JP2018048945A - 角度検出装置 - Google Patents

角度検出装置 Download PDF

Info

Publication number
JP2018048945A
JP2018048945A JP2016185380A JP2016185380A JP2018048945A JP 2018048945 A JP2018048945 A JP 2018048945A JP 2016185380 A JP2016185380 A JP 2016185380A JP 2016185380 A JP2016185380 A JP 2016185380A JP 2018048945 A JP2018048945 A JP 2018048945A
Authority
JP
Japan
Prior art keywords
magnetic
back yoke
stator
sectional area
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016185380A
Other languages
English (en)
Other versions
JP6744607B2 (ja
Inventor
笹田 一郎
Ichiro Sasada
一郎 笹田
慈生 押野
Shigeo Oshino
慈生 押野
貴晃 落合
Takaaki Ochiai
貴晃 落合
卓司 山田
Takuji Yamada
卓司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
MinebeaMitsumi Inc
Original Assignee
Kyushu University NUC
MinebeaMitsumi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, MinebeaMitsumi Inc filed Critical Kyushu University NUC
Priority to JP2016185380A priority Critical patent/JP6744607B2/ja
Publication of JP2018048945A publication Critical patent/JP2018048945A/ja
Application granted granted Critical
Publication of JP6744607B2 publication Critical patent/JP6744607B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

【課題】方向性を有するバックヨークを備えた角度検出装置において、検出コイルの出力に含まれるオフセットを改善して角度の検出精度を向上させる。【解決手段】励磁コイルP1および検出コイルS1を備えたステータ30と、ステータ30の一方側に配設された方向性を有するロータ50と、ステータ30の他方側に配設された方向性を有するバックヨーク20とを備えるレゾルバ100において、バックヨーク20の、磁化容易軸方向である一方向における磁気特性と、一方向に直交する方向における磁気特性とを互いに均等化させる磁気特性の調整がなされている。【選択図】図6

