WO2021176748A1 - 電池特性決定装置及び二次電池システム - Google Patents

電池特性決定装置及び二次電池システム Download PDF

Info

Publication number
WO2021176748A1
WO2021176748A1 PCT/JP2020/030711 JP2020030711W WO2021176748A1 WO 2021176748 A1 WO2021176748 A1 WO 2021176748A1 JP 2020030711 W JP2020030711 W JP 2020030711W WO 2021176748 A1 WO2021176748 A1 WO 2021176748A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
secondary battery
electrode
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2020/030711
Other languages
English (en)
French (fr)
Inventor
耕平 本蔵
渉太 伊藤
栄二 關
杉政 昌俊
純 川治
誠之 廣岡
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Publication of WO2021176748A1 publication Critical patent/WO2021176748A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • An object to be solved by the present invention is to provide a battery characteristic determination device and a secondary battery system capable of accurately determining battery characteristics even after capacity recovery.
  • FIG. 1 is a schematic cross-sectional view showing the secondary battery 100.
  • FIG. 2 shows the secondary battery 100, which is a schematic cross-sectional view in a direction different from that of FIG.
  • the secondary battery 100 may be any of a secondary battery cell, a battery module, or a battery pack.
  • the secondary battery 100 may include a plurality of cells.
  • the secondary battery 100 may be configured to include a plurality of battery modules including a plurality of cells.
  • the secondary battery 100 includes a positive electrode 11, a negative electrode 12, and a capacity recovery electrode 15 (third electrode. Electrode 1) that replenishes at least one electrode 1 of the positive electrode 11 or the negative electrode 12 with lithium ions.
  • the secondary battery 100 includes a positive electrode terminal 2 connected to the positive electrode 11, a negative electrode terminal 3 connected to the negative electrode 12, and a capacitance recovery electrode terminal 4 (third electrode terminal) connected to the capacitance recovery electrode 15. ), The separator 5, and the exterior material 6.
  • a metal tab is connected to the current collecting foils of the positive electrode 11, the negative electrode 12, and the capacity recovery electrode 15.
  • the electrode 1, the separator 5, and the non-aqueous electrolytic solution (not shown) are sealed by the exterior material 6 so that only the tab portion is exposed to the outside of the exterior material 6 such as the laminated film.
  • the tabs become the positive electrode terminal 2, the negative electrode terminal 3, and the capacitance recovery electrode terminal 4 in FIG.
  • the positive electrode 11 and the negative electrode 12 are alternately arranged with the separator 5 interposed therebetween.
  • the capacitance recovery electrode 15 is arranged on the outermost side as an electrode.
  • a separator 5 is also arranged outside the capacitance recovery electrode 15.
  • the secondary battery 100 can be manufactured, for example, by facing the positive electrode 11 and the negative electrode 12 via the separator 5 and winding or laminating them.
  • the capacitance recovery electrode 15 may be arranged near the winding axis (central axis) of the wound body or at the outermost peripheral portion. Further, the capacity recovery electrode 15 may be arranged as a part of the laminated body.
  • FIG. 3 is a circuit diagram showing a charging / discharging device 350 connected to the secondary battery 100.
  • the secondary battery system 500 includes a battery characteristic determination device 355, and more specifically, a secondary battery 100 and a charge / discharge device 350 including a battery characteristic determination device 355.
  • the charge / discharge device 350 includes an ammeter 351, a voltmeter 352, a resistor 353, a power supply 354, a battery characteristic determination device 355, a charge / discharge changeover switch 356, a capacity recovery switch 357, and a thermometer 360. ..
  • the positive electrode terminals 2 constituting the secondary battery 100 are connected to the charging / discharging device 350 so as to be in parallel in the example shown in FIG.
  • the negative electrode terminal 3 and the capacity recovery electrode terminal 4 constituting the secondary battery 100 are connected to the charging / discharging device 350 so as to be parallel to each other in the example shown in FIG.
  • the capacity recovery unit 57 charges and discharges. Connect the changeover switch 356 to the resistor 353 side. As a result, a current flows from the positive electrode terminal 2 to the capacitance recovery electrode terminal 4, and lithium ions are replenished to the positive electrode 11. On the contrary, when the lithium ion is moved from the positive electrode 11 to the capacity recovery electrode 15, the capacity recovery unit 57 connects the charge / discharge changeover switch 356 to the power supply 354 side. As a result, a current flows from the positive electrode 11 to the capacity recovery electrode 15, and lithium ions are replenished in the capacity recovery electrode 15.
  • the lithium ion replenishment amount can be determined by the charge / discharge amount determined based on the deterioration state of the secondary battery 100.
  • the deteriorated state can be determined, for example, by calculating the current battery capacity with respect to the battery capacity in the initial state, which will be described in detail later.
  • the charge / discharge amount can be set to, for example, a predetermined ratio (for example, 50%, 70%, etc.) of the difference between the battery capacity in the initial state and the battery capacity at the present time.
  • the capacity recovery unit 57 calculates the charge / discharge amount between the positive electrode 11 and the capacity recovery electrode 15 based on the output of the ammeter 35.
  • the capacity recovery unit 57 operates the capacity recovery switch 357 and the charge / discharge changeover switch 356. As a result, the current between the positive electrode 11 and the capacitance recovery electrode 15 is cut off.
  • the movement of lithium ions between the positive electrode 11 and the capacity recovery electrode 15 has been illustrated, but for example, lithium ions may be moved between the negative electrode 12 and the capacity recovery electrode 15. Therefore, the electrode 1 with which lithium ions are exchanged may be either the positive electrode 11 or the negative electrode 12.
  • the ammeter 351 measures the current flowing between the positive electrode terminal 2 and the negative electrode terminal 3 or between the positive electrode terminal 2 and the capacity recovery electrode terminal 4, and outputs the result to the battery characteristic determination device 355.
  • the voltmeter 352 measures the voltage between the positive electrode terminal 2 and the negative electrode terminal 3, and outputs the result to the battery characteristic determination device 355.
  • a voltmeter that measures at least one voltage between the positive electrode terminal 2 and the capacitance recovery electrode terminal 4 or between the negative electrode terminal 3 and the capacitance recovery electrode terminal 4 may be additionally installed.
  • the thermometer 360 measures the internal temperature of the secondary battery 100 and outputs the result to the battery characteristic determination device 355.
  • FIG. 4 is a block diagram of the battery characteristic determination device 355.
  • the battery characteristic determination device 355 determines the battery characteristics that change with deterioration in the secondary battery 100.
  • the battery characteristic determination device 355 includes a deterioration state grasping unit 50, a capacity recovery amount calculation unit 51, a parameter update unit 52, an electrode database 53, a battery characteristic determination unit 54, a battery database (DB) 55, and an allowable value calculation.
  • a unit 56 and a capacity recovery unit 57 are provided.
  • the electrode database 53 includes a positive electrode database (DB) 53a that stores positive electrode characteristics related to the positive electrode and a negative electrode database (DB) 53b that stores negative electrode characteristics related to the negative electrode.
  • DB positive electrode database
  • DB negative electrode database
  • the deterioration state grasping unit 50 grasps the deterioration state of the secondary battery 100 based on the temperature, current, and voltage of the secondary battery 100 and the battery characteristics based on the determination parameters updated by the parameter updating unit 52. ..
  • the determination parameter will be described in detail later, but is included in, for example, a predetermined relational expression for calculating the battery characteristics of the secondary battery 100.
  • the battery characteristics that can be calculated using the determination parameters are, for example, the internal resistance of the secondary battery 100. As a result, the internal resistance of the secondary battery 100 can be calculated accurately even if the capacity is recovered.
  • the deterioration state is grasped as follows, for example.
  • the deterioration state grasping unit 50 determines the deterioration state of the current secondary battery 100 based on the current temperature, current, and voltage of the secondary battery 100. Specifically, the deterioration state grasping unit 50 discharges from a fully charged state to a fully discharged state or charges from a fully discharged state to a fully charged state with a minute and constant current. Then, the discharge capacity or charge capacity obtained at this time is compared with the discharge capacity or charge capacity calculated based on the battery characteristics included in the battery database 55 (described later), and the capacity reduction amount is considered to be a deteriorated state. be able to. At this time, the discharge capacity or the charge capacity can be calculated using the battery characteristics at the acquired temperature.
  • the battery database 55 includes battery characteristics based on the determination parameters updated by the parameter update unit 52.
  • the discharge capacity or charge capacity based on the battery characteristics is, for example, the charge / discharge amount Qcell with respect to the lower limit value of the OCV cell shown in FIG. 11 described later in the case of discharge.
  • charging / discharging is not limited to "discharging from a fully charged state to a fully discharged state" and “charging from a fully charged state to a fully discharged state”.
  • the range of charge / discharge is preferably wide, and it is preferable to charge / discharge in the range of 100% as in this example.
  • charging / discharging may be performed in the range of, for example, 50% or more from the fully charged state to the fully discharged state, and if possible, the range may be less than 50%.
  • the capacity recovery amount calculation unit 51 calculates the capacity recovery amount of the secondary battery based on the temperature, current, and voltage of the secondary battery 100 and the battery characteristics based on the determination parameters updated by the parameter update unit 52. Is. By providing the capacity recovery amount calculation unit 51, the capacity recovery amount by the capacity recovery unit 57 can be calculated based on the temperature, current, and voltage of the secondary battery 100.
