流母線18の正極ライン18Aと中性点Nとの間の電圧と、中性点Nと直流母線18の負極ライン18Bとの間の電圧とに分配される。即ち、2200Vが2000Vと200Vとに分配されるから、これらの間に1800Vの直流不平衡電圧が生じる。このため、地絡検出装置22は、地絡検出電圧V0に基づいて、直流不平衡電圧を検出し、地絡が生じていると判断することができる。
また、例えばインバータ17R,17Lの交流出力側が相電圧出力300Vr.m.sのときに、地絡部位102で0Ωで地絡した場合を考える。この場合、相出力電圧300Vr.m.sが、正極側の分圧抵抗20Aと負極側の分圧抵抗20Bの並列抵抗(30kΩ/2=15kΩ)で短絡されたことになり、地絡電流(300V/15kΩ=20mA)が流れる。この電流の1/2が、それぞれ正極側の分圧抵抗20Aと負極側の分圧抵抗20Bとに逆方向に分流して流れる。この結果、30kΩ×(20mA/2)×2=600Vの交流不平衡電圧が生じることになる。このため、地絡検出装置22は、地絡検出電圧V0に基づいて、交流不平衡電圧を検出し、地絡が生じていると判断することができる。
ところで、図5に示すように、インバータ17R,17Lで駆動される走行用モータ8R,8Lには、その主回路導体と接地電位との間に浮遊容量Ca,Cbが存在する。そのため、インバータ17R,17Lにより走行用モータ8R,8Lの交流電圧が印加されると、この浮遊容量Ca,Cbと分圧器20の分圧抵抗20A,20Bを介してインバータ17R,17Lの駆動周波数成分VLiR,VLiLの漏洩電流ILが流れる。中性点Nと交流出力の電圧が三相正弦波の場合、各相(U相、V相、W相)に印加される交流電圧の瞬時値の和は0Vとなる。このため、各相の漏洩電流ILの瞬時値の和も0mAとなり、漏洩電流ILにより地絡検出電圧V0が現われることはない。
しかしながら、インバータ17R,17Lでは、最大交流電圧を大きくするために、PWM制御の変調波に、3の整数倍の高調波成分を加算する「三次調波重畳」を行うことが一般的である。この場合、駆動周波数に応じた各相の基本波成分に、注入三次調波としての三次高調波成分V3u,V3v,V3wを加算して、三次重畳した各相電圧(各相三次重畳)を生成する。これに加え、ダンプトラック1の走行用モータ8R,8Lは、その回転数が停止から高速走行の高回転域まで変化する。このとき、低速回転域では、インバータ17R,17Lは、正弦波電圧で駆動する。これに対し、高速回転域では、インバータ17R,17Lは、駆動周波数の1周期当りのパルス数が減少し、正弦波電圧から外れて駆動する。この結果、高速回転域では、インバータ17R,17Lの出力電圧は、三次高調波のような高調波電圧成分を多く含むようになる(図6参照)。
特に、ダンプトラックや鉄道などの大容量、大可変速度範囲のインバータ制御では、直流母線に印加される電圧が1000V以上の高電圧になるため、インバータのスイッチング素子の切り換え動作による電力損失が増加し易い。このような電力損失を抑制するために、インバータのキャリア周波数は低く設定される傾向がある。この結果、車両速度を上昇させた高速域では、PWM信号の1パルスで出力電圧を変調するようなシングルパルスモードとなることがある。このとき、インバータの出力電圧が正弦波から大きく外れて高周波を多く含むことになるから、モータ巻線の平均対地電圧(≒中性点電圧)がインバータの駆動周波数の3倍の周波数成分を多く含むことにより、この電圧が対地静電容量に印加されることで大きな漏洩電流を生じることがある。
図6に示すように、三相電圧において、基本波の3の倍数の高調波成分(三次高調波成分V3u,V3v,V3w)の瞬時値は、各相(U相、V相、W相)の同相成分として現われる。このため、3相電圧の平均値V3aは、三次高調波成分V3u,V3v,V3wの電圧瞬時値の和となるが、平均値V3aにおいて三次高調波成分V3u,V3v,V3wは、打ち消されることがない。この結果、走行用モータ8R,8Lの浮遊容量Ca,Cbと分圧器20を介してインバータ17R,17Lの駆動周波数の3の倍数成分の漏洩電流ILが流れ、この漏洩電流ILにより地絡検出電圧V0が現われることになる。
特許文献2に記載された地絡検出装置では、この成分により地絡検出電圧が発生し、地絡検知が誤動作することになる。また、特許文献2には、従来技術として、地絡検出装置にローパスフィルタを適用した構成が開示されている。しかしながら、この構成でも、ダンプトラックに適用されるような速度制御範囲の広い可変速インバータ駆動回路においては、以下に示す理由により、この三次高調波成分により地絡検知の誤動作を避けることができない。