Description

本発明は、バックヨークを備えた角度検出装置に関する。
複雑な加工を必要とせず、非常に簡単な組立工程で、高感度に角度を検出することができる角度検出装置として、一軸磁気異方性を有する磁性体からなる円板体で形成され、円板体が中心点を中心として円板面内で回動するロータと、ロータの一方の板面に対向して略同一外形で配設され、扇状に複数に分割されており分割領域の外周に沿って励磁コイルまたは検出コイルが巻回されたステータと、ステータを挟んでロータが配設される面と反対側に、ステータの円板体に対向して略同一外形で配設されるバックヨークとを備えた角度検出装置が知られている(例えば、特許文献1参照)。
図1は特許文献1に記載の角度検出装置で、一軸磁気異方性を有する磁性体からなる円板体で形成され、枢軸6が接合する中心点5aを中心として円板面内で回動するロータ5(図1(C))と、ロータ5の一方の円板面に非接触状態で対向して配設された略同一外形のステータ3(図1(B))と、方向性を持たない(等方性の)磁性薄板をステータ3と略同一外形で形成し、ステータ3に接触または非接触状態でロータ5が配設される面と反対側の面に対向して配設されたバックヨーク2(図1(A))とを有する。ステータ3は半円状に分割(3a,3b)されており、その各領域3a,3bの側面部分には検出コイル4a(S1とする)と励磁コイル4b(P1とする)がそれぞれ巻回されている。ロータ5は、その面方向に一軸磁気異方性(図1(C)の矢印で示す方向)を有する磁性体板または磁性コンポジット板で形成され、中心点5aを枢軸6と同軸として接合されている。
一軸磁気異方性を持つ磁性体では、磁性体が容易に磁化される容易軸方向と、それに直交する方向で磁化するのが困難な困難軸方向が存在する。図1の場合は、図の上下の方向が容易軸方向、左右の方向が困難軸方向となる。ここで、容易軸方向の透磁率は大きく、それに直交する困難軸方向では、透磁率は容易軸方向の透磁率の数分の1から十分の1程度、あるいはさらに小さい場合は真空と同程度となる。
この構成では、ロータ5が回動すると、それに伴って磁気異方性の容易軸方向が変化する。この磁気異方性の容易軸方向の変化を利用して回転角度を検出することができる。以下、この回転角度の検出の原理を図1により説明する。
まず、励磁コイル4bは、交流電源40に接続しており、交流電流が供給される。励磁コイル4bに交流電流が供給されることで、ステータ3の領域3b全体を平均的に見れば磁界は面方向に直交する方向に発生するが、この磁界はコイル銅線の近傍、特にその直下では、面に平行でコイル銅線に直交する方向に生じ、しかもその強度は他の場所の磁界(例えば領域3bの中程の磁界)に比べれば遙かに強い。つまり、検出コイル4aと励磁コイル4bが隣接している領域30においては、強い磁界が発生している。検出コイル4aには、励磁コイル4bにより励磁された磁界により、その磁界に応じた電圧が生じ、その電圧を検出コイル4bに接続された同期検波回路41で検出する。
ここで、ロータ5が回転すると、上述した容易軸方向が変化する。検出コイル4aには励磁コイル4bが生成する磁力による誘導電圧が生じるが、ロータ5の容易軸方向の影響を励磁コイル4bが生成する磁場が受けるので、検出コイル4aに誘起される電圧は、ロータ5の容易軸方向の影響を受ける。すなわち、ロータ5の角度位置により検出コイル4aに生じる電圧値が変化する。この原理により、検出コイル4aに生じる電圧からロータ5の角度位置(基準角度位置からの回転角度)を知ることができる。
WO2012/002126 A1公報
上記バックヨーク2は、コイル電流が効率よく磁束を生成でき、かつ磁束の漏れを防ぐために配設されるもので、バックヨーク2があることによって出力電圧が上がるなど出力特性の向上が図られる。バックヨークは、角度情報には何の影響も与えないように等方的な磁気特性を持つことが望ましい。ところでこのようなバックヨークに圧延加工された磁性板を用いる場合、板の材料特性が等方的であっても圧延加工が方向性を持つので、そのバックヨークの磁気特性は方向性を有することになる。このため、圧延方向の透磁率と、それに直交する方向の透磁率間でわずかながら差が生じ、その結果、方向によって磁気特性にバラツキが生じる。透磁率が高い方が磁化容易軸であり、他方が磁化困難軸に相当する。このようにバックヨークに磁化容易軸が存在すると、特定の方向に磁束が通りやすくなり、結果として、ロータが持つ作用が正しく反映されなくなり、検出コイルの2相出力にオフセットが生じ、角度の検出値の誤差が大きくなるという問題がある。