  • the capacity recovery amount is calculated as follows, for example.
  • the capacity recovery amount calculation unit 51 grasps the above-mentioned deterioration state before and after the capacity recovery operation, and determines the capacity recovery amount from the change in the deterioration state.
  • the capacity recovery amount the amount of lithium ions transferred from the capacity recovery electrode 15 to the positive electrode 11 or the negative electrode 12, which is a capacity recovery operation, is calculated from the value of the ammeter and multiplied by a predetermined coefficient to predict the capacity recovery amount. You may.
  • the parameter update unit 52 updates the determination parameter that determines the battery characteristics of the secondary battery 100 when the capacity is restored by replenishing the electrode 1 with lithium ions.
  • the determination parameter referred to here determines the above battery characteristics based on, for example, the positive electrode characteristics of the positive electrode 11 and the negative electrode characteristics of the negative electrode 12.
  • the positive electrode characteristics are stored in the positive electrode database 53a.
  • the negative electrode characteristics are stored in the negative electrode database 53b.
  • the positive electrode database 53a and the negative electrode database 53b will be described with reference to FIGS. 5 and 6.
  • FIG. 5 is a schematic diagram (table) of the positive electrode database 53a.
  • FIG. 6 is a schematic diagram (table) of the negative electrode database 53b.
  • the positive electrode characteristic includes the internal resistance of the positive electrode 11 (FIG. 2)
  • the negative electrode characteristic includes the internal resistance of the negative electrode 12 (FIG. 2).
  • the positive electrode database 53a and the negative electrode database 53b are both in the form of a data table in the examples of FIGS. 5 and 6, but may be, for example, a function representing data.
  • the positive electrode database 53a includes the positive electrode characteristics related to the positive electrode among the battery characteristics (for example, internal resistance) of the secondary battery 100 that change with deterioration.
  • the positive electrode characteristics include the charged state Xpos of the secondary battery 100, the electrode potential Vpos of the positive electrode 11, and the resistance values R0pos, R1pos, and R2pos indicating the internal resistance of the positive electrode among the battery characteristics of the secondary battery 100 as described above. ..
  • the negative electrode database 53b includes negative electrode characteristics related to the negative electrode among the battery characteristics of the secondary battery 100 that change with deterioration.
  • the positive electrode characteristics and the negative electrode characteristics are the electrode potentials Vpos, Vneg of the charged state Xpos, Xneg, the positive electrode 11 or the negative electrode 12 of the secondary battery 100, and the resistance value indicating the internal resistance which is an example of the battery characteristics of the secondary battery 100, respectively.
  • R0pos, R1pos, R2pos, R0neg, R1neg, and R2neg are associated with each other. By doing so, for example, if the charging state and the electrode potential are determined, the battery characteristics can be determined.
  • the charging state is, for example, a numerical value indicating SOC.
  • the internal resistance includes, for example, the resistance value immediately after charging or discharging the secondary battery 100.
  • the internal resistance of the secondary battery 100 is a resistance value R0 0.1 seconds after the start of charging / discharging of the secondary battery 100, and a medium time after the start of charging / discharging (for example, 10 seconds later).
  • the resistance value R1 and the resistance value R2 after a long time has elapsed (for example, 60 seconds) from the start of charging / discharging.
  • a lithium secondary battery having a positive electrode 11 and a reference electrode (for example, lithium) as a negative electrode is manufactured, and the temperature is fixed to change the SOC to increase the internal resistance. It can be determined by measuring every hour.
  • a lithium secondary battery including the negative electrode 12 and a reference electrode (for example, lithium) as the positive electrode is manufactured, the temperature is fixed, the SOC is changed, and the internal resistance is increased. It can be determined by measuring every hour.
  • the charging states Xpos, Xneg, the electrode potentials Vpos, Vneg, and the resistance values R0pos, R1pos, R2pos, R0neg, R1neg, and R2neg, which are examples of the battery characteristics of the secondary battery 100, are indicators of the temperature T in the illustrated example, respectively. It is associated with each value. By doing so, the battery characteristics can be determined based on an index value such as temperature T.
  • the index values associated with the charge states Xpos, Xneg, the electrode potentials Vpos, Vneg, and the resistance values R0pos, R1pos, R2pos, R0neg, R1neg, and R2neg, which are examples of the battery characteristics of the secondary battery 100, are as described above.
  • the temperature T it may be a current value, or both the temperature T and the current value.
  • the index value is both the temperature T and the current value, for example, the temperature T may be fixed and, for example, the charging state and the battery characteristics may be determined for each changed current value.
  • Both the positive electrode characteristics and the negative electrode characteristics include numerical values as positive electrode characteristics and negative electrode characteristics in the initial state in which the secondary battery 100 is not deteriorated.
  • the positive electrode characteristics include the relationship between the charged state Xpos in the initial state in which the secondary battery 100 is not deteriorated and the electrode potential Vpos, and the charged state Xpos in the initial state in which the secondary battery 100 is not deteriorated.
  • the relationship with the resistance values R0pos, R1pos, and R2pos is included.
  • the negative electrode characteristics include the relationship between the charged state Xneg in the initial state and the electrode potential Vneg, and the relationship between the charged state Xneg in the initial state and the resistance values R0neg, R1neg, and R2neg.
  • the positive electrode characteristics are resistance values when the temperature T is T1, the charged state Xpos is Xpos, 1 to Xpos, n (n is an integer of 2 or more; the same applies hereinafter), and the electrode potential Vpos is Vpos, 1 to Vpos, n.
  • the electrode potential Vpos is Vpos, 1 to Vpos, n.
  • R0pos, 1 to R0pos, n, R1pos, 1 to R1pos, n, R2pos, 1 to R2pos, n are included for each temperature T from T1 to Tm (m is an integer of 2 or more).
  • FIG. 7 is a graph showing the relationship between the charged state Xpos and the electrode potential Vpos among the positive electrode characteristics.
  • the graph shown in FIG. 7 was actually measured at 25 ° C.
  • the electrode potential Vpos of the positive electrode 11 increases rapidly and then exponentially.
  • the positive electrode characteristics including the charged state Xpos and the electrode potential Vpos shown in FIG. 5 can be obtained.
  • FIG. 8 is a graph showing the relationship between the charged state Xneg and the electrode potential Vneg among the negative electrode characteristics.
  • the graph shown in FIG. 8 was actually measured at 25 ° C.
  • the electrode potential Vneg of the negative electrode 12 sharply decreases and then gradually decreases.
  • the negative electrode characteristics including the charged state Xneg and the electrode potential Vneg shown in FIG. 6 above can be obtained.
  • FIG. 10 is a graph showing the relationship between the charged state Xneg and the resistance value R2neg among the negative electrode characteristics.
  • the graph shown in FIG. 10 was actually measured at 25 ° C.
  • the resistance value R2neg sharply decreases and then is maintained in a somewhat low state with some fluctuation.
  • the negative electrode characteristics including the charged state Xneg and the resistance value R2neg shown in FIG. 6 above can be obtained.
  • the determination parameter is updated by the parameter update unit 52 at the time of capacity recovery as described above.
  • the time of capacity recovery here is usually after the capacity recovery, but may be, for example, during the capacity recovery or before the capacity recovery based on the determined capacity recovery conditions.
  • the parameter update unit 52 updates the determination parameters that determine the battery characteristics based on the positive electrode characteristics and the negative electrode characteristics. Specifically, the parameter update unit 52 updates the determination parameters included in the predetermined relational expression for calculating the battery characteristics of the secondary battery 100. By doing so, the determination parameters can be modified.
  • Qcell is the charge amount or discharge amount (charge / discharge amount) of the secondary battery 100.
  • the determination parameters Apos, Bpos, Aneg, Bneg, Dpos, and Dneg are the rate of change of each component, and the initial values in the initial state in which the secondary battery 100 is not deteriorated are stored in advance in the parameter update unit 52.
  • the parameter update unit 52 updates the Bneg in the equation (1) with the Bneg1 calculated by the equation (6).
  • Bpos, Aneg, and Apos can be updated in the same way.
  • Other decision parameters may be updated, but initial values may be used.
  • the parameter update unit 52 is new from the capacity recovery amount Qrec and the current value Bneg0 of Bneg. Bneg2, which is Bneg, is calculated by the following equation (7).
  • Bneg2 Bneg0-Qrec ⁇ ⁇ ⁇ (7)
  • the parameter update unit 52 updates Bneg0 with Bneg2 calculated by the equation (7).
  • Bpos, Aneg, and Apos can be updated in the same way.
  • Other decision parameters may be updated, but initial values may be used.
  • Dpos, Dneg, R3 are updated as follows, for example.
  • the parameter update unit 52 uses the updated Aneg, Apos, Bneg, Bpos and the equations (1) to (5). Calculate the temporary battery database 55. Then, the parameter update unit 52 extracts the resistance value R0 cell of the internal resistance of the secondary battery 100 corresponding to the predetermined OCV in the temporary battery database 55. Further, the parameter updating unit 52 can update Dpos, Dneg, and R3 by multiplying Dpos, Dneg, and R3 by the ratio of the extracted internal resistance of the secondary battery 100 to the measured internal resistance of the secondary battery 100, respectively.
  • the decision parameters can also be updated based on brute force calculations.