例えば、インバータの駆動周波数が0Hzから30Hzである場合、ローパスフィルタのカットオフ周波数は30Hz以上とする必要がある。ところが、運転範囲内の8Hzの基本周波数で動作している場合の三次高調波の周波数は24Hzであり、カットオフ周波数30Hz以上のローパスフィルタで、この三次高調波による地絡検知信号を除去することはできない。即ち、ローパスフィルタのカットオフ周波数を24Hzよりも低くした場合、例えば30Hzのような高速域で、インバータの駆動周波数成分が検出不能となり、地絡状態を検知できない。一方、ローパスフィルタのカットオフ周波数を30Hzよりも高くした場合、例えば8Hzのような低速域で浮遊静電容量を流れる三次高調波による漏洩電流の成分を十分に除去することができず、地絡検知が誤検知してしまうという問題がある。
これに対し、本実施の形態による地絡検出装置22は、直流成分判定部25と駆動周波数成分判定部26,27とを備えている。このため、直流成分判定部25は、地絡検出電圧V0の直流成分VLdcに基づいて地絡が発生しているか否かを判定できると共に、駆動周波数成分判定部26,27は、インバータ17R,17Lの駆動周波数成分VLiR,VLiLに基づいて地絡が発生しているか否かを判定できる。
即ち、地絡検出装置22は、接地抵抗に流れる電流の直流成分VLdc、およびインバータ17R,17Lの駆動周波数成分VLiR,VLiLのみを選択的に検出し、インバータ17R,17Lの駆動周波数の3倍の周波数成分には反応しない。このため、地絡検出装置22は、低速でも地絡状態を誤検知せず、高速でも地絡状態を検知することができる。
なお、ダンプトラック1のような電動式作業車両では、走行中に主回路充電部に触れるようなことを想定していない。高速域でのインバータ17R,17Lの出力波形に高調波を含むことで、浮遊容量Ca,Cbを介した大きな漏洩電流ILが生じる場合であっても、走行用モータ8R,8Lを含む主回路が停止しているとき、または、低速の正弦波出力速度域では、モータ巻線の平均対地電位はほぼ0となる。このため、主回路の対地静電容量(浮遊容量Ca,Cb)が大きいことによる大きな漏洩電流ILの発生は保守員へのリスクはない。従って、インバータインバータ17R,17Lの駆動周波数の3倍の周波数成分を検出して地絡検知をしてしまうことは、誤検知として扱ってよい。
また、本実施の形態では、直流成分判定部25は、地絡検出電圧V0から直流成分VLdcを抽出する直流成分抽出部25Aと、直流成分VLdcと予め決められた所定の直流判定値Vtdcとを比較する直流成分比較部25Bとを備えている。このとき、直流成分抽出部25Aは地絡検出電圧V0から直流成分VLdcを抽出するから、直流成分比較部25Bは、抽出した直流成分VLdcを直流判定値Vtdcと比較することによって、直流母線18を含む直流回路に地絡が発生しているか否かを判定することができる。
また、直流成分抽出部25Aは、予め決められた所定時間に亘って地絡検出電圧V0の平均値を演算する。このため、所定時間を適切な平均算出期間に設定することで、直流成分抽出部25Aは、遮断周波数が非常に低いローパスフィルタとして機能する。この結果、地絡検出電圧V0の平均値を直流成分VLdcとして地絡検出電圧V0から抽出することができ、直流回路以外の場所で発生した交流部の地絡を検出することがなくなる。
一方、駆動周波数成分判定部26,27は、地絡検出電圧V0からインバータ17R,17Lの駆動周波数成分VLiR,VLiLを抽出する駆動周波数成分抽出部26A,27A(駆動周波数成分抽出部)と、駆動周波数成分VLiR,VLiLと予め決められた所定の交流判定値VtiR,VtiLとを比較する駆動周波数成分比較部26B,27Bとを備えている。このとき、駆動周波数成分抽出部26A,27Aは地絡検出電圧V0から駆動周波数成分VLiR,VLiLを抽出するから、駆動周波数成分比較部26B,27Bは、抽出した駆動周波数成分VLiR,VLiLを交流判定値VtiR,VtiLと比較することによって、インバータ17R,17Lを含む交流回路に地絡が発生しているか否かを判定することができる。
また、駆動周波数成分抽出部26A,27Aは、地絡検出電圧V0にインバータ17R,17Lの駆動角周波数ωiR,ωiLの基本波を掛けて積分演算を行い、地絡検出電圧V0からインバータ17R,17Lの駆動角周波数ωiR,ωiLの基本波成分からなる駆動周波数成分VLiR,VLiLを求める。このとき、駆動周波数成分抽出部26A,27Aは、フーリエ変換の式を用いることで、インバータ17R,17Lの駆動角周波数ωiR,ωiLの基本波成分を求める。これにより、駆動周波数成分判定部26,27は、インバータ17R,17Lを含む交流回路の地絡のみを選択的に検出し、他の周波数成分で地絡を誤検出することがない。これによって、交流回路の浮遊容量を介して流れる漏洩電流で地絡の誤検知をすることを防止することができる。