本発明は上記問題を解決するためになされたものであり、バックヨークを備えることにより出力特性の向上が図られながら、検出コイルの出力に含まれるオフセットが改善されて角度の検出精度を向上させることができる角度検出装置を提供することを目的とする。
本発明の角度検出装置は、励磁コイルおよび検出コイルを備えたステータと、前記ステータの一方側に配設された方向性を有するロータと、前記ステータの他方側に配設された方向性を有するバックヨークと、を備えた角度検出装置であって、前記バックヨークの、磁化容易軸方向である一方向における磁気特性と、前記一方向に直交する方向における磁気特性とを互いに均等化させる磁気特性の調整がなされており、前記磁気特性の調整の手段は、前記一方向に対する断面積と、前記一方向に直交する方向に対する断面積との比を調整することを特徴とする。一方向に対する断面積とは、一方向を横断する方向に沿った断面の面積であり、一方向に直交する方向に対する断面積とは、一方向に直交する方向を横断する方向に沿った断面の断面積である。
また、本発明の角度検出装置は、励磁コイルおよび検出コイルを備えたステータと、前記ステータの一方側に配設された方向性を有するロータと、前記ステータの他方側に配設された方向性を有するバックヨークと、を備えた角度検出装置であって、前記バックヨークの、磁化容易軸方向である一方向における磁気特性と、前記一方向に直交する方向における磁気特性とを互いに均等化させる磁気特性の調整がなされており、前記磁気特性の調整の手段は、前記バックヨーク内に磁気特性を変える改質層を形成することを特徴とする。本発明の改質層としては、打痕やレーザー照射等で生成することができる硬化層が挙げられる。
本発明においては、前記方向性を有するバックヨークは、圧延加工して得られた板材、あるいは液体急冷法を用いて得られた板材である形態を含む。圧延加工した板材の場合には、圧延方向に方向性が付与される。液体急冷法を用いて得られる板材としては、例えば厚さ20μm程度のアモルファス合金からなる磁性薄帯等が挙げられる。液体急冷法では溶融された磁性金属を回転ロール上に射出して急冷し、長い薄帯様のものが製作できるが、磁性体の磁気歪み定数が正または負に応じて薄帯の長手方向かそれに直角方向の面内に磁気異方性が発生するからである。また、本発明は、前記磁気特性が透磁率である形態を含む。
断面積を調整する上記本発明においては、具体的には、前記バックヨークに切除部を設けることにより前記一方向(圧延加工されたものである場合には圧延方向)に対する断面積を前記一方向に直交する方向に対する断面積よりも減少させる手段であって、前記一方向における透磁率をμroll、前記一方向に直交する方向における透磁率をμcross、前記一方向に対する断面積をSroll、前記一方向に直交する方向に対する断面積をScrossとしたとき、μroll×Sroll≒μcross×Scrossとなるように、少なくとも前記一方向に対する断面積を減少させるといった手段が好適に採用される。
本発明によれば、バックヨークを備えることにより出力特性の向上が図られながら、検出コイルの出力に含まれるオフセットが改善されて角度の検出精度を向上させることができるといった効果を奏する。
従来の角度検出装置の構成を分解して示す図である。 本発明の一実施形態に係るレゾルバを示す側面図である。 ステータを構成する第1および第2のステータの平面図である。 別形態のステータを示す平面図である。 バックヨークの磁気特性の調整を行うための要素を示す図である。 磁気特性の調整としてDカットしたバックヨークを備えた実施形態のレゾルバの構成を分解して示す図である。 磁気特性の調整としてスリットを形成したバックヨークを備えた実施形態のレゾルバの構成を分解して示す図である。 バックヨークに形成する切除部の別形態であって、(A)はDカットの別形態、(B)〜(D)はスリットの別形態を示す図である。 改質層が形成されたバックヨークの圧延方向に対する断面図である。 バックヨークをDカットした実施例のレゾルバの出力波形である。 バックヨークにスリットを形成した実施例のレゾルバの出力波形である。 磁気特性の調整を施していないバックヨークを用いた比較例のレゾルバの出力波形である。 バックヨークを備えない比較例のレゾルバの出力波形である。
以下、図面を参照して本発明が適用された一実施形態に係るレゾルバ(角度検出装置)を説明する。
[1]レゾルバの構成
