JP2018112688A - トナー - Google Patents

トナー Download PDF

Info

Publication number
JP2018112688A
JP2018112688A JP2017003764A JP2017003764A JP2018112688A JP 2018112688 A JP2018112688 A JP 2018112688A JP 2017003764 A JP2017003764 A JP 2017003764A JP 2017003764 A JP2017003764 A JP 2017003764A JP 2018112688 A JP2018112688 A JP 2018112688A
Authority
JP
Japan
Prior art keywords
toner
wax
acid
mass
polyester resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017003764A
Other languages
English (en)
Other versions
JP6821442B2 (ja
JP2018112688A5 (ja
Inventor
剛 大津
Takeshi Otsu
剛 大津
健太郎 釜江
Kentaro Kamae
健太郎 釜江
陽介 岩崎
Yosuke Iwasaki
陽介 岩崎
和起子 勝間田
Wakiko Katsumata
和起子 勝間田
龍一郎 松尾
Ryuichiro Matsuo
龍一郎 松尾
健太 満生
Kenta Mansho
健太 満生
三浦 正治
Masaharu Miura
正治 三浦
恒 石上
Hisashi Ishigami
恒 石上
溝尾 祐一
Yuichi Mizoo
祐一 溝尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017003764A priority Critical patent/JP6821442B2/ja
Publication of JP2018112688A publication Critical patent/JP2018112688A/ja
Publication of JP2018112688A5 publication Critical patent/JP2018112688A5/ja
Application granted granted Critical
Publication of JP6821442B2 publication Critical patent/JP6821442B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

【課題】ワックス分散性、低温定着性に優れ、高温高湿下における長期間の画像出力においても、帯電性を維持し、耐ブロッキング性を満足できるトナーを提供すること。【解決手段】非晶性ポリエステル樹脂、結晶性ポリエステル樹脂、ワックス、及びワックス分散剤を含有するトナー粒子を有するトナーであって、前記ワックス分散剤が飽和脂環式化合物由来のユニットを有するスチレンアクリル系ポリマー部位とポリオレフィン部位とを有する重合体であり、前記ワックスが、下記式(1)で示されるエステル化合物であることを特徴とする。R1−CO−O−R2(1)(式(1)中、R1及びR2は、それぞれ独立に、炭素数18以上24以下のアルキル基を示す。)【選択図】なし

Description

本発明は、電子写真方式、静電記録方式、静電印刷方式、トナージェット方式に用いられるトナーに関する。
近年、電子写真方式のフルカラー複写機が広く普及し、印刷市場への適用も始まっている。印刷市場では、幅広いメディア(紙種)に対応しながら、高速、高画質、高生産性が要求されるようになってきている。例えば、厚紙から薄紙へ紙種が変更されても、紙種に合わせたプロセススピードの変更や定着器の加熱設定温度の変更を行わずに印刷が継続可能な、メディア等速性が求められている。
メディア等速に対応していくために、トナーには低温から高温まで幅広い定着温度範囲で適正に定着を完了することが求められるようになってきている。
幅広い定着可能温度で適正にトナーを定着させるために、シャープメルト性を有する結晶性樹脂をトナーへ添加し、低温定着性能を向上させ、トナー中にワックスを含有させ、トナーに離型性を持たせる方法がある。この場合、トナー中の結晶性樹脂及びワックスの分散状態は、トナーの性質に重大な影響を及ぼすため、微細かつ均一であることが望まれる。
トナー中のワックスの分散状態を制御するために、トナー中にワックス分散剤を含有させる技術が提案されている(特許文献1)。
また、低温定着性と耐オフセット性向上のために、トナーとワックスの溶融粘度と、ワックスとワックス分散剤の配合比を調整する技術が提案されている(特許文献2)。
しかし、トナー中のワックスの分散状態を制御しても、トナーを高温高湿下に放置した場合や、熱球形化処理などの後処理を行うと、ワックスがトナー表面近傍に移行溶出してくるため、トナーの流動性が悪化し、帯電性に劣る場合があった。
また、高速機においては、依然として低温での定着性が不足しており、高温高湿環境下に長期間放置されるとブロッキングを起こすことがあった。特に、結晶性樹脂とともに溶融混練した溶融混練粉砕トナーは、混練時の粘度が低くなるため、混練時に十分な混練負荷をかけることが難しい。そのため、ワックスなどトナー中の各種材料が十分に分散せず、帯電性等に劣る場合があった。
以上のように、トナー中のワックスの分散状態を制御し、帯電性と低温定着性、耐ブロッキング性(保存性)を満足させるためには、依然として検討の余地がある。
特開2007−271789号公報 特開2015−166766号公報
本発明の目的は、上記の如き問題点を解決し、ワックス分散性、低温定着性に優れ、高温高湿下における長期間の画像出力においても、帯電性を維持し、耐ブロッキング性を満足できるトナーを提供することにある。
本発明者らが、鋭意検討を重ねた結果、上記課題を解決するトナーを提供するためには、シャープメルト性を有する結晶性樹脂とワックス及びワックス分散剤との関係が重要であることを見出し、本発明に至った。
すなわち、本発明は、非晶性ポリエステル樹脂、結晶性ポリエステル樹脂、ワックス、及びワックス分散剤を含有するトナー粒子を有するトナーであって、
前記ワックス分散剤が、飽和脂環式化合物由来のユニットを有するスチレンアクリル系ポリマー部位とポリオレフィン部位と、を有する重合体であり、
前記ワックスが、下記式(1)で示されるエステル化合物である
ことを特徴とするトナーに関する。
1−CO−O−R2 (1)
(式(1)中、R1及びR2は、それぞれ独立に、炭素数18以上24以下のアルキル基を示す。)
本発明のトナーを用いることにより、ワックス分散性、低温定着性に優れ、高温高湿下における長期間の画像出力においても、帯電性を維持し、耐ブロッキング性を満足できるトナーを提供することができる。
本発明に用いられる熱球形化処理装置の図である。
本発明のトナーは、非晶性ポリエステル樹脂、結晶性ポリエステル樹脂、ワックス、及びワックス分散剤を含有するトナー粒子を有するトナーであって、
前記ワックス分散剤が飽和脂環式化合物由来のユニットを有するスチレンアクリル系ポリマー部位とポリオレフィン部位とを有する重合体であり、

