JP2018147669A - リチウムイオン二次電池およびその製造方法 - Google Patents

リチウムイオン二次電池およびその製造方法 Download PDF

Info

Publication number
JP2018147669A
JP2018147669A JP2017040698A JP2017040698A JP2018147669A JP 2018147669 A JP2018147669 A JP 2018147669A JP 2017040698 A JP2017040698 A JP 2017040698A JP 2017040698 A JP2017040698 A JP 2017040698A JP 2018147669 A JP2018147669 A JP 2018147669A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
material layer
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017040698A
Other languages
English (en)
Other versions
JP6680244B2 (ja
Inventor
勝彦 永谷
Katsuhiko Nagatani
勝彦 永谷
忍 岡山
Shinobu Okayama
忍 岡山
響子 菊池
Kyoko Kikuchi
響子 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017040698A priority Critical patent/JP6680244B2/ja
Priority to CN201810156781.1A priority patent/CN108539254B/zh
Priority to US15/905,889 priority patent/US10714794B2/en
Publication of JP2018147669A publication Critical patent/JP2018147669A/ja
Application granted granted Critical
Publication of JP6680244B2 publication Critical patent/JP6680244B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4242Regeneration of electrolyte or reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】第3の電極に依らず、電池容量の回復が可能なリチウムイオン二次電池を提供すること。【解決手段】筐体100は、電極群200を収納している。電解液は、筐体100内に貯留されている。電極群200は、電解液に浸されている。電極群200は、正極と負極とを含む。負極は、負極集電体221と負極活物質層とを含む。負極活物質層は、負極集電体221の表面に配置されている。負極活物質層は、正極活物質層に対向する第1領域と、正極活物質層に対向しない第2領域と、を含む。金属片300は、負極集電体221と電気的に接続されている。金属片300は、電解液に浸る位置に配置されている。金属片300の酸化還元電位は、過放電電圧域内にあり、かつ負極集電体221の酸化還元電位よりも低い。【選択図】図4