さらに、直流母線18には、交流を直流に変換する整流器16(コンバータ)を介して主発電機12(発電機)が接続され、地絡検出装置22は、地絡検出電圧V0から主発電機12の出力周波数成分VLgを抽出し、出力周波数成分VLgに基づいて地絡を判定する出力周波数成分判定部28をさらに備えている。このため、出力周波数成分判定部28は、主発電機12の出力周波数成分VLgに基づいて、主発電機12を含む交流回路に地絡が発生しているか否かを判定できる。
また、出力周波数成分判定部28は、地絡検出電圧V0から主発電機12の出力周波数成分VLgを抽出する出力周波数成分抽出部28Aと、出力周波数成分VLgと予め決められた所定の交流判定値Vtgとを比較する出力周波数成分比較部28Bとを備えている。このとき、出力周波数成分抽出部28Aは地絡検出電圧V0から出力周波数成分VLgを抽出するから、出力周波数成分比較部28Bは、抽出した出力周波数成分VLgを交流判定値Vtgと比較することによって、主発電機12を含む交流回路に地絡が発生しているか否かを判定することができる。
また、出力周波数成分抽出部28Aは、地絡検出電圧V0に主発電機12の出力角周波数ωgの基本波を掛けて積分演算を行い、地絡検出電圧V0から主発電機12の出力角周波数ωgの基本波成分からなる出力周波数成分VLgを求める。このとき、出力周波数成分抽出部28Aは、フーリエ変換の式を用いることで、主発電機12の出力角周波数ωgの基本波成分を求める。これにより、出力周波数成分抽出部28Aは、主発電機12を含む交流回路の地絡のみを選択的に検出し、他の周波数成分で地絡を誤検出することがない。これによって、交流回路の浮遊容量を介して流れる漏洩電流で地絡の誤検知をすることを防止することができる。
また、論理和ブロック29に入力される地絡検出信号Sdc,SiR,SiL,Sgは、それぞれ直流回路、インバータ17Rの交流回路、インバータ17Lの交流回路、主発電機12の交流回路の地絡を選択的に検出している。このため、地絡検出装置22によって地絡が検知されたときに、これらの地絡検出信号Sdc,SiR,SiL,Sgを調べることで、ダンプトラック1のどの部分で地絡が発生したかを特定することが可能となる。
なお、前記実施の形態では、直流成分抽出部25Aは、地絡検出電圧V0の平均値を演算する構成とした。本発明はこれに限らず、直流成分抽出部は、遮断周波数を非常に低く設定したローパスフィルタによって構成してもよい。
また、前記実施の形態では、駆動周波数成分抽出部はフーリエ変換の式を用いて駆動周波数成分を抽出するものとした。本発明はこれに限らず、駆動周波数成分抽出部は、例えばピークフィルタのように、通過周波数帯域が狭く、かつインバータの駆動周波数に応じて通過周波数帯域を可変に設定できるフィルタによって構成してもよい。同様に、出力周波数成分抽出部は、通過周波数帯域が狭く、かつインバータの駆動周波数に応じて通過周波数帯域を可変に設定できるフィルタによって構成してもよい。
前記実施の形態では、地絡検出装置22は、地絡検出電圧V0を検出する地絡検出電圧演算部として、正極ライン18Aと中性点Nとの間の検出電圧Vpと、中性点Nと負極ライン18Bとの間に検出電圧Vnとの差分を直接的に演算する加算器23を備えるものとした。本発明はこれに限らず、中性点Nからグランドに流れる電流ILeに基づいて地絡検出電圧V0を検出してもよい。中性点Nからグランド(車体2)には、正極ライン18Aと中性点Nとの間の電圧と、中性点Nと負極ライン18Bとの間に電圧との差分に応じた電流ILeが流れる。このため、図7に示す変形例のように、電流センサ31によって中性点Nからグランドに流れる電流ILeを検出する。その上で、地絡検出装置32は、地絡検出電圧演算部として、電流ILeを地絡検出電圧V0に変換する電流電圧変換部33を備える構成としてもよい。
さらに、前記実施の形態では、電動式作業車両として後輪駆動式のダンプトラック1を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば前輪駆動式または前,後輪を共に駆動する4輪駆動式のダンプトラックに適用してもよく、ダンプトラック以外の作業車両に適用してもよいものである。
1 ダンプトラック
2 車体
6R,6L 前輪
7R,7L 後輪
8R,8L 走行用モータ(電動モータ)
10 エンジン
12 主発電機(発電機)