前記ワックスが、下記式(1)で示されるエステル化合物であることを特徴とする。
1−CO−O−R2 (1)
(式(1)中、R1及びR2は、それぞれ独立に、炭素数18以上24以下のアルキル基を示す。)
本発明では、トナーに結晶性ポリエステル樹脂、飽和脂環式化合物由来のユニットを持つワックス分散剤、及びエステルワックスの3者を含有している。本発明で用いたワックス分散剤はポリオレフィン部位にエステルワックスが相互作用することでワックスがトナー中に分散する。同時に本発明の分散剤は結晶性ポリエステルとも相互作用することで、結晶性ポリエステルの可塑効果が向上し、低温定着性が向上する。また、本件で用いるワックス分散剤は、飽和脂環式化合物由来のユニットを有しているため、疎水性が高く、高温高湿下での帯電性や耐ブロッキング性が向上する。
本発明に用いられるエステルワックスは、上記式(1)中のR1とR2の炭素数が18以上24以下のアルキル基であることによって、結晶性ポリエステルと相互作用したときに可塑効果が十分に発揮される。炭素数が上記より小さいと、可塑効果が大きすぎて帯電性が低下し、上記より大きいと、可塑効果が十分発揮されない。
本発明のワックスは、エステル化合物中における未反応のアルコール成分の割合が1.5%以下であるエステルワックスであることが好ましい。これは、本発明ではエステル化合物中における未反応のアルコール成分の割合が1.5%以下であり、不純物が少ないことにより、上述の可塑効果が十分に発揮されるからである。未反応のアルコール成分が多いと、この部分に水が吸着してしまい、高温高湿下の帯電性が低下する場合がある。
本発明のワックス分散剤は、ポリオレフィン部位がポリプロピレンを含有し、前記ポリプロピレンの融点Mp(p)が下記式(2)を満たすことが好ましい。
70≦Mp(p)≦90 (2)
本発明では、ワックス分散剤中のポリプロピレンの融点Mp(p)が70℃以上90℃以下であると、ワックスが微分散された状態でトナー粒子となる。
本発明のトナーでは、溶融混練後に冷却される過程で、ワックスと分散剤が同じ温度帯で固化されるため、炭化水素ワックスとワックス分散剤が近接した状態で固化されていると考えらえる。つまり、ワックスが微分散した状態を維持したまま、結着樹脂とワックスの界面でワックス分散剤も固化していると考えられる。
本発明で用いる分散剤のポリプロピレンは、ワックスと融点は近いが、分子量が大きい。そのため、高温高湿環境下に長期間にわたり放置した場合や、熱球形化処理を行うため、高温の熱風にさらされても、分散剤自体がトナー粒子表面へと移行し難い。そのため、本発明の分散剤がアンカーとなり、ワックス自体のトナー粒子表面への移行を抑制し、微分散した状態が維持されていると推察している。
分散剤のポリプロピレン部分の融点が90℃を超えると、ポリプロピレンの軟化点や分子量が大きくなり、分散剤としての粘度が上昇してしまう。そのため、トナーの粘度にも影響を与え、とくに定着性が悪化することがある。また、分散剤のポリプロピレン部分の融点が70℃よりも低くなると、トナーが熱を受けたときに、分散剤の粘度が低くなり、ポリプロピレンの分子量の小さくなっていくため、分散剤もトナー表面に移行しやすくなる。そのため、ワックスのトナー粒子表面への移行を抑制する効果が発現し難くなり、帯電性に影響がでることがある。
本発明の結晶性ポリエステル樹脂は、炭素数6以上12以下の脂肪族ジオールと、炭素数6以上12以下の脂肪族ジカルボン酸化合物とを縮重合して得られた樹脂であり、前記結晶性ポリエステル樹脂の含有量が、該非晶性ポリエステル樹脂100質量部に対し、3質量部以上15質量部以下であることが好ましい。
本発明において、上記結晶性ポリエステル樹脂は、炭素数6以上12以下の脂肪族ジオール及びこれらの誘導体からなる群より選ばれた少なくとも1種の化合物を含有するアルコール成分と、炭素数6以上12以下の脂肪族ジカルボン酸及びこれらの誘導体からなる群より選ばれた少なくとも1種の化合物を含有するカルボン酸成分とを縮重合して得られる結晶性ポリエステル樹脂であることが、低温定着性と耐ブロッキング性の観点からより好ましい。また、結晶性ポリエステルの含有量は、3質量部以上15質量部以下であることが低温定着性と帯電性の観点から好ましい。すなわち、3質量部以上であることで低温定着性が向上し、15質量部以下であることで高温高湿下での帯電性が保たれる。
本発明において前記ワックス分散剤の含有量B(質量部)と前記ワックスの含有量W(質量部)が下記式(3)を満たすことが好ましい。
B≧1.5×W (3)
本発明においてワックス分散剤とワックスの関係が上記式(3)を満たすことで、ワックス分散剤の疎水性の効果が十分に発揮され、高温高湿化での帯電性が向上する。
本発明において、前記トナーは、溶融混練物を冷却後、粉砕して得られた樹脂粒子を熱処理する工程を経て製造される、粉砕法トナーであることが好ましい。本発明において、トナーが熱処理されることでワックスが表面に移行する際に、分散剤も一緒にトナー表面に移行するので、トナーの表面の疎水性が向上し、高温高湿下での帯電性が向上する。
以下に本発明において好ましいトナーの構成を詳述する。
<結晶性ポリエステル樹脂>
本発明において、結着樹脂として結晶性ポリエステル樹脂を含有し、結晶性樹脂とは、示差走査熱量測定(DSC)において吸熱ピークが観測される樹脂である。
上記結晶性ポリエステル樹脂は、2価以上の多価カルボン酸とジオールの反応により得ることができる。その中でも、脂肪族ジオールと脂肪族ジカルボン酸とを縮重合して得られる樹脂であることが、結晶化度が高く好ましい。また、本発明において結晶性ポリエステル樹脂は、1種類のみを用いても、複数種を併用してもよい。
本発明において、上記結晶性ポリエステル樹脂は、炭素数6以上12以下の脂肪族ジオール及びこれらの誘導体からなる群より選ばれた少なくとも1種の化合物を含有するアルコール成分と、炭素数6以上12以下の脂肪族ジカルボン酸及びこれらの誘導体からなる群より選ばれた少なくとも1種の化合物を含有するカルボン酸成分とを縮重合して得られる結晶性ポリエステル樹脂であることが、低温定着性と耐ブロッキング性の観点からより好ましい。
上記炭素数6以上12以下脂肪族ジオールとしては、特に限定されないが、鎖状(好ましくは直鎖状)の脂肪族ジオールであるとよい。例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロピレングリコール、ジプロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,4−ブタジエングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジール、1,9−ノナンジオール、1,10−デカンジオール、1,11−ウンデカンジオール、及び1,12−ドデカンジオールが挙げられる。これらの中でも、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,11−ウンデカンジオール、及び1,12−ドデカンジオールなどのような直鎖脂肪族α,ω−ジオールが好ましく例示される。
本発明において、誘導体としては、上記縮重合により同様の樹脂構造が得られるものであれば特に限定されない。例えば、上記ジオールをエステル化した誘導体が挙げられる。
本発明において、結晶性ポリエステル樹脂を構成するアルコール成分において、上記炭素数6以上12以下の脂肪族ジオール及びこれらの誘導体からなる群より選ばれた少なくとも1種の化合物が、全アルコール成分に対して、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。
本発明において、上記脂肪族ジオール以外の多価アルコールを用いることもできる。
該多価アルコールのうち、上記脂肪族ジオール以外のジオールとしては、ポリオキシエチレン化ビスフェノールA、ポリオキシプロピレン化ビスフェノールAなどの芳香族アルコール;1,4−シクロヘキサンジメタノールなどが挙げられる。
また、該多価アルコールのうち3価以上の多価アルコールとしては、1,3,5−トリヒドロキシメチルベンゼンなどの芳香族アルコール;ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、グリセリン、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、及びトリメチロールプロパンなどの脂肪族アルコールなどが挙げられる。
さらに、本発明において、結晶性ポリエステル樹脂の特性を損なわない程度に1価のアルコールを用いてもよい。該1価のアルコールとしては、n−ブタノール、イソブタノール、sec−ブタノール、n−ヘキサノール、n−オクタノール、2−エチルヘキサノール、シクロヘキサノール、ベンジルアルコールなどが挙げられる。
一方、上記炭素数6以上12以下の脂肪族ジカルボン酸としては、特に限定されないが、鎖状(好ましくは直鎖状)の脂肪族ジカルボン酸であるとよい。例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、グルタコン酸、アゼライン酸、セバシン酸、ノナンジカルボン酸、デカンジカルボン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、マレイン酸、フマル酸、メサコン酸、シトラコン酸、イタコン酸が挙げられる。これらの酸無水物又は低級アルキルエステルを加水分解したものなども含まれる。
本発明において、誘導体としては、上記縮重合により同様の樹脂構造が得られるものであれば特に限定されない。例えば、上記ジカルボン酸成分の酸無水物、ジカルボン酸成分をメチルエステル化、エチルエステル化、又は酸クロライド化した誘導体が挙げられる。
本発明において、結晶性ポリエステル樹脂を構成するカルボン酸成分において、上記炭素数6以上12以下の脂肪族ジカルボン酸及びこれらの誘導体からなる群より選ばれた少なくとも1種の化合物が、全カルボン酸成分に対して、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。
本発明において、上記脂肪族ジカルボン酸以外の多価カルボン酸を用いることもできる。該多価カルボン酸のうち、上記脂肪族ジカルボン酸以外の2価のカルボン酸としては、イソフタル酸、テレフタル酸などの芳香族カルボン酸;n−ドデシルコハク酸、n−ドデセニルコハク酸などの脂肪族カルボン酸;シクロヘキサンジカルボン酸などの脂環式カルボン酸が挙げられ、これらの酸無水物又は低級アルキルエステルなども含まれる。
また、その他の多価カルボン酸において、3価以上の多価カルボン酸としては、1,2,4−ベンゼントリカルボン酸(トリメリット酸)、2,5,7−ナフタレントリカルボン酸、1,2,4−ナフタレントリカルボン酸、及びピロメリット酸などの芳香族カルボン酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシル−2−メチル−2−メチレンカルボキシプロパンなどの脂肪族カルボン酸が挙げられ、これらの酸無水物又は低級アルキルエステルなどの誘導体なども含まれる。
さらに、本発明において、結晶性ポリエステル樹脂の特性を損なわない程度に1価のカルボン酸を用いてもよい。該1価のカルボン酸としては、安息香酸、ナフタレンカルボン酸、サリチル酸、4−メチル安息香酸、3−メチル安息香酸、フェノキシ酢酸、ビフェニルカルボン酸、酢酸、プロピオン酸、酪酸、オクタン酸などが挙げられる。
本発明において、結晶性ポリエステル樹脂は、通常のポリエステル合成法に従って製造することができる。例えば、上記カルボン酸成分とアルコール成分とをエステル化反応、又はエステル交換反応させた後、減圧下又は窒素ガスを導入して常法に従って縮重合反応させることで結晶性ポリエステル樹脂を得ることができる。
上記エステル化又はエステル交換反応は、必要に応じて硫酸、チタンブトキサイド、2−エチルヘキサン酸錫、ジブチルスズオキサイド、酢酸マンガン、及び酢酸マグネシウムなどの通常のエステル化触媒又はエステル交換触媒を用いて行うことができる。
また、上記縮重合反応は、通常の重合触媒、例えばチタンブトキサイド、2−エチルヘキサン酸錫、ジブチルスズオキサイド、酢酸スズ、酢酸亜鉛、二硫化スズ、三酸化アンチモン、及び二酸化ゲルマニウムなど公知の触媒を使用して行うことができる。重合温度、触媒量は特に限定されるものではなく、適宜に決めればよい。
エステル化若しくはエステル交換反応、又は重縮合反応において、得られる結晶性ポリエステル樹脂の強度を上げるために全モノマーを一括に仕込むことや、低分子量成分を少なくするために2価のモノマーを先ず反応させた後、3価以上のモノマーを添加して反応させたりするなどの方法を用いてもよい。
本発明において、結晶性ポリエステル樹脂を使用することにより、トナーの低温定着性が良化する理由は、以下のように考えている。
結晶性ポリエステル樹脂と非晶性ポリエステル樹脂とが相溶し、非晶性ポリエステル樹脂の分子鎖の間隔を広げ、分子間力が弱めることで、トナーのガラス転移温度(Tg)を大幅に低下させ、溶融粘度を低い状態にするためである。
結晶性ポリエステル樹脂と非晶性ポリエステル樹脂との相溶性を高めるためには、結晶性ポリエステル樹脂を構成する脂肪族ジオール及び/又は脂肪族ジカルボン酸の炭素数を短くし、エステル基濃度を高め、極性を高めるとよい。
しかし、ガラス転移温度(Tg)が大幅に低下したトナーにおいても、高温高湿環境下での使用や輸送などにおける耐ブロッキング性を確保する必要がある。そのためには、高温高湿下にトナーがさらされた場合には、相溶していたトナー中の結晶性ポリエステル樹脂を再結晶化させ、トナーのガラス転移温度(Tg)を非晶性ポリエステル樹脂のガラス転移温度(Tg)付近まで戻す必要がある。
ここで、結晶性ポリエステル樹脂のエステル基濃度が高く、非晶性ポリエステル樹脂と結晶性ポリエステル樹脂の相溶性があまりにも高いと、結晶性ポリエステル樹脂を再結晶化させることが難しくなり、トナーの耐ブロッキング性が低下する傾向となる。
以上のことから、低温定着性と耐ブロッキング性の両立の観点から、結晶性ポリエステル樹脂を構成する、脂肪族ジオールの炭素数が6以上12以下であり、脂肪族ジカルボン酸の炭素数が6以上12以下であることが好ましい。
さらに、本発明において、上記ワックス分散剤と結晶性ポリエステル樹脂を併用することで、低温定着性がさらに向上する。
一般的に結晶性ポリエステル樹脂のような可塑剤は、上述のように、非晶性ポリエステル樹脂の間隙に入り込むことで非晶性ポリエステル樹脂が規則正しく配向するのを阻害し、可塑効果を発揮する。したがって、可塑剤は嵩高い側鎖をもつものが有用な特性を示すことが多い。
