JP2018002971A - 熱硬化性シリコーン樹脂組成物およびその成形体を使用した光半導体装置 - Google Patents

熱硬化性シリコーン樹脂組成物およびその成形体を使用した光半導体装置 Download PDF

Info

Publication number
JP2018002971A
JP2018002971A JP2016135659A JP2016135659A JP2018002971A JP 2018002971 A JP2018002971 A JP 2018002971A JP 2016135659 A JP2016135659 A JP 2016135659A JP 2016135659 A JP2016135659 A JP 2016135659A JP 2018002971 A JP2018002971 A JP 2018002971A
Authority
JP
Japan
Prior art keywords
group
mass
silicone resin
resin composition
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016135659A
Other languages
English (en)
Other versions
JP6540620B2 (ja
Inventor
吉弘 堤
Yoshihiro Tsutsumi
吉弘 堤
富田 忠
Tadashi Tomita
忠 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2016135659A priority Critical patent/JP6540620B2/ja
Publication of JP2018002971A publication Critical patent/JP2018002971A/ja
Application granted granted Critical
Publication of JP6540620B2 publication Critical patent/JP6540620B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】強靭性、特にたわみ性に優れ、かつ低弾性化させることで反り特性が改善された硬化物を与える熱硬化性シリコーン樹脂組成物及びそれを用いた光半導体装置の提供。【解決手段】(A)25℃で固形の縮合反応型レジン状オルガノポリシロキサン:70〜98質量部、(B)直鎖状ジオルガノポリシロキサン残基を有し、1分子中に少なくとも1個のシクロヘキシル基またはフェニル基を有するオルガノポリシロキサン:2〜30質量部(但し、(A)及び(B)成分の合計は100質量部である)、(C)アクリル変性シリコーン樹脂パウダー:1〜30質量部(D)無機充填材:300〜1,200質量部、及び(E)有機金属縮合触媒:0.01〜10質量部、を含有する熱硬化性シリコーン樹脂組成物。【選択図】なし