  • the parameter update unit 52 has a charge / discharge amount Qcell, an open circuit voltage OCVcell (V), and an internal resistance resistance value R0 (based on the input values from the ammeter 351 and the voltmeter 352 and the thermometer 360. ⁇ ), R1 ( ⁇ ), and R2 ( ⁇ ) are calculated as observed values. Then, the parameter update unit 52 uses the above equations (1) to (5), the charge / discharge amount Qcell calculated by the positive electrode characteristics and the negative electrode characteristics, the open circuit voltage OCVcell (V), and the resistance value R0 ( ⁇ ) of the internal resistance. , R1 ( ⁇ ) and R2 ( ⁇ ) are found by round-robin calculation so that they match the above observed values. After the discovery, the parameter update unit 52 updates the current determination parameter with the discovered determination parameter.
  • Relationship between values R0pos and R0neg, charge / discharge amount of positive electrode 11 and negative electrode 12 of secondary battery 100 Relationship between Qpos and Qneg and resistance values R1pos and R1neg of internal resistance, charge of positive electrode 11 and negative electrode 12 of secondary battery 100 Based on the relationship between the discharge amounts Qpos and Qneg and the resistance values R2pos and R2neg of the internal resistance and predetermined relational expressions (for example, equations (1) to (5)), the charge and discharge amounts Qcell and OCVcell of the secondary battery 100 Relationship between the charge / discharge amount Qcell of the secondary battery 100 and the resistance values R0cell, R1cell, R2cell of the internal resistance, and the correspondence of the charge / discharge amounts Qpos, Qneg, and Qcell between the positive electrode 11 and the negative electrode 12 and the secondary battery 100. You can determine the relationship.
  • the battery characteristic determination unit 54 determines the battery characteristics of the secondary battery 100 based on the positive electrode characteristics and the negative electrode characteristics and at least one of the deteriorated state of the secondary battery 100 and the capacity recovery amount due to the capacity recovery. By providing the battery characteristic determination unit 54, the accuracy of determining the battery characteristics can be improved even when the battery characteristics change due to the capacity recovery.
  • the battery characteristic determination unit 54 determines the battery characteristics based on the positive electrode characteristics and the negative electrode characteristics, and in the illustrated example, the equations (1) to (5) reflecting the deterioration state and the capacity recovery amount.
  • the battery characteristics include, for example, the relationship between the charge / discharge amount Qcell of the secondary battery 100 and the OCV cell, the relationship between the charge / discharge amount Qcell of the secondary battery 100 and the resistance values R0cell, R1cell, and R2cell of the internal resistance, and the positive electrode 11 and the negative electrode 12. This is the correspondence between the charge / discharge amounts Qpos, Qneg, and Qcell of the secondary battery 100 and the secondary battery 100.
  • the determined battery characteristics are recorded in the battery database 55.
  • FIG. 11 is a schematic diagram of the battery database 55.
  • the format is a data table, but for example, a function representing data may be used.
  • the battery database 55 includes the battery characteristics of the secondary battery 100.
  • Battery characteristics include the internal resistance of the secondary battery 100.
  • the internal resistance includes resistance values R0cell, R1cell, and R2cell.
  • Battery characteristics further include temperature T, charge / discharge amount Qcell, OCVcell.
  • the battery characteristics include R0cell, R1cell, and R2cell at a temperature T of T1, Qcell of Q1 to Qn, and OCVcell of V1 to Vn.
  • the temperature T includes R0cell, R1cell, and R2cell in Q1 to Qn and OCVcell in V1 to Vn up to Tm.
  • the battery characteristics recorded in the battery database 55 for example, by grasping the temperature T and the charge state (charge / discharge amount Qcell in the illustrated example) of the secondary battery 100, the open circuit voltage OCVcell of the secondary battery 100, The resistance values R0cell, R1cell, and R2cell of the internal resistance can be determined.
  • FIG. 12 is a graph showing the relationship between the charge state and the voltage before the capacity is restored among the battery characteristics.
  • the horizontal axis is the charged state indicated by the discharge amount (Ah) from the fully charged state, and the vertical axis is the battery voltage.
  • Vcell is the battery voltage of the secondary battery 100 and is calculated using the equation (2).
  • Both Vpos and Vneg are positive electrode characteristics and negative electrode characteristics in the formula (2), that is, positive electrode characteristics and negative electrode characteristics after conversion using the formula (1).
  • the determination parameters are updated according to the deterioration state immediately before the capacity recovery.
  • FIG. 13 is a graph showing the relationship between the charge state and the voltage after the capacity is restored among the battery characteristics. Even after the capacity is recovered, the graph of FIG. 12 can be obtained if the determination parameters are not updated, but the graph of FIG. 13 can be obtained by updating the determination parameters.
  • the determination parameters changed Bneg by the capacity recovery amount Qrec for the sake of brevity, but the other determination parameters did not change.
  • Qrec + Bneg1 Bneg0 (FIG. 12).
  • the graph of the electrode potential Vneg moved to the right as a whole, and the determination parameter Bneg0 decreased by Qrec and changed to Bneg1.
  • the correspondence between the electrode potential Vpos and the electrode potential Vneg changed. Therefore, the battery voltage Vcell (OCVcell) with respect to the charged state changed by updating the determination parameter.
  • the correspondence between the battery voltage and the charged state due to the capacity recovery is expressed as shown in FIG. The same applies to the resistance values R0cell, R1cell, and R2cell of the internal resistance.
  • the permissible value calculation unit 56 determines at least one permissible value of the permissible current or the permissible power of the secondary battery 100 by using the battery characteristics based on the determination parameter updated by the parameter update unit 52. It is a thing. According to the permissible value calculation unit 56, the permissible value can be calculated using the updated determination parameter.
  • the permissible value calculation unit 56 refers to the resistance values R0cell, R1cell, and R2cell included in the battery characteristics based on the current battery temperature, and calculates the permissible current of the secondary battery 100.
  • the resistance values R0cell, R1cell, and R2cell are determined using the determination parameters updated as described above.
  • the allowable current is calculated to suppress the overvoltage of the secondary battery 100.
  • the permissible current includes a permissible charge current and a permissible discharge current.
  • the allowable charging current Icmax can be calculated using, for example, the following equation (8).
  • Icmax (Vmax-OCVcell) / R ... (8)
  • Vmax is the upper limit voltage at the time of charging
  • OCVcell is the open circuit voltage of the secondary battery 100
  • R is the internal resistance of the secondary battery 100.
  • R can be calculated by appropriately combining R0cell, R1cell, and R2cell with respect to the assumed energization time, for example.
  • the energization time (0.1 seconds for R0cell, 10 seconds for R1cell, 60 seconds for R2cell), and the vertical axis is the resistance value
  • the energization time is assumed.
  • R can be calculated by reading the resistance value with respect to from the graph.
  • the graph may be extrapolated or interpolated as needed.
  • the allowable discharge current Idmax can be calculated using, for example, the following equation (9).
  • Idmax (OCVcell-Vmin) / R ⁇ ⁇ ⁇ (9)
  • Vmin is the lower limit voltage at the time of discharge
  • OCVcell is the open circuit voltage of the secondary battery 100
  • R is the internal resistance of the secondary battery 100.
  • the permissible power of the secondary battery 100 includes the permissible input power at the time of charging and the permissible output power at the time of discharging.
  • Icmax is the allowable charging current
  • Vmax is the upper limit voltage at the time of charging.
  • the allowable input power Wout can be calculated using, for example, the following equation (11).
  • Wout Idmax ⁇ Vmin ⁇ ⁇ ⁇ (11)
  • Idmax is the allowable discharge current
  • Vmin is the lower limit voltage at the time of discharge.
  • the calculated permissible value is displayed, for example, on a display unit (display unit) or output to a charge / discharge control unit (not shown) of the charge / discharge device 350 of the secondary battery 100. Then, the charge / discharge control unit (not shown) charges / discharges the secondary battery 100 with the input allowable value.
  • the battery characteristic determination device 355 is not shown, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD (Hard Disk Drive), and an I / F (interface). ) Etc. are provided. Then, the battery characteristic determination device 355 is embodied by executing a predetermined control program stored in the ROM by the CPU.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • HDD Hard Disk Drive
  • I / F interface
  • the battery characteristics can be accurately determined even when the capacity is recovered. That is, as a result of changing the battery characteristics of the secondary battery 100 due to the capacity recovery, if the battery characteristics are determined using the determination parameters in the initial state, the determined battery characteristics may become inaccurate. Therefore, by updating the determination parameters at the time of capacity recovery based on the positive electrode characteristics and the negative electrode characteristics, the battery characteristics can be determined using the updated determination parameters. As a result, the battery characteristics can be accurately determined even after the capacity is recovered.
  • Capacity recovery electrode (third electrode) 100 secondary battery (lithium ion secondary battery) 2 Positive terminal 3 Negative terminal 35 Current meter 350 Charge / discharge device 351 Current meter 352 Voltage meter 353 Resistance 354 Power supply 355 Battery characteristic determination device 356 Charge / discharge changeover switch 357 Capacity recovery switch 360 Thermometer 4 Capacity recovery electrode terminal 5 Separator 50 Deterioration state Grasp 51 Capacity recovery amount calculation unit 52 Parameter update unit 53 Electrode database 53a Positive electrode database 53b Negative electrode database 54 Battery characteristic determination unit 55 Battery database 56 Allowable value calculation unit 57 Capacity recovery unit 6 Exterior unit