Description

本開示は、リチウムイオン二次電池およびその製造方法に関する。
特開2016−076358号公報(特許文献1)は、正極および負極に加えて、第3の電極を備えるリチウムイオン二次電池(以下「電池」と略記される場合がある)を開示している。
特開2016−076358号公報
特許文献1では、電池容量が低下した際、第3の電極から正極または負極にリチウム(Li)イオンを供給することにより、電池容量を回復させる方法が提案されている。
特許文献1の構成では、電池内に、正極および負極の他に、別途、第3の電極を設ける必要がある。そのため電池構造が複雑になる可能性がある。さらに電池容量を回復させる際、端子の切り替えが必要である。そのため操作が煩雑になる可能性もある。
本開示の目的は、第3の電極に依らず、電池容量の回復が可能なリチウムイオン二次電池を提供することである。
以下、本開示の技術的構成および作用効果が説明される。ただし本開示の作用メカニズムは推定を含んでいる。作用メカニズムの正否により、特許請求の範囲が限定されるべきではない。
[1]リチウムイオン二次電池は、少なくとも筐体、電極群、金属片および電解液を含む。筐体は、電極群を収納している。電解液は、筐体内に貯留されている。電解液は、リチウムイオンを含む。電極群は、電解液に浸されている。電極群は、正極と負極とを含む。
正極は、負極と電気的に絶縁されている。正極は、正極活物質層を含む。
負極は、負極集電体と負極活物質層とを含む。負極活物質層は、負極集電体の表面に配置されている。負極活物質層は、正極活物質層に対向する第1領域と、正極活物質層に対向しない第2領域と、を含む。
金属片は、負極集電体と電気的に接続されている。金属片は、電解液に浸る位置に配置されている。金属片の酸化還元電位は、過放電電圧域内にあり、かつ負極集電体の酸化還元電位よりも低い。
上記[1]の構成では、電池内に第3の電極ではなく、金属片が配置されている。金属片により、電池容量の回復が可能な構成となり得る。すなわち上記[1]の構成によれば、第3の電極に依らず、電池容量の回復が可能な電池が提供され得る。上記[1]の構成では、第3の電極を設ける場合に比し、電池構造が簡素になることが期待される。
電池の使用(たとえば高温保存、充放電等)により、電池内において、充放電に寄与しない不活性Liが生成される場合がある。不活性Liとしては、たとえば、SEI(solid electrolyte interface)に取り込まれたLiイオン、負極活物質層の非対向領域(第2領域)に拡散したLiイオン等が挙げられる。不活性Liは、正極活物質層に戻ることができないと考えられる。これにより電池容量が低下すると考えられる。上記[1]の構成によれば、以下のように、端子の切り替えを要せず、電池容量の回復が可能であると考えられる。
まず、電池が過放電電圧域まで放電される。「過放電電圧域」とは、通常運転電圧域の下限電圧よりも低い電圧域を示す。たとえば、電池の通常運転電圧域が3.0〜4.1Vに設定されている場合、3.0V未満が過放電電圧域となる。金属片の酸化還元電位は、過放電電圧域内にある。よって電池が過放電電圧域まで放電されない限り、金属片は溶出し難いと考えられる。
図1は、回復処理を説明するための第1概念図である。
負極の電位が金属片300の酸化還元電位以上になるように、電池が放電されることにより、金属片300から金属イオン(A+)が溶出すると考えられる。さらに金属片300の酸化還元電位は、負極集電体221の酸化還元電位よりも低い。よって負極集電体221が腐食せず、かつ金属片300から金属イオンが溶出するように、電池を放電させることも可能であると考えられる。
金属イオンの溶出によって発生した電子(e-)は、正極活物質層212に供給されると考えられる。これにより電解液中のLiイオン(Li+)も正極活物質層212に供給されると考えられる。すなわち、電池内で以下の酸化還元反応が進行すると考えられる。
金属片(負極側):A→A++e-
正極:Lix-1MO+Li++e-→LixMO
上記反応式中、「A」は金属片300を示し、「A+」は金属イオンを示す。「Lix-1MO」は電池内に不活性Liが生成されたときの正極活物質を示し、「LixMO」はLiイオンの供給を受けた正極活物質を示す。上記反応式に示されるように、負極活物質の反応を伴わずに、正極活物質にLiイオンが補充され得る。これにより電池容量が回復することが期待される。
図2は、回復処理を説明するための第2概念図である。
負極活物質層222は、正極活物質層212と対向する対向領域(第1領域1)と、正極活物質層212と対向しない(第2領域2)とを含む。電池の使用により、第1領域1から第2領域2へLiイオンが拡散する場合ある。第2領域2に拡散したLiイオンは不活性Liになると考えられる。
過放電電圧域では、第1領域1のLiイオンが非常に少ない状態であると考えられる。他方、第2領域2は正極活物質層212と対向していないため、第2領域2に拡散したLiイオン(Li+)は、過放電電圧域でも第2領域2に残存していると考えられる。したがって過放電電圧域では、第2領域2が、第1領域1よりも低い電位を有することが期待される。そのため、電池が過放電電圧域で放置されることにより、金属片300から溶出した金属イオン(A+)が、電位の低い第2領域2で還元され、金属に戻ることが期待される。ここで「放置」とは、電池の外部からの充電、および電池の外部への放電がされない休止状態が維持されることを示す。
第2領域2は、正極活物質層212と対向していない。そのため第2領域2に析出した金属は、その後、通常運転電圧域内での性能に悪影響を与えないことが期待される。
図3は、回復処理を説明するための第3概念図である。
放置後、電池が充電されることにより、電圧が通常運転電圧域内(たとえば3.6V程度)に戻される。すなわち正極活物質層212から、負極活物質層222の第1領域1にLiイオンが供給される。これにより回復処理が完了する。
[2]負極集電体は、銅(Cu)を含んでもよい。金属片は、鉄(Fe)、ニッケル(Ni)およびチタン(Ti)からなる群より選択される少なくとも1種を含んでもよい。Fe、NiおよびTiの酸化還元電位は、過放電電圧域内にあると考えられる。かつFe、NiおよびTiの酸化還元電位は、Cuの酸化還元電位よりも低いと考えられる。
[3]第2領域に、金属片と同種の金属が析出していてもよい。前述のように、上記[1]の構成において、電池容量が回復された場合、第2領域に金属が析出していると考えられる。電池容量が回復されることにより、電池寿命が実質的に延びることが期待される。