13 副発電機
16 整流器
17R,17L インバータ
18 直流母線
18A 正極ライン(正極)
18B 負極ライン(負極)
19 コントローラ
20 分圧器
20A,20B 分圧抵抗
21A,21B 電圧センサ
22,32 地絡検出装置
23 加算器(地絡検出電圧演算部)
25 直流成分判定部
25A 直流成分抽出部
25B 直流成分比較部
26,27 駆動周波数成分判定部
26A,27A 駆動周波数成分抽出部
26B,27B 駆動周波数成分比較部
28 出力周波数成分判定部
28A 出力周波数成分抽出部
28B 出力周波数成分比較部
29 論理和ブロック
31 電流センサ
33 電流電圧変換部(地絡検出電圧演算部)

Claims (7)

  1. 正極と負極とからなり直流電圧が印加される直流母線と、
    前記直流母線に接続されたインバータと、
    前記インバータに接続された電動モータと、を有する電動式作業車両であって、
    前記直流母線の正極と負極とに接続され、前記直流母線に印加される電圧を分圧して中性点を形成する分圧器と、
    前記直流母線の正極と前記中性点との間の電圧と、前記中性点と前記直流母線の負極との間の電圧との差分からなる地絡検出電圧を検出し、前記地絡検出電圧に基づいて地絡を検出する地絡検出装置と、を備え、
    前記地絡検出装置は、
    前記地絡検出電圧から直流成分を抽出し、前記直流成分に基づいて地絡を判定する直流成分判定部と、
    前記地絡検出電圧から前記インバータの駆動周波数成分を抽出し、前記駆動周波数成分に基づいて地絡を判定する駆動周波数成分判定部と、を有することを特徴とする電動式作業車両。
  2. 前記直流成分判定部は、前記地絡検出電圧から直流成分を抽出する直流成分抽出部と、前記直流成分と予め決められた所定の直流判定値とを比較する直流成分比較部とを備え、
    前記駆動周波数成分判定部は、前記地絡検出電圧から前記インバータの駆動周波数成分を抽出する駆動周波数成分抽出部と、前記駆動周波数成分と予め決められた所定の交流判定値とを比較する駆動周波数成分比較部とを備えたことを特徴とする請求項1に記載の電動式作業車両。
  3. 前記直流成分抽出部は、予め決められた所定時間に亘って前記地絡検出電圧の平均値を演算することを特徴とする請求項2に記載の電動式作業車両。
  4. 前記駆動周波数成分抽出部は、前記地絡検出電圧に前記インバータの駆動角周波数の基本波を掛けて積分演算を行い、前記地絡検出電圧から前記インバータの駆動角周波数の基本波成分を求めることを特徴とする請求項2に記載の電動式作業車両。
  5. 前記直流母線には、交流を直流に変換するコンバータを介して発電機が接続され、
    前記地絡検出装置は、
    前記地絡検出電圧から前記発電機の出力周波数成分を抽出し、前記出力周波数成分に基づいて地絡を判定する出力周波数成分判定部をさらに備えることを特徴とする請求項1に記載の電動式作業車両。
  6. 前記出力周波数成分判定部は、前記地絡検出電圧から前記発電機の出力周波数成分を抽出する出力周波数成分抽出部と、前記出力周波数成分と予め決められた所定の交流判定値とを比較する出力周波数成分比較部とを備えたことを特徴とする請求項5に記載の電動式作業車両。
  7. 前記出力周波数成分抽出部は、前記地絡検出電圧に前記発電機の出力角周波数の基本波を掛けて積分演算を行い、前記地絡検出電圧から前記発電機の出力角周波数の基本波成分を求めることを特徴とする請求項6に記載の電動式作業車両。
JP2017045918A 2017-03-10 2017-03-10 電動式作業車両 Pending JP2018151188A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017045918A JP2018151188A (ja) 2017-03-10 2017-03-10 電動式作業車両
US16/330,398 US10967744B2 (en) 2017-03-10 2017-11-23 Electrically operated working vehicle
CN201780054839.5A CN109690334A (zh) 2017-03-10 2017-11-23 电动式作业车辆
EP17899530.4A EP3594701B1 (en) 2017-03-10 2017-11-23 Electric work vehicle