本発明のワックス分散剤は、嵩高い飽和脂環式化合物由来の構造部位を有しているため、トナー中でワックス分散剤と結晶性ポリエステル樹脂とが相互作用することによって、嵩高い側鎖をもつような可塑剤となっているものと推測される。このため、本発明において、ワックス分散剤と結晶性ポリエステル樹脂とを併用することで、低温定着性がさらに向上するものと考えられる。
<非晶性ポリエステル樹脂>
本発明のトナーに用いられる非晶性ポリエステル樹脂は、ポリエステル樹脂を主成分とすることが必要である。ポリエステル樹脂のポリエステルユニットに用いられるモノマーとしては、多価アルコール(2価もしくは3価以上のアルコール)と、多価カルボン酸(2価もしくは3価以上のカルボン酸)、その酸無水物又はその低級アルキルエステルとが用いられる。ここで、分岐ポリマーを作成する場合には、結着樹脂の分子内において部分架橋することが有効であり、そのためには、3価以上の多官能化合物を使用することが好ましい。従って、ポリエステルユニットの原料モノマーとして、3価以上のカルボン酸、その酸無水物又はその低級アルキルエステル、及び/又は3価以上のアルコールを含むことが好ましい。
ポリエステル樹脂のポリエステルユニットに用いられる多価アルコールモノマーとしては、以下の多価アルコールモノマーを使用することができる。
2価のアルコール成分としては、エチレングリコール、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ジエチレングリコール、トリエチレングリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、2−エチル−1,3−ヘキサンジオール、水素化ビスフェノールA、また式(A)で表わされるビスフェノール及びその誘導体;
Figure 2018112688
(式中、Rはエチレンまたはプロピレン基であり、x及びyはそれぞれ0以上の整数であり、かつ、x+yの平均値は0以上10以下である。)
式(B)で示されるジオール類;
Figure 2018112688
が挙げられる。
3価以上のアルコール成分としては、例えば、ソルビトール、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、グリセロール、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシメチルベンゼンが挙げられる。これらのうち、好ましくはグリセロール、トリメチロールプロパン、ペンタエリスリトールが用いられる。これらの2価のアルコール及び3価以上のアルコールは、単独であるいは複数を併用して用いることができる。
ポリエステル樹脂のポリエステルユニットに用いられる多価カルボン酸モノマーとしては、以下の多価カルボン酸モノマーを使用することができる。
2価のカルボン酸成分としては、例えば、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、フタル酸、イソフタル酸、テレフタル酸、コハク酸、アジピン酸、セバチン酸、アゼライン酸、マロン酸、n−ドデセニルコハク酸、イソドデセニルコハク酸、n−ドデシルコハク酸、イソドデシルコハク酸、n−オクテニルコハク酸、n−オクチルコハク酸、イソオクテニルコハク酸、イソオクチルコハク酸、これらの酸の無水物及びこれらの低級アルキルエステルが挙げられる。これらのうち、マレイン酸、フマル酸、テレフタル酸、n−ドデセニルコハク酸が好ましく用いられる。
3価以上のカルボン酸、その酸無水物又はその低級アルキルエステルとしては、例えば、1,2,4−ベンゼントリカルボン酸、2,5,7−ナフタレントリカルボン酸、1,2,4−ナフタレントリカルボン酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシル−2−メチル−2−メチレンカルボキシプロパン、1,2,4−シクロヘキサントリカルボン酸、テトラ(メチレンカルボキシル)メタン、1,2,7,8−オクタンテトラカルボン酸、ピロメリット酸、エンポール三量体酸、これらの酸無水物又はこれらの低級アルキルエステルが挙げられる。これらのうち、特に1,2,4−ベンゼントリカルボン酸、すなわちトリメリット酸又はその誘導体が安価で、反応制御が容易であるため、好ましく用いられる。これらの2価のカルボン酸等及び3価以上のカルボン酸は、単独であるいは複数を併用して用いることができる。
ポリエステル樹脂を主成分とするならば他の樹脂成分を含有するハイブリッド樹脂であっても良い。例えば、ポリエステル樹脂とビニル系樹脂とのハイブリッド樹脂が挙げられる。ハイブリッド樹脂のような、ビニル系樹脂やビニル系共重合ユニットとポリエステル樹脂の反応生成物を得る方法としては、ビニル系樹脂やビニル系共重合ユニット及びポリエステル樹脂のそれぞれと反応しうるモノマー成分を含むポリマーが存在しているところで、どちらか一方もしくは両方の樹脂の重合反応を行う方法が好ましい。
例えば、ポリエステル樹脂成分を構成するモノマーのうちビニル系共重合体と反応し得るものとしては、例えば、フタル酸、マレイン酸、シトラコン酸、イタコン酸の如き不飽和ジカルボン酸又はその無水物等が挙げられる。ビニル系共重合体成分を構成するモノマーのうちポリエステル樹脂成分と反応し得るものとしては、カルボキシル基又はヒドロキシ基を有するものや、アクリル酸もしくはメタクリル酸エステル類が挙げられる。
また、本発明では結着樹脂として、ポリエステル樹脂を主成分とするならば、上記のビニル系樹脂以外にも、従来より結着樹脂として知られている種々の樹脂化合物を併用することができる。このような樹脂化合物としては、例えばフェノール樹脂、天然樹脂変性フェノール樹脂、天然樹脂変性マレイン樹脂、アクリル樹脂、メタクリル樹脂、ポリ酢酸ビニル樹脂、シリコーン樹脂、ポリエステル樹脂、ポリウレタン、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、ポリビニルブチラール、テルペン樹脂、クマロインデン樹脂、石油系樹脂等が挙げられる。
また、本発明の結着樹脂のピーク分子量は5000以上13000以下であることが、低温定着性と耐ホットオフセット性の観点から好ましい。また、本発明の結着樹脂の酸価は10mgKOH/g以下であることが、高温高湿環境下における帯電安定性の観点から好ましい。
また、本発明の結着樹脂は、低分子量の結着樹脂Bと高分子量の結着樹脂Aを混ぜ合わせて使用しても良い。高分子量の結着樹脂Aと低分子量の結着樹脂Bの含有比率(A/B)は質量基準で10/90以上60/40以下であることが、低温定着性と耐ホットオフセット性の観点から好ましい。
高分子量の結着樹脂Aのピーク分子量は10000以上20000以下であることが、耐ホットオフセット性の観点から好ましい。また、高分子量の結着樹脂の酸価は10mgKOH/g以上30mgKOH/g以下であることが、高温高湿環境下における帯電安定性の観点から好ましい。
低分子量の結着樹脂Bの数平均分子量は1500以上3500以下であることが、低温定着性の観点から好ましい。また、低分子量の結着樹脂の酸価は10mgKOH/g以下であることが、高温高湿環境下における帯電安定性の観点から好ましい。
<ワックス(離型剤)>
本発明において、低温定着性を向上させるという観点から、トナー粒子はエステルワックスを含有する。該エステルワックスとしては、以下のようなものが挙げられる。
カルナバワックスのような脂肪酸エステルを主成分とするワックス類、脱酸カルナバワックスのような脂肪酸エステル類を一部又は全部を脱酸化したもの。
さらに、ステアリン酸、ベヘン酸、テトラコサン酸及びモンタン酸のような飽和直鎖脂肪酸類や、ブラシジン酸、エレオステアリン酸、及びバリナリン酸のような不飽和脂肪酸類と、ステアリルアルコール、アラルキルアルコール、ベヘニルアルコール、カルナウビルアルコール、セリルアルコール、リグノセリルアルコール(1−テトラコサノール)及びメリシルアルコールのような飽和アルコール類や、ソルビトールのような多価アルコール類とのエステル化合物類。ベヘニン酸モノグリセリドのような脂肪酸と多価アルコールの部分エステル化物。植物性油脂の水素添加によって得られるヒドロキシ基を有するメチルエステル化合物。
本発明において、ワックスの含有量は、結着樹脂100.0質量部に対して、1.0質量部以上20.0質量部以下であることが好ましい。
また、ワックスの示差走査熱量計(DSC)を用いて測定される最大吸熱ピークのピーク温度は、45℃以上140℃以下であることが好ましく、70℃以上100℃以下であることがより好ましい。ワックスの最大吸熱ピークのピーク温度が上記範囲内である場合、トナーの耐ブロッキング性と耐ホットオフセット性を両立させる観点からより好ましい。
<ワックス分散剤>
本発明のワックス分散剤は、ポリオレフィンにスチレンアクリル系ポリマーがグラフト重合している重合体であって、該スチレンアクリル系ポリマーが、飽和脂環式化合物由来のユニットを含有する。
本発明のワックス分散剤において、スチレンアクリル系ポリマー部位が、トナー粒子を構成する樹脂と親和性を持ち、ポリオレフィン部位が、トナー粒子に含有されるワックスと親和性を持つ。このため、トナー粒子中でワックスを微分散させることができる。
また、スチレンアクリル系ポリマーが、飽和脂環式化合物由来のユニットを有している場合、トナー粒子中でワックスを微分散させると同時に、トナーが高温高湿下に放置されても帯電性を維持することが可能となる。
本発明者らが検討した結果、以下のようなメカニズムが推定される。
トナーを高温高湿下に放置すると、通常、トナー粒子表面にワックスが移行する。一方、トナー粒子が本発明のワックス分散剤を含有している場合、トナー粒子表面にワックスが移行する際に、該ワックス分散剤もワックスと一緒にトナー粒子表面に移行しているものと推測される。
従来のワックス分散剤と比較して、本発明のワックス分散剤は嵩高い飽和脂環式化合物由来の構造部位を有しているため、該ワックス分散剤がトナー粒子表面に移行しても、ワックスの溶出が抑制される。その結果、トナーが高温高湿下に放置されてもトナーの流動性が低下せず、耐ブロッキング性が向上し、かつ、帯電性が悪化しないと考えられる。
また、該ワックス分散剤がトナー粒子表面に移行した場合、飽和脂環式化合物由来の構造部位が疎水性を示すため、トナー粒子の疎水性が向上し、高温高湿下に放置されても帯電性が悪化しないものと考えられる。
本発明のワックス分散剤は、ポレオレフィンでグラフト変性されたスチレンアクリル系ポリマーを含有し、該スチレンアクリル系ポリマーが飽和脂環式化合物由来の構造部位を有している。
該ポレオレフィンは、特に限定されることはないが、トナー粒子中でのワックスとの親和性の観点から、上述した本発明のトナーに用いられるワックス(離型剤)から選択するとよい。
本発明においては、該ポレオレフィンが、低分子量ポリエチレン、低分子量ポリプロピレン、アルキレン共重合体、マイクロクリスタリンワックス、エステルワックス、パラフィンワックス、及びフィッシャートロプシュワックスのようなワックスであることが好適に例示できる。
また、該ワックス分散剤の製造時の反応性の観点から、ポリプロピレンのように枝分かれ構造を持つことが好ましい。
なお、本発明において、スチレンアクリル系樹脂を炭化水素化合物でグラフト変性する方法は、特に限定されず、従来公知の方法を用いることができる。
本発明のワックス分散剤において、スチレンアクリル系ポリマーは、飽和脂環式化合物由来の構造部位を有していれば特に限定されることはない。例えば、スチレンアクリル系ポリマーが、下記式(4)で示されるモノマーユニットを有する態様が挙げられる。
Figure 2018112688
(式(4)中、R3は、水素原子又はメチル基を示し、R4は、飽和脂環式基を示す。)
上記R4における飽和脂環式基としては、飽和脂環式炭化水素基が好ましく、より好ましくは炭素数3以上18以下の飽和脂環式炭化水素基、さらに好ましくは炭素数4以上12以下の飽和脂環式炭化水素基である。飽和脂環式炭化水素基には、シクロアルキル基、縮合多環炭化水素基、橋かけ環炭化水素基、スピロ炭化水素基などが包含される。
このような飽和脂環式基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、t−ブチルシクロヘキシル基、シクロヘプチル基、シクロオクチル基、トリシクロデカニル基、デカヒドロ−2−ナフチル基、トリシクロ[5.2.1.02,6]デカン−8−イル基、ペンタシクロペンタデカニル基、イソボルニル基、アダマンチル基、ジシクロペンタニル基、トリシクロペンタニル基などを挙げることができる。
また、飽和脂環式基は、置換基としてアルキル基、ハロゲン原子、カルボキシ基、カルボニル基、ヒドロキシ基などを有することもできる。該アルキル基としては、炭素数1〜4のアルキル基が好ましい。
これらの飽和脂環式基のうち、シクロアルキル基、縮合多環炭化水素基、橋かけ環炭化水素基が好ましく、炭素数3以上18以下のシクロアルキル基、置換又は非置換のジシクロペンタニル基、置換又は非置換のトリシクロペンタニル基がより好ましく、炭素数4以上12以下のシクロアルキル基がさらに好ましく、炭素数6以上10以下のシクロアルキル基が特に好ましい。
なお、置換基の位置及び数は任意であり、置換基を2以上有する場合、当該置換基は同一でも異なっていてもよい。
上記スチレンアクリル系樹脂は、飽和脂環式化合物由来の構造部位を有するビニル系モノマー(a)の単独重合体でもよいが、その他のモノマー(b)との共重合体であってもよい。
該ビニル系モノマー(a)としては、シクロプロピルアクリレート、シクロブチルアクリレート、シクロペンチルアクリレート、シクロヘキシルアクリレート、シクロヘプチルアクリレート、シクロオクチルアクリレート、シクロプロピルメタクリレート、シクロブチルメタクリレート、シクロペンチルメタクリレート、シクロヘキシルメタクリレート、シクロヘプチルメタクリレート、シクロオクチルメタクリレート、ジヒドロシクロペンタジエチルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンタニルメタクリレートなどのモノマー及びこれらの併用が挙げられる。
これらの中でも、疎水性の観点から、シクロヘキシルアクリレート、シクロヘプチルアクリレート、シクロオクチルアクリレート、シクロヘキシルメタクリレート、シクロヘプチルメタクリレート、シクロオクチルメタクリレートが好ましい。