Description

本発明は、熱硬化性シリコーン樹脂組成物及び該組成物を硬化して得られる成形体を有する光半導体装置に関する。
LED(Light Emitting Diode)等の光半導体素子は、街頭ディスプレイや自動車ランプ、住宅用照明など種種のインジケータや光源として利用されるようになっている。中でも、白色LEDは、二酸化炭素削減や省エネルギーをキーワードとして、各分野で応用した製品の開発が急速に進んでいる。
LED等の半導体・電子機器装置の材料のひとつとして、光リフレクター材料にポリフタルアミド樹脂(PPA)が広く使用されてきたが、PPAの耐熱変色性、耐光変色性の乏しさからエポキシ樹脂を代表とする熱硬化性樹脂の使用が中心となりつつある。
特許文献1、2には、トリアジン誘導体エポキシ樹脂を使用した白色熱硬化性エポキシ樹脂組成物が、特許文献3には脂環式エポキシ化合物を使用した白色熱硬化性エポキシ樹脂組成物が記載されている。これらに記載の白色熱硬化性エポキシ樹脂組成物は、いずれも芳香族を有しないエポキシ樹脂と酸無水物とを用いたものであり、一定の耐熱性、耐光性を有しているために使用が拡大してきているが、使用用途は照明用途や車載用途が増加する現状においては、耐熱性や耐光性などの点でより高い信頼性を有するものが必要となってきた。
特許文献4、5には、耐熱性、耐光性に優れる材料としてオルガノポリシロキサンを利用した白色熱硬化性シリコーン樹脂組成物が記載されている。これらは信頼性の観点からは非常に優れた材料であるが、シリコーン樹脂の持つ化学的特徴から強靭性に乏しく、また、室温から高温域の熱膨張係数が非常に大きい値である。そのため、成形性と反り特性のバランスが十分に満足するものではなかった。
特開2006−140207号公報 特開2008−189827号公報 特開2013−100410号公報 特開2009−221393号公報 特開2015−229749号公報
従って、本発明の目的は、強靭性、特にたわみ性に優れ、かつ低弾性化させることで反り特性が改善された硬化物を与える熱硬化性シリコーン樹脂組成物及びそれを用いた光半導体装置を提供することを目的とする。
本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、下記熱硬化性シリコーン樹脂組成物が、上記目的を達成できる熱硬化性シリコーン樹脂であることを見出し、本発明を完成した。
すなわち、本発明は、下記の熱硬化性シリコーン樹脂組成物及びそれを用いた半導体装置を提供するものである。
<1>
下記(A)、(B)、(C)、(D)及び(E)成分を含有することを特徴とする熱硬化性シリコーン樹脂組成物。ただし、各成分の質量部は、(A)及び(B)成分の合計100質量部に対しての質量部である。
(A)25℃で固形の縮合反応型レジン状オルガノポリシロキサン:70〜98質量部
(B)下記一般式(2)で表される直鎖状ジオルガノポリシロキサン残基を有し、1分子中に少なくとも1個のシクロヘキシル基またはフェニル基を有するオルガノポリシロキサン:2〜30質量部
(式中、R2は夫々独立にヒドロキシル基、炭素原子数1〜3のアルキル基、シクロヘキシル基、フェニル基、ビニル基及びアリル基から選ばれる1価炭化水素基であり、mは5〜50の整数を示す。)
(C)アクリル変性シリコーン樹脂パウダー:1〜30質量部
(D)無機充填材:300〜1,200質量部
(E)有機金属縮合触媒:0.01〜10質量部
<2>
さらに(F)成分として白色顔料を3〜300質量部含有する<1>に記載の熱硬化性シリコーン樹脂組成物。
<3>
(A)成分の室温で固形のレジン状オルガノポリシロキサンの縮合反応型レジン状オルガノポリシロキサンが下記平均組成式(1)
(CH3aSi(OR1b(OH)c(4-a-b-c)/2 (1)
(式中、R1は同一又は異種の炭素原子数1〜4の有機基を示し、a、b及びcは、0.8≦a≦1.5、0≦b≦0.3、0.001≦c≦0.5、及び0.801≦a+b+c<2を満たす数である。)
で表されるポリスチレン換算の重量平均分子量が1,000〜20,000のレジン状オルガノポリシロキサンである<1>または<2>に記載の熱硬化性シリコーン樹脂組成物。
<4>
(C)成分のアクリル変性シリコーン樹脂パウダーが、下記式(3)で表されるオルガノポリシロキサンと、アクリル酸エステル単量体及び/又はメタクリル酸エステル単量体と、これと共重合可能な官能基を含有する単量体との混合物を乳化グラフト重合させて得られるものであることを特徴とする、<1>から<3>のいずれか1項に記載の熱硬化性シリコーン樹脂組成物。
(式中、R3は同一又は異種の置換もしくは非置換の炭素数1〜20のアルキル基又は炭素数6〜20のアリール基、Yは同一又は異種の置換もしくは非置換の炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数1〜20のアルコキシ基又はヒドロキシル基、ZはY又は−[O−Si(Y)2f−Yで示される同一又は異種の基で、Y及びZ中の少なくとも2個はヒドロキシル基である。d、e及びfは0≦d≦1,000の数、100≦e≦10,000の正数、1≦f≦1,000の正数である。)
<5>
<1>から<4>のいずれか1項に記載の熱硬化性シリコーン樹脂組成物で形成された光半導体素子用ケース。
<6>
<5>に記載の光半導体素子用ケースを備える光半導体装置。
<7>
<1>から<4>のいずれか1項に記載の熱硬化性シリコーン樹脂組成物で封止されたフォトカプラー。
<8>
<7>に記載のフォトカプラーを有する光半導体装置。
本発明の熱硬化性シリコーン樹脂組成物は、強靭性、特にたわみ性に優れるだけでなく、反り特性にも優れる硬化物を与える。したがって、光半導体装置用の熱硬化性シリコーン樹脂組成物として有用である。
以下、本発明につき更に詳しく説明する。
<(A)25℃で固形の縮合反応型レジン状オルガノポリシロキサン>
(A)成分のオルガノポリシロキサンは、後述する(E)成分の有機金属縮合触媒の存在下で、(B)成分の直鎖状オルガノポリシロキサンとともに架橋構造を形成するものである。
(A)成分のオルガノポリシロキサンとしては、例えば、下記平均組成式(1)
(CH3aSi(OR1b(OH)c(4-a-b-c)/2 (1)
(上記式(1)中、R1は同一又は異種の炭素原子数1〜4の有機基である。a、b及びcは、0.8≦a≦1.5、0≦b≦0.3、0.001≦c≦0.5及び0.801≦a+b+c<2を満たす数である。)
で表され、テトラヒドロフラン等を展開溶媒とするゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量が1,000〜20,000のレジン状(即ち、分岐状又は三次元網状構造の)オルガノポリシロキサンが挙げられる。
上記平均組成式(1)において、メチル基の含有量を示すaが0.8未満のオルガノポリシロキサンを含む組成物は、その硬化物が硬すぎるため、耐クラック性に乏しくなり、好ましくない。一方、aが1.5を超えると、得られるレジン状オルガノポリシロキサンは固形化しにくくなり好ましくない。(A)成分におけるメチル基の含有量は、0.8≦a≦1.2が好ましく、より好ましくは0.9≦a≦1.1である。
上記平均組成式(1)において、アルコキシ基の含有量を示すbが0.3を超えると、得られるレジン状オルガノポリシロキサンの分子量が小さくなりやすく、耐クラック性が低下することが多い。(A)成分におけるアルコキシ基の含有量は、0.001≦b≦0.2が好ましく、より好ましくは0.01≦b≦0.1である。
