JP2017521265A - ナノワイヤの集合体を捕集および整列する方法 - Google Patents

ナノワイヤの集合体を捕集および整列する方法 Download PDF

Info

Publication number
JP2017521265A
JP2017521265A JP2016565213A JP2016565213A JP2017521265A JP 2017521265 A JP2017521265 A JP 2017521265A JP 2016565213 A JP2016565213 A JP 2016565213A JP 2016565213 A JP2016565213 A JP 2016565213A JP 2017521265 A JP2017521265 A JP 2017521265A
Authority
JP
Japan
Prior art keywords
nanowires
liquid
nanowire
interface
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016565213A
Other languages
English (en)
Japanese (ja)
Other versions
JP2017521265A5 (enExample
Inventor
ウマル ナジーム,
ウマル ナジーム,
ホーハン ボーグストロム,
ホーハン ボーグストロム,
ジェイム カスティージョ−レオン,
ジェイム カスティージョ−レオン,
ペル ビクランド,
ペル ビクランド,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sol Voltaics AB
Original Assignee
Sol Voltaics AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sol Voltaics AB filed Critical Sol Voltaics AB
Publication of JP2017521265A publication Critical patent/JP2017521265A/ja
Publication of JP2017521265A5 publication Critical patent/JP2017521265A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/117Shapes of semiconductor bodies
    • H10D62/118Nanostructure semiconductor bodies
    • H10D62/119Nanowire, nanosheet or nanotube semiconductor bodies
    • H10D62/122Nanowire, nanosheet or nanotube semiconductor bodies oriented at angles to substrates, e.g. perpendicular to substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • B05D1/202Langmuir Blodgett films (LB films)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/86Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group II-VI materials, e.g. ZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/125The active layers comprising only Group II-VI materials, e.g. CdS, ZnS or CdTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/127The active layers comprising only Group III-V materials, e.g. GaAs or InP
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/14Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
    • H10F77/143Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies comprising quantum structures
    • H10F77/1437Quantum wires or nanorods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Materials Engineering (AREA)
  • Silicon Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
JP2016565213A 2014-04-29 2015-04-28 ナノワイヤの集合体を捕集および整列する方法 Pending JP2017521265A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE1430057-8 2014-04-29
SE1430057 2014-04-29
PCT/IB2015/053094 WO2015166416A1 (en) 2014-04-29 2015-04-28 Methods of capturing and aligning an assembly of nanowires

Publications (2)

Publication Number Publication Date
JP2017521265A true JP2017521265A (ja) 2017-08-03
JP2017521265A5 JP2017521265A5 (enExample) 2018-06-14

Family

ID=53177711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016565213A Pending JP2017521265A (ja) 2014-04-29 2015-04-28 ナノワイヤの集合体を捕集および整列する方法

Country Status (6)

Country Link
US (1) US10177264B2 (enExample)
EP (1) EP3137416A1 (enExample)
JP (1) JP2017521265A (enExample)
KR (1) KR102243642B1 (enExample)
CN (1) CN106415844A (enExample)
WO (1) WO2015166416A1 (enExample)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9786853B2 (en) 2014-02-11 2017-10-10 Wisconsin Alumni Research Foundation Floating evaporative assembly of aligned carbon nanotubes
WO2016071762A1 (en) 2014-11-07 2016-05-12 Sol Voltaics Ab Shell-enabled vertical alignment and precision-assembly of a close-packed colloidal crystal film
EP3260414A1 (en) * 2016-06-21 2017-12-27 Sol Voltaics AB Method for transferring nanowires from a fluid to a substrate surface
WO2018122101A1 (en) 2016-12-30 2018-07-05 Sol Voltaics Ab Method for providing an aggregate of aligned nanowires at a liquid-liquid interface
US10873026B2 (en) * 2017-03-10 2020-12-22 Wisconsin Alumni Research Foundation Alignment of carbon nanotubes in confined channels
KR102086740B1 (ko) 2017-10-20 2020-03-09 서강대학교산학협력단 모세관을 이용한 나노입자 단일층의 전이 방법 및 장치
WO2019078676A2 (ko) * 2017-10-20 2019-04-25 서강대학교산학협력단 모세관을 이용한 나노입자 단일층의 전이 방법 및 장치
EP3533900A1 (en) * 2018-03-02 2019-09-04 Stichting Nederlandse Wetenschappelijk Onderzoek Instituten Method and apparatus for forming a patterned layer of carbon
WO2020229855A1 (en) * 2019-05-13 2020-11-19 Gombos Akos Elemer Method and device for removing an ectoparasite from the skin
CN110265496A (zh) * 2019-06-25 2019-09-20 京东方科技集团股份有限公司 一种光敏元件及制作方法、指纹识别器件、显示装置
US11631814B2 (en) 2021-07-15 2023-04-18 Wisconsin Alumni Research Foundation Two-dimensional carbon nanotube liquid crystal films for wafer-scale electronics
WO2024246655A1 (en) 2023-05-18 2024-12-05 Alignedbio Ab Nanowire array containing nonstick layer and methods of making and using therof for analyte detection
KR102852137B1 (ko) * 2023-08-10 2025-08-29 한화솔루션 주식회사 와이어 정렬 장치