該その他のモノマー(b)としては、スチレン、α−メチルスチレン、p−メチルスチレン、m−メチルスチレン、p−メトキシスチレン、p−ヒドロキシスチレン、p−アセトキシスチレン、ビニルトルエン、エチルスチレン、フェニルスチレン、ベンジルスチレンなどのスチレン系モノマー;メチルアクリレート、エチルアクリレート、ブチルアクリレート、2−エチルヘキシルアクリレート、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、2−エチルヘキシルメタクリレートなどの不飽和カルボン酸のアルキルエステル(該アルキルの炭素数が1以上18以下);酢酸ビニルなどのビニルエステル系モノマー;ビニルメチルエーテルのようなビニルエーテル系モノマー;塩化ビニルのようなハロゲン元素含有ビニル系モノマー;ブタジエン、イソブチレンなどのジエン系モノマー及びこれらの併用が挙げられる。
本発明のワックス分散剤のスチレンアクリル系ポリマーのスチレン含有量は、20質量%以上90質量%以下であることが好ましく、さらに好ましくは40質量%以上75質量%以下である。本発明のワックス分散剤中のスチレンアクリル系ポリマーのスチレン含有量が上記の範囲にあることにより、トナー粒子の疎水性が向上し、高温高湿下に放置されても帯電性が悪化しない。これは疎水性を示すワックス分散剤中のスチレン部分が、トナー粒子の疎水性を向上させるためであると考えられる。90質量%を超えると、ワックス分散剤中のワックス親和成分であるポレオレフィンの量が少なくなるため、トナー中でワックスを分散させることができなくなり、好ましくない。ワックスが分散していないとワックス分散剤も分散していないため、トナー中で疎水性が十分に発揮できず帯電性が向上せず、好ましくない。また、20質量%未満であると、スチレン含有量が少なくなるため、疎水性を十分発揮できず、帯電性が向上しない場合があり、好ましくない。
<着色剤>
トナーに含有できる着色剤としては、以下のものが挙げられる。
黒色着色剤としては、カーボンブラック;イエロー着色剤とマゼンタ着色剤及びシアン着色剤とを用いて黒色に調色したものが挙げられる。着色剤には、顔料を単独で使用してもかまわないが、染料と顔料とを併用してその鮮明度を向上させた方がフルカラー画像の画質の点からより好ましい。
マゼンタトナー用顔料としては、以下のものが挙げられる。C.I.ピグメントレッド1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、21、22、23、30、31、32、37、38、39、40、41、48:2、48:3,48:4、49、50、51、52、53、54、55、57:1、58、60、63、64、68、81:1、83、87、88、89、90、112、114、122、123、146、147、150、163、184、202、206、207、209、238、269、282;C.I.ピグメントバイオレット19;C.I.バットレッド1、2、10、13、15、23、29、35。
マゼンタトナー用染料としては、以下のものが挙げられる。C.I.ソルベントレッド1、3、8、23、24、25、27、30、49、81、82、83、84、100、109、121;C.I.ディスパースレッド9;C.I.ソルベントバイオレット8、13、14、21、27;C.I.ディスパーバイオレット1の如き油溶染料、C.I.ベーシックレッド1、2、9、12、13、14、15、17、18、22、23、24、27、29、32、34、35、36、37、38、39、40;C.I.ベーシックバイオレット1、3、7、10、14、15、21、25、26、27、28の如き塩基性染料。
シアントナー用顔料としては、以下のものが挙げられる。C.I.ピグメントブルー2、3、15:2、15:3、15:4、16、17;C.I.バットブルー6;C.I.アシッドブルー45、フタロシアニン骨格にフタルイミドメチル基を1〜5個置換した銅フタロシアニン顔料。
シアントナー用染料としては、C.I.ソルベントブルー70がある。
イエロートナー用顔料としては、以下のものが挙げられる。C.I.ピグメントイエロー1、2、3、4、5、6、7、10、11、12、13、14、15、16、17、23、62、65、73、74、83、93、94、95、97、109、110、111、120、127、128、129、147、151、154、155、168、174、175、176、180、181、185;C.I.バットイエロー1、3、20。
イエロートナー用染料としては、C.I.ソルベントイエロー162がある。
着色剤の使用量は、結着樹脂100質量部に対して0.1質量部以上30質量部以下で使用されることが好ましい。
<荷電制御剤>
トナーには、必要に応じて荷電制御剤を含有させることもできる。トナーに含有される荷電制御剤としては、公知のものが利用できるが、特に、無色でトナーの帯電スピードが速く且つ一定の帯電量を安定して保持できる芳香族カルボン酸の金属化合物が好ましい。
ネガ系荷電制御剤としては、サリチル酸金属化合物、ナフトエ酸金属化合物、ジカルボン酸金属化合物、スルホン酸又はカルボン酸を側鎖に持つ高分子型化合物、スルホン酸塩或いはスルホン酸エステル化物を側鎖に持つ高分子型化合物、カルボン酸塩或いはカルボン酸エステル化物を側鎖に持つ高分子型化合物、ホウ素化合物、尿素化合物、ケイ素化合物、カリックスアレーンが挙げられる。ポジ系荷電制御剤としては、四級アンモニウム塩、前記四級アンモニウム塩を側鎖に有する高分子型化合物、グアニジン化合物、イミダゾール化合物が挙げられる。荷電制御剤はトナー粒子に対して内添しても良いし外添しても良い。荷電制御剤の添加量は、結着樹脂100質量部に対し0.2質量部以上10質量部以下が好ましい。
<無機粒子>
本発明のトナーには、必要に応じて無機微粒子を含有させることもできる。無機微粒子は、トナー粒子に内添しても良いし外添剤としてトナー粒子と混合してもよい。外添剤としては、シリカ、酸化チタン、酸化アルミニウムの如き無機微粉体が好ましい。無機微粉体は、シラン化合物、シリコーンオイル又はそれらの混合物の如き疎水化剤で疎水化されていることが好ましい。
流動性向上のための外添剤としては、比表面積が50m2/g以上400m2/g以下の無機微粉体が好ましく、耐久性安定化のためには、比表面積が10m2/g以上50m2/g以下の無機微粉体であることが好ましい。流動性向上や耐久性安定化を両立させるためには、比表面積が上記範囲の無機微粉体を併用してもよい。
外添剤は、トナー粒子100質量部に対して0.1質量部以上10.0質量部以下で使用されることが好ましい。トナー粒子と外添剤との混合は、ヘンシェルミキサーの如き公知の混合機を用いることができる。
<現像剤>
本発明のトナーは、一成分系現像剤としても使用できるが、ドット再現性をより向上させるために、磁性キャリアと混合して、二成分系現像剤として用いることが好ましい。また、長期にわたり安定した画像が得られるという点でも好ましい。
磁性キャリアとしては、例えば、表面を酸化した鉄粉、或いは、未酸化の鉄粉や、鉄、リチウム、カルシウム、マグネシウム、ニッケル、銅、亜鉛、コバルト、マンガン、クロム、希土類の如き金属粒子、それらの合金粒子、酸化物粒子、フェライト等の磁性体や、磁性体と、この磁性体を分散した状態で保持するバインダー樹脂とを含有する磁性体分散樹脂キャリア(いわゆる樹脂キャリア)等、一般に公知のものを使用できる。
本発明のトナーを磁性キャリアと混合して二成分系現像剤として使用する場合、その際のキャリア混合比率は、二成分系現像剤中のトナー濃度として、2質量%以上15質量%以下、好ましくは4質量%以上13質量%以下にすると通常良好な結果が得られる。
<製造方法>
次に、本発明においてトナーを製造する手順について説明する。
まず、原料混合工程では、トナー原料として、結晶性ポリエステル樹脂、非晶性ポリエステル樹脂及び炭化水素系ワックス等を所定量秤量して配合し、混合する。混合装置の一例としては、ヘンシェルミキサー(日本コークス社製);スーパーミキサー(カワタ社製);リボコーン(大川原製作所社製);ナウターミキサー、タービュライザー、サイクロミックス(ホソカワミクロン社製);スパイラルピンミキサー(太平洋機工社製);レーディゲミキサー(マツボー社製)等がある。
さらに、混合したトナー原料を溶融混練工程にて、溶融混練して、樹脂類を溶融し、その中の着色剤等を分散させる。混練装置の一例としては、TEM型押し出し機(東芝機械社製);TEX二軸混練機(日本製鋼所社製);PCM混練機(池貝鉄工所社製);ニーデックス(三井鉱山社製)等が挙げられるが、連続生産できる等の優位性から、バッチ式練り機よりも、1軸または2軸押出機といった連続式の練り機が好ましい。
さらに、トナー原料を溶融混練することによって得られる着色樹脂組成物は、溶融混練後、2本ロール等で圧延され、水冷等で冷却する冷却工程を経て冷却される。
上記で得られた着色樹脂組成物の冷却物は、次いで、粉砕工程で所望の粒径にまで粉砕される。粉砕工程では、まず、クラッシャー、ハンマーミル、フェザーミル等で粗粉砕され、さらに、クリプトロンシステム(川崎重工業社製)、スーパーローター(日清エンジニアリング社製)等で微粉砕され、トナー微粒子を得る。
得られたトナー微粒子は、分級工程にて、所望の粒径を有するトナー用粉体粒子に分級される。分級機としては、ターボプレックス、ファカルティ、TSP、TTSP(ホソカワミクロン社製);エルボージェット(日鉄鉱業社製)等がある。
続いて、得られたトナー用粉体粒子を熱処理工程で図1のような熱処理装置を用いて球形化処理を行う。
原料定量供給手段1により定量供給された混合物は、圧縮気体調整手段2により調整された圧縮気体によって、原料供給手段の鉛直線上に設置された導入管3に導かれる。導入管を通過した混合物は、原料供給手段の中央部に設けられた円錐状の突起状部材4により均一に分散され、放射状に広がる8方向の供給管5に導かれ熱処理が行われる処理室6に導かれる。
このとき、処理室に供給された混合物は、処理室内に設けられた混合物の流れを規制するための規制手段9によって、その流れが規制される。このため処理室に供給された混合物は、処理室内を旋回しながら熱処理された後、冷却される。
供給された混合物を熱処理するための熱は、熱風供給手段7から供給され、分配部材12で分配され、熱風を旋回させるための旋回部材13により、処理室内に熱風を螺旋状に旋回させて導入される。その構成としては、熱風を旋回させるための旋回部材13が、複数のブレードを有しており、その枚数や角度により、熱風の旋回を制御することができる。処理室内に供給される熱風は、熱風供給手段7の出口部における温度が100℃以上300℃以下であることが好ましく、130℃以上170℃以下であることがより好ましい。熱風供給手段の出口部における温度が上記の範囲内であれば、混合物を加熱しすぎることによるトナー粒子の融着や合一を防止しつつ、トナー粒子を均一に球形化処理することが可能となる。熱風は熱風供給手段出口11から供給される。
更に熱処理された熱処理トナー粒子は冷風供給手段8から供給される冷風によって冷却され、冷風供給手段8から供給される温度は−20℃乃至30℃であることが好ましい。冷風の温度が上記の範囲内であれば、熱処理トナー粒子を効率的に冷却することができ、混合物の均一な球形化処理を阻害することなく、熱処理トナー粒子の融着や合一を防止することができる。冷風の絶対水分量は、0.5g/m3以上15.0g/m3以下であることが好ましい。
次に、冷却された熱処理トナー粒子は、処理室の下端にある回収手段10によって回収される。なお、回収手段の先にはブロワー(不図示)が設けられ、それにより吸引搬送される構成となっている。
また、粉体粒子供給口14は、供給された混合物の旋回方向と熱風の旋回方向が同方向になるように設けられており、表面処理装置の回収手段10は、旋回された粉体粒子の旋回方向を維持するように、処理室の外周部に設けられている。さらに、冷風供給手段8から供給される冷風は、装置外周部から処理室内周面に、水平かつ接線方向から供給されるよう構成されている。粉体供給口から供給される熱処理前トナー粒子の旋回方向、冷風供給手段から供給された冷風の旋回方向、熱風供給手段から供給された熱風の旋回方向がすべて同方向である。そのため、処理室内で乱流が起こらず、装置内の旋回流が強化され、熱処理前トナー粒子に強力な遠心力がかかり、熱処理前トナー粒子の分散性が更に向上するため、合一粒子の少ない、形状の揃った熱処理トナー粒子を得ることができる。
本発明のトナーの製造方法においては、熱処理工程の前に、得られたトナー用粉体粒子に必要に応じて無機微粒子等を添加しても構わない。トナー用粉体粒子に無機微粒子等を添加する方法としては、トナー用粉体粒子と公知の各種外添剤を所定量配合し、ヘンシェルミキサー、メカノハイブリッド(日本コークス社製)、スーパーミキサー、ノビルタ(ホソカワミクロン社製)等の粉体にせん断力を与える高速撹拌機を外添機として用いて、撹拌・混合する。
本発明のトナーの製造方法では、熱処理後に粗大な粒子が存在する場合、必要に応じて、分級によって粗大粒子を除去する工程を有していても構わない。粗大粒子を除去する分級機としては、分級機としては、ターボプレックス、TSP、TTSP(ホソカワミクロン社製)、エルボージェット(日鉄鉱業社製)等が挙げられる。
さらに、熱処理後、必要に応じて、粗粒等を篩い分けるために、例えば、ウルトラソニック(晃栄産業社製);レゾナシーブ、ジャイロシフター(徳寿工作所社);ターボスクリーナー(ターボ工業社製);ハイボルター(東洋ハイテック社製)等の篩分機を用いても良い。
なお、本発明の熱処理工程は上記微粉砕の後であっても良いし、分級の後でもよい。
本発明のトナーの平均円形度は0.960以上であることが好ましく、さらに好ましくは0.965以上である。トナーの平均円形度が上記の範囲であることにより、トナーの転写効率が向上する。
トナー及び原材料の各種物性の測定法について以下に説明する。
<エステル化合物のアルコール遊離率の測定>
エステル化合物のアルコール遊離率は、核磁気共鳴分析装置「JNM−ECA FT−NMR」(JOEL社製)を用いて以下の条件にて測定を行い、算出した。
溶媒:CDCl3 8mg/ml、測定:1H、13C、HMQC、HMBC
アルコール遊離率:
(OH末端由来3.6ppm積分値)/(OHエステル結合由来4.1ppm積分値+OH末端由来3.6ppm積分値)
<樹脂のガラス転移温度(Tg)の測定>
樹脂のガラス転移温度は、示差走査熱量分析装置「Q1000」(TA Instruments社製)を用いてASTM D3418−82に準じて測定する。
装置検出部の温度補正はインジウムと亜鉛の融点を用い、熱量の補正についてはインジウムの融解熱を用いる。