[4]リチウムイオン二次電池の製造方法は、以下の(α)〜(ε)を含む。
(α)上記[1]〜[3]のリチウムイオン二次電池を製造する。
(β)リチウムイオン二次電池内において、不活性リチウムを生成する。
(γ)不活性リチウムが生成したリチウムイオン二次電池を過放電電圧域まで放電することにより、金属片から電解液中に金属イオンを溶出させると共に、電解液中のリチウムイオンを正極活物質層に供給する。
(δ)リチウムイオン二次電池を放置することにより、金属イオンを金属に還元する。
(ε)放置後のリチウムイオン二次電池を充電することにより、新たなリチウムイオン二次電池を製造する。
上記(γ)〜(ε)は回復処理を構成する。(γ)〜(ε)が順次実行されることにより、電池容量が回復され得る。これにより電池容量が回復した電池(新たな電池)が製造され得る。
[5]上記[4]の製造方法において、負極の電位が、金属片の酸化還元電位以上、負極集電体の酸化還元電位未満になるように、リチウムイオン二次電池が放電されてもよい。これにより、負極集電体の腐食が抑制されることが期待される。
[6]上記[4]または[5]の製造方法において、第2領域に、リチウムイオンが拡散しており、金属イオンは、第2領域において金属に還元されてもよい。第2領域にLiイオンが拡散していることにより、金属イオンが第2領域で還元されることが期待される。これにより対向領域(第1領域)において、金属の析出が抑制されることが期待される。通常運転電圧域内で充放電に寄与する第1領域へ金属が析出し難いことにより、電池容量の回復に伴う性能低下が抑制されることが期待される。
図1は、回復処理を説明するための第1概念図である。 図2は、回復処理を説明するための第2概念図である。 図3は、回復処理を説明するための第3概念図である。 図4は、本開示の実施形態に係るリチウムイオン二次電池の構成の一例を示す概略図である。 図5は、電極群の構成の一例を示す概略図である。 図6は、本開示の実施形態に係るリチウムイオン二次電池の製造方法の概略を示すフローチャートである。 図7は、高温保存試験における容量維持率の推移を示すグラフである。
以下、本開示の実施形態(以下「本実施形態」とも記される)が説明される。ただし、以下の説明は、特許請求の範囲を限定するものではない。なお本開示の図面では、説明の便宜上、各構成の寸法関係が適宜変更されている。本開示の図面に示される寸法関係は、実際の寸法関係を示すものではない。
<リチウムイオン二次電池>
図4は、本開示の実施形態に係るリチウムイオン二次電池の構成の一例を示す概略図である。電池1000の通常運転電圧域は、たとえば、3.0〜4.1Vであり得る。この場合、3.0V未満が過放電電圧域となる。ただし通常運転電圧域および過放電電圧域は、正極活物質および負極活物質の種類、電池の容量設計等により、適宜変更され得る。電池1000は、たとえば、3〜30Ahの電池容量を有してもよい。
電池1000は、過放電(過放電電圧域まで放電すること)により、使用により低下した電池容量の少なくとも一部が回復されるように構成されている。電池1000は、少なくとも筐体100、電極群200、金属片300および電解液を含む。
《筐体》
筐体100は密閉されている。筐体100は、たとえば、蓋と容器とから構成されていてもよい。筐体100は、電極群200を収納している。電解液は、筐体100内に貯留されている。筐体100には、注液孔、電流遮断機構(CID)、ガス排出弁等が設けられていてもよい。筐体100の形状は特に限定されるべきではない。筐体100は、図4に示される角形(扁平直方体)であってもよいし、円筒形であってもよい。筐体100は、たとえば、純アルミニウム(Al)、Al合金等により構成され得る。筐体100は、たとえばアルミラミネートフィルム製の袋等であってもよい。
《電極群》
電極群200は、電解液に浸されている。すなわち、電極群200の少なくとも一部は、液面400よりも鉛直下方にある。電極群200は、その少なくとも一部が電解液に浸されていればよい。すなわち電極群200の一部が電解液に浸されていてもよいし、電極群200の全部が電解液に浸されていてもよい。ただし電極群200において電解液に浸されていない部分にも、電解液が含浸されていることが望ましい。
電極群200は、正極集電板101および負極集電板102に電気的に接続されている。正極集電板101は、正極端子110に電気的に接続されている。負極集電板102は、負極端子120に電気的に接続されている。すなわち電極群200は、正極端子110および負極端子120に電気的に接続されている。負極集電板102が電解液に浸っている場合、負極集電板102は、過放電電圧域で溶出し難い材料により構成されていることが望ましい。
図5は、電極群の構成の一例を示す概略図である。電極群200は、正極210と負極220とを含む。電極群200は、セパレータ230をさらに含む。セパレータ230は、正極210と負極220との間に配置されている。セパレータ230は、電気絶縁性の多孔質膜である。すなわち正極210は、負極220と電気的に絶縁されている。セパレータ230は、たとえば、ポリエチレン(PE)、ポリプロピレン(PP)等により構成され得る。
図4および図5の電極群200は、巻回型の電極群である。すなわち電極群200は、セパレータ230を間に挟んで、正極210と負極220とが積層され、さらに正極210と負極220とが渦巻状に巻回されることにより構成されている。電極群200において、最外周に配置される電極は、負極220であってもよい。電極群200は、扁平状に成形されていてもよい。
電極群は、積層型の電極群(図示されず)であってもよい。積層型の電極群は、セパレータを間に挟みながら、正極と負極とが交互に積層されることにより構成され得る。積層型の電極群において、最外層に配置される電極は、負極であってもよい。
(正極)
正極210は、正極集電体211を含む。正極集電体211は、たとえば、Al箔、Al合金箔等であってもよい。正極集電体211は、たとえば、10〜30μmの厚さを有してもよい。正極210は、正極活物質層212を含む。正極活物質層212は、正極集電体211の表面に配置されている。正極活物質層212は、正極集電体211の表裏両面に配置されていてもよい。正極集電体211の一部は、正極活物質層212から露出している。露出した部分は、正極集電板101と電気的に接続され得る。
正極活物質層212は、その全領域が負極活物質層222と対向していることが望ましい。正極活物質層212は、たとえば、10〜100μmの厚さを有してもよい。正極活物質層212は、正極活物質を含む。正極活物質層212は、導電材、結着材等をさらに含んでもよい。正極活物質層212は、たとえば、80〜98質量%の正極活物質と、1〜10質量%の導電材と、1〜10質量%の結着材とを含んでもよい。