PCT/JP2017/042119 WO2018163524A1 (ja) 2017-03-10 2017-11-23 電動式作業車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017045918A JP2018151188A (ja) 2017-03-10 2017-03-10 電動式作業車両

Publications (1)

Publication Number Publication Date
JP2018151188A true JP2018151188A (ja) 2018-09-27

Family

ID=63447439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017045918A Pending JP2018151188A (ja) 2017-03-10 2017-03-10 電動式作業車両

Country Status (5)

Country Link
US (1) US10967744B2 (ja)
EP (1) EP3594701B1 (ja)
JP (1) JP2018151188A (ja)
CN (1) CN109690334A (ja)
WO (1) WO2018163524A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020092535A (ja) * 2018-12-06 2020-06-11 東芝三菱電機産業システム株式会社 電力変換装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11177647B2 (en) * 2017-07-18 2021-11-16 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ground fault detector and power conditioner with input-side ground fault detection
US11881708B2 (en) * 2022-06-09 2024-01-23 Hamilton Sundstrand Corporation Common mode voltage feed fault protection
US20230408601A1 (en) * 2022-06-17 2023-12-21 Honeywell Limited Fault detection in a power distribution system providing high voltage direct current through multiple channels with a floating ground

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225542A (ja) * 1993-01-25 1994-08-12 Toshiba Corp インバータ制御装置
JP2004168149A (ja) * 2002-11-19 2004-06-17 Hitachi Constr Mach Co Ltd 電動駆動のホイール式作業車両
JP2004212376A (ja) * 2002-11-11 2004-07-29 Matsushita Electric Works Ltd 漏電検出装置
JP2004260974A (ja) * 2003-02-27 2004-09-16 Kyocera Corp 交流負荷電源システム
US20090033357A1 (en) * 2007-07-31 2009-02-05 Caterpillar Inc. Winding fault detection system
JP2011058839A (ja) * 2009-09-07 2011-03-24 Kobelco Contstruction Machinery Ltd 建設機械の漏電検出装置
WO2011040128A1 (ja) * 2009-09-29 2011-04-07 株式会社 日立製作所 地絡検出回路および電源装置
JP2011250515A (ja) * 2010-05-24 2011-12-08 Hitachi Constr Mach Co Ltd 駆動回路の異常検出装置
JP2012157140A (ja) * 2011-01-25 2012-08-16 Jtekt Corp モータ制御装置及び電動パワーステアリング装置
JP2013192429A (ja) * 2012-03-15 2013-09-26 Ntn Corp 電気自動車およびモータ駆動装置