具体的には、樹脂約5mgを精秤し、アルミニウム製のパンの中に入れ、リファレンスとして空のアルミニウム製のパンを用い、測定範囲30乃至200℃の間で、昇温速度10℃/minで測定を行う。一度180℃まで昇温させ10分間保持し、続いて30℃まで降温し、その後に再度昇温を行う。この2度目の昇温過程で、温度30乃至100℃の範囲において比熱変化が得られる。このときの比熱変化が出る前と出た後のベースラインの中間点の線と示差熱曲線との交点を、樹脂のガラス転移温度(Tg)とする。
<ワックスおよびCPESのDSC吸熱量(ΔH)の測定>
本発明におけるトナー等の最大吸熱ピークのピーク温度(Tp)は、DSC Q1000(TA Instruments社製)を使用して以下の条件にて測定を行う。
昇温速度:10℃/min
測定開始温度:20℃
測定終了温度:180℃
装置検出部の温度補正はインジウムと亜鉛の融点を用い、熱量の補正についてはインジウムの融解熱を用いる。
具体的には、試料約5mgを精秤し、銀製のパンの中に入れ、一回測定を行う。リファレンスとしては銀製の空パンを用いる。
トナーを試料とする場合において、最大吸熱ピーク(結着樹脂由来の最大吸熱ピーク)がワックス及び結晶性樹脂以外の樹脂の吸熱ピークと重なっていない場合には、得られた最大吸熱ピークの吸熱量をそのままワックス及び結晶性樹脂に由来する最大吸熱ピークの吸熱量として扱う。一方、トナーを試料とする場合において、ワックス及び結着樹脂以外の樹脂の吸熱ピークが結着樹脂の最大吸熱ピークと重なっている場合は、ワックス及び結着樹脂以外の樹脂に由来する吸熱量を、得られた最大吸熱ピークの吸熱量から差し引く必要がある。
なお、最大吸熱ピークとは、ピークが複数あった場合に、吸熱量が最大となるピークのことを意味する。また、最大吸熱ピークの吸熱量(ΔH)はピークの面積から装置付属の解析ソフトを用いて計算により求める。
<結晶性樹脂の重量平均分子量>
結晶性樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、以下のようにして測定する。
まず、結晶性樹脂0.03gをo−ジクロロベンゼン10mlに分散して溶解後、135℃において24時間放置し溶解させる。そして、得られた溶液を、ポア径が0.2μmの耐溶剤性メンブランフィルター「マエショリディスク」(東ソー社製)で濾過してサンプル溶液を得る。このサンプル溶液を用いて、以下の条件で測定する。
[分析条件]
分離カラム:Shodex (TSK GMHHR−H HT20)×2
カラム温度:135℃
移動相溶媒:o−ジクロロベンゼン
移動相流速:1.0ml/min.
試料濃度 :約0.3%
注入量 :300μl
検出器 :示差屈折率検出器 Shodex RI−71
また、試料の分子量の算出にあたっては、標準ポリスチレン樹脂(東ソー社製TSK スタンダード ポリスチレン F−850、F−450、F−288、F−128、F−80、F−40、F−20、F−10、F−4、F−2、F−1、A−5000、A−2500、A−1000、A−500)により作成した分子量校正曲線を使用する。
<樹脂の軟化点の測定方法>
樹脂の軟化点の測定は、定荷重押し出し方式の細管式レオメータ「流動特性評価装置 フローテスターCFT−500D」(島津製作所社製)を用い、装置付属のマニュアルに従って行う。本装置では、測定試料の上部からピストンによって一定荷重を加えつつ、シリンダに充填した測定試料を昇温させて溶融し、シリンダ底部のダイから溶融された測定試料を押し出し、この際のピストン降下量と温度との関係を示す流動曲線を得ることができる。
本発明においては、「流動特性評価装置 フローテスターCFT−500D」に付属のマニュアルに記載の「1/2法における溶融温度」を軟化点とする。なお、1/2法における溶融温度とは、次のようにして算出されたものである。まず、流出が終了した時点におけるピストンの降下量Smaxと、流出が開始した時点におけるピストンの降下量Sminとの差の1/2を求める(これをXとする。X=(Smax−Smin)/2)。そして、流動曲線においてピストンの降下量がXとなるときの流動曲線の温度が、1/2法における溶融温度である。
測定試料は、約1.0gの樹脂を、25℃の環境下で、錠剤成型圧縮機(例えば、NT−100H、エヌピーエーシステム社製)を用いて約10MPaで、約60秒間圧縮成型し、直径約8mmの円柱状としたものを用いる。
CFT−500Dの測定条件は、以下の通りである。
試験モード:昇温法
開始温度:50℃
到達温度:200℃
測定間隔:1.0℃
昇温速度:4.0℃/min
ピストン断面積:1.000cm2
試験荷重(ピストン荷重):10.0kgf(0.9807MPa)
予熱時間:300秒
ダイの穴の直径:1.0mm
ダイの長さ:1.0mm
<トナー粒子の重量平均粒径(D4)の測定方法>
トナー粒子の重量平均粒径(D4)は、100μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンター Multisizer 3」(登録商標、ベックマン・コールター社製)と、測定条件設定及び測定データ解析をするための付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター社製)を用いて、実効測定チャンネル数2万5千チャンネルで測定し、測定データの解析を行い、算出する。
測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター社製)が使用できる。
なお、測定、解析を行う前に、以下のように前記専用ソフトの設定を行う。
前記専用ソフトの「標準測定方法(SOM)を変更画面」において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定する。閾値/ノイズレベルの測定ボタンを押すことで、閾値とノイズレベルを自動設定する。また、カレントを1600μAに、ゲインを2に、電解液をISOTON IIに設定し、測定後のアパーチャーチューブのフラッシュにチェックを入れる。
専用ソフトの「パルスから粒径への変換設定画面」において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を2μm以上60μm以下に設定する。
具体的な測定法は以下の通りである。
(1)Multisizer 3専用のガラス製250ml丸底ビーカーに前記電解水溶液約200mlを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行う。そして、解析ソフトの「アパーチャーのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。
(2)ガラス製の100ml平底ビーカーに前記電解水溶液約30mlを入れ、この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で3質量倍に希釈した希釈液を約0.3ml加える。
(3)発振周波数50kHzの発振器2個を、位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「Ultrasonic Dispension System Tetora150」(日科機バイオス社製)の水槽内に所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2ml添加する。
(4)前記(2)のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。
(5)前記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー約10mgを少量ずつ前記電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。なお、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節する。
(6)サンプルスタンド内に設置した前記(1)の丸底ビーカーに、ピペットを用いてトナーを分散した前記(5)の電解質水溶液を滴下し、測定濃度が約5%となるように調整する。そして、測定粒子数が50000個になるまで測定を行う。
(7)測定データを装置付属の前記専用ソフトにて解析を行い、重量平均粒径(D4)を算出する。なお、専用ソフトでグラフ/体積%と設定したときの、分析/体積統計値(算術平均)画面の「平均径」が重量平均粒径(D4)である。
<平均円形度の測定方法>
トナー粒子の平均円形度は、フロー式粒子像分析装置「FPIA−3000」(シスメックス社製)によって、校正作業時の測定及び解析条件で測定する。
具体的な測定方法は、以下の通りである。まず、ガラス製の容器中に予め不純固形物などを除去したイオン交換水約20mlを入れる。この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で約3質量倍に希釈した希釈液を約0.2ml加える。さらに測定試料を約0.02g加え、超音波分散器を用いて2分間分散処理を行い、測定用の分散液とする。その際、分散液の温度が10℃以上40℃以下となる様に適宜冷却する。超音波分散器としては、発振周波数50kHz、電気的出力150Wの卓上型の超音波洗浄器分散器(「VS−150」(ヴェルヴォクリーア社製))を用い、水槽内には所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2ml添加する。
測定には、標準対物レンズ(10倍)を搭載した前記フロー式粒子像分析装置を用い、シース液にはパーティクルシース「PSE−900A」(シスメックス社製)を使用した。前記手順に従い調整した分散液を前記フロー式粒子像分析装置に導入し、HPF測定モードで、トータルカウントモードにて3000個のトナー粒子を計測する。そして、粒子解析時の2値化閾値を85%とし、解析粒子径を円相当径1.985μm以上39.69μm未満に限定し、トナー粒子の平均円形度を求める。
測定にあたっては、測定開始前に標準ラテックス粒子(Duke Scientific社製の「RESEARCH AND TEST PARTICLES Latex Microsphere Suspensions 5200A」をイオン交換水で希釈)を用いて自動焦点調整を行う。その後、測定開始から2時間毎に焦点調整を実施することが好ましい。
なお、本願実施例では、シスメックス社による校正作業が行われた、シスメックス社が発行する校正証明書の発行を受けたフロー式粒子像分析装置を使用した。解析粒子径を円相当径1.985μm以上、39.69μm未満に限定した以外は、校正証明を受けた時の測定及び解析条件で測定を行った。
<非晶性ポリエステル樹脂Aの製造例>
窒素導入管、冷却管、撹拌機及び熱電対を装備した5Lの四つ口フラスコを窒素で置換した後、表1に示した原料モノマー及びオクチル酸錫(II)を投入し、180℃で昇温後、10時間反応させた。さらに15mmHgで5時間反応させた後、第二の反応工程として、表1に従い無水トリメリット酸を加え、180℃で3時間反応させて、非晶性ポリエステル樹脂Aを得た。樹脂物性を表1に示した。
<非晶性ポリエステル樹脂Bの製造例>
非晶性ポリエステル樹脂Aの製造例において、表1に示した原材料を用い、第二の反応工程において、ASTM D36−86に従って測定した軟化点が表1に示す所望の温度に到達したのを確認して、反応を停止した以外は樹脂Aの製造例とほぼ同様にして、樹脂Bを合成した。樹脂物性を表1に示した。
Figure 2018112688
<結晶性ポリエステル樹脂1の製造例>
窒素雰囲気下で、滴下ロート、リービッヒ冷却管及び撹拌機を備えた耐圧反応機に1,6−ヘキサンジオール118g、ドデカン二酸230g、スチレン36.2g、アクリル酸2.5g、ジクミルパーオキサイド3.0gを加えて、170℃まで昇温し、10時間反応させた。このときの圧力は8.3kPaであった。
その後、オクチル酸錫2.0gを加えて200℃に昇温し、8時間反応を行い、さらに210℃まで8時間かけて昇温した。
その後、再び反応槽内を5kPa以下へ減圧し、結晶性ポリエステル樹脂1を得た。
<結晶性ポリエステル樹脂2、3の製造例>
結晶性ポリエステル樹脂1の製造例において、酸成分、アルコール成分が表2となるように変更した以外は、結晶性ポリエステル樹脂1の製造例と同様の操作を行い、結晶性ポリエステル樹脂2乃至結晶性ポリエステル樹脂3を得た。
Figure 2018112688
<ポリプロピレン1の製造例>
加熱乾燥した10リットルオートクレーブにn−ヘプタン4000mlを入れ、脱気した後、水素0.2MPaを導入し、さらに、プロピレンを導入し、重合温度90℃、全圧0.8MPaまで昇温、昇圧した。トリイソブチルアルミニウム 5ミリモル、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート 5マイクロモル、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライド 1マイクロモルを加え、50分間重合した。重合反応終了後、反応物を減圧下、乾燥することにより、プロピレン系重合体としてポリプロピレン1を得た。ポリプロピレン1の物性を表3に示した。
<ポリプロピレン2乃至5の製造例>
触媒量、重合温度、反応時間を調整し、所定の物性となるよう制御した以外は、ポリプロピレン1の製造例と同様してポリプロピレン2乃至5を製造した。
Figure 2018112688
<ワックス分散剤1の製造例>
温度計及び撹拌機の付いたオートクレーブ反応槽中に、キシレン300質量部、ポリプロピレン1を10質量部入れ充分溶解し、窒素置換後、スチレン42.0質量部、メタクリル酸シクロヘキシル40.0質量部、ブチルアクリレート8.0質量部、及びキシレン250質量部の混合溶液を180℃で3時間滴下し重合する。さらにこの温度で30分間保持し、脱溶剤を行い、ワックス分散剤1を得た。得られたワックス分散剤1の組成を表4に示す。
<ワックス分散剤2乃至7の製造例>
ワックス分散剤1の製造例において、ポレオレフィンの種類と部数、スチレンアクリル系ポリマーの組成と部数が表4となるように適宜条件を変更した以外は、ワックス分散剤1の製造例と同様の操作を行い、ワックス分散剤2乃至7を得た。得られたワックス分散剤の組成を表4に示す。
Figure 2018112688
<エステル化合物1乃至5の製造例>