正極活物質は、特に限定されるべきではない。正極活物質は、たとえば、LiCoO2、LiNiO2、LiMnO2、LiMn24、LiNi1/3Co1/3Mn1/32、LiFePO4等であってもよい。導電材も特に限定されるべきではない。導電材は、たとえば、アセチレンブラック、サーマルブラック、ファーネスブラック、気相成長炭素繊維(VGCF)等であってもよい。結着材も特に限定されるべきではない。結着材は、たとえば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸(PAA)等であってもよい。正極活物質、導電材および結着材は、それぞれ、1種単独で使用されてもよいし、2種以上が組み合わされて使用されてもよい。
(負極)
負極220は、負極集電体221と負極活物質層222とを含む。負極集電体221は、たとえば、Cu箔等であってもよい。すなわち負極集電体221は、Cuを含んでもよい。Cu箔は、純Cu箔であってもよいし、Cu合金箔であってもよい。負極集電体221は、たとえば、5〜30μmの厚さを有してもよい。負極集電体221の一部は、負極活物質層222から露出している。露出した部分は、負極集電板102と電気的に接続され得る。
負極活物質層222は、負極集電体221の表面に配置されている。負極活物質層222は、負極集電体221の表裏両面に配置されていてもよい。負極活物質層222は、正極活物質層212よりも大きい面積を有する。負極活物質層222は、正極活物質層212と対向する第1領域1と、正極活物質層212に対向しない第2領域2とを含む。通常運転電圧域内では、第1領域1において充放電反応が起こると考えられる。他方、第2領域2では充放電反応が起こらないと考えられる。しかし、たとえば高温保存時等に、第1領域1から第2領域2にLiイオンが拡散する可能性がある。第2領域2に拡散したLiイオンは、不活性Liになると考えられる。なお電極群200の最外周に配置される活物質層が、負極活物質層222である場合、この負極活物質層222も第2領域2(非対向領域)となる。
電池1000が電池容量を回復された履歴を有する場合、第2領域2に後述の金属片300と同種の金属が析出していてもよい。正極活物質層212と対向しない第2領域2に金属が析出することにより、正極活物質層212と対向する第1領域1において、金属の析出が抑制されることが期待される。これにより回復処理に伴う性能低下が抑制されることが期待される。
負極活物質層222は、たとえば、10〜100μmの厚さを有してもよい。負極活物質層222は、負極活物質を含む。負極活物質層222は、導電材、結着材等をさらに含んでもよい。負極活物質層222は、たとえば、80〜99.9質量%の負極活物質と、0〜15質量%の導電材と、0.1〜5質量%の結着材とを含んでもよい。
負極活物質は、特に限定されるべきではない。負極活物質は、たとえば、黒鉛、易黒鉛化性炭素、難黒鉛化性炭素、珪素、酸化珪素、錫、酸化錫等であってもよい。導電材も特に限定されるべきではない。導電材は、たとえば、アセチレンブラック等であってもよい。たとえば、黒鉛等のように電子伝導性が高い負極活物質が使用されている場合は、導電材が使用されない場合もあり得る。結着材も特に限定されるべきではない。結着材は、たとえば、カルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)、PAA等であってもよい。負極活物質、導電材および結着材は、それぞれ1種単独で使用されてもよいし、2種以上が組み合わされて使用されてもよい。
《金属片》
金属片300は、負極集電体221と電気的に接続されている。たとえば、抵抗溶接等により、金属片300が負極集電体221に溶接されていてもよい。金属片300は、たとえば、負極集電体221の表面に配置されていてもよい。電池1000は、1つの金属片300を単独で含んでもよいし、2つ以上の金属片300を含んでもよい。
図4に示されるように、金属片300は、電解液に浸る位置(液面400よりも鉛直下方の位置)に配置されている。金属片300は、その少なくとも一部が電解液に浸されていればよい。すなわち金属片300の一部が電解液に浸されていてもよいし、金属片300の全部が電解液に浸されていてもよい。金属片300の全部が電解液に浸されていることにより、たとえば、回復処理の効率が向上することが期待される。
金属片300は、第1領域1(対向領域)から離れた位置で、かつ第2領域2(非対向領域)に近い位置に配置されていてもよい。これにより、金属が第2領域2に析出しやすくなり、かつ金属が第1領域1に析出し難くなることが期待される。図4に示されるように、電極群が巻回型である場合、金属片300は、電極群200の最外周に配置されてもよい。電極群が積層型である場合、金属片は、電極群の最外層に配置されてもよい。
金属片300の形状、大きさは特に限定されるべきではない。金属片300の形状、大きさは、想定される回復容量、回復処理の回数、配置位置等に応じて適宜変更され得る。金属片300は、たとえば、30〜50μmの厚さを有してもよい。金属片300は、たとえば、25〜100mm2の面積を有してもよい。
金属片300の酸化還元電位は、電池1000の過放電電圧域内にある。かつ金属片300の酸化還元電位は、負極集電体221の酸化還元電位よりも低い。酸化還元電位は、一般的な酸化還元電位計(ORP計)により測定され得る。理論値、文献値が測定値に代用されてもよい。回復処理に伴う負極集電体221の腐食を抑制するとの観点から、負極集電体221の酸化還元電位と、金属片300の酸化還元電位との差は、たとえば、0.6V以上2V以下であってもよいし、0.8V以上2V以下であってもよい。
金属片300は、純金属であってもよいし、合金であってもよい。金属片300が純金属であることにより、たとえば、回復処理の効率が向上することが期待される。
前述のように負極集電体221は、たとえばCuを含んでもよい。このとき金属片300は、たとえば、Fe、NiおよびTiからなる群より選択される少なくとも1種を含んでもよい。Fe、NiおよびTiの酸化還元電位は、過放電電圧域内にあると考えられる。かつFe、NiおよびTiの酸化還元電位は、Cuの酸化還元電位よりも低いと考えられる。金属片300は、たとえば、純Fe、純Niまたは純Tiであってもよい。以下に各金属の酸化還元電位が列記される。「V(vs.Li/Li+)」は、Liの酸化還元電位を基準とする電位を示す。