図2に、本発明の一実施形態に係るレゾルバ100の構成を示す。レゾルバ100はアキシャル型レゾルバで、モータ200のシャフト(回転軸)60の角度の情報を検出する。レゾルバ100は、ステータ30、ロータ50およびバックヨーク20を有する。
ステータ30は、レゾルバ100の図示しない筐体に固定されている。ステータ30は、軸方向(シャフト60の延在方向)から見て略円形の円板形状を有している。ステータ30の中心には、シャフト60が回転可能な状態で貫通する開口が設けられている。ステータ30は、第1のステータ31と、第1のステータ31のロータ50側の面に積層された第2のステータ32とから構成されている。
図3は、ステータ30を構成する第1のステータ31と第2のステータ32とを、それぞれ軸方向から見た状態を示している。第1のステータ31と第2のステータ32は同じもので、コイルの位相が軸回りに互いに45°ずれた角度位置となる状態に積層され、貼り合わされている。第1のステータ31と第2のステータ32は同じものであるので、ここでは第1のステータ31について説明する。
第1のステータ31は、円板状のPCB基板を基材とし、その表面に、90°に開いた同じ扇型形状の4つのコイルを有している。各コイルは、内周縁に沿った内周側1/4円周部と、外周縁に沿った外周側1/4円周部と、これら内周側1/4円周部と外周側1/4円周部の両端をつないで径方向に延びる2本の直線部とにより構成されている。4つのコイルは、2つの励磁コイルP11,P12および2つの検出コイルS11,S12であり、周方向に励磁コイルと検出コイルが交互に配されている。
第1のステータ31と同様に第2のステータ32は、2つの励磁コイルP21,P22および2つの検出コイルS21,S22を有している。各ステータ31,32においては、4つのコイルの各内周側1/4円周部の内側である中央部に、上記開口としてPCB基板に孔が設けられ、その孔にシャフト60が回転可能な状態で貫通している。
この例において、第1のステータ31の励磁コイルP1(P11,P12)の系統には、例えばsinωtの励磁用の電流が入力され、第2のステータ32の励磁コイルP2(P21,P22)の系統には、例えばsinωtの励磁用の電流が入力される。ここで、ωとωは相等しくあってはならず、一方が他方に対して周波数を1.1倍〜1.9倍程度とする。このとき、P1系統のsinωtとP2系統のsinωtとが混信しないように同期検波で両者を分離する。これにより、検出コイルS11,S12,S21,S22の検出信号からロータ30の角度情報が得られる。この技術の詳細は、上記「WO2012/002126 A1公報」に記載されている。
バックヨーク20は、ステータ30と同様な円板形状を有し、ロータ50と反対側となる第2のステータ32の背面側に、ステータ30と同軸的に配設されている。図示例ではバックヨーク20はステータ32の下面に接合された状態であるが、ステータ32との間に一定のギャップが空いていてもよい。
バックヨーク20は、無方向性の材料(例えば無方向性ケイ素鋼板)を圧延加工して得られた所定厚さ(例えば0.3mm)を有する円板状の薄板である。図5に示すように、バックヨーク20の中心には、ステータ30と同様にシャフト60が回転可能な状態で貫通する孔201が形成されている。バックヨーク20は圧延加工されたことにより方向性を有するものとなっており、圧延方向が透磁率の比較的高い磁化容易軸であり、圧延方向に直交する方向が透磁率の比較的低い磁化困難軸となっている。
ロータ50は、ステータ30と同様な円板形状を有し、ステータ30に対して所定のギャップを隔てた状態で同軸的に配設されている。ロータ50は、その中心にモータ200の駆動軸であるシャフト60が貫通した状態で固定され、シャフト60と共に回転する。ロータ50は、板厚が約0.3mmで、透磁率が全体として一軸異方性を持つ円板状の方向性ケイ素鋼板から構成されている。
[2]レゾルバの基本機能
上記レゾルバ100においては、モータ200が回転すると、シャフト60に固定されたロータ50が回転する。ロータ50が回転すると、第1のステータ31、第2のステータ32の各励磁コイルP11,P12,P21,P22が生成する磁場が、一軸磁気異方性を有するロータ50の回転角度に応じて変調され、その影響が、第1のステータ31,第2のステータ32の各検出コイルS11,S12,S21,S22に誘起される電圧に現れる。すなわち、第1のステータ31、第2のステータ32の各検出コイルS11,S12,S21,S22に誘起される電圧は、ロータ50の角度位置による変調を受ける。具体的には、検出コイルS11,S12,S21,S22は、ロータ50の角度情報を含んだ周期信号であり、これら検出コイルS11,S12,S21,S22の検出信号を処理することで、ロータ50の回転角度が得られる。