ジムロート還流器、Dean−Stark水分離器を備えた4つ口フラスコ反応装置にベンゼン1740質量部、長鎖アルキルカルボン酸成分1300質量部、長鎖アルキルアルコール成分1200質量部、さらにp−トルエンスルホン酸120質量部を加え十分撹拌し溶解後、5時間還流せしめた後、水分離器のバルブを開け、共沸留去を行った。共沸留去後炭酸水素ナトリウムで十分洗浄後、乾燥しベンゼンを留去した。得られた生成物を再結晶後、洗浄し精製してエステルワックスを得た。各エステルワックスは、長鎖アルキルカルボン酸の種類及び量と、長鎖アルキルアルコールの種類及び量とを変更することにより調製した。得られたエステル化合物の組成を表5に示す。
Figure 2018112688
<トナー1の製造例>
・非晶性ポリエステル樹脂A 70質量部
・非晶性ポリエステル樹脂B 30質量部
・結晶性ポリエステル樹脂1 7.5質量部
・ワックス分散剤1 8質量部
・ワックス(エステル化合物1) 5質量部
・C.I.ピグメントブルー15:3 7質量部
・3,5−ジ−t−ブチルサリチル酸アルミニウム化合物(ボントロンE101 オリエント化学工業社製) 0.3質量部
上記材料をヘンシェルミキサー(FM−75型、三井鉱山(株)製)を用いて、回転数20s-1、回転時間5minで混合した後、温度150℃に設定した二軸混練機(PCM−30型、株式会社池貝製)にて混練した。得られた混練物を冷却し、ハンマーミルにて1mm以下に粗粉砕し、粗砕物を得た。得られた粗砕物を、機械式粉砕機(T−250、ターボ工業(株)製)にて微粉砕した。さらにファカルティF−300(ホソカワミクロン社製)を用い、分級を行い、トナー粒子1を得た。運転条件は、分級ローター回転数を130s-1、分散ローター回転数を120s-1とした。
得られたトナー粒子1を用い、図1で示す表面処理装置によって熱処理を行い熱処理トナー粒子を得た。運転条件はフィード量=5kg/hrとし、また、熱風温度=160℃、熱風流量=6m3/min.、冷風温度=−5℃、冷風流量=4m3/min.、ブロワー風量=20m3/min.、インジェクションエア流量=1m3/min.とした。
100質量部の熱処理トナー粒子に、疎水性シリカ(BET:200m2/g)1.0質量部、イソブチルトリメトキシシランで表面処理した酸化チタン微粒子(BET:80m2/g)を1.0質量部、ヘンシェルミキサー(FM−75型、三井三池化工機(株)製)で回転数30s-1、回転時間10minで混合して、トナー1を得た。トナー1の重量平均粒径(D4)は6.5μmであり、平均円形度は0.970であった。
<トナー2の製造例>
トナー1の製造例において、得られたトナー粒子1を熱処理しなかった以外はトナー1の製造例と同様の操作を行い、トナー2を得た。
<トナー3乃至20の製造例>
トナー2の製造例において、結晶性ポリエステル樹脂の種類と含有量、ワックスの種類と含有量、ワックス分散剤の種類と含有量が表6となるように適宜条件を変更した以外はトナー2の製造例と同様の操作を行い、トナー3乃至トナー20を得た。なお、トナー20において用いたフィッシャートロプシュワックスは、最大吸熱ピークのピーク温度が78℃であった。
Figure 2018112688
<磁性コア粒子1の製造例>
・工程1(秤量・混合工程):
Fe23 62.7質量部
MnCO3 29.5質量部
Mg(OH)2 6.8質量部
SrCO3 1.0質量部
上記材料を上記組成比となるようにフェライト原材料を秤量した。その後、直径1/8インチのステンレスビーズを用いた乾式振動ミルで5時間粉砕・混合した。
・工程2(仮焼成工程):
得られた粉砕物をローラーコンパクターにて、約1mm角のペレットにした。このペレットを目開き3mmの振動篩にて粗粉を除去し、次いで目開き0.5mmの振動篩にて微粉を除去した後、バーナー式焼成炉を用いて、窒素雰囲気下(酸素濃度0.01体積%)で、温度1000℃で4時間焼成し、仮焼フェライトを作製した。得られた仮焼フェライトの組成は、下記の通りである。
(MnO)a(MgO)b(SrO)c(Fe23d
上記式において、a=0.257、b=0.117、c=0.007、d=0.393
・工程3(粉砕工程):
クラッシャーで0.3mm程度に粉砕した後に、直径1/8インチのジルコニアビーズを用い、仮焼フェライト100質量部に対し、水を30質量部加え、湿式ボールミルで1時間粉砕した。そのスラリーを、直径1/16インチのアルミナビーズを用いた湿式ボールミルで4時間粉砕し、フェライトスラリー(仮焼フェライトの微粉砕品)を得た。
・工程4(造粒工程):
フェライトスラリーに、仮焼フェライト100質量部に対して分散剤としてポリカルボン酸アンモニウム1.0質量部、バインダーとしてポリビニルアルコール2.0質量部を添加し、スプレードライヤー(製造元:大川原化工機)で、球状粒子に造粒した。得られた粒子を粒度調整した後、ロータリーキルンを用いて、650℃で2時間加熱し、分散剤やバインダーの有機成分を除去した。
・工程5(焼成工程):
焼成雰囲気をコントロールするために、電気炉にて窒素雰囲気下(酸素濃度1.00体積%)で、室温から温度1300℃まで2時間で昇温し、その後、温度1150℃で4時間焼成した。その後、4時間をかけて、温度60℃まで降温し、窒素雰囲気から大気に戻し、温度40℃以下で取り出した。
・工程6(選別工程):
凝集した粒子を解砕した後に、磁力選鉱により低磁力品をカットし、目開き250μmの篩で篩分して粗大粒子を除去し、体積分布基準の50%粒径(D50)37.0μmの磁性コア粒子1を得た。
<被覆樹脂1の調製>
シクロヘキシルメタクリレートモノマー 26.8質量%
メチルメタクリレートモノマー 0.2質量%
メチルメタクリレートマクロモノマー 8.4質量%
(片末端にメタクリロイル基を有する重量平均分子量5000のマクロモノマー)
トルエン 31.3質量%
メチルエチルケトン 31.3質量%
アゾビスイソブチロニトリル 2.0質量%
上記材料のうち、シクロヘキシルメタクリレート、メチルメタクリレート、メチルメタクリレートマクロモノマー、トルエン、メチルエチルケトンを、還流冷却器、温度計、窒素導入管及び撹拌装置を取り付けた四つ口のセパラブルフラスコに添加し、窒素ガスを導入して充分に窒素雰囲気にした後、80℃まで加温し、アゾビスイソブチロニトリルを添加して5時間還流し重合させた。得られた反応物にヘキサンを注入して共重合体を沈殿析出させ、沈殿物を濾別後、真空乾燥して被覆樹脂1を得た。得られた被覆樹脂1を30質量部、トルエン40質量部、メチルエチルケトン30質量部に溶解させて、重合体溶液1(固形分30質量%)を得た。
<被覆樹脂溶液1の調製>
重合体溶液1(樹脂固形分濃度30%) 33.3質量%
トルエン 66.4質量%
カーボンブラック(Regal330;キャボット社製) 0.3質量%
(一次粒径25nm、窒素吸着比表面積94m2/g、DBP吸油量75ml/100g)
を、直径0.5mmのジルコニアビーズを用いて、ペイントシェーカーで1時間分散をおこなった。得られた分散液を、5.0μmのメンブランフィルターで濾過をおこない、被覆樹脂溶液1を得た。
<磁性キャリア1の製造例>
(樹脂被覆工程):
常温で維持されている真空脱気型ニーダーに被覆樹脂溶液1を充填コア粒子1の100質量部に対して樹脂成分として2.5質量部になるように投入した。投入後、回転速度30rpmで15分間撹拌し、溶媒が一定以上(80質量%)揮発した後、減圧混合しながら80℃まで昇温し、2時間かけてトルエンを留去した後冷却した。得られた磁性キャリアを、磁力選鉱により低磁力品を分別し、開口70μmの篩を通した後、風力分級器で分級し、体積分布基準の50%粒径(D50)38.2μmの磁性キャリア1を得た。
<二成分系現像剤1乃至20の製造例>
磁性キャリア1を92.0質量部に対し、トナー1乃至20を8.0質量部加え、V型混合機(V−20、セイシン企業製)により混合し、二成分系現像剤1乃至20を得た。
〔実施例1〕
画像形成装置として、キヤノン製デジタル商業印刷用プリンターimageRUNNER ADVANCE C9075 PRO改造機を用い、シアン位置の現像器に二成分系現像剤1を入れ、紙上のトナーの載り量が所望になる画像を形成し、後述の評価を行った。改造点としては、定着温度、プロセススピードを自由に設定できるように変更した。画像出力評価時、現像剤担持体の直流電圧VDC、静電潜像担持体の帯電電圧VD、及びレーザーパワーは、FFh画像(ベタ画像)のトナーの紙上への載り量が0.35mg/cm2となるように調整した。FFhとは、256階調を16進数で表示した値であり、00hが256階調の1階調目(白地部)であり、FFhが256階調の256階調目(ベタ部)である。
以下の評価方法に基づいて評価し、その結果を表7に示す。
[低温定着性]
紙:CS−680(68.0g/m2
(キヤノンマーケティングジャパン株式会社より販売)
紙上のトナーの載り量:1.20mg/cm2
評価画像:上記A4用紙の中心に10cm2の画像を配置
定着試験環境:低温低湿環境:温度15℃/湿度10%RH(以下「L/L」)
紙上のトナーの載り量が上記になるように、現像剤担持体の直流電圧VDC、静電潜像担持体の帯電電圧VD、及びレーザーパワーを調整した後、プロセススピードを450mm/sec、定着温度を130℃に設定し低温定着性を評価した。画像濃度低下率の値を低温定着性の評価指標とした。画像濃度低下率は、X−Riteカラー反射濃度計(500シリーズ:X−Rite社製)を用い、先ず、中心部の画像濃度を測定する。次に、画像濃度を測定した部分に対し、4.9kPa(50g/cm2)の荷重をかけてシルボン紙により定着画像を摺擦(5往復)し、画像濃度を再度測定する。そして、摺擦前後での画像濃度の低下率(%)を測定した。
(評価基準)
A:濃度低下率1.0%未満(非常に優れている)
B:濃度低下率1.0%以上5.0%未満(良好である)
C:濃度低下率5.0%以上10.0%未満(本発明では問題ないレベル)
D:濃度低下率10.0%以上(本発明では許容できないレベル)
[帯電性]
静電潜像担持体上のトナーを金属円筒管と円筒フィルターを用いて吸引捕集することにより、トナーの摩擦帯電量及びトナー載り量を算出した。具体的には、静電潜像担持体上のトナーの摩擦帯電量及びトナー載り量は、ファラデー・ケージ(Faraday−Cage)によって測定した。
ファラデー・ケージとは、同軸の2重筒のことで内筒と外筒は絶縁されている。この内筒の中に電荷量Qの帯電体を入れたとすると、静電誘導によりあたかも電荷量Qの金属円筒が存在するのと同様になる。この誘起された電荷量をエレクトロメーター(ケスレー6517A ケスレー社製)で測定し、内筒中のトナー質量M(kg)で電荷量Q(mC)を割ったもの(Q/M)をトナーの摩擦帯電量とした。
また、吸引した面積Sを測定することで、トナー質量Mを吸引した面積S(cm2)で除して、単位面積あたりのトナー載り量とした。
トナーは静電潜像担持体上に形成されたトナー層が中間転写体に転写される前に静電潜像担持体の回転を止め、静電潜像担持体上のトナー像を直接、エアー吸引して測定した。
トナーの載り量(mg/cm2)=M/S
トナーの摩擦帯電量(mC/kg)=Q/M
上記画像形成装置において、高温高湿環境下(30℃、80%RH)で静電潜像担持体上のトナーの載り量が0.35mg/cm2となるように調整し、上記金属円筒管と円筒フィルターにより吸引捕集した。その際金属円筒管を通じてコンデンサーに蓄えられた電荷量Q、及び捕集されたトナー質量Mを測定し、単位質量当たりの電荷量Q/M(mC/kg)を計算し、静電潜像担持体上の単位質量当たりの電荷量Q/M(mC/kg)とした(初期評価)。
上記の評価(初期評価)を行った後に、現像器を機外に取り外し、高温高湿環境下(32.5℃、80%RH)に48時間放置した。放置後、再度現像器を機内に装着し、初期評価と同じ直流電圧VDCで静電潜像担持体上の単位質量当たりの電荷量Q/Mを測定した(放置後評価)。
上記の初期評価における静電潜像担持体上の単位質量当たりのQ/Mを100%とし、48時間放置後(放置後評価)の静電潜像担持体上の単位質量当たりの電荷量Q/Mの維持率(放置後評価/初期評価×100)を算出して以下の基準で判断した。
(評価基準)
A:維持率が80%以上 (非常に優れている)
B:維持率が70%以上80%未満(良好である)
C:維持率が60%以上70%未満(本発明において許容レベル)
D:維持率が60%未満 (本発明では許容できないレベル)
[保存性]
100ccのポリカップにトナー5gを入れ、温度及び湿度可変型の恒温槽(55℃、41%)に48時間放置し、放置後にトナーの凝集性を評価した。凝集性は、ホソカワミクロン社製パウダーテスタPT−Xにて0.5mmの振幅にて10秒間、目開き20μmのメッシュで振るった際に、残ったトナーの残存率を評価指標とした。
(評価基準)
A:残存率2.0%未満(非常に優れている)
B:残存率2.0%以上10.0%未満(良好である)
C:残存率10.0%以上15.0%未満(本発明では問題ないレベル)
D:残存率15.0%以上(本発明では許容できないレベル)
[ワックス分散性(F/M)]
トナー製造例の分級工程にて分級されたトナー粒子と、トナー粒子と分別され回収された微粒子側粒子を用い、トナー中のワックスDSC吸熱量(ΔH)の測定を行った。
トナー粒子のΔHをM、微粒子側粒子のΔHをFとして、FをMで除した値(F/M)にてワックス分散性を評価した。ワックスが微分散せず、大きなドメインとして混練物中に存在する場合、粉砕過程において、ドメインが粉砕界面となり、ワックスドメインが樹脂中から遊離することになる。遊離したワックスは分級工程にて、微粉側粒子として回収されるため、ワックスの分散性が悪いと、ドメインを形成していたワックスが微粉側に回収される。そのため、トナー粒子と微粉側粒子のDSC吸熱量(ΔH)を比較することで、ワックス分散性を簡易評価することとした。
(評価基準)
A:F/Mが1.00以上1.10未満(非常に優れている)
B:F/Mが1.10以上1.20未満(良好である)
C:F/Mが1.20以上1.30未満(本発明では問題ないレベル)
D:F/Mが1.30以上(本発明では許容できないレベル)
〔実施例2乃至17、および比較例1乃至3〕
二成分系現像剤2乃至20を用いた以外は、実施例1と同様にして評価を行った。評価結果を表7に示す。
Figure 2018112688
1.原料定量供給手段、2.圧縮気体流量調整手段、3.導入管、4.突起状部材、5.供給管、6.処理室、7.熱風供給手段、8.冷風供給手段、9.規制手段、10.回収手段、11.熱風供給手段出口、12.分配部材、13.旋回部材、14.粉体粒子供給口