Abstract

容量回復を行ったときでも精度よく電池特性を決定可能な電池特性決定装置を提供する。この課題解決のため、正極と、負極と、前記正極又は前記負極の少なくとも一方の電極にリチウムイオンを補充する第三極とを備えるリチウムイオン二次電池の、劣化に伴って変化する電池特性を決定する電池特性決定装置であって、前記リチウムイオン二次電池の前記電池特性を決定する決定パラメータを、前記電極への前記リチウムイオンの補充による容量回復の際に更新するパラメータ更新部52を備える。

Description

電池特性決定装置及び二次電池システム
 本発明は、電池特性決定装置及び二次電池システムに関する。
 リチウムイオン二次電池(以下「二次電池」と適宜略記する)は、充放電の繰り返し、長時間の放置等によって劣化し、電池容量が低下する。そこで、劣化に伴って生じた電池容量を回復させる技術が知られている。特許文献1には、正極と、負極と、電解質と、前記正極と前記負極との少なくともいずれかにリチウムイオンを補充する第三極を備えるリチウムイオン電池であって、前記第三極は、Li+を放出する材料を含み、前記Li+を放出する材料の電位はLi/Li+基準で1.8V以上であることを特徴とするリチウムイオン電池が記載されている。
特開2016-76358号公報
 特許文献1に記載の技術では、容量回復によって電池容量が必ずしも初期の電池容量に戻るものではない。このため、容量回復後、例えば内部抵抗等の電池特性に関する初期状態の決定パラメータを用いて電池特性を決定すると、決定された電池特性の精度が低いことがある。
 本発明が解決しようとする課題は、容量回復後においても精度よく電池特性を決定可能な電池特性決定装置及び二次電池システムの提供である。
 本発明の電池特性決定装置は、正極と、負極と、前記正極又は前記負極の少なくとも一方の電極にリチウムイオンを補充する第三極とを備えるリチウムイオン二次電池の、劣化に伴って変化する電池特性を決定する電池特性決定装置であって、前記リチウムイオン二次電池の前記電池特性を決定する決定パラメータを、前記電極への前記リチウムイオンの補充による容量回復の際に更新するパラメータ更新部を備える。その他の解決手段は発明を実施するための形態において後記する。
 本発明によれば、容量回復後においても精度よく電池特性を決定可能な電池特性決定装置及び二次電池システムを提供できる。
二次電池を示す模式的な断面図である。 二次電池を示し、図1とは異なる方向への模式的な断面図である。 二次電池に接続された充放電装置を示す回路図である。 制御装置のブロック図である。 正極データベースの模式図(表)である。 負極データベースの模式図(表)である。 正極特性のうち、充電状態と電極電位との関係を示すグラフである。 負極特性のうち、充電状態と電極電位との関係を示すグラフである。 正極特性のうち、充電状態と抵抗値との関係を示すグラフである。 負極特性のうち、充電状態と抵抗値との関係を示すグラフである。 電池データベースの模式図である。 電池特性のうち、容量回復前における充電状態と電圧との関係を示すグラフである。 電池特性のうち、容量回復後における充電状態と電圧との関係を示すグラフである。
 以下、本発明を実施するための形態(本実施形態)を説明する。ただし、本発明は以下の内容及び図示の内容になんら限定されず、本発明の効果を著しく損なわない範囲で任意に変形して実施できる。本発明は、異なる実施形態同士を組み合わせて実施できる。以下の記載において、異なる実施形態において同じ部材については同じ符号を付し、重複する説明は省略する。
 図1は、二次電池100を示す模式的な断面図である。また、図2は、二次電池100を示し、図1とは異なる方向への模式的な断面図である。本明細書において、二次電池100は、二次電池のセル、電池モジュール又は電池パックのいずれでもよい。例えば、二次電池100は、複数個のセルを含むものであってもよい。また、二次電池100は、複数個のセルを含む電池モジュールを複数個含む構成であってもよい。
 二次電池100は、正極11と、負極12と、正極11又は負極12の少なくとも一方の電極1にリチウムイオンを補充する容量回復極15(第三極。電極1)とを備えるものである。他にも、二次電池100は、正極11に接続された正極端子2と、負極12に接続された負極端子3と、容量回復極15に接続された容量回復極端子4(第三極端子)と、セパレータ5と、外装材6と、を備える。
 正極11、負極12及び容量回復極15は、それぞれ、適切な金属の集電箔に適切な電極活物質、導電剤、結着剤等の混合体を塗布して作製されたものである。従って、正極11、負極12及び容量回復極15には、それぞれ、集電箔に電極活物質等が保持される。容量回復極15の活物質は、反応種を内部に含むものが望ましい。二次電池100の反応種は、リチウムイオンである。この場合、例えば、正極活物質としても用いられるLiCoO、LiNiMnCo等を容量回復極15の活物質として用いることができる。詳細は後記するが、正極11と容量回復極15との間への通電により、正極11にリチウムイオンを補充できる。
 正極11、負極12及び容量回復極15の集電箔には、金属のタブが接続されている。タブ部分だけがラミネートフィルム等の外装材6の外部に露出するように、電極1、セパレータ5及び非水電解液(図示しない)が外装材6により封止される。これにより、タブが図1の正極端子2、負極端子3及び容量回復極端子4となる。また、正極11と負極12とはセパレータ5を挟んで交互に配置される。容量回復極15は、電極としては最も外側に配置される。容量回復極15の外側にも、セパレータ5が配置される。
 二次電池100は、例えば、正極11と負極12とをセパレータ5を介して対向させ、捲回又は積層をすることにより作製できる。この場合、容量回復極15は、捲回体の捲回軸(中心軸)付近又は最外周部に配置してもよい。また、容量回復極15は、積層体の一部として配置してもよい。
 図3は、二次電池100に接続された充放電装置350を示す回路図である。二次電池システム500は電池特性決定装置355を備え、詳細には、二次電池100と電池特性決定装置355を含む充放電装置350とを備える。充放電装置350は、電流計351と、電圧計352と、抵抗353と、電源354と、電池特性決定装置355と、充放電切替スイッチ356と、容量回復スイッチ357と、温度計360とを備える。二次電池100を構成する正極端子2は、図2に示す例では並列になるように、充放電装置350に接続される。同様に、二次電池100を構成する負極端子3及び容量回復極端子4は、それぞれ、図2に示す例では並列になるように、充放電装置350に接続される。
 容量回復スイッチ357は、二次電池100の負極端子3及び容量回復極端子4のいずれかを正極端子2と接続するように設置される。なお、本発明は、本図の構成に限定されるものではなく、二次電池100の正極端子2及び容量回復極端子4のいずれかを負極端子3と接続するように容量回復スイッチ357を設置してもよい。
 二次電池100の劣化により電池容量が低下した場合に行われる容量回復について説明する。容量回復は、正極11である電極1へのリチウムイオンの補充によって行われる。具体的には、まず、電池特性決定装置355の容量回復部57(後記する)は、容量回復スイッチ357に信号を出力することで、容量回復極端子4と正極端子2とを接続する。また、容量回復部57は、充放電切替スイッチ356に信号を出力することで、容量回復極端子4と正極端子2との間のリチウムイオン(反応種)の移動方向に応じて、充放電切替スイッチ356を操作する。
 容量回復極15(図2)の活物質が正極11(図2)の活物質と同じである場合、容量回復極15から正極11にリチウムイオンを移動させるとき、容量回復部57は、充放電切替スイッチ356を抵抗353側に繋ぐ。これにより、正極端子2から容量回復極端子4に電流が流れ、リチウムイオンが正極11に補充される。逆に、正極11から容量回復極15にリチウムイオンを移動させるとき、容量回復部57は、充放電切替スイッチ356を電源354側に繋ぐ。これにより、正極11から容量回復極15に電流が流れ、容量回復極15にリチウムイオンが補充される。
 充放電切替スイッチ356のどちらの側に繋ぐのかは、例えば、後記する図12及び図13に記載の電極電位Vnegのグラフの位置に応じて決定できる。容量回復極15から正極11にリチウムイオンを移動させると、後記の図13に示すように、負極カーブである電極電位Vnegのグラフが相対的に右方向に移動する。電極電位Vnegの右端は、正極カーブである電極電位Vposの右端にある程度近く、かつ、電極電位Vposの右端よりも左側に存在することが好ましい。そこで、電極電位Vnegの右端がこの位置に存在するように、容量回復極15から正極11にリチウムイオンを移動させることが好ましい。
 一方で、電極電位Vnegの右端が電極電位Vposの右端よりも右側に存在する場合、二次電池100の劣化が進行し易い。そこで、この場合には、正極11から容量回復極15にリチウムイオンを移動させることで、電極電位Vnegの右端が上記の位置に存在するようにすることが好ましい。