[3]別形態
[3−1]ステータ
上記ステータ30は2層構造であるが、ステータとしては、図4に示す励磁コイルP1,P2、検出コイルS1,S2を1つのステータで構成したものであってもよい。このステータ30Bは、略同一外形の第1〜第4の扇状体3a,3b,3c,3dに4分割されており、円板体の中心点に関して対向する位置の扇状体の2つの組((3a,3c)と(3b,3d))のうち、第1の扇状体3aと第3の扇状体3cとで構成される組のそれぞれの外周に沿って巻回されたコイルが検出コイル4a,4c(S1,S2とする)であり、第2の扇状体3bと第4の扇状体3dとで構成される組のそれぞれの外周に沿って巻回されたコイルが励磁コイル4b,4d(P1,P2とする)である。各コイル4a,4b,4c,4dは、それぞれの扇状体3a,3b,3c,3dの外周に沿って100ターン程度巻回され、コイルの高さは2mm程度となる。
励磁コイルP1,P2は、ステータ30Bの面方向に対して直交する方向の磁束の向きが、相互に逆になる(一方がN極の場合、他方がS極となる)ように巻回されて接続されており、検出コイルS1,S2は、相互に巻き方向が逆となるように結線される。こうすることで、ロータ5の回転角度が0度の場合には、検出コイルS1と励磁コイルP1、および検出コイルS2と励磁コイルP2が、ロータ5の磁気異方性の容易軸方向に位置するため、強く結合する。逆に、検出コイルS1と励磁コイルP2、および検出コイルS2と励磁コイルP1は、ロータ5の磁気異方性の困難軸方向に位置するため、結合がほぼ0となる。なお、後述する図6、図7に示したレゾルバでは、図4に示すステータ30Bを採用している。
[3−2]バックヨーク
バックヨーク20は円板状であるが、バックヨーク20は回転しないため、円板状に限定されず、他の形状であってもよい。
[4]バックヨークの磁気特性の調整
バックヨーク20は、無方向性の材料を圧延加工して得た円板状の磁性薄板であるが、圧延加工によって方向性を有するものとなっている。このようなバックヨーク20は、圧延方向と圧延方向に直交する方向との間に磁気特性(透磁率)に差があり、このため、検出コイルの2相出力にオフセットが生じて角度検出値の誤差が大きくなるということは上述した通りである。そこで、バックヨーク20の圧延方向と圧延方向に直交する方向との間に生じる磁気特性とを均等化し、その差をできるだけ少なくするための調整(以下の説明で「磁気特性の調整」と言う)を、バックヨーク20に施す。以下、磁気特性の調整の手段の例を以下に挙げる。
[4−1]圧延方向に対する断面積を減少させる
磁気特性の調整を行う上で、まず、バックヨーク20の圧延方向と圧延方向に直交する方向のそれぞれにおける透磁率を測定する。図5に示すように、バックヨーク20の圧延方向の透磁率をμroll、それに直交する方向の透磁率をμcross、圧延方向に対するバックヨーク20の中心を通る直径の断面積(X−X断面の面積)をSroll、それに直交する方向に対する直径の断面積(Y−Y断面の面積)をScross、バックヨーク20の直径をD、シャフト挿通用の中心孔径をd、板厚をtとすると、圧延方向に対する断面積Sroll=(D−d)×t、圧延方向に直交する方向の断面積Scross=(D−d)×tである。
一般に起磁力は励磁電流に比例し、それによる磁束は起磁力/磁気抵抗で与えられる。ここで、磁気抵抗=磁路長/(磁束が通る断面積×透磁率)である。磁路長はステータコイルの形状と、ステータコイルとロータ間のギャップの大きさおよびステータコイルとバックヨーク間のギャップの大きさで決まる。この磁気抵抗を、バックヨークの圧延方向と、それに直交する方向で均等化すれば、それら方向における磁気特性の差の発生を抑えることができる。すなわちそのためには、Sroll×μroll≒Scross×μcrossとなるように、Scrossに対してSrollを減少させてSroll:Scrossの比を調整すればよい。
図6では、μroll:μcross=1.2:1の場合において、バックヨーク20の外周部を圧延方向に沿って直線状にカットするDカット(切除部)202の部分を形成してSrollを減少させ、Sroll×μroll≒Scross×μcrossとしている。Dカット202は、図5のX−Xに直交している。図6ではDカット部分は一端側のみに形成しているが、図8(A)に示すように両側をDカットしてもよい。