上記平均組成式(1)において、Si原子に結合したヒドロキシル基の含有量を示すcが0.5を超えると、得られるレジン状オルガノポリシロキサンは加熱硬化時の縮合反応により、高い硬度を示す一方で耐クラック性に乏しい硬化物となり好ましくない。一方、cが0.001未満であると、得られるレジン状オルガノポリシロキサンは、融点が高くなる傾向があり、作業性に問題が生じる場合があり好ましくない。(A)成分におけるSi原子に結合したヒドロキシル基の含有量は、0.01≦c≦0.3が好ましく、より好ましくは0.05≦c≦0.2である。cの値を0.001≦c≦0.5に制御するには、原料のアルコキシ基の完全縮合率を86〜96%にすることが好ましい。該完全縮合率が86%未満では、cの値が0.5を超えてしまい融点が低くなり、96%を超えるとcの値が0.001未満となり融点が高くなりすぎる傾向にあるため好ましくない。
ここで完全縮合率とは、原料の総モル数に対して、1分子中に含まれるアルコキシ基が全て縮合反応に供されたモル数の割合を示すものである。
以上のことから、上記平均組成式(1)において、a+b+cの範囲は、0.9≦a+b+c≦1.8が好ましく、より好ましくは1.0≦a+b+c≦1.5である。
上記平均組成式(1)中、R1は炭素原子数1〜4の有機基であり、例えば、メチル基、エチル基、イソプロピル基等のアルキル基が挙げられ、原料の入手が容易である点で、メチル基またはイソプロピル基が好ましい。
(A)成分のレジン状オルガノポリシロキサンは、GPC測定によるポリスチレン標準で換算した重量平均分子量が1,000〜20,000が好ましく、特に好ましくは1,500〜10,000、更に好ましくは2,000〜8,000である。該分子量が1,000未満であると、得られるレジン状オルガノポリシロキサンは固形化しにくく、該分子量が20,000を超えると、得られる組成物は粘度が高くなりすぎて流動性が低下するため成形性が悪くなることがある。
なお、本発明中で言及する重量平均分子量とは、下記条件で測定したゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレンを標準物質とした重量平均分子量を指すこととする。
[測定条件]
展開溶媒:テトラヒドロフラン
流量:0.35mL/min
検出器:RI
カラム:TSK−GEL Hタイプ(東ソー株式会社製)
カラム温度:40℃
試料注入量:5μL
上記平均組成式(1)で表される(A)成分は、一般にQ単位(SiO4/2)、T単位(CH3SiO3/2)、D単位((CH32SiO2/2)及びM単位((CH33SiO1/2)の組み合わせで表現することができる。(A)成分をこの表現法で示した時、全シロキサン単位の総数に対して、T単位の含有数の比率が70%以上(70〜100%未満)であることが好ましく、75%以上(75〜100%未満)であることがより好ましく、80%以上(80〜100%未満)であることが特に好ましい。該T単位の含有数の比率が70%未満では、得られる硬化物の硬度、密着性、外観等の総合的なバランスが崩れる場合がある。なお、残部はM,D,Q単位でよく、全シロキサン単位に対するこれら単位の合計の比が30%以下(0〜30%)、特に0%を超え、30%以下であり、従ってT単位が100%未満であることが好ましい。
上記平均組成式(1)で表される(A)成分は、下記一般式(4)で示されるオルガノシランの加水分解縮合物として得ることができる。
(CH3nSiX4-n (4)
(式中、Xは塩素等のハロゲン原子又は炭素原子数1〜4のアルコキシ基を示し、nは0、1、2のいずれかである。)この場合、Xとしては、25℃で固体状のオルガノポリシロキサンを得る観点から、塩素原子またはメトキシ基が好ましい。
上記式(4)で示されるシラン化合物としては、例えばメチルトリクロロシラン等のオルガノトリクロロシラン;メチルトリメトキシシラン、メチルトリエトキシシラン等のオルガノトリアルコキシシラン;ジメチルジメトキシシラン、ジメチルジエトキシシラン等のジオルガノジアルコキシシラン;テトラクロロシラン;テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシランなどが挙げられる。
上記の加水分解性基を有するシラン化合物の加水分解及び縮合は、通常の方法で行えばよいが、触媒の存在下で行うことが好ましい。この触媒としては、酸触媒及びアルカリ触媒のいずれも用いることができる。例えば、酸触媒では、酢酸等の有機酸触媒、塩酸、硫酸等の無機酸触媒が好ましく、アルカリ触媒では、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、テトラメチルアンモニウムヒドロキシド等の有機アルカリ触媒が好ましい。具体例としては、加水分解性基としてクロロ基を含有するシランを使用する場合、水添加によって発生する塩化水素ガス及び塩酸を触媒とすることで、目的とする適切な分子量の加水分解縮合物を得ることができる。
加水分解及び縮合の際に使用される水の量は、上記加水分解性基を有するシラン化合物中の加水分解性基(例としてクロロ基)の合計量1モルに対して、一般的には0.9〜1.6モルであり、好ましくは1.0モル〜1.3モルである。この添加量が0.9〜1.6モルの範囲を満たすと、後述の組成物は作業性に優れ、その硬化物は強靭性に優れたものとなりやすい。
上記加水分解性基を有するシラン化合物は、通常、アルコール類、ケトン類、エステル類、セロソルブ類、及び芳香族化合物類等の有機溶剤中で加水分解して使用することが好ましい。具体的には、例えば、メタノール、エタノール、イソプロピルアルコール、イソブチルアルコール、n−ブタノール、及び2−ブタノール等のアルコール類、又はトルエン、キシレン等の芳香族化合物が好ましく、得られる組成物の硬化性及びその硬化物の強靭性が優れたものとなる点で、イソプロピルアルコール、トルエン、又はイソプロピルアルコール・トルエン併用系がより好ましい。
加水分解及び縮合の反応温度は、好ましくは10〜120℃、より好ましくは20〜80℃である。反応温度が係る範囲を満たすと、ゲル化しにくく、次の工程に使用可能な固体の加水分解縮合物が得られる。
(A)成分のオルガノポリシロキサンは、本発明の熱硬化性シリコーン樹脂組成物中、7〜20質量%配合することが好ましく、特に8〜19質量%、更に、8.5〜17質量%配合することが好ましいい。
<(B)オルガノポリシロキサン>
本発明の熱硬化性シリコーン樹脂組成物は応力緩和や耐クラック性向上のために(B)成分として、下記式(2)で表される直鎖状ジオルガノポリシロキサン残基を有し、1分子中に少なくとも1個、好ましくは2個以上のシクロヘキシル基またはフェニル基を有することを特徴とするオルガノポリシロキサンを使用する。
上記式(2)中、R2は、夫々独立に、ヒドロキシル基、炭素原子数1〜3のアルキル基、シクロヘキシル基、フェニル基、ビニル基及びアリル基から選ばれる基である。R2は、好ましくはメチル基又はフェニル基である。mは5〜50、好ましくは8〜40、より好ましくは10〜35の整数である。mが5未満では、得られる硬化物は耐クラック性に乏しくなりやすく、この硬化物を含む装置に反りを起こす場合がある。一方、mが50を超えると、得られる硬化物の機械的強度が不足する傾向にある。
(B)成分は、上記式(2)で示されるD単位(R2 2SiO2/2)に加えて、上記式(2)に該当しないD単位(R2SiO2/2)、並びにM単位(R3SiO1/2)及び/又はT単位(RSiO3/2)を含んでいてよい。D単位:M単位:T単位の比はそれぞれ、90〜24:75〜9:50〜1、特に70〜28:70〜20:10〜2(但し、これらの単位の合計は100)であることが硬化物特性から好ましい。ここでRはヒドロキシル基、メチル基、エチル基、プロピル基、シクロヘキシル基、フェニル基、ビニル基又はアリル基を示す。これらに加えて、(B)成分はQ単位(SiO4/2)を含んでもよい。(B)成分のオルガノポリシロキサンは、式(2)のD単位(R2 2SiO2/2)、式(2)に該当しないD単位(R2SiO2/2)、M単位(R3SiO1/2)及び/又はT単位(RSiO3/2)中に、シクロヘキシル基またはフェニル基を1分子中に少なくとも1個含む。