 リチウムイオンの補充量(容量回復量)は、二次電池100の劣化状態に基づき決定された充放電量によって決定できる。劣化状態は、例えば、詳細は後記するが、初期状態の電池容量に対する現時点での電池容量を算出することで決定できる。また、充放電量は、例えば、初期状態の電池容量と、現時点での電池容量との差分を算出し、その差分の所定割合(例えば50%、70%等)とすることができる。容量回復部57による容量回復中、容量回復部57は、電流計35の出力に基づき正極11と容量回復極15との間での充放電量を算出する。そして、容量回復部57は、算出された充放電量が目標とする充放電量に到達したら、容量回復スイッチ357及び充放電切替スイッチ356を操作する。これにより、正極11と容量回復極15との間の電流が遮断される。
 なお、上記の例では、正極11と容量回復極15との間でのリチウムイオンの移動について例示したが、例えば、負極12と容量回復極15との間でリチウムイオンを移動させてもよい。従って、リチウムイオンがやり取りされる電極1は、正極11又は負極12のいずれでもよい。
 電流計351は、正極端子2と負極端子3との間又は正極端子2と容量回復極端子4との間に流れる電流を測定し、結果を電池特性決定装置355に出力する。また、電圧計352は、正極端子2と負極端子3との間の電圧を測定し、結果を電池特性決定装置355に出力する。なお、正極端子2と容量回復極端子4との間、又は、負極端子3と容量回復極端子4との間の少なくとも一方の電圧を測定する電圧計を追加で設置してもよい。さらに、温度計360は、二次電池100の内部温度を測定し、結果を電池特性決定装置355に出力する。
 図4は、電池特性決定装置355のブロック図である。電池特性決定装置355は、二次電池100において、劣化に伴って変化する電池特性を決定するものである。電池特性決定装置355は、劣化状態把握部50と、容量回復量算出部51と、パラメータ更新部52と、電極データベース53と、電池特性決定部54、電池データベース(DB)55と、許容値算出部56と、容量回復部57とを備える。電極データベース53は、正極に関する正極特性を記憶した正極データベース(DB)53a、及び負極に関する負極特性を記憶した負極データベース(DB)53bを含む。
 劣化状態把握部50は、二次電池100の温度、電流及び電圧と、パラメータ更新部52により更新された決定パラメータに基づく電池特性とに基づいて二次電池100の劣化状態を把握するものである。決定パラメータは、詳細は後記するが、例えば、二次電池100の電池特性を算出する所定の関係式に含まれるものである。劣化状態把握部50を備えることで、二次電池100の温度、電流及び電圧に基づき、二次電池100の劣化状態を把握できる。
 決定パラメータを用いて算出可能な電池特性は、例えば二次電池100の内部抵抗である。これにより、容量回復が行われても、二次電池100の内部抵抗を精度よく算出できる。
 劣化状態の把握は、例えば以下のようにして行われる。劣化状態把握部50は、現在の二次電池100の温度、電流及び電圧に基づき、現在の二次電池100の劣化状態を判断する。具体的には、劣化状態把握部50は、微小かつ一定の電流で、満充電状態から全放電状態まで放電又は全放電状態から満充電状態まで充電する。そして、この際に得られた放電容量又は充電容量と、電池データベース55(後記する)に含まれる電池特性に基づき算出された放電容量又は充電容量とを比較し、容量減少量を劣化状態と考えることができる。このとき、放電容量又は充電容量は、取得した温度における電池特性を用いて算出できる。
 なお、詳細は後記するが、電池データベース55は、パラメータ更新部52により更新された決定パラメータに基づく電池特性を含む。電池特性に基づく放電容量又は充電容量は、例えば放電時であれば、後記する図11に示すOCVcellの下限値に対する充放電量Qcellである。
 また、劣化状態は、運転中の電流波形及び電圧波形を統計的に処理したり、制御回路が有する電池特性パラメータに基づき回帰計算処理(再現計算処理)をしたりすることで開回路電圧を予測し、充放電量と開回路電圧との関係から劣化状態を把握してもよい。
 劣化状態の把握において、充放電は、「満充電状態から全放電状態まで放電」及び「満充電状態から全放電状態まで充電」に限定されない。充放電の範囲は、広いほうが好ましく、この例のように100%の範囲で充放電することが好ましい。ただし、その後の工程が円滑に行えるならば、満充電状態から全放電状態までの例えば50%以上の範囲で充放電してもよく、可能であれば、50%未満の範囲でもよい。
 容量回復量算出部51は、二次電池100の温度、電流及び電圧と、パラメータ更新部52により更新された決定パラメータに基づく電池特性とに基づいて前記二次電池の容量回復量を算出するものである。容量回復量算出部51を備えることで、二次電池100の温度、電流及び電圧に基づいて、容量回復部57による容量回復量を算出できる。
 容量回復量の算出は、例えば以下のようにして行われる。容量回復量算出部51は、例えば、容量回復操作の前後で上記の劣化状態の把握を行い、劣化状態の変化から容量回復量を判定する。また、容量回復量は、容量回復操作である容量回復極15から正極11又は負極12へのリチウムイオンの移動量を電流計の値から計算し、所定の係数を掛けて容量回復量を予測してもよい。
 パラメータ更新部52は、二次電池100の電池特性を決定する決定パラメータを、電極1へのリチウムイオンの補充による容量回復の際に更新するものである。ここでいう決定パラメータは、例えば、正極11に関する正極特性及び負極12に関する負極特性に基づいて上記の電池特性を決定するものである。正極特性は正極データベース53aに記憶される。負極特性は負極データベース53bに記憶される。正極データベース53a及び負極データベース53bについて、図5及び図6を参照して説明する。
 図5は、正極データベース53aの模式図(表)である。図6は、負極データベース53bの模式図(表)である。図5及び図6では、一例として、正極特性は、正極11(図2)の内部抵抗を含み、負極特性は、負極12(図2)の内部抵抗を含む。正極データベース53a及び負極データベース53bは、図5及び図6の例ではいずれもデータテーブルの形式であるが、例えばデータを表す関数でもよい。
 正極データベース53aは、劣化に伴って変化する二次電池100の電池特性(例えば内部抵抗)のうち正極に関する正極特性を含む。正極特性は、二次電池100の充電状態Xpos、正極11の電極電位Vpos、及び、上記のように二次電池100の電池特性のうち正極の内部抵抗を示す抵抗値R0pos、R1pos、R2posを含む。負極データベース53bは、劣化に伴って変化する二次電池100の電池特性のうち負極に関する負極特性を含む。二次電池100の充電状態Xneg、正極11の電極電位Vneg、及び、上記のように二次電池100の電池特性のうち負極の内部抵抗を示す抵抗値R0neg、R1neg、R2negを含む。
 正極特性及び負極特性は、それぞれ、二次電池100の充電状態Xpos、Xneg、正極11又は負極12の電極電位Vpos、Vneg、及び二次電池100の電池特性の一例である内部抵抗を示す抵抗値R0pos、R1pos、R2pos、R0neg、R1neg、R2negを相互に関連付けている。このようにすることで、例えば、充電状態及び電極電位が決定されれば、電池特性を決定できる。なお、充電状態は、例えばSOCを示す数値である。
 抵抗値R0pos、R1pos、R2pos、R0neg、R1neg、R2negについて説明する。電池特性が内部抵抗である場合、内部抵抗は例えば二次電池100の充電又は放電直後の抵抗値を含む。具体的には例えば、二次電池100の内部抵抗は、二次電池100の充放電開始から0.1秒後の抵抗値R0、充放電開始から中程度の時間経過後(例えば10秒後)の抵抗値R1、充放電開始から長時間経過後(例えば60秒後)の抵抗値R2を含む。
 二次電池100の内部抵抗は、正極11における内部抵抗と、負極12における内部抵抗とに基づき決定できる。そこで、正極特性は、正極11の内部抵抗に関する抵抗値R0pos、R1pos、R2posを含む。負極特性は、負極12の内部抵抗に関する抵抗値R0neg、R1neg、R2negを含む。
 なお、正極11の抵抗値R0pos、R1pos、R2posは、正極11及び負極としての基準電極(例えばリチウム)を備えるリチウム二次電池を作製し、温度を固定してSOCを変化させて内部抵抗を上記時間ごとに測定することで、決定できる。また、負極12の抵抗値R0neg、R1neg、R2negは、負極12及び正極としての基準電極(例えばリチウム)を備えるリチウム二次電池を作製し、温度を固定してSOCを変化させて内部抵抗を上記時間ごとに測定することで、決定できる。
 充電状態Xpos、Xneg、電極電位Vpos、Vneg、及び二次電池100の電池特性の一例である抵抗値R0pos、R1pos、R2pos、R0neg、R1neg、R2negは、それぞれ、図示の例では温度Tである指標値毎に関連付けられている。このようにすることで、温度T等の指標値に基づいて、電池特性を決定できる。
 なお、例えば充電状態と電池特性との関係は、電流値によっても変化し得る。このため、充電状態Xpos、Xneg、電極電位Vpos、Vneg、及び二次電池100の電池特性の一例である抵抗値R0pos、R1pos、R2pos、R0neg、R1neg、R2negを関連付ける指標値は、上記のように温度Tであるほか、電流値であってもよく、温度T及び電流値の双方でもよい。指標値が温度T及び電流値の双方である場合、例えば、温度Tを固定し、変更した電流値毎に例えば充電状態及び電池特性を決定すればよい。