図7は、中心の孔201の両側に圧延方向に直交する方向に延びるスリット(切除部)203を図5のX−Xに沿った状態に形成してSrollを減少させている。スリット203の幅は、磁気抵抗を大きくする上で例えば1〜2mm程度とされる。図7ではスリット203は中心の孔201に連通して両側に形成しているが、図8(B)に示すように孔201の一方側のみに形成してもよい。また、スリット203は、図8(C)に示すように孔201の両側において外周縁と内周縁の間に形成してもよく、さらに、図8(D)に示すように孔201の両側において外周縁に開放する状態に形成してもよい。
圧延方向に対する断面積の減少による磁気特性の調整は、上記Dカットやスリットの他に、貫通孔や凹み等の切除部をX−X上に形成することによっても可能である。
[4−2]改質層の形成
図9に示すように、バックヨーク20の内部において、圧延方向の磁束を通りにくくして透磁率を低下させることが可能な改質層210を形成することにより、磁気特性を調整することができる。改質層210は、図5のX−X断面の箇所に形成することが好ましく、改質層210により実質的に上記Srollの減少が図られる。透磁率を低下させる改質層210は、例えば残留応力を高めることによって形成することができ、具体的には打痕やレーザー照射等によって形成される硬化層等が有効である。
[5]効果
上記実施形態によれば、バックヨーク20を備えることから、コイル電流が効率よく磁束を生成でき、かつ磁束の漏れが抑えられるため、出力特性の向上が図られる。一方、圧延加工で形成されたバックヨーク20は方向性を有し、このようなバックヨークは、従来、検出信号の出力にオフセットを生じさせてしまうというデメリットがあった。しかし本実施形態では、上記のように磁気特性の調整を施すことにより、バックヨーク20の圧延方向における透磁率と、圧延方向に直交する方向における透磁率とを互いに均等化させることができ、このため、それら方向間に生じる透磁率の差を抑えることができる。したがって方向性を有するバックヨーク20を備えながら、検出コイルの2相出力にオフセットが生じることが抑えられ、結果として角度の検出精度を向上させることができる。
圧延加工で得られたバックヨークに上記磁気特性の調整を施した本発明の実施例のレゾルバの検出電流の出力波形(sin出力信号、cos出力信号)を、図10、図11に示す。図10は図6に示したDカット、図11は図7に示したスリットによる調整である。一方、圧延加工で得られたバックヨークに磁気特性の調整を施さない比較例のレゾルバの検出電流の出力波形を図12に示す。さらに、バックヨークを備えないレゾルバの検出電流の出力波形を図13に示す。
各レゾルバにおける励磁条件はすべて同じで、ロータの回転数は1400rpm、励磁コイルP1、P2に印加する励磁信号は混信しないように、励磁コイルP1に電圧2v、f1(第1の励磁信号)=14KHzのcos信号を印加し、励磁コイルP2に電圧2v、f2(第2の励磁信号)=20KHzのsin信号を印加した。励磁コイルP1,P2によって検出コイルS1,S2には誘起電圧が生じる。この誘起電圧にはf1,f2の周波数成分が含まれるため、同期検波回路で分離してsin信号成分とcos信号成分を取り出した。
まず、図13に示すように、バックヨークを備えない場合、sin出力信号、cos出力信号ともに、正の振幅と負の振幅は略同じ値を示し、出力波形におけるオフセットは生じていないことが分かる。ただし、出力波形における出力電圧値は低い。
次に、図12に示すように、磁気特性の調整を施していない方向性を有するバックヨークを用いた場合には、バックヨークを備えているため、バックヨークを備えない図13の場合に比べて出力波形の出力電圧値は大きい。出力波形を見ると、正の振幅と負の振幅では大きさが異なり、特にcos出力信号では大きくオフセットしている。
一方、図11に示すバックヨークにスリットを形成した実施例によれば、図12に示す出力波形に比べて、正の振幅と負の振幅の大きさの差が減少し、cos出力信号におけるオフセットが低減している。また、図10に示すバックヨークをDカットした実施例では、図12に示す出力波形に比べて、正の振幅と負の振幅の大きさの差が大きく減少し、特にcos出力信号におけるオフセットが低減している。
本発明は、レゾルバとして好適である。
100…レゾルバ(角度検出装置)
20…バックヨーク
202…Dカット(切除部)
203…スリット(切除部)
210…改質層
30…ステータ
50…ロータ
P1,P11,P12…励磁コイル
S1,S11,S12…検出コイル