(B)成分のオルガノポリシロキサン中に存在するD単位(R2 2SiO2/2)の好ましくは30%以上(例えば、30〜90%)、特には50%以上(例えば、50〜80%)が、分子中でかかる一般式(2)で表される連続したD単位(R2 2SiO2/2)であることが好ましい。また、(B)成分のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量は3,000〜100,000であることが好ましく、より好ましくは10,000〜100,000である。該分子量がこの範囲にあると、(B)成分は固体もしくは半固体状であり、得られる組成物の作業性、硬化性などから好適である。
(B)成分は、上記各単位の原料となる化合物を、生成ポリマー中で所要のモル比となるように組み合わせ、例えば酸の存在下で加水分解して縮合を行うことによって合成することができる。
上記式(2)の直鎖状ジオルガノポリシロキサン残基を形成するD単位(R2 2SiO2/2)の原料としては、
(ここで、m=3〜48の整数(平均値)、n=0〜48の整数(平均値)、かつm+nが3〜48(平均値であり、各繰返し単位はブロックであってもランダムであってもよい))等を例示することができる。
T単位(RSiO3/2)の原料としては、メチルトリクロロシラン、エチルトリクロロシラン、プロピルトリクロロシラン、フェニルトリクロロシラン、シクロヘキシルトリクロロシラン等のトリクロロシラン類、これらそれぞれのトリクロロシラン類に対応するトリメトキシシラン類などのアルコキシシラン類を例示できる。
また、M単位、上記式(2)に該当しないD単位等の原料としては、Me2PhSiCl、Me2ViSiCl、Ph2MeSiCl、Ph2ViSiCl、Me2SiCl2、MeEtSiCl2、ViMeSiCl2、Ph2SiCl2、PhMeSiCl2等のモノ又はジクロロシラン類、これらのクロロシランのそれぞれに対応するモノ又はジメトキシシラン類等のモノ又はジアルコキシシラン類を例示することができる。ここで、Meはメチル基、Etはエチル基、Phはフェニル基、Viはビニル基を示す。
これらの原料となる化合物を、所定のモル比で組合せて、例えば以下のとおりに反応させることで(B)成分を得ることが出来る。フェニルメチルジクロロシラン、フェニルトリクロロシラン、Si数21個の両末端クロルジメチルシリコーンオイル、及びトルエンを投入混合し、水中に混合シランを滴下し、30〜50℃で1時間共加水分解する。その後、50℃で1時間熟成後、水を入れて洗浄し、その後共沸脱水や25〜40℃でアンモニア等を触媒として用いた重合を行い、濾過、減圧ストリップをする。
(B)成分のオルガノポリシロキサンは、全シロキサン単位に対して0.5〜10%のシラノール単位(シラノール基を有するシロキサン単位)を有し、好ましくは1〜5%程度含有することが好ましい。上記シラノール単位としては、例えば、R(HO)SiO2/2単位、R(HO)2SiO1/2単位、R2(HO)SiO1/2単位が挙げられる(ここで、Rは、ヒドロキシル基以外の前記の基である)。該オルガノポリシロキサンはシラノール基を含有するので、上記式(1)で表されるヒドロキシル基を含む(A)成分のレジン状ポリオルガノシロキサンと縮合反応する。
(B)成分の配合量は、(A)成分との合計100質量部に対し、好ましくは(A)成分と(B)成分の比が98:2〜70:30の範囲、より好ましくは95:5〜80:20の範囲となる量である。(B)成分の配合量が少なすぎると得られる組成物の連続成形性の向上効果が少なく、また得られる硬化物に低反り性や耐クラック性を達成しにくくなる。一方、(B)成分の配合量が多いと、得られる組成物の粘度が上昇しやすくなり、成形に支障をきたすことがある。
<(C)アクリル変性シリコーン樹脂パウダー>
(C)成分であるアクリル変性シリコーン樹脂パウダーは、添加することで本発明のシリコーン樹脂組成物の強靭性、特にたわみ性を向上させるだけでなく、硬化物を低弾性化させて反り特性を改善させる。
(C)成分であるアクリル変性シリコーン樹脂パウダーは、下記一般式(3)で示されるポリオルガノシロキサンと、アクリル酸エステル単量体及び/又はメタクリル酸エステル単量体と、これと共重合可能な官能基含有単量体との混合物とを、乳化グラフト重合させて得られるものである。
(式中、R3は同一又は異種の置換もしくは非置換の炭素数1〜20のアルキル基又は炭素数6〜20のアリール基、Yは同一又は異種の置換もしくは非置換の炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数1〜20のアルコキシ基又はヒドロキシル基、ZはY又は−[O−Si(Y)2f−Yで示される同一又は異種の基で、Y及びZ中の少なくとも2個はヒドロキシル基である。d、e及びfは0≦d≦1,000の数、100≦e≦10,000の正数、1≦f≦1,000の正数である。)
一般式(3)において、R3で表される炭素数1〜20のアルキル基は、直鎖状であっても分岐鎖状であってもよく、また環状であってもよい。具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等が挙げられる。これらのアルキル基は、ハロゲン原子、アクリロキシ基、メタクリロキシ基、カルボキシ基、アルコキシ基、アルケニルオキシ基、アミノ基、アルキル,アルコキシもしくは(メタ)アクリロキシ置換アミノ基で置換されていてもよい。
3で表される炭素数6〜20のアリール基としては、フェニル基、トリル基、ナフチル基等が挙げられる。
3としては、好ましくはメチル基である。
一般式(3)において、Yで表される炭素数1〜20のアルキル基及び炭素数6〜20のアリール基としては、R3で例示したアルキル基及びアリール基とそれぞれ同様の基が挙げられる。
Yで表される炭素数1〜20のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、デシルオキシ基、テトラデシルオキシ基等が挙げられる。
一般式(3)において、d、e及びfは0≦d≦1,000の数、100≦e≦10,000の正数、1≦f≦1,000の正数であるが、dは好ましくは0〜200の数である。dが1,000より大きくなると得られる皮膜の強度が不十分となる。eは好ましくは1,000〜5,000の正数である。eが100未満では皮膜の柔軟性が乏しいものとなり、10,000より大きいとパウダーのような固形になりにくくなる。fは好ましくは1〜200の正数である。
また、一般式(3)で示されるポリオルガノシロキサンは、架橋性の面から1分子中に少なくとも2個、好ましくは2〜4個のヒドロキシル基を有し、そのヒドロキシル基は分子鎖両末端に有するものが好ましい。
アクリル酸エステル単量体又はメタクリル酸エステル単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸シクロヘキシル等が挙げられる。
アクリル酸エステル単量体及び/又はメタクリル酸エステル単量体と共重合可能な官能基含有単量体としては、カルボキシル基、アミド基、ヒドロキシル基、ビニル基、アリル基等を含む不飽和結合を有する単量体等が挙げられる。
(C)成分であるアクリル変性シリコーン樹脂パウダーは、上記一般式(3)で示されるポリオルガノシロキサン100質量部に対して、アクリル酸エステル単量体及び/又はメタクリル酸エステル単量体が10〜100質量部、これと共重合可能な官能基含有単量体が0.01〜20質量部を混合し、乳化グラフト重合して得られるものである。乳化グラフト重合における条件は、特に限定されず、重合時に用いる開始剤としては、通常アクリル系ポリマーに用いる公知のラジカル開始剤を使用できる。また、乳化剤も公知のアニオン系界面活性剤やノニオン系界面活性剤を使用できる。