US20150192632A1 (en) * 2014-01-08 2015-07-09 Caterpillar Inc. Detecting Ground Fault Location
JP2015162998A (ja) * 2014-02-28 2015-09-07 日立アプライアンス株式会社 アクティブフィルタ、モータ駆動装置、圧縮機及びこれらを用いた冷凍装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535880B2 (ja) 1972-07-29 1980-09-17
US5475581A (en) * 1994-06-10 1995-12-12 Westinghouse Electric Corp. Waveform flat-topping unit
CN1334985A (zh) * 1999-11-29 2002-02-06 三菱电机株式会社 逆变器控制装置
US6856137B2 (en) * 2002-02-19 2005-02-15 Bae Systems Controls Inc. Ground fault detection system and method
JP4061168B2 (ja) * 2002-10-16 2008-03-12 矢崎総業株式会社 地絡検知装置および絶縁抵抗計測装置
JP4390521B2 (ja) * 2003-10-14 2009-12-24 ダイハツ工業株式会社 車載モータの故障検出方法及び故障検出装置
JP5215956B2 (ja) 2008-09-03 2013-06-19 日立建機株式会社 ダンプトラック
JP5535880B2 (ja) 2010-11-19 2014-07-02 長谷川電機工業株式会社 非接地交流回路の地絡検出装置
KR101241333B1 (ko) * 2011-03-24 2013-03-11 엘에스전선 주식회사 누전검출기 및 전기자동차 충전기
JP5518138B2 (ja) * 2012-07-09 2014-06-11 本田技研工業株式会社 非接地回路の地絡検知装置
JP5903633B2 (ja) * 2012-10-31 2016-04-13 パナソニックIpマネジメント株式会社 電源装置及び該電源装置を用いた車両用照明装置
US10564207B2 (en) * 2013-10-08 2020-02-18 Rockwell Automation Technologies, Inc. System and method for ground fault detection
JP6306913B2 (ja) 2014-03-19 2018-04-04 株式会社小松製作所 車載用電力供給システムの漏電検出装置及び油圧ショベル
JP6247154B2 (ja) * 2014-05-26 2017-12-13 カルソニックカンセイ株式会社 車両用地絡検出装置
JP2016010306A (ja) * 2014-06-26 2016-01-18 株式会社東芝 電力変換装置および車両用制御装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225542A (ja) * 1993-01-25 1994-08-12 Toshiba Corp インバータ制御装置
JP2004212376A (ja) * 2002-11-11 2004-07-29 Matsushita Electric Works Ltd 漏電検出装置
JP2004168149A (ja) * 2002-11-19 2004-06-17 Hitachi Constr Mach Co Ltd 電動駆動のホイール式作業車両
JP2004260974A (ja) * 2003-02-27 2004-09-16 Kyocera Corp 交流負荷電源システム
US20090033357A1 (en) * 2007-07-31 2009-02-05 Caterpillar Inc. Winding fault detection system
JP2011058839A (ja) * 2009-09-07 2011-03-24 Kobelco Contstruction Machinery Ltd 建設機械の漏電検出装置
WO2011040128A1 (ja) * 2009-09-29 2011-04-07 株式会社 日立製作所 地絡検出回路および電源装置
JP2011250515A (ja) * 2010-05-24 2011-12-08 Hitachi Constr Mach Co Ltd 駆動回路の異常検出装置