Claims (7)

  1. 励磁コイルおよび検出コイルを備えたステータと、
    前記ステータの一方側に配設された方向性を有するロータと、
    前記ステータの他方側に配設された方向性を有するバックヨークと、
    を備えた角度検出装置であって、
    前記バックヨークの、磁化容易軸方向である一方向における磁気特性と、前記一方向に直交する方向における磁気特性とを互いに均等化させる磁気特性の調整がなされており、
    前記磁気特性の調整の手段は、前記一方向に対する断面積と、前記一方向に直交する方向に対する断面積との比を調整することを特徴とする角度検出装置。
  2. 励磁コイルおよび検出コイルを備えたステータと、
    前記ステータの一方側に配設された方向性を有するロータと、
    前記ステータの他方側に配設された方向性を有するバックヨークと、
    を備えた角度検出装置であって、
    前記バックヨークの、磁化容易軸方向である一方向における磁気特性と、前記一方向に直交する方向における磁気特性とを互いに均等化させる磁気特性の調整がなされており、
    前記磁気特性の調整の手段は、前記バックヨーク内に磁気特性を変える改質層を形成することを特徴とする角度検出装置。
  3. 前記方向性を有するバックヨークは、圧延加工して得られた板材であることを特徴とする請求項1または2に記載の角度検出装置。
  4. 前記方向性を有するバックヨークは、液体急冷法を用いて得られた板材であることを特徴とする請求項1または2に記載の角度検出装置。
  5. 前記磁気特性が透磁率であることを特徴とする請求項1〜4のいずれかに記載の角度検出装置。
  6. 前記磁気特性の調整の手段は、前記バックヨークに切除部を設けることにより前記一方向に対する断面積を前記一方向に直交する方向に対する断面積よりも減少させる手段であって、
    前記一方向における透磁率をμroll、前記一方向に直交する方向における透磁率をμcross、前記一方向に対する断面積をSroll、前記一方向に直交する方向に対する断面積をScrossとしたとき、μroll×Sroll≒μcross×Scrossとなるように、少なくとも前記一方向に対する断面積を減少させたことを特徴とする請求項1に記載の角度検出装置。
  7. 前記改質層が硬化層であることを特徴とする請求項2に記載の角度検出装置。
JP2016185380A 2016-09-23 2016-09-23 角度検出装置 Active JP6744607B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016185380A JP6744607B2 (ja) 2016-09-23 2016-09-23 角度検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016185380A JP6744607B2 (ja) 2016-09-23 2016-09-23 角度検出装置