 正極特性及び負極特性は、いずれも、二次電池100が劣化していない初期状態における正極特性及び負極特性としての数値を含む。具体的には、正極特性は、二次電池100が劣化していない初期状態における充電状態Xposと電極電位Vposとの関係、及び、二次電池100が劣化していない初期状態における充電状態Xposと抵抗値R0pos、R1pos、R2posとの関係を含む。同様に、負極特性は、初期状態における充電状態Xnegと電極電位Vnegとの関係、及び初期状態における充電状態Xnegと抵抗値R0neg、R1neg、R2negとの関係を含む。
 正極特性は、温度TがT1において、充電状態XposがXpos,1~Xpos,n(nは2以上の整数。以下同じ)、電極電位VposがVpos,1~Vpos,nのそれぞれにおいて、抵抗値R0pos,1~R0pos,n、R1pos,1~R1pos,n、R2pos,1~R2pos,nを含む。これらは、温度TがT1~Tm(mは2以上の整数)まで温度T毎に含まれる。これらの点は、図6に示す負極特性においても同様である。
 図7は、正極特性のうち、充電状態Xposと電極電位Vposとの関係を示すグラフである。図7に示すグラフは25℃において実測したものである。充電開始により充電状態Xposが大きくなると、正極11の電極電位Vposは急激に増加した後、更に指数関数的に増加する。図7に示すグラフを例えばテーブル化することで、上記の図5に示した充電状態Xpos及び電極電位Vposを含む正極特性が得られる。
 図8は、負極特性のうち、充電状態Xnegと電極電位Vnegとの関係を示すグラフである。図8に示すグラフは25℃において実測したものである。充電開始により充電状態Xnegが大きくなると、負極12の電極電位Vnegは急激に減少した後、更に緩やかに減少する。図8に示すグラフを例えばテーブル化することで、上記の図6に示した充電状態Xneg及び電極電位Vnegを含む負極特性が得られる。
 図9は、正極特性のうち、充電状態Xposと抵抗値R2posとの関係を示すグラフである。図9に示すグラフは25℃において実測したものである。充電開始により充電状態Xposが大きくなると、抵抗値R2posは急激に減少した後、略一定状態になる。図9に示すグラフを例えばテーブル化することで、上記の図5に示した充電状態Xpos及び抵抗値R2posを含む正極特性が得られる。
 図10は、負極特性のうち、充電状態Xnegと抵抗値R2negとの関係を示すグラフである。図10に示すグラフは25℃において実測したものである。充電開始により充電状態Xnegが大きくなると、抵抗値R2negは急激に減少した後、ある程度の変動を有しつつある程度低い状態で維持される。図10に示すグラフを例えばテーブル化することで、上記の図6に示した充電状態Xneg及び抵抗値R2negを含む負極特性が得られる。
 なお、図示はしないが、抵抗値R0pos、R0neg、R1pos及びR1negについても同じようにして実測することで、図5及び図6に示す正極特性及び負極特性が得られる。
 図4に戻って、パラメータ更新部52による決定パラメータの更新は、上記のように、容量回復の際に行われる。ここでいう容量回復の際とは、通常は容量回復の後であるが、例えば容量回復中でもよく、決定された容量回復の条件に基づく容量回復前でもよい。
 パラメータ更新部52は、上記のように、正極特性及び負極特性に基づいて電池特性を決定する決定パラメータを更新する。具体的には、パラメータ更新部52は、二次電池100の電池特性を算出する所定の関係式に含まれる決定パラメータを更新する。このようにすることで、決定パラメータを修正できる。
 ここでいう所定の関係式は、正極特性及び負極特性と決定パラメータApos、Bpos、Aneg、Bneg、Dpos、Dnegとの関数である。具体的には例えば、所定の関係式は以下の式(1)~(5)を含む。
 Qcell=Xpos×Apos+Bpos=Xneg×Aneg+Bneg  ・・・(1)
 OCVcell=Vpos-Vneg             ・・・(2)
 R0cell=R3+R0pos×Dpos+R0neg×Dneg   ・・・(3)
 R1cell=R3+R1pos×Dpos+R1neg×Dneg   ・・・(4)
 R2cell=R3+R2pos×Dpos+R2neg×Dneg   ・・・(5)
 式(1)~(5)において、Qcellは二次電池100の充電量又は放電量(充放電量)である。決定パラメータApos、Bpos、Aneg、Bneg、Dpos、Dnegは各成分の変化率であり、二次電池100が劣化していない初期状態における初期値はパラメータ更新部52に予め記憶される。
 決定パラメータの初期値は、例えば劣化していない二次電池100を用いた予備実験により決定できる。例えば、充電状態Xpos、Xnegと充放電量Qcellとのグラフを描き、そのグラフの傾き及び切片を求めることで、Apos、Aneg、Bpos、Bnegを決定できる。また、Dpos、Dneg、R3は、抵抗値R0pos、R1pos、R2pos、R0neg、R1neg、R2negの実測値と式(3)~(5)とに基づき、決定できる。
 なお、R3は、正極11及び負極12以外(集電箔を除く)の二次電池100の構成部材に起因する抵抗であり、充電状態の影響を受けない抵抗である。具体的にはR3は例えば、正極端子2の抵抗、負極端子3の抵抗、容量回復極端子4の抵抗、非水電解液の抵抗、正極11及び負極12の集電箔の抵抗等を含む。
 正極特性、負極特性及び式(1)~(5)に基づくことで、二次電池100の充放電量Qcell、開回路電圧OCVcell、及び内部抵抗に関する抵抗値R0cell、R1cell、R2cellを決定できる。
 二次電池100の容量回復が行われると、決定パラメータが変化する。そこで、容量回復前の決定パラメータを使用して容量回復後に二次電池100の電池特性を算出しても、算出精度が低い可能性がある。そこで、パラメータ更新部52は、二次電池100の劣化状態又は容量回復による容量回復量の少なくとも一方に基づき、決定パラメータを更新する。このようにすることで、劣化状態又は容量回復量の少なくとも一方の指標を用いて、電池特性の算出精度を向上できる。
 式(1)~(5)で使用される充電状態Xpos、Xneg、電極電位Vpos、Vneg、及び抵抗値R0pos、R1pos、R2pos、R0neg、R1neg、R2negは、正極データベース53a及び負極データベース53bから読み出される。一方で、決定パラメータApos、Aneg、Bpos、Bneg、R3、Dpos、Dnegについては、初期値がパラメータ更新部52に記憶されている。そして、決定パラメータは、容量回復の際にパラメータ更新部52によって更新される。
 決定パラメータの更新は、例えば、以下のようにして行われる。一例としてBnegを初期値から更新する場合、パラメータ更新部52は、二次電池100の劣化状態及び初期状態から計算した容量減少量Qdegと、容量回復量Qrecと、現在のBnegであるBneg0から、新しいBnegの値Bneg1を次の式(6)で計算する。
 Bneg1=Bneg0+Qdeg-Qrec  ・・・(6)
 容量減少量Qdegは、劣化状態における二次電池100の電池容量と、初期状態における二次電池100の電池容量との差分である。また、容量回復量Qrecは、容量回復後であれば実際の容量回復量であり、容量回復前であれば、回復予定の容量回復量とすることができる。
 パラメータ更新部52は、式(1)におけるBnegを、式(6)で算出したBneg1で更新する。Bpos、Aneg、Aposについても同様に更新可能である。他の決定パラメータについては、更新してもよいが、初期値を用いてもよい。
 決定パラメータが初期値の決定パラメータではない場合、即ち、決定パラメータが容量回復に伴って既に少なくとも一度更新されてる場合、パラメータ更新部52は、容量回復量Qrecと、Bnegの現在値Bneg0から、新しいBnegであるBneg2を次の式(7)で計算する。
 Bneg2=Bneg0-Qrec  ・・・(7)
 パラメータ更新部52は、Bneg0を式(7)で算出したBneg2で更新する。Bpos、Aneg、Aposについても同様に更新可能である。他の決定パラメータについては、更新してもよいが、初期値を用いてもよい。
 上記式(6)及び(7)を用いた更新の際、その他の決定パラメータ(例えばDpos、Dneg、R3)の更新は、例えば以下のようにして行われる。例えば、式(6)又は式(7)を用いてBnegを更新した後、パラメータ更新部52は、更新したAneg、Apos、Bneg、Bposと、式(1)~(5)とを用いて、仮の電池データベース55を計算する。そして、パラメータ更新部52は、当該仮の電池データベース55において所定のOCVに対応する二次電池100の内部抵抗の抵抗値R0cellを抽出する。さらに、パラメータ更新部52は、抽出した二次電池100の内部抵抗と実測した二次電池100の内部抵抗の比をDpos、Dneg、R3にそれぞれ乗じることで、Dpos、Dneg、R3を更新できる。