(C)成分のアクリル変性シリコーン樹脂パウダーは、下記に挙げる方法で造粒し粉体化される。即ち、スプレードライ乾燥、気流式乾燥等が挙げられるが、生産性を考えるとスプレードライヤーが好ましい。粉体化は熱間乾燥することが好ましく、80〜150℃で処理することが好ましい。得られる粉体粒子の平均粒子径は小さいほど良く、50μm以下が好ましい。更に好ましくは、1〜40μmである。なお、上記ポリマーの平均粒子径は、レーザー光回折法による粒度分布測定における質量平均値D50(又はメジアン径)として求めた値である。
また、(C)成分であるアクリル変性シリコーン樹脂パウダーとしては、例えば、シャリーヌ R−170S、シャリーヌ R−200(以上、日信化学工業(株)製)などの市販品を使用することができる。
(C)成分のアクリル変性シリコーン樹脂パウダーは、(A)成分と(B)成分の合計100質量部に対して1〜30質量部であり、好ましくは2〜20質量部である。1質量部より少ない場合は、十分に目的の効果を得られない。一方、含有量が30質量部よりも多い場合は、耐熱性が低下したり、流動性が低下したりする恐れがある。
<(D)無機充填材>
(D)成分の無機充填材は、本発明のシリコーン樹脂組成物の硬化物の強度を高めるために配合される。(D)成分の無機充填材としては、通常シリコーン樹脂組成物やエポキシ樹脂組成物に配合されるものを使用することができる。例えば、球状シリカ、溶融シリカ及び結晶性シリカ等のシリカ類、アルミナ、窒化珪素、窒化アルミニウム、ボロンナイトライド、ガラス繊維、ガラス粒子、及び三酸化アンチモン等が挙げられるが、後述する(F)成分の白色顔料(白色着色材)は除かれる。
(D)成分の無機充填材の平均粒径及び形状は特に限定されないが、平均粒径は通常3〜40μmである。(D)成分としては、平均粒径が0.5〜40μmの球状シリカが好適に用いられる。なお、平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50(又はメジアン径)として求めた値である。
また、得られる組成物の高流動化の観点から、複数の粒径範囲の無機充填材を組み合わせてもよく、このような場合では、0.1〜3μmの微細領域、3〜7μmの中粒径領域、及び10〜40μmの粗領域の球状シリカを組み合わせて使用することが好ましい。さらなる高流動化のためには、平均粒径がさらに大きい球状シリカを用いることが好ましい。
(D)成分の無機充填材の充填量は、(A)成分及び(B)成分の総和100質量部に対し、300〜1,200質量部、特に600〜1,000質量部が好ましい。300質量部未満では、十分な強度を得ることができないおそれがあり、1,200質量部を超えると、増粘による未充填不良や柔軟性が失われることで、素子内の剥離等の不良が発生する場合がある。なお、この無機充填材は、組成物全体の10〜90質量%、特に20〜80質量%の範囲で含有することが好ましい。
<(E)有機金属縮合触媒>
(E)成分の有機金属縮合触媒は、上記(A)成分であるレジン状オルガノポリシロキサン及び(B)成分のオルガノポリシロキサンの硬化に用いるための縮合触媒であり、(A)成分の安定性、被膜の硬度、無黄変性、硬化性などを考慮して選択される。イミダゾール等の塩基などの有機化合物を硬化触媒に用いた場合、容易に硬化物が着色してします。
例えば、有機金属縮合触媒として、有機酸亜鉛、有機アルミニウム化合物、有機チタニウム化合物等が好適に用いられ、具体的には安息香酸亜鉛、オクチル酸亜鉛、p−tert−ブチル安息香酸亜鉛、ラウリン酸亜鉛、ステアリン酸亜鉛、アルミニウムトリイソプロポキシド、アルミニウムアセチルアセトナート、エチルアセトアセテ−トアルミニウムジ(ノルマルブチレ−ト)、アルミニウム−n−ブトキシジエチルアセト酢酸エステル、テトラブチルチタネート、テトライソプロピルチタネート、オクチル酸錫、ナフテン酸コバルト、ナフテン酸錫等が例示される。中でも、安息香酸亜鉛が好ましく使用される。
有機金属縮合触媒の添加量は、上記(A)成分のレジン状オルガノポリシロキサン及び(B)成分のオルガノポリシロキサンの総和100質量部に対して、好ましくは0.01〜10質量部、特に好ましくは0.1〜1.6質量部である。添加量がかかる範囲を満たすと、硬化性が良好であり、安定したものとなる。
本発明は、上記成分に加え、下記の任意の成分を配合することができる。
<(F)白色顔料>
(F)成分の白色顔料は、本発明の熱硬化性シリコーン樹脂組成物を光半導体装置のリフレクター(反射板)等の用途向けに必要となる白色度を高めるために、配合することができる。例えば、白色顔料としては、二酸化チタン、酸化イットリウムを代表とする希土類酸化物、硫酸亜鉛、酸化亜鉛、及び酸化マグネシウム等が挙げられ、これらは単独で又は数種を併用して用いることができる。
これらのうち、(F)成分の白色顔料としては、白色度をより高めるために二酸化チタンを用いることが好ましい。この二酸化チタンの単位格子は、ルチル型、アナタース型、ブルカイト型があり、いずれも使用できるが、二酸化チタンの白色度や光触媒能の観点からルチル型を用いるのが好ましい。また、二酸化チタンの平均粒径及び形状も限定されないが、平均粒径は0.05〜5.0μmが好ましく、その中でも1.0μm以下のものが好ましく、0.30μm以下のものがより好ましい。上記二酸化チタンは、樹脂成分や無機充填材との相溶性、分散性を高めるため、アルミニウムやケイ素などの含水酸化物、ポリオールなどの有機物、又は有機ポリシロキサン等で予め表面処理することができる。なお、平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50(又はメジアン径)として求めたものである。
また、二酸化チタンの製造方法は、硫酸法、塩素法などいずれの方法でもよいが、白色度の観点から塩素法の方が好ましい。
白色顔料の配合量は、(A)及び(B)成分の総和100質量部に対し、3〜300質量部が好ましく、特に5〜250質量部が望ましい。白色顔料の配合量が3質量部未満では十分な白色度が得られない場合があり、300質量部を超えると機械的強度向上の目的で添加する他成分の割合が少なくなるだけでなく、成形性が著しく低下することがある。なお、この白色顔料は、光半導体装置用の反射材のような高い白色度を必要とする熱硬化性シリコーン樹脂組成物全体に対しては1〜50質量%含有することが好ましく、さらに好ましくは3〜40質量%の範囲である。
<(G)離型剤>
(G)成分の離型剤は、成形時の離型性を高めるため、本発明の熱硬化性シリコーン樹脂組成物に配合することができる。(G)成分は、組成物全体に対して0.2〜5.0質量%含有するように添加することが好ましい。離型剤としては、天然ワックスや、酸ワックス、ポリエチレンワックス、脂肪酸ワックスを代表とする合成ワックス等が挙げられるが、中でも融点が120〜140℃であるステアリン酸カルシウムが望ましい。
<(H)カップリング剤>
(H)成分のカップリング剤は、樹脂と無機充填材との結合強度を強くしたり、メッキされた金属基板への接着強度を向上させたりするため、本発明の熱硬化性シリコーン樹脂組成物に配合することができる。(H)成分のカップリング剤としては、例えば、シランカップリング剤、チタネートカップリング剤などがある。
具体的には、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ官能性アルコキシシラン、γ−メルカプトプロピルトリメトキシシラン等のメルカプト官能性アルコキシシランなどを用いることが高温で放置しても樹脂が変色しない等の点から好ましい。
(H)成分の配合量は、(A)及び(B)成分の総和100質量部に対して、0.1〜8.0質量部が好ましく、特に0.5〜6.0質量部が好ましい。0.1質量部未満であると、基材への接着効果が十分でないことがあり、また8.0質量部を超えると、粘度が極端に低下して、ボイドの原因になる可能性がある。
<その他の添加剤>