Publications (2)

Publication Number Publication Date
JP2018048945A true JP2018048945A (ja) 2018-03-29
JP6744607B2 JP6744607B2 (ja) 2020-08-19

Family

ID=61767576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016185380A Active JP6744607B2 (ja) 2016-09-23 2016-09-23 角度検出装置

Country Status (1)

Country Link
JP (1) JP6744607B2 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302908A (ja) * 1989-05-16 1990-12-14 Nec Kansai Ltd 磁気ヘッド
JP2004197125A (ja) * 2002-12-16 2004-07-15 Nippon Steel Corp 軟磁気特性に優れた磁性薄帯およびその製造方法
JP2006260709A (ja) * 2005-03-18 2006-09-28 Tokai Univ 磁性材料薄膜の製造方法
JP2007322144A (ja) * 2006-05-30 2007-12-13 Jtekt Corp 回転角度検出装置およびそれを備える電動パワーステアリング装置
JP2008268065A (ja) * 2007-04-23 2008-11-06 Nippon Densan Corp レゾルバ
JP2010230455A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 漏電検出装置
JP2011006741A (ja) * 2009-06-25 2011-01-13 Denso Corp 鋼材の磁気特性改質領域の形成方法
JP2011247772A (ja) * 2010-05-27 2011-12-08 Tamagawa Seiki Co Ltd 回転角検出又は回転同期装置
WO2012002126A1 (ja) * 2010-07-02 2012-01-05 国立大学法人九州大学 角度検出装置
WO2014038551A1 (ja) * 2012-09-04 2014-03-13 国立大学法人九州大学 角度検出装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302908A (ja) * 1989-05-16 1990-12-14 Nec Kansai Ltd 磁気ヘッド
JP2004197125A (ja) * 2002-12-16 2004-07-15 Nippon Steel Corp 軟磁気特性に優れた磁性薄帯およびその製造方法
JP2006260709A (ja) * 2005-03-18 2006-09-28 Tokai Univ 磁性材料薄膜の製造方法
JP2007322144A (ja) * 2006-05-30 2007-12-13 Jtekt Corp 回転角度検出装置およびそれを備える電動パワーステアリング装置
JP2008268065A (ja) * 2007-04-23 2008-11-06 Nippon Densan Corp レゾルバ
JP2010230455A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 漏電検出装置
JP2011006741A (ja) * 2009-06-25 2011-01-13 Denso Corp 鋼材の磁気特性改質領域の形成方法
JP2011247772A (ja) * 2010-05-27 2011-12-08 Tamagawa Seiki Co Ltd 回転角検出又は回転同期装置
WO2012002126A1 (ja) * 2010-07-02 2012-01-05 国立大学法人九州大学 角度検出装置
WO2014038551A1 (ja) * 2012-09-04 2014-03-13 国立大学法人九州大学 角度検出装置

Also Published As

Publication number Publication date
JP6744607B2 (ja) 2020-08-19

Similar Documents

Publication Publication Date Title
USRE47723E1 (en) Angle detection apparatus
WO2009136545A1 (ja) 界磁子
JP6647478B1 (ja) 回転数検出器
TW200824221A (en) Rotor for motors
JP2012165576A (ja) 回転電機および回転電機の製造方法
JP6283860B2 (ja) 角度検出装置および角度検出システム
JP2018189485A (ja) 角度検出器
JP4768712B2 (ja) 位置を自動検出する能動型磁気ベアリング
JP5811566B2 (ja) 回転子および永久磁石電動機
JP6744607B2 (ja) 角度検出装置
JP2006340556A (ja) 埋め込み磁石型回転電機用永久磁石部材および回転電機
JP6044050B2 (ja) 角度検出装置
JP5249174B2 (ja) 回転角センサ
JP7111315B2 (ja) 歪みセンサ構造
JP5432860B2 (ja) Dcブラシレスモータ
JPH11136886A (ja) 永久磁石形モータ
JP2009257898A (ja) 非接触トルクセンサ
JP2827025B2 (ja) 磁歪式トルクセンサ
JPH053921U (ja) 磁気レゾルバ
JPS58130761A (ja) シリンダモ−タ用回転子マグネツト
JP2015094720A (ja) 位置検出装置
JPH0767306A (ja) 電磁回転機
JP2018031617A (ja) 回転角度検出装置及びそれを用いた回転電機
JP2016127773A (ja) 回転電機
JP2015198513A (ja) 埋込磁石型回転電機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200722

R150 Certificate of patent or registration of utility model

Ref document number: 6744607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250