 決定パラメータは、総当たりによる計算に基づいても更新できる。具体的には、パラメータ更新部52は、電流計351、電圧計352及び温度計360からの入力値に基づき、充放電量Qcell、開回路電圧OCVcell(V)、及び内部抵抗の抵抗値R0(Ω)、R1(Ω)、R2(Ω)を観測値として算出する。そして、パラメータ更新部52は、上記式(1)~(5)、正極特性及び負極特性によって計算される充放電量Qcell、開回路電圧OCVcell(V)、及び内部抵抗の抵抗値R0(Ω)、R1(Ω)、R2(Ω)が上記観測値に一致するように、決定パラメータを総当たりによる計算で発見する。発見後、パラメータ更新部52は、現在の決定パラメータを、発見した決定パラメータに更新する。
 このようにすることで、パラメータ更新部52は、決定パラメータを容量回復の際に更新できる。これにより、二次電池100の正極11及び負極12の充放電量Qpos、QnegとVpos、Vnegとの関係、二次電池100の正極11及び負極12の充放電量Qpos、Qnegと内部抵抗の抵抗値R0pos、R0negとの関係、二次電池100の正極11及び負極12の充放電量Qpos、Qnegと内部抵抗の抵抗値R1pos、R1negとの関係、二次電池100の正極11及び負極12の充放電量Qpos、Qnegと内部抵抗の抵抗値R2pos、R2negとの関係と、所定の関係式(例えば式(1)~(5))とに基づいて、二次電池100の充放電量QcellとOCVcellとの関係、二次電池100の充放電量Qcellと内部抵抗の抵抗値R0cell、R1cell、R2cellとの関係、正極11と負極12と二次電池100との充放電量Qpos、Qneg、Qcellの対応関係を決定できる。
 電池特性決定部54は、正極特性及び負極特性と、二次電池100の劣化状態又は容量回復による容量回復量の少なくとも一方とに基づき、二次電池100の電池特性を決定するものである。電池特性決定部54を備えることで、容量回復によって電池特性が変化した場合であっても、電池特性の決定精度を向上できる。
 電池特性決定部54は、正極特性及び負極特性と、図示の例では劣化状態及び容量回復量を反映した式(1)~(5)に基づき、電池特性を決定する。電池特性は、例えば、二次電池100の充放電量QcellとOCVcellとの関係、二次電池100の充放電量Qcellと内部抵抗の抵抗値R0cell、R1cell、R2cellとの関係、正極11と負極12と二次電池100との充放電量Qpos、Qneg、Qcellの対応関係である。決定された電池特性は、電池データベース55に記録される。
 図11は、電池データベース55の模式図である。図11の例ではデータテーブルの形式であるが、例えばデータを表す関数でもよい。電池データベース55は、二次電池100の電池特性を含む。電池特性は、二次電池100の内部抵抗を含む。内部抵抗は、抵抗値R0cell、R1cell、R2cellを含む。電池特性は、更に、温度T、充放電量Qcell、OCVcellを含む。電池特性は、温度TがT1において、QcellがQ1~Qn、OCVcellがV1~VnにおけるR0cell、R1cell、R2cellを含む。そして、温度TがTmまで、QcellがQ1~Qn、OCVcellがV1~VnにおけるR0cell、R1cell、R2cellを含む。
 電池データベース55に記録された電池特性によれば、例えば二次電池100の温度T及び充電状態(図示の例では充放電量Qcell)を把握することで、二次電池100の開回路電圧OCVcell、内部抵抗の抵抗値R0cell、R1cell、R2cellを決定できる。
 図12は、電池特性のうち、容量回復前における充電状態と電圧との関係を示すグラフである。横軸は、満充電状態からの放電量(Ah)により示される充電状態、縦軸は電池電圧である。Vcellは、二次電池100の電池電圧であり、式(2)を用いて計算したものである。Vpos及びVnegは、いずれも、式(2)における正極特性及び負極特性、即ち式(1)を用いて変換した後の正極特性及び負極特性である。決定パラメータは、容量回復直前の劣化状態に合わせて更新されている。
 図13は、電池特性のうち、容量回復後における充電状態と電圧との関係を示すグラフである。容量回復後であっても、決定パラメータを更新しなければ図12のグラフが得られるが、決定パラメータの更新により、図13のグラフが得られる。図13に示す例では、決定パラメータは、説明の簡略化のためにBnegを容量回復量Qrecだけ変化させたが、その他の決定パラメータについては変化していない。なお、Qrec+Bneg1=Bneg0(図12)である。
 容量回復により、電極電位Vnegのグラフが全体的に右に移動し、決定パラメータBneg0はQrecだけ減少し、Bneg1に変化した。これにより、電極電位Vposと電極電位Vnegとの対応関係が変化した。従って、決定パラメータの更新により、充電状態に対する電池電圧Vcell(OCVcell)が変化した。このように、容量回復に伴う電池電圧と充電状態の対応関係が図13に示すように表現される。内部抵抗の抵抗値R0cell、R1cell、R2cellについても同様である。
 図4に戻って、許容値算出部56は、パラメータ更新部52により更新された決定パラメータに基づく電池特性を用いて、二次電池100の許容電流又は許容電力の少なくとも一方の許容値を決定するものである。許容値算出部56によれば、更新した決定パラメータを用いて許容値を算出できる。
 許容電流について、許容値算出部56は、電池特性に含まれる抵抗値R0cell、R1cell、R2cellを現在の電池の温度に基づいて参照し、二次電池100の許容電流を算出する。抵抗値R0cell、R1cell、R2cellは、上記のようにして更新された決定パラメータを用いて決定されたものである。許容電流の算出は、二次電池100の過電圧抑制のために行われる。
 許容電流は、充電許容電流及び放電許容電流を含む。これらのうち、充電許容電流Icmaxは、例えば以下の式(8)を用いて算出できる。
 Icmax=(Vmax-OCVcell)/R  ・・・(8)
 ここで、Vmaxは充電時の上限電圧、OCVcellは二次電池100の開回路電圧、Rは二次電池100の内部抵抗である。Rは、例えば想定する通電時間に対して、R0cell、R1cell及びR2cellを適宜組み合わせることで算出できる。具体的には例えば、横軸を通電時間(R0cellであれば0.1秒、R1cellであれば10秒、R2cellであれば60秒)、縦軸を抵抗値とするグラフにおいて、想定する通電時間に対する抵抗値をグラフから読み取ることで、Rを算出できる。グラフは、必要に応じ、外挿又は内挿してもよい。
 放電許容電流Idmaxは、例えば以下の式(9)を用いて算出できる。
 Idmax=(OCVcell-Vmin)/R  ・・・(9)
 ここで、Vminは放電時の下限電圧、OCVcellは二次電池100の開回路電圧、Rは二次電池100の内部抵抗である。
 また、許容電力について、二次電池100の許容電力は、充電時の入力許容電力及び放電時の出力許容電力を含む。これらのうち、入力許容電力Winは、例えば以下の式(10)を用いて算出できる。
 Win=Icmax×Vmax  ・・・(10)
 ここで、Icmaxは充電許容電流、Vmaxは充電時の上限電圧である。
 入力許容電力Woutは、例えば以下の式(11)を用いて算出できる。
 Wout=Idmax×Vmin  ・・・(11)
 ここで、Idmaxは放電許容電流、Vminは放電時の下限電圧である。
 算出された許容値は、例えば表示部(表示部)に表示されたり、二次電池100の充放電装置350の充放電制御部(図示しない)に出力される。そして、図示しない充放電制御部は、入力された許容値で、二次電池100を充放電する。
 なお、電池特性決定装置355は、いずれも図示はしないが、例えばCPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、I/F(インターフェイス)等を備えて構成される。そして、電池特性決定装置355は、ROMに格納されている所定の制御プログラムがCPUによって実行されることにより具現化される。
 以上の電池特性決定装置355によれば、容量回復を行ったときでも精度よく電池特性を決定できる。即ち、容量回復によって二次電池100の電池特性が変わる結果、初期状態の決定パラメータを使用して電池特性を決定すると、決定された電池特性が不正確になる可能性がある。そこで、正極特性および負極特性に基づき、容量回復に際して決定パラメータを更新することで、更新された決定パラメータを用いて電池特性を決定できる。これにより、容量回復後においても精度よく電池特性を決定できる。
11 正極
12 負極
15 容量回復極(第三極)
100 二次電池(リチウムイオン二次電池)
2 正極端子
3 負極端子
35 電流計
350 充放電装置
351 電流計
352 電圧計
353 抵抗
354 電源
355 電池特性決定装置
356 充放電切替スイッチ
357 容量回復スイッチ
360 温度計
4 容量回復極端子
5 セパレータ
50 劣化状態把握部
51 容量回復量算出部
52 パラメータ更新部
53 電極データベース
53a 正極データベース
53b 負極データベース
54 電池特性決定部
55 電池データベース
56 許容値算出部
57 容量回復部
6 外装部