Claims (6)

  1. 非晶性ポリエステル樹脂、結晶性ポリエステル樹脂、ワックス、及びワックス分散剤を含有するトナー粒子を有するトナーであって、
    前記ワックス分散剤が、飽和脂環式化合物由来のユニットを有するスチレンアクリル系ポリマー部位とポリオレフィン部位とを有する重合体であり、
    前記ワックスが、下記式(1)で示されるエステル化合物である
    ことを特徴とするトナー。
    1−CO−O−R2 (1)
    (式(1)中、R1及びR2は、それぞれ独立に、炭素数18以上24以下のアルキル基を示す。)
  2. 前記飽和脂環式化合物由来のユニットが、シクロヘキシルアクリレート由来のユニット又はシクロヘキシルメタクリレート由来のユニットである請求項1に記載のトナー。
  3. 前記エステル化合物中における未反応のアルコール成分の割合が、1.5%以下である請求項1又は2に記載のトナー。
  4. 前記ポリオレフィン部位が、ポリプロピレンを含有し、
    前記ポリプロピレンの融点Mp(p)が、下記式(2)を満たす
    請求項1〜3のいずれか1項に記載のトナー。
    70≦Mp(p)≦90 (2)
  5. 前記結晶性ポリエステル樹脂が、炭素数6以上12以下の脂肪族ジオールと、炭素数6以上12以下の脂肪族ジカルボン酸化合物と、の縮重合物であり、
    前記トナー粒子中の前記結晶性ポリエステル樹脂の含有量が、前記トナー粒子中の前記非晶性ポリエステル樹脂100質量部に対し、3質量部以上15質量部以下である請求項1〜4のいずれか1項に記載のトナー。
  6. 前記ワックス分散剤の含有量B(質量部)と前記ワックスの含有量W(質量部)が、下記式(3)を満たす請求項1〜5のいずれか1項に記載のトナー。
    B≧1.5×W (3)
JP2017003764A 2017-01-13 2017-01-13 トナー Active JP6821442B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017003764A JP6821442B2 (ja) 2017-01-13 2017-01-13 トナー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017003764A JP6821442B2 (ja) 2017-01-13 2017-01-13 トナー