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225635A (ja) * 1984-04-25 1985-11-09 Canon Inc 成膜方法
JPS60225636A (ja) * 1984-04-25 1985-11-09 Canon Inc 成膜方法
JPS61283377A (ja) * 1985-06-06 1986-12-13 Seiko Epson Corp 有機薄膜の製造方法
JPS62102852A (ja) * 1985-10-30 1987-05-13 Seiko Epson Corp 有機薄膜製造装置
JPH02307571A (ja) * 1989-05-19 1990-12-20 Fuji Photo Film Co Ltd 固体粒子膜の形成方法
JP2005233637A (ja) * 2004-02-17 2005-09-02 Japan Science & Technology Agency 金ナノロッド薄膜によるラマン分光分析
JP2006192398A (ja) * 2005-01-17 2006-07-27 Yasuro Niitome ナノ粒子配向薄膜の製造方法
US7105052B1 (en) * 2003-03-17 2006-09-12 The Florida State University Research Foundation, Inc. Ordered array of magnetized nanorods and associated methods
JP2007139612A (ja) * 2005-11-18 2007-06-07 Fujifilm Corp 微細構造体、微細構造体の作製方法、ラマン分光法、及び装置
JP2010284603A (ja) * 2009-06-12 2010-12-24 Kyushu Univ 金属微粒子を多層に形成した多層膜基板とその製造方法。
JP2011016953A (ja) * 2009-07-10 2011-01-27 Kyushu Univ 金属微粒子含有高分子フィルムとその製造方法および用途。
JP2012509760A (ja) * 2008-11-21 2012-04-26 コーニング インコーポレイテッド 自己集合プロセスを使用した管の被覆方法
WO2013154490A2 (en) * 2012-04-12 2013-10-17 Sol Voltaics Ab Methods of nanowire functionalization, dispersion and attachment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091458A1 (en) * 2002-04-26 2003-11-06 The Penn State Research Foundation Integrated nanomechanical sensor array chips
US7422696B2 (en) * 2004-02-20 2008-09-09 Northwestern University Multicomponent nanorods
CN100419131C (zh) * 2004-11-01 2008-09-17 吉林大学 一种制备棒状、线状及六角形c60单晶的方法
US7741647B2 (en) * 2006-05-22 2010-06-22 Hewlett-Packard Development Company Utilizing nanowire for different applications
US8286803B2 (en) * 2009-06-18 2012-10-16 The Boeing Company Methods and systems for incorporating carbon nanotubes into thin film composite reverse osmosis membranes
JP2011138804A (ja) * 2009-12-25 2011-07-14 Honda Motor Co Ltd ナノワイヤ太陽電池及びその製造方法
FR2984599B1 (fr) * 2011-12-20 2014-01-17 Commissariat Energie Atomique Procede de fabrication d'un micro- ou nano- fil semiconducteur, structure semiconductrice comportant un tel micro- ou nano- fil et procede de fabrication d'une structure semiconductrice
FR2988904B1 (fr) * 2012-04-02 2015-01-16 Commissariat Energie Atomique Structure semiconductrice optoelectronique a nanofils et procede de fabrication d'une telle structure
GB201211038D0 (en) * 2012-06-21 2012-08-01 Norwegian Univ Sci & Tech Ntnu Solar cells
US9537044B2 (en) * 2012-10-26 2017-01-03 Aledia Optoelectric device and method for manufacturing the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225636A (ja) * 1984-04-25 1985-11-09 Canon Inc 成膜方法
JPS60225635A (ja) * 1984-04-25 1985-11-09 Canon Inc 成膜方法
JPS61283377A (ja) * 1985-06-06 1986-12-13 Seiko Epson Corp 有機薄膜の製造方法
JPS62102852A (ja) * 1985-10-30 1987-05-13 Seiko Epson Corp 有機薄膜製造装置
JPH02307571A (ja) * 1989-05-19 1990-12-20 Fuji Photo Film Co Ltd 固体粒子膜の形成方法
US7105052B1 (en) * 2003-03-17 2006-09-12 The Florida State University Research Foundation, Inc. Ordered array of magnetized nanorods and associated methods
JP2005233637A (ja) * 2004-02-17 2005-09-02 Japan Science & Technology Agency 金ナノロッド薄膜によるラマン分光分析
JP2006192398A (ja) * 2005-01-17 2006-07-27 Yasuro Niitome ナノ粒子配向薄膜の製造方法
JP2007139612A (ja) * 2005-11-18 2007-06-07 Fujifilm Corp 微細構造体、微細構造体の作製方法、ラマン分光法、及び装置
JP2012509760A (ja) * 2008-11-21 2012-04-26 コーニング インコーポレイテッド 自己集合プロセスを使用した管の被覆方法
JP2010284603A (ja) * 2009-06-12 2010-12-24 Kyushu Univ 金属微粒子を多層に形成した多層膜基板とその製造方法。
JP2011016953A (ja) * 2009-07-10 2011-01-27 Kyushu Univ 金属微粒子含有高分子フィルムとその製造方法および用途。
WO2013154490A2 (en) * 2012-04-12 2013-10-17 Sol Voltaics Ab Methods of nanowire functionalization, dispersion and attachment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENGYI ZHANG, ET.AL.: "Facile One-Step Fabrication of Ordered Organic Nanowire Films", ADVANCED MATERIALS, vol. 21, JPN6019010480, 2009, DE, pages 4172 - 4175, ISSN: 0004191499 *