Claims (13)

  1.  正極と、負極と、前記正極又は前記負極の少なくとも一方の電極にリチウムイオンを補充する第三極とを備えるリチウムイオン二次電池の、劣化に伴って変化する電池特性を決定する電池特性決定装置であって、
     前記リチウムイオン二次電池の前記電池特性を決定する決定パラメータを、前記電極への前記リチウムイオンの補充による容量回復の際に更新するパラメータ更新部を備える
     ことを特徴とする電池特性決定装置。
  2.  前記決定パラメータは、前記正極に関する正極特性及び前記負極に関する負極特性に基づいて前記電池特性を決定するものである
     ことを特徴とする請求項1に記載の電池特性決定装置。
  3.  前記パラメータ更新部は、前記リチウムイオン二次電池の電池特性を算出する所定の関係式に含まれる前記決定パラメータを更新する
     ことを特徴とする請求項2に記載の電池特性決定装置。
  4.  前記所定の関係式は、前記正極特性及び前記負極特性と、前記決定パラメータとの関数である
     ことを特徴とする、請求項3に記載の電池特性決定装置。
  5.  前記正極特性及び前記負極特性は、それぞれ、前記リチウムイオン二次電池の充電状態、前記正極又は前記負極の電極電位、及び前記リチウムイオン二次電池の電池特性を相互に関連付けている
     ことを特徴とする請求項4に記載の電池特性決定装置。
  6.  前記充電状態、前記電極電位、及び前記電池特性は、それぞれ、温度又は電流の少なくとも一方の指標値毎に関連付けられている
     ことを特徴とする請求項5に記載の電池特性決定装置。
  7.  前記パラメータ更新部は、前記リチウムイオン二次電池の劣化状態又は前記容量回復による容量回復量の少なくとも一方に基づき、前記決定パラメータを更新する
     ことを特徴とする請求項1~6の何れか1項に記載の電池特性決定装置。
  8.  前記正極特性及び前記負極特性と、前記リチウムイオン二次電池の劣化状態又は前記容量回復による容量回復量の少なくとも一方とに基づき、前記電池特性を決定する電池特性決定部を備える
     ことを特徴とする請求項2~6の何れか1項に記載の電池特性決定装置。
  9.  前記正極特性は、前記正極の内部抵抗を含み、
     前記負極特性は、前記負極の内部抵抗を含み、
     前記電池特性は、前記リチウムイオン二次電池の内部抵抗を含む
     ことを特徴とする請求項2~6の何れか1項に記載の電池特性決定装置。
  10.  前記リチウムイオン二次電池の温度、電流及び電圧と、前記パラメータ更新部により更新された前記決定パラメータに基づく前記電池特性とに基づいて前記リチウムイオン二次電池の劣化状態を把握する劣化状態把握部を備える
     ことを特徴とする請求項1~6の何れか1項に記載の電池特性決定装置。
  11.  前記リチウムイオン二次電池の温度、電流及び電圧と、前記パラメータ更新部により更新された前記決定パラメータに基づく前記電池特性とに基づいて前記リチウムイオン二次電池の容量回復量を算出する容量回復量算出部を備える
     ことを特徴とする請求項1~6の何れか1項に記載の電池特性決定装置。
  12.  前記パラメータ更新部により更新された前記決定パラメータに基づく前記電池特性を用いて、前記リチウムイオン二次電池の許容電流又は許容電力の少なくとも一方の許容値を決定する許容値決定部を備える
     ことを特徴とする請求項1~6の何れか1項に記載の電池特性決定装置。
  13.  正極と、負極と、前記正極又は前記負極の少なくとも一方の電極にリチウムイオンを補充する第三極とを備えるリチウムイオン二次電池の、劣化に伴って変化する電池特性を決定するとともに、前記リチウムイオン二次電池の前記電池特性を決定する決定パラメータを、前記電極への前記リチウムイオンの補充による容量回復の際に更新するパラメータ更新部を備える電池特性決定装置を備える
     ことを特徴とする二次電池システム。
PCT/JP2020/030711 2020-03-06 2020-08-12 電池特性決定装置及び二次電池システム WO2021176748A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020038653A JP2021139788A (ja) 2020-03-06 2020-03-06 電池特性決定装置及び二次電池システム
JP2020-038653 2020-03-06

Publications (1)

Publication Number Publication Date
WO2021176748A1 true WO2021176748A1 (ja) 2021-09-10

Family

ID=77614207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030711 WO2021176748A1 (ja) 2020-03-06 2020-08-12 電池特性決定装置及び二次電池システム

Country Status (2)

Country Link
JP (1) JP2021139788A (ja)
WO (1) WO2021176748A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166853A1 (ja) * 2022-03-03 2023-09-07 株式会社日立製作所 電池容量回復システム
WO2023181589A1 (ja) * 2022-03-23 2023-09-28 株式会社日立製作所 電池状態検出装置および電池状態検出方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022142030A (ja) * 2021-03-16 2022-09-30 株式会社日立製作所 二次電池システムおよびプログラム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179480A1 (ja) * 2012-06-01 2013-12-05 トヨタ自動車株式会社 電池の劣化診断装置及び劣化診断方法並びに電池の製造方法
WO2016030967A1 (ja) * 2014-08-26 2016-03-03 株式会社日立製作所 エネルギーストレージ運転計画システムおよび運用条件決定方法
JP2016091613A (ja) * 2014-10-30 2016-05-23 株式会社日立製作所 電池システム及び容量回復方法
JP2016119249A (ja) * 2014-12-22 2016-06-30 株式会社日立製作所 リチウムイオン二次電池システム
JP2017033825A (ja) * 2015-08-04 2017-02-09 トヨタ自動車株式会社 リチウムイオン二次電池の性能劣化回復方法
JP2018073667A (ja) * 2016-10-31 2018-05-10 株式会社半導体エネルギー研究所 蓄電装置
JP2018147669A (ja) * 2017-03-03 2018-09-20 トヨタ自動車株式会社 リチウムイオン二次電池およびその製造方法
JP2019215973A (ja) * 2018-06-11 2019-12-19 本田技研工業株式会社 リチウムイオン二次電池の容量回復装置および容量回復方法
WO2020026767A1 (ja) * 2018-07-30 2020-02-06 イビデン株式会社 非水系二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179480A1 (ja) * 2012-06-01 2013-12-05 トヨタ自動車株式会社 電池の劣化診断装置及び劣化診断方法並びに電池の製造方法
WO2016030967A1 (ja) * 2014-08-26 2016-03-03 株式会社日立製作所 エネルギーストレージ運転計画システムおよび運用条件決定方法
JP2016091613A (ja) * 2014-10-30 2016-05-23 株式会社日立製作所 電池システム及び容量回復方法
JP2016119249A (ja) * 2014-12-22 2016-06-30 株式会社日立製作所 リチウムイオン二次電池システム
JP2017033825A (ja) * 2015-08-04 2017-02-09 トヨタ自動車株式会社 リチウムイオン二次電池の性能劣化回復方法
JP2018073667A (ja) * 2016-10-31 2018-05-10 株式会社半導体エネルギー研究所 蓄電装置
JP2018147669A (ja) * 2017-03-03 2018-09-20 トヨタ自動車株式会社 リチウムイオン二次電池およびその製造方法
JP2019215973A (ja) * 2018-06-11 2019-12-19 本田技研工業株式会社 リチウムイオン二次電池の容量回復装置および容量回復方法
WO2020026767A1 (ja) * 2018-07-30 2020-02-06 イビデン株式会社 非水系二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166853A1 (ja) * 2022-03-03 2023-09-07 株式会社日立製作所 電池容量回復システム
WO2023181589A1 (ja) * 2022-03-23 2023-09-28 株式会社日立製作所 電池状態検出装置および電池状態検出方法

Also Published As

Publication number Publication date
JP2021139788A (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
US10371757B2 (en) Post-deterioration performance estimating apparatus and post-deterioration performance estimating method for energy storage device, and energy storage system
WO2021176748A1 (ja) 電池特性決定装置及び二次電池システム
EP3437152B1 (en) Battery management system with multiple observers
US10534039B2 (en) Apparatus and method for estimating degree of aging of secondary battery
JP5130917B2 (ja) リチウム二次電池の劣化検出方法と劣化抑制方法、劣化検出器と劣化抑制器、それを用いた電池パック、充電器
EP3051305B1 (en) Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus
JP6135110B2 (ja) 二次電池の制御装置、充電制御方法およびsoc検出方法
WO2017046870A1 (ja) 蓄電池制御装置、制御方法、プログラム、蓄電システム、電力システム
KR101650415B1 (ko) 하이브리드 이차 전지의 전압 추정 장치 및 그 방법
WO2017169088A1 (ja) リチウムイオン二次電池の寿命推定装置
JP2013089423A (ja) 電池制御装置
JP2017223454A (ja) リチウムイオン二次電池の劣化状態判定システム及びリチウムイオン二次電池の劣化状態判定方法
CN105866700A (zh) 一种锂离子电池快速筛选的方法
WO2018211824A1 (ja) 電池制御装置および車両システム
Lee et al. Beyond estimating battery state of health: Identifiability of individual electrode capacity and utilization
CN110471001B (zh) 锂离子电池的诊断方法和锂离子电池的诊断装置
CN111799517A (zh) 二次电池的充电方法
JP2013053943A (ja) 推定装置および推定方法
US11251472B2 (en) System and method for operating batteries based on electrode crystal structure change
JP6607079B2 (ja) 蓄電素子状態推定装置及び蓄電素子状態推定方法
Li et al. Study of the influencing factors on the discharging performance of lithium-ion batteries and its index of state-of-energy
JP2018137109A (ja) 寿命推定装置
CN108963354B (zh) 锂离子电池的状态推定装置和状态推定方法
JP2015201939A (ja) 均等化放電装置
JP6773195B2 (ja) 蓄電システム及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922747

Country of ref document: EP

Kind code of ref document: A1