本発明の熱硬化性シリコーン樹脂組成物には、更に必要に応じて各種の添加剤を配合することができる。例えば、樹脂の性質を改善する目的でその他のオルガノポリシロキサン、シリコーンオイル、熱可塑性樹脂、熱可塑性エラストマー、有機合成ゴム、又は光安定剤等の添加剤を本発明の効果を損なわない範囲で添加配合することができる。
<組成物の製造方法>
本発明組成物の製造方法としては、(A)成分のオルガノポリシロキサン、(B)成分のオルガノポリシロキサン、(C)成分のアクリル変性シリコーン樹脂パウダー、(D)成分の無機充填材及び(E)成分の有機金属縮合触媒を所定の組成比で配合し、これをミキサー等によって十分均一に混合する方法が挙げられる。必要に応じて、上記成分に加えて、(F)成分の白色顔料、その他の添加物を所定の配合比で配合してもよい。その後、その混合物を熱ロール、ニーダー、エクストルーダー等による溶融混合処理を行い、次いで冷却固化させ、適当な大きさに粉砕してシリコーン樹脂組成物の成形材料とすることができる。本発明のシリコーン樹脂組成物の硬化物は、50℃から100℃での線膨張係数が30ppm/K以下、好ましくは25ppm/K以下であることが好ましい。
また、前述したように分散性の観点から、予め(A)成分であるオルガノポリシロキサンと(B)成分であるオルガノポリシロキサンとをニーダーやフラスコ内で溶融混合することが好ましい。
該熱硬化性シリコーン樹脂組成物の最も一般的な成形方法としては、トランスファー成形法や圧縮成形法が挙げられる。トランスファー成形法では、トランスファー成形機を用い、成形圧力5〜20N/mm2、成形温度120〜190℃で成形時間30〜500秒、特に成形温度150〜185℃で成形時間30〜180秒で行うことが好ましい。また、圧縮成形法では、コンプレッション成形機を用い、成形温度は120〜190℃で成形時間60〜600秒、特に成形温度130〜160℃で成形時間120〜300秒で行うことが好ましい。更に、いずれの成形法においても、後硬化を150〜200℃で2〜20時間行ってよい。
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
実施例及び比較例で使用した各成分を以下に示す。尚、以下において重量平均分子量は下記測定条件により測定されたものである。
[測定条件]
展開溶媒:テトラヒドロフラン
流量:0.35mL/min
検出器:RI
カラム:TSK−GEL Hタイプ(東ソー株式会社製)
カラム温度:40℃
試料注入量:5μL
<(A)レジン状オルガノポリシロキサンの合成>
[合成例1]
メチルトリクロロシラン100質量部、トルエン200質量部を1Lのフラスコに入れ、氷冷下で水8質量部、イソプロピルアルコール60質量部の混合液を液中滴下した。内温は−5〜0℃の範囲を維持しながら5時間かけて滴下し、その後加熱して還流温度で20分間撹拌した。それから室温まで冷却し、水12質量部を30℃以下、30分間で滴下し、20分間撹拌した。更に水25質量部を滴下後、40〜45℃で60分間撹拌した。その後水200質量部をいれて有機層を分離した。この有機層を中性になるまで洗浄し、その後共沸脱水、濾過、減圧ストリップをすることにより、下記平均式(A−1)で示される無色透明の固体(融点76℃、重量平均分子量3,060)36.0質量部の熱硬化性オルガノポリシロキサン(A−1)を得た。
(CH31.0Si(OC370.07(OH)0.101.4 (A−1)
<(B)オルガノポリシロキサンの合成>
[合成例2]
フェニルメチルジクロロシラン100g(4.4モル%)、フェニルトリクロロシラン2,100g(83.2モル%)、Si数21個の両末端クロロ封鎖のジメチルポリシロキサンオイル2,400g(12.4モル%)、トルエン3,000gを混合し、水11,000g中に混合した上記シランを滴下し、30〜50℃の範囲で1時間共加水分解した。その後、30℃で1時間熟成後、水を入れて洗浄し、その後共沸脱水、ろ過、及び減圧ストリップをすることにより、無色透明な生成物(オルガノシロキサン(B−1))を得た。該シロキサン(B−1)はICIコーンプレートを用いた150℃での溶融粘度5Pa・sを有し、重量平均分子量50,000であった。
[(Me2SiO)210.124(PhMeSiO)0.044(PhSiO1.50.832 (B−1)
<(C−1)アクリル変性シリコーン樹脂パウダー>
(C−1−1)アクリル変性シリコーン樹脂パウダー(シャリーヌR−170S:日信化学工業(株)製商品名;平均粒径30μm)
(C−1−2)アクリル変性シリコーン樹脂パウダー(シャリーヌR−200:日信化学工業(株)製商品名;平均粒径2.0μm)
<(C−2)比較例用サンプル>
(C−2−1)シリコーン複合パウダー(KMP−600:信越化学工業(株)製商品名;平均粒径5μm)
(C−2−2)シリコーン樹脂パウダー(KMP−590:信越化学工業(株)製商品名;平均粒径2.0μm)
(C−2−3)アクリルパウダー(W−5500:三菱レイヨン(株)製商品名;平均粒径60μm)
<(D)無機充填材>
(D−1)溶融球状シリカ(CS−6103 53C2、(株)龍森製商品名、平均粒径10μm)
<(E)有機金属縮合触媒>
(E−1)安息香酸亜鉛(和光純薬工業(株)製)
<(F)白色顔料>
(F−1)二酸化チタン ルチル型(PC−3、石原産業(株)製商品名)
<(G)離型剤>
(G−1)硬化ひまし油(カオーワックス85P、花王(株)製商品名)
<(H)シランカップリング剤>
(H−1)3−メルカプトプロピルトリメトキシシラン (KBM−803、信越化学工業(株)製商品名)
[実施例1〜4,比較例1〜7]
表1、2に示す配合(質量部)で、熱二本ロールにて製造し、冷却、粉砕して熱硬化性シリコーン樹脂組成物を得た。これらの組成物につき、以下の諸特性を測定した。結果を表1、2に示す。
<スパイラルフロー値>
EMMI規格に準じた金型を使用して、成形温度175℃、成形圧力6.9N/mm2、成形時間120秒の条件で、上記熱硬化性シリコーン樹脂組成物の成形体のスパイラルフロー値を測定した。
<収縮率、曲げ強度、曲げ弾性率、たわみ量(25℃)>
JIS K 6911:2006規格に準じた金型を使用して、成形温度175℃、成形圧力6.9N/mm2、成形時間120秒の条件で上記熱硬化性シリコーン樹脂組成物を成形し、180℃で4時間ポストキュアーした。ポストキュアーした成形体の長さを室温(25℃)にて、電気マイクロメーターで測定し、収縮率を算出した。続いて、試験片を室温(25℃)にて、曲げ強度、曲げ弾性率及びたわみ量を測定した。
<熱膨張係数>
EMMI規格に準じた金型を使用して、成形温度175℃、成形圧力6.9N/mm2、成形時間120秒の条件で上記熱硬化性シリコーン樹脂組成物を成形し、180℃で4時間ポストキュアーした。ポストキュアーした成形体の試験片の熱膨張係数をTMA(TMA8310リガク(株)製)により、50℃から100℃の範囲で測定した。
<光反射率(初期光反射率、長期耐熱性試験)>
成形温度175℃、成形圧力6.9N/mm2、成形時間120秒の条件で、直径50mm×厚さ3mmの円板型硬化物を作成し、その後、180℃4時間の二次硬化を行い、エス・デイ・ジー(株)製X−rite8200を使用して450nmでの初期光反射率を測定した。さらに200℃96時間熱処理を行い、同様にエス・デイ・ジー(株)製X−rite8200を使用して450nmでの光反射率を測定した。
表1に示すように、本発明樹脂組成物の成形体は、アクリル変性シリコーン樹脂パウダーを添加することでたわみ量が増加し、強靭性が増加した。また、低弾性化し、収縮率が低下していた。また、耐熱性に悪影響はないこともわかった。よって、本発明樹脂組成物の成形体は、強靭性に優れ、反り特性改善に有効であることが確認できた。従って、本発明組成物は光半導体装置用材料として有用であることを確認できた。