Fe:2.6V(vs.Li/Li+)程度
Ni:2.8V(vs.Li/Li+)程度
Ti:1.4V(vs.Li/Li+)程度
Cu:3.4V(vs.Li/Li+)程度
通常運転電圧域における金属片300の溶出を抑制するとの観点から、金属片300の酸化還元電位は、たとえば1.4V(vs.Li/Li+)以上であってもよいし、2.6V(vs.Li/Li+)以上であってもよい。金属片300の酸化還元電位は、たとえば、3.4V(vs.Li/Li+)未満であってもよいし、2.8V(vs.Li/Li+)以下であってもよい。
《電解液》
電解液は液体電解質である。電解液は、Li塩と溶媒とを含む。Li塩は溶媒に溶解している。すなわち電解液は、Liイオンを含む。電解液は、たとえば0.5〜2mоl/l程度のLi塩を含んでもよい。Li塩は、特に限定されるべきではない。Li塩は、たとえば、LiPF6、LiBF4、Li[N(FSO22]等であってもよい。溶媒は、たとえば、環状カーボネートと鎖状カーボネートとの混合溶媒であってもよい。環状カーボネートと鎖状カーボネートとの混合比は、たとえば体積比で「環状カーボネート:鎖状カーボネート=1:9〜5:5」程度でよい。
環状カーボネートとしては、たとえば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、フルオロエチレンカーボネート(FEC)等が挙げられる。鎖状カーボネートとしては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)等が挙げられる。環状カーボネートおよび鎖状カーボネートは、それぞれ、1種単独で使用されてもよいし、2種以上が組み合わされて使用されてもよい。
溶媒は、たとえば、ラクトン、環状エーテル、鎖状エーテル、カルボン酸エステル等を含んでもよい。ラクトンとしては、たとえば、γ−ブチロラクトン(GBL)、δ−バレロラクトン等が挙げられる。環状エーテルとしては、たとえば、テトラヒドロフラン(THF)、1,3−ジオキソラン、1,4−ジオキサン等が挙げられる。鎖状エーテルとしては、1,2−ジメトキシエタン(DME)等が挙げられる。カルボン酸エステルとしては、たとえば、メチルホルメート(MF)、メチルアセテート(MA)、メチルプロピオネート(MP)等が挙げられる。
電解液は、Li塩および溶媒に加えて、各種の機能性添加剤を含み得る。電解液は、たとえば、1〜5質量%の機能性添加剤を含んでもよい。機能性添加剤としては、たとえば、ガス発生剤(過充電添加剤)、被膜形成剤等が挙げられる。ガス発生剤としては、たとえば、シクロヘキシルベンゼン(CHB)、ビフェニル(BP)等が挙げられる。被膜形成剤としては、たとえば、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、Li[B(C242]、LiPO22、プロパンサルトン(PS)、エチレンサルファイト(ES)等が挙げられる。
<リチウムイオン二次電池の製造方法>
以下、本実施形態のリチウムイオン二次電池の容量を回復させる方法、すなわち容量が回復した電池の製造方法が説明される。図6は、本開示の実施形態に係るリチウムイオン二次電池の製造方法の概略を示すフローチャートである。本実施形態の製造方法は、「(α)製造」、「(β)使用」、「(γ)過放電」、「(δ)放置」および「(ε)充電」を含む。「(γ)過放電」、「(δ)放置」および「(ε)充電」が回復処理を構成する。以下、本実施形態の製造方法が順を追って説明される。
《(α)製造》
本実施形態の製造方法は、前述の電池1000を製造することを含む。金属片300が前述の位置に配置されることを除いて、電池1000は従来公知の方法により製造され得る。
《(β)使用》
本実施形態の製造方法は、電池1000内において不活性Liを生成することを含む。電池の使用により、電池1000内に不活性Liが生成され得る。これにより電池容量が低下すると考えられる。
《(γ)過放電》
本実施形態の製造方法は、不活性Liが生成された電池1000を過放電電圧域まで放電することにより、金属片300から電解液中に金属イオンを溶出させると共に、電解液中のLiイオンを正極活物質層212に供給することを含む。
放電は、たとえば、定電流−定電圧方式放電(CCCV放電)であってもよい。定電流放電(CC放電)時の電流レートは特に限定されるべきではない。電流レートは、たとえば、0.1〜2C程度でよい。「C」は電流レートの単位である。「1C」は、電池の満充電容量を1時間で放電する電流レートを示す。
放電は、金属片300から電解液中に金属イオン(A+)が溶出するように実施される。たとえば、負極220の電位が、金属片300の酸化還元電位以上、負極集電体221の酸化還元電位未満になるように、電池1000が放電されてもよい。これにより金属イオンを溶出させつつ、負極集電体221の腐食が抑制されることが期待される。
放電の到達電圧は、正極活物質、金属片の種類等に応じて適宜変更される。CCCV放電の場合、到達電圧は定電圧(CV)放電時の電圧を示す。本実施形態において、充放電時の電流、電圧は、充放電装置において測定され得る。放電は、たとえば、室温環境で実施されてもよい。
Feの酸化還元電位は、2.6V(vs.Li/Li+)程度である。金属片300がFeを含む場合、電池1000は、たとえば0.4〜0.6Vまで放電されてもよい。このとき負極220の電位は、たとえば2.6〜2.8V(vs.Li/Li+)程度になると考えられる。
Niの酸化還元電位は、2.8V(vs.Li/Li+)程度である。金属片300がNiを含む場合、電池1000は、たとえば0.2〜0.4Vまで放電されてもよい。このとき負極220の電位は、たとえば2.8〜3.0V(vs.Li/Li+)程度になると考えられる。
Tiの酸化還元電位は、1.4V(vs.Li/Li+)程度である。金属片300がTiを含む場合、電池1000は、たとえば1.6〜1.8Vまで放電されてもよい。このとき負極220の電位は、たとえば1.4〜1.6V(vs.Li/Li+)程度になると考えられる。
図1に示されるように、電池1000が過放電電圧域まで放電されることにより、負極活物質層222の第1領域1(対向領域)に含まれていたLiイオン(Li+)は、正極活物質層212に移動すると考えられる。他方、第2領域2に拡散していたLiイオンは、移動せずに第2領域2に残存すると考えられる。第2領域2が正極活物質層212と対向していないためと考えられる。第2領域2にLiイオンが残存することにより、第2領域2の電位が第1領域1の電位よりも低くなると考えられる。