Publications (3)

Publication Number Publication Date
JP2018112688A true JP2018112688A (ja) 2018-07-19
JP2018112688A5 JP2018112688A5 (ja) 2020-02-20
JP6821442B2 JP6821442B2 (ja) 2021-01-27

Family

ID=62911184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017003764A Active JP6821442B2 (ja) 2017-01-13 2017-01-13 トナー

Country Status (1)

Country Link
JP (1) JP6821442B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220373915A1 (en) * 2021-05-24 2022-11-24 Fujifilm Business Innovation Corp. Electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, and image forming apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7475971B2 (ja) 2020-06-03 2024-04-30 キヤノン株式会社 トナー及びトナーの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238672A (ja) * 1988-03-19 1989-09-22 Konica Corp 静電荷像現像トナー
JP2005292468A (ja) * 2004-03-31 2005-10-20 Sharp Corp 静電潜像現像用トナー、画像形成方法および画像形成装置
JP2011257718A (ja) * 2010-06-11 2011-12-22 Sharp Corp トナーおよびトナーの製造方法
JP2014178420A (ja) * 2013-03-14 2014-09-25 Ricoh Co Ltd トナー
JP2015148668A (ja) * 2014-02-05 2015-08-20 株式会社リコー トナー、現像剤、プロセスカートリッジ及び画像形成装置
JP2016212383A (ja) * 2015-05-12 2016-12-15 株式会社リコー トナー、現像剤、画像形成装置及びプロセスカートリッジ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238672A (ja) * 1988-03-19 1989-09-22 Konica Corp 静電荷像現像トナー
JP2005292468A (ja) * 2004-03-31 2005-10-20 Sharp Corp 静電潜像現像用トナー、画像形成方法および画像形成装置
JP2011257718A (ja) * 2010-06-11 2011-12-22 Sharp Corp トナーおよびトナーの製造方法
JP2014178420A (ja) * 2013-03-14 2014-09-25 Ricoh Co Ltd トナー
JP2015148668A (ja) * 2014-02-05 2015-08-20 株式会社リコー トナー、現像剤、プロセスカートリッジ及び画像形成装置
JP2016212383A (ja) * 2015-05-12 2016-12-15 株式会社リコー トナー、現像剤、画像形成装置及びプロセスカートリッジ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220373915A1 (en) * 2021-05-24 2022-11-24 Fujifilm Business Innovation Corp. Electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, and image forming apparatus
US11906928B2 (en) * 2021-05-24 2024-02-20 Fujifilm Business Innovation Corp. Electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, and image forming apparatus

Also Published As

Publication number Publication date
JP6821442B2 (ja) 2021-01-27

Similar Documents

Publication Publication Date Title
JP6921678B2 (ja) トナー製造方法及び重合体
JP6700878B2 (ja) トナー及びトナーの製造方法
JP6478952B2 (ja) トナー用ワックス分散剤及びトナー
JP6833570B2 (ja) トナー
JP6965130B2 (ja) マゼンタトナー及びトナーキット
JP6410859B2 (ja) トナー、トナーの製造方法および二成分系現像剤
JP6750871B2 (ja) トナー
US9969834B2 (en) Wax dispersant for toner and toner
JP2018092154A (ja) トナー
JP2019194682A (ja) トナー
JP2019003082A (ja) トナー
JP2017125977A (ja) トナーおよびトナーの製造方法
JP6455835B2 (ja) トナー
JP2017015912A (ja) トナー及びトナーの製造方法
JP6821442B2 (ja) トナー
JP6700779B2 (ja) トナー
JP6584158B2 (ja) トナー
JP6855262B2 (ja) トナー
JP7328071B2 (ja) トナー
JP2020106748A (ja) トナー
JP2017076099A (ja) トナー
JP2017146338A (ja) トナー
JP2021032981A (ja) トナー
JP6732528B2 (ja) トナー
JP2018136515A (ja) トナー、トナー製造方法及び重合体

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210106

R151 Written notification of patent or utility model registration

Ref document number: 6821442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151