Claims (8)

  1. 下記(A)、(B)、(C)、(D)及び(E)成分を含有することを特徴とする熱硬化性シリコーン樹脂組成物。ただし、各成分の質量部は、(A)及び(B)成分の合計100質量部に対しての質量部である。
    (A)25℃で固形の縮合反応型レジン状オルガノポリシロキサン:70〜98質量部
    (B)下記一般式(2)で表される直鎖状ジオルガノポリシロキサン残基を有し、1分子中に少なくとも1個のシクロヘキシル基またはフェニル基を有するオルガノポリシロキサン:2〜30質量部
    (式中、R2は夫々独立にヒドロキシル基、炭素原子数1〜3のアルキル基、シクロヘキシル基、フェニル基、ビニル基及びアリル基から選ばれる1価炭化水素基であり、mは5〜50の整数を示す。)
    (C)アクリル変性シリコーン樹脂パウダー:1〜30質量部
    (D)無機充填材:300〜1,200質量部
    (E)有機金属縮合触媒:0.01〜10質量部
  2. さらに(F)成分として白色顔料を3〜300質量部含有する請求項1記載の熱硬化性シリコーン樹脂組成物。
  3. (A)成分の縮合反応型レジン状オルガノポリシロキサンが下記平均組成式(1)で表されるポリスチレン換算の重量平均分子量が1,000〜20,000のレジン状オルガノポリシロキサンであることを特徴とする、請求項1または2に記載の熱硬化性シリコーン樹脂組成物。
    (CH3aSi(OR1b(OH)c(4-a-b-c)/2 (1)
    (式中、R1は同一又は異種の炭素原子数1〜4の有機基を示し、a、b及びcは0.8≦a≦1.5、0≦b≦0.3、0.001≦c≦0.5、及び0.801≦a+b+c<2を満たす数である。)
  4. (C)成分のアクリル変性シリコーン樹脂パウダーが下記式(3)で表されるオルガノポリシロキサンと、アクリル酸エステル単量体及び/又はメタクリル酸エステル単量体と、これと共重合可能な官能基を含有する単量体との混合物を乳化グラフト重合させて得られるものであることを特徴とする、請求項1から3のいずれか1項に記載の熱硬化性シリコーン樹脂組成物。
    (式中、R3は同一又は異種の置換もしくは非置換の炭素数1〜20のアルキル基又は炭素数6〜20のアリール基、Yは同一又は異種の置換もしくは非置換の炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数1〜20のアルコキシ基又はヒドロキシル基、ZはY又は−[O−Si(Y)2f−Yで示される同一又は異種の基で、Y及びZ中の少なくとも2個はヒドロキシル基である。d、e及びfは0≦d≦1,000の数、100≦e≦10,000の正数、1≦f≦1,000の正数である。)
  5. 請求項1〜4のいずれか1項記載の熱硬化性シリコーン樹脂組成物で形成された光半導体素子用ケース。
  6. 請求項5に記載の光半導体素子用ケースを備える光半導体装置。
  7. 請求項1〜4のいずれか1項記載の熱硬化性シリコーン樹脂組成物で封止されたフォトカプラー。
  8. 請求項7に記載のフォトカプラーを有する光半導体装置。
JP2016135659A 2016-07-08 2016-07-08 熱硬化性シリコーン樹脂組成物およびその成形体を使用した光半導体装置 Active JP6540620B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016135659A JP6540620B2 (ja) 2016-07-08 2016-07-08 熱硬化性シリコーン樹脂組成物およびその成形体を使用した光半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135659A JP6540620B2 (ja) 2016-07-08 2016-07-08 熱硬化性シリコーン樹脂組成物およびその成形体を使用した光半導体装置