JP2012157140A (ja) * 2011-01-25 2012-08-16 Jtekt Corp モータ制御装置及び電動パワーステアリング装置
JP2013192429A (ja) * 2012-03-15 2013-09-26 Ntn Corp 電気自動車およびモータ駆動装置
US20150192632A1 (en) * 2014-01-08 2015-07-09 Caterpillar Inc. Detecting Ground Fault Location
JP2015162998A (ja) * 2014-02-28 2015-09-07 日立アプライアンス株式会社 アクティブフィルタ、モータ駆動装置、圧縮機及びこれらを用いた冷凍装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020092535A (ja) * 2018-12-06 2020-06-11 東芝三菱電機産業システム株式会社 電力変換装置
JP7008613B2 (ja) 2018-12-06 2022-01-25 東芝三菱電機産業システム株式会社 電力変換装置

Also Published As

Publication number Publication date
US20200223313A1 (en) 2020-07-16
CN109690334A (zh) 2019-04-26
EP3594701A4 (en) 2020-12-23
WO2018163524A1 (ja) 2018-09-13
US10967744B2 (en) 2021-04-06
EP3594701B1 (en) 2023-04-19
EP3594701A1 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
WO2018163524A1 (ja) 電動式作業車両
US8040081B2 (en) Motor drive apparatus, hybrid drive apparatus and method for controlling motor drive apparatus
RU2533167C1 (ru) Инверторное устройство и способ управления инвертором
JP4538850B2 (ja) 電気自動車の制御装置
CN110291709B (zh) 逆变器装置以及电动车辆
WO2009119215A1 (ja) 回転電機制御システム及び当該回転電機制御システムを備えた車両駆動システム
WO2008001949A1 (fr) Dispositif d'entraînement de moteur
CN110168905B (zh) 变换器驱动装置及使用该装置的电动车辆系统
JPH05227796A (ja) 電力変換器の制御装置
WO2009001738A1 (ja) モータ駆動システムおよびその制御方法
US20100156172A1 (en) Device and method for controlling a power shunt circuit, hybrid vehicle having same
GB2311668A (en) Frequency converter
JP6306210B2 (ja) 電力変換装置
JP6937708B2 (ja) モータ制御装置およびそれを用いる電動車両システム
KR20160122832A (ko) 차량탑재용 전력 공급 시스템의 누전 검출 장치 및 유압 셔블
US8618758B2 (en) Electric device comprising an alternating current electric motor and a control inverter and a method for measuring the electromotive force of this device
JP2010142073A (ja) 電動車両の漏電検出システムおよび電動車両
JP2003070160A (ja) 直流機器及びこれを用いた車両
JP4697603B2 (ja) 電気自動車の制御装置
CN112840556B (zh) 电动机控制装置及电动车辆系统
JP4683303B2 (ja) 電気自動車の制御装置
JPS6264201A (ja) 内燃機関駆動電気式車両の制動装置
JP2015095978A (ja) 車両の電磁音制御装置
JP4478303B2 (ja) インバータ並列運転装置
JPH0531400B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191210