Also Published As

Publication number Publication date
US20170047460A1 (en) 2017-02-16
CN106415844A (zh) 2017-02-15
US10177264B2 (en) 2019-01-08
WO2015166416A1 (en) 2015-11-05
KR102243642B1 (ko) 2021-04-22
EP3137416A1 (en) 2017-03-08
KR20160147005A (ko) 2016-12-21

Similar Documents

Publication Publication Date Title
JP2017521265A (ja) ナノワイヤの集合体を捕集および整列する方法
KR100768632B1 (ko) 나노입자의 분산방법 및 이를 이용한 나노입자 박막의제조방법
Wang et al. Microtwinning in template-synthesized single-crystal metal nanowires
JP2019527622A (ja) ナノワイヤを流体から基板表面に移動させる方法
JP2007016317A (ja) ナノ粒子分散溶液の製造方法及びこれを用いるナノ粒子薄膜の製造方法
JP6473232B2 (ja) シェルで可能にされた垂直整列、および密に詰まったコロイド状結晶膜の精密集合体
CN110176541A (zh) 一种基于对流组装沉积法的硫化铅胶体量子点太阳能电池及制备方法
US20080202579A1 (en) Methods of Making Functionalized Nanorods
US7833616B2 (en) Self-aligning nanowires and methods thereof
KR101838637B1 (ko) 나노입자-그래핀 산화물 복합체 박막 및 그 제조방법
CN104724660A (zh) 可挠性纳米结构
KR101313388B1 (ko) 나노입자를 이용한 구조 제조
CN104724669A (zh) 架构包含介电粒子支撑体的可挠性纳米结构的方法
HK1229532A1 (en) Methods of capturing and aligning an assembly of nanowires
KR101689276B1 (ko) 헤테로 접합 금속 나노 와이어의 제조방법 및 이에 따라 제조되는 헤테로 접합 금속 나노 와이어
CN104724665A (zh) 包含介电粒子支撑层的可挠性纳米结构
CN104724666A (zh) 包含介电粒子支撑体的纳米结构
KR20100036447A (ko) 기판 상에서 표면 에너지를 이용한 나노 와이어 성장 방법
Kim et al. Effects of Tilt Angle, DNA Concentration, and Surface Potential on Directed Alignment of DNA Molecule for the Application to Nanodevices
HK1237126A1 (en) Shell-enabled vertical alignment and precision-assembly of a close-packed colloidal crystal film
TW201829294A (zh) 提供對準的奈米線之聚集體的方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210226