金属イオンの溶出により電子(e-)が放出される。放出された電子は、正極活物質層212に供給されると考えられる。これにより電解液中のLiイオンも正極活物質層212に供給されると考えられる。
《(δ)放置》
本実施形態の製造方法は、電池1000を放置することにより、金属イオンを金属に還元することを含む。外部からの充電および外部への放電がされない限り、放置は、たとえば、室温環境で実施されてもよいし、室温より高い温度環境で実施されてもよいし、室温より低い温度環境で実施されてもよい。放置は、たとえば、0〜60℃環境で実施されてもよいし、10〜50℃環境で実施されてもよいし、20〜40℃環境で実施されてもよい。
金属イオンが金属に還元され得る限り、放置期間は短い程よい。過放電による不都合(たとえば電解液の分解等)を抑制するためである。放置期間は、たとえば、0.5〜5時間程度でもよいし、0.5〜2時間程度でもよいし、0.5〜1.5時間程度でもよい。
図2に示されるように、第2領域2にLiイオン(Li+)が拡散している場合、第2領域2は、第1領域1よりも低い電位を有することが期待される。これにより金属イオン(A+)の還元が、第2領域2において優先的に起こることが期待される。すなわち、金属イオンは、第2領域において金属に還元され得る。これにより第1領域1において金属の析出が抑制されることが期待される。
《(ε)充電》
本実施形態の製造方法は、放置後の電池1000を充電することにより、新たなリチウムイオン二次電池を製造することを含む。充電により、電池1000の電圧が通常運転電圧域内に戻される。すなわち図3に示されるように、正極活物質層212から負極活物質層222の第1領域1にLiイオンが供給される。以上より回復処理が完了する。
回復処理後の電池は、回復処理前の電池よりも電池容量が大きい。よって回復処理後の電池は、回復処理前の電池と同一性を欠く新たな電池であると考えられる。
充電は、たとえば、CCCV充電でよい。電流レートは特に限定されるべきではない。電流レートは、たとえば、0.1〜2C程度であってもよい。到達電圧は、特に限定されるべきではない。到達電圧は、たとえば、3.5〜3.8V程度でよい。CCCV充電の場合、到達電圧はCV充電時の電圧を示す。充電は、たとえば、室温環境で実施されてもよい。
以上に説明された「(β)使用」、「(γ)過放電」、「(δ)放置」および「(ε)充電」のサイクルが繰り返されることにより(すなわち電池の使用と新たな電池の製造とが繰り返されることにより)、電池寿命が実質的に延びることが期待される。
以下、本開示の実施例が説明される。ただし、以下の例は特許請求の範囲を限定するものではない。
<実施例>
1.(α)製造
図4に示される電池1000が製造された。電池1000の通常運転電圧域は、3.0〜4.1Vとされた。電池1000は、5Ahの電池容量を有するものとされた。正極活物質はLiNi1/3Co1/3Mn1/32とされた。負極活物質は黒鉛とされた。電極群200は、幅110mm、高さ80mm、厚さ10mmの外形寸法を有するものとされた。金属片300は、縦5mm、横5mm、厚さ30μmの純Fe片とされた。金属片300は、負極集電体221に抵抗溶接された。金属片300は、電解液に浸る位置に配置された。室温環境において電池1000の初期の電池容量が測定された。
2.(β)使用
使用の模擬として、電池1000の高温保存試験が実施された。電池1000の電圧が3.7Vに調整された。60℃に設定された恒温槽内に電池1000が配置された。所定期間後、恒温槽から電池1000が取り出された。室温環境において電池容量が測定された。保存後の電池容量が初期の電池容量で除されることにより、容量維持率が算出された。容量維持率の低下の少なくとも一部は、不活性Liの生成に因ると考えられる。不活性Liの少なくとも一部は、第2領域2に拡散したLiイオンを含むと考えられる。
3.(γ)過放電
容量維持率が測定された後、電池1000が過放電電圧域(3.0V未満)まで放電された。放電はCCCV放電とされた。CC放電時の電流レートは1Cとされた。CV放電時の電圧は0.5Vとされた。終止電流は、1/50Cとされた。すなわち負極220の電位が2.7V(vs.Li/Li+)程度になるまで、電池1000が放電されたと考えられる。2.7V(vs.Li/Li+)は、金属片300(Fe)の酸化還元電位〔2.6(vs.Li/Li+)〕以上であり、負極集電体221(Cu)の酸化還元電位〔3.4V(vs.Li/Li+)〕未満である。
電池1000が過放電電圧域まで放電されることにより、金属片300(Fe)から金属イオン(Feイオン)が溶出し、電解液中のLiイオンが正極活物質層212に供給されたと考えられる。
4.(δ)放置
放電後、電池1000が1時間放置された。これにより金属イオン(Feイオン)が金属(Fe)に還元されたと考えられる。Feイオンの還元は、第2領域2で優先的に起こっていると考えられる。
5.(ε)充電
放置後、電池1000が充電された。充電はCCCV充電とされた。CC充電時の電流レートは、1Cとされた。CV充電時の電圧は、3.7Vとされた。以上より、電池1000の電池容量が回復された。すなわち新たな電池が製造された。電池容量の回復後、再度、電池容量が測定された。
以降「2.(β)使用」〜「4.(ε)充電」のサイクルが繰り返された。高温保存試験および電池容量の回復の度に電池容量が測定され、容量維持率が算出された。
<比較例>
金属片300が配置されないことを除いては、実施例と同じ構成の電池が製造された。実施例と同様に、電池の高温保存試験が実施された。所定期間毎に電池容量が測定された。比較例では、回復処理が実施されなかった。
<結果>
図7は、高温保存試験における容量維持率の推移を示すグラフである。実施例のプロットにおいて、同一時間の2つの点は、回復処理の前後を示す。容量維持率が高い方の点が回復処理後である。実施例では、電池容量の回復が繰り返されることにより、比較例よりも高い容量維持率が維持されている。すなわち実施例は、電池寿命が実質的に延びていると考えられる。
上記の実施形態および実施例はすべての点で例示であって制限的なものではない。特許請求の範囲によって定められる技術的範囲は、特許請求の範囲と均等の意味および範囲内でのすべての変更を含む。
1 第1領域、2 第2領域、100 筐体、101 正極集電板、102 負極集電板、110 正極端子、120 負極端子、200 電極群、210 正極、211 正極集電体、212 正極活物質層、220 負極、221 負極集電体、222 負極活物質層、230 セパレータ、300 金属片、400 液面、1000 電池(リチウムイオン二次電池)。