Publications (2)

Publication Number Publication Date
JP2018002971A true JP2018002971A (ja) 2018-01-11
JP6540620B2 JP6540620B2 (ja) 2019-07-10

Family

ID=60946008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135659A Active JP6540620B2 (ja) 2016-07-08 2016-07-08 熱硬化性シリコーン樹脂組成物およびその成形体を使用した光半導体装置

Country Status (1)

Country Link
JP (1) JP6540620B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019159140A (ja) * 2018-03-14 2019-09-19 信越化学工業株式会社 白色リフレクター用熱硬化性シリコーン樹脂組成物及び該組成物の硬化物からなる白色リフレクター

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186279A (ja) * 1998-12-22 2000-07-04 Shin Etsu Chem Co Ltd エアゾール型撥水処理剤
JP2012121992A (ja) * 2010-12-08 2012-06-28 Yokohama Rubber Co Ltd:The 硬化性樹脂組成物
WO2015093329A1 (ja) * 2013-12-19 2015-06-25 東レ・ダウコーニング株式会社 シリコーン接着性フィルム、および半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186279A (ja) * 1998-12-22 2000-07-04 Shin Etsu Chem Co Ltd エアゾール型撥水処理剤
JP2012121992A (ja) * 2010-12-08 2012-06-28 Yokohama Rubber Co Ltd:The 硬化性樹脂組成物
WO2015093329A1 (ja) * 2013-12-19 2015-06-25 東レ・ダウコーニング株式会社 シリコーン接着性フィルム、および半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019159140A (ja) * 2018-03-14 2019-09-19 信越化学工業株式会社 白色リフレクター用熱硬化性シリコーン樹脂組成物及び該組成物の硬化物からなる白色リフレクター

Also Published As

Publication number Publication date
JP6540620B2 (ja) 2019-07-10

Similar Documents

Publication Publication Date Title
JP4623322B2 (ja) 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物並びに光半導体ケース及びその成形方法
JP5108825B2 (ja) 光半導体装置用シリコーン樹脂組成物及び光半導体装置
JP5729270B2 (ja) Ledリフレクターとして有用な白色熱硬化性シリコーン樹脂組成物及び該組成物を用いた光半導体装置
JP2010106243A (ja) 光半導体装置用シリコーン樹脂組成物
JP2011054902A (ja) 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
JP2011032392A (ja) 光半導体装置用シリコーン樹脂組成物
JP2014177570A (ja) 熱硬化性シリコーン樹脂組成物
EP3147329B1 (en) Heat-curable silicone resin composition, optical semiconductor device and semiconductior package using molded product of same
JP5728960B2 (ja) 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
JP6194853B2 (ja) 光半導体装置用白色熱硬化性シリコーン樹脂組成物、及び光半導体素子搭載用ケース
JP6048367B2 (ja) Ledリフレクター用白色熱硬化性エポキシ・シリコーンハイブリッド樹脂組成物、及び該樹脂組成物の成形硬化物から成るプレモールドパッケージ
JP2011052115A (ja) 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
JP5728961B2 (ja) 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
JP5640957B2 (ja) Ledリフレクターとして有用な白色熱硬化性シリコーン樹脂組成物及び該組成物を用いた光半導体装置
KR101881604B1 (ko) Led 리플렉터로서 유용한 백색 열경화성 실리콘 수지 조성물 및 상기 조성물을 이용한 광반도체 장치
JP6540620B2 (ja) 熱硬化性シリコーン樹脂組成物およびその成形体を使用した光半導体装置
JP2015040238A (ja) 光半導体ケース形成用熱硬化性シリコーン樹脂組成物
JP5556794B2 (ja) Ledリフレクターとして有用な白色熱硬化性シリコーン樹脂組成物及び該組成物を用いた光半導体装置
JP2019159140A (ja) 白色リフレクター用熱硬化性シリコーン樹脂組成物及び該組成物の硬化物からなる白色リフレクター
JP6540619B2 (ja) 熱硬化性シリコーン樹脂組成物およびその成形体を使用した光半導体装置
JP6403016B2 (ja) 熱硬化性シリコーン樹脂組成物、それを用いたフォトカプラー、及びそのフォトカプラーを有する光半導体装置
JP2017228667A (ja) フォトカプラー一次封止用熱硬化性シリコーン樹脂組成物、該組成物で封止されたフォトカプラー及び該フォトカプラーを有する光半導体装置
JP6706219B2 (ja) 白色熱硬化性エポキシ・シリコーンハイブリッド樹脂組成物及び光半導体装置
JP6710175B2 (ja) 白色熱硬化性エポキシ・シリコーンハイブリッド樹脂組成物及び光半導体装置
JP2017043656A (ja) 熱硬化性シリコーン樹脂組成物及びその成型体を使用した光半導体素子搭載用ケース

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R150 Certificate of patent or registration of utility model

Ref document number: 6540620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150