Claims (6)

  1. 少なくとも筐体、電極群、金属片および電解液
    を含み、
    前記筐体は、前記電極群を収納しており、
    前記電解液は、前記筐体内に貯留されており、
    前記電解液は、リチウムイオンを含み、
    前記電極群は、前記電解液に浸されており、
    前記電極群は、正極と負極とを含み、
    前記正極は、前記負極と電気的に絶縁されており、
    前記正極は、正極活物質層を含み、
    前記負極は、負極集電体と負極活物質層とを含み、
    前記負極活物質層は、前記負極集電体の表面に配置されており、
    前記負極活物質層は、前記正極活物質層に対向する第1領域と、前記正極活物質層に対向しない第2領域と、を含み、
    前記金属片は、前記負極集電体と電気的に接続されており、
    前記金属片は、前記電解液に浸る位置に配置されており、
    前記金属片の酸化還元電位は、過放電電圧域内にあり、かつ前記負極集電体の酸化還元電位よりも低い、
    リチウムイオン二次電池。
  2. 前記負極集電体は、銅を含み、
    前記金属片は、鉄、ニッケルおよびチタンからなる群より選択される少なくとも1種を含む、
    請求項1に記載のリチウムイオン二次電池。
  3. 前記第2領域に、前記金属片と同種の金属が析出している、
    請求項1または請求項2に記載のリチウムイオン二次電池。
  4. 請求項1〜請求項3のいずれか1項に記載の前記リチウムイオン二次電池を製造すること、
    前記リチウムイオン二次電池内において不活性リチウムを生成すること、
    前記不活性リチウムが生成された前記リチウムイオン二次電池を過放電電圧域まで放電することにより、前記金属片から前記電解液中に金属イオンを溶出させると共に、前記電解液中の前記リチウムイオンを前記正極活物質層に供給すること、
    前記リチウムイオン二次電池を放置することにより、前記金属イオンを金属に還元すること、および
    放置後の前記リチウムイオン二次電池を充電することにより、新たなリチウムイオン二次電池を製造すること、
    を含む、リチウムイオン二次電池の製造方法。
  5. 前記負極の電位が、前記金属片の酸化還元電位以上、前記負極集電体の酸化還元電位未満になるように、前記リチウムイオン二次電池が放電される、
    請求項4に記載のリチウムイオン二次電池の製造方法。
  6. 前記第2領域に、前記リチウムイオンが拡散しており、
    前記金属イオンは、前記第2領域において前記金属に還元される、
    請求項4または請求項5に記載のリチウムイオン二次電池の製造方法。
JP2017040698A 2017-03-03 2017-03-03 リチウムイオン二次電池およびその製造方法 Active JP6680244B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017040698A JP6680244B2 (ja) 2017-03-03 2017-03-03 リチウムイオン二次電池およびその製造方法
CN201810156781.1A CN108539254B (zh) 2017-03-03 2018-02-24 锂离子二次电池及其制造方法
US15/905,889 US10714794B2 (en) 2017-03-03 2018-02-27 Lithium ion secondary battery and method of producing the lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017040698A JP6680244B2 (ja) 2017-03-03 2017-03-03 リチウムイオン二次電池およびその製造方法

Publications (2)

Publication Number Publication Date
JP2018147669A true JP2018147669A (ja) 2018-09-20
JP6680244B2 JP6680244B2 (ja) 2020-04-15

Family

ID=63355859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017040698A Active JP6680244B2 (ja) 2017-03-03 2017-03-03 リチウムイオン二次電池およびその製造方法

Country Status (3)

Country Link
US (1) US10714794B2 (ja)
JP (1) JP6680244B2 (ja)
CN (1) CN108539254B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176748A1 (ja) * 2020-03-06 2021-09-10 株式会社日立ハイテク 電池特性決定装置及び二次電池システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839111A (zh) * 2020-06-08 2021-12-24 华为技术有限公司 一种锂离子电池及包括锂离子电池的终端设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213987A (ja) * 1998-01-23 1999-08-06 Asahi Chem Ind Co Ltd 非水電解液二次電池
JP2010040466A (ja) * 2008-08-08 2010-02-18 Nec Tokin Corp 積層型ラミネート非水電解質二次電池
JP2015072805A (ja) * 2013-10-03 2015-04-16 日立マクセル株式会社 非水二次電池
JP2015228294A (ja) * 2014-05-30 2015-12-17 トヨタ自動車株式会社 二次電池
JP2016076358A (ja) * 2014-10-06 2016-05-12 株式会社日立製作所 リチウムイオン二次電池及び電池システム
JP2017010787A (ja) * 2015-06-23 2017-01-12 三洋電機株式会社 円筒形電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190934A (ja) * 1995-01-10 1996-07-23 Hitachi Ltd 非水系二次電池および電源システム
JP2002324585A (ja) 2001-04-24 2002-11-08 Japan Storage Battery Co Ltd 非水電解質二次電池およびその容量回復方法
JP2005521220A (ja) * 2002-03-22 2005-07-14 エルジー ケミカル エルティーディー. 過放電防止剤を含むリチウム二次電池
US7892674B2 (en) * 2005-09-09 2011-02-22 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and battery module
JPWO2012001856A1 (ja) * 2010-06-29 2013-08-22 パナソニック株式会社 リチウムイオン二次電池用負極及びリチウムイオン二次電池
RU2538775C2 (ru) 2010-07-16 2015-01-10 Ниссан Мотор Ко., Лтд. Литий-ионная аккумуляторная батарея, устройство восстановления емкости батареи и способ восстановления емкости батареи
JP5703996B2 (ja) 2010-09-21 2015-04-22 日産自動車株式会社 電池容量回復装置及び電池容量回復方法
JP2012028024A (ja) 2010-07-20 2012-02-09 Toyota Motor Corp リチウムイオン二次電池の容量回復方法
JP5568023B2 (ja) * 2011-01-12 2014-08-06 株式会社日立製作所 非水電解液電池
KR102091431B1 (ko) * 2012-03-30 2020-03-20 에리 파워 가부시키가이샤 시험용 배터리 케이스 및 시험용 배터리
CN104904042B (zh) * 2013-02-04 2017-03-15 日本瑞翁株式会社 锂离子二次电池正极用浆料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213987A (ja) * 1998-01-23 1999-08-06 Asahi Chem Ind Co Ltd 非水電解液二次電池
JP2010040466A (ja) * 2008-08-08 2010-02-18 Nec Tokin Corp 積層型ラミネート非水電解質二次電池
JP2015072805A (ja) * 2013-10-03 2015-04-16 日立マクセル株式会社 非水二次電池
JP2015228294A (ja) * 2014-05-30 2015-12-17 トヨタ自動車株式会社 二次電池
JP2016076358A (ja) * 2014-10-06 2016-05-12 株式会社日立製作所 リチウムイオン二次電池及び電池システム
JP2017010787A (ja) * 2015-06-23 2017-01-12 三洋電機株式会社 円筒形電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176748A1 (ja) * 2020-03-06 2021-09-10 株式会社日立ハイテク 電池特性決定装置及び二次電池システム

Also Published As

Publication number Publication date
CN108539254A (zh) 2018-09-14
JP6680244B2 (ja) 2020-04-15
US20180254532A1 (en) 2018-09-06
US10714794B2 (en) 2020-07-14
CN108539254B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
JP6656717B2 (ja) 非水電解液添加剤、これを含む非水電解液、及びこれを備えたリチウム二次電池
US10541445B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR102103897B1 (ko) 비수 전해액 첨가제, 이를 포함하는 비수전해액 및 이를 구비한 리튬 이차전지
JP2017528885A (ja) 再充電可能バッテリのための電解質溶液
JP6743755B2 (ja) リチウムイオン二次電池の製造方法
JP2005243620A (ja) 非水電解質電池
JP7281776B2 (ja) リチウム二次電池
US10026992B2 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte comprising the same, and lithium secondary battery comprising the same
WO2020158181A1 (ja) リチウム金属二次電池
JP2020102348A (ja) リチウムイオン電池の製造方法およびリチウムイオン電池
JP2017208215A (ja) 蓄電素子用非水電解質、非水電解質蓄電素子及びその製造方法
JP2015097179A (ja) 二次電池
US10714794B2 (en) Lithium ion secondary battery and method of producing the lithium ion secondary battery
KR102275862B1 (ko) 비수전해액용 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
CN110582883A (zh) 锂二次电池用非水性电解质溶液和包含其的锂二次电池
WO2012043733A1 (ja) 非水電解液二次電池の製造方法
WO2021172174A1 (ja) 非水電解質二次電池の充電方法および充電システム
CN113661595B (zh) 锂二次电池用电解质以及包含其的锂二次电池
US11894561B2 (en) Secondary battery
CN109964346A (zh) 用于电池组电池的正电极的活性材料、正电极和电池组电池
JP2016103468A (ja) 非水電解質二次電池
CN113748537A (zh) 具有改善的循环特性的锂二次电池
JP6605496B2 (ja) LNMOカソード材料を含むLiイオンバッテリセルの製造方法
KR102183188B1 (ko) 비수 전해질 이차전지
JP2018116906A (ja) 非水電解質、蓄電素子及び蓄電素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R151 Written notification of patent or utility model registration

Ref document number: 6680244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151