JP2017160234A - ベラプロストの製造方法 - Google Patents

ベラプロストの製造方法 Download PDF

Info

Publication number
JP2017160234A
JP2017160234A JP2017089019A JP2017089019A JP2017160234A JP 2017160234 A JP2017160234 A JP 2017160234A JP 2017089019 A JP2017089019 A JP 2017089019A JP 2017089019 A JP2017089019 A JP 2017089019A JP 2017160234 A JP2017160234 A JP 2017160234A
Authority
JP
Japan
Prior art keywords
compound
alkyl
formula
following formula
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017089019A
Other languages
English (en)
Other versions
JP6691891B2 (ja
Inventor
シャーマ,ヴィジェイ
Sharma Vijay
バトラ,ヒテシュ
Batra Hitesh
トゥラダー,スダーサン
Tuladhar Sudersan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lung Biotechnology PBC
Original Assignee
Lung Biotechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lung Biotechnology Inc filed Critical Lung Biotechnology Inc
Publication of JP2017160234A publication Critical patent/JP2017160234A/ja
Application granted granted Critical
Publication of JP6691891B2 publication Critical patent/JP6691891B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/93Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems condensed with a ring other than six-membered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/557Eicosanoids, e.g. leukotrienes or prostaglandins
    • A61K31/558Eicosanoids, e.g. leukotrienes or prostaglandins having heterocyclic rings containing oxygen as the only ring hetero atom, e.g. thromboxanes
    • A61K31/5585Eicosanoids, e.g. leukotrienes or prostaglandins having heterocyclic rings containing oxygen as the only ring hetero atom, e.g. thromboxanes having five-membered rings containing oxygen as the only ring hetero atom, e.g. prostacyclin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C259/00Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups
    • C07C259/04Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids
    • C07C259/06Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids having carbon atoms of hydroxamic groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1892Preparation; Treatments not provided for in C07F7/20 by reactions not provided for in C07F7/1876 - C07F7/1888
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4006Esters of acyclic acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4015Esters of acyclic unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/40Esters thereof
    • C07F9/4071Esters thereof the ester moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4075Esters with hydroxyalkyl compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Steroid Compounds (AREA)
  • Furan Compounds (AREA)

Abstract

【課題】ベラプロスト及びその誘導体を含む単一異性ベンゾプロスタサイクリン誘導体の製造方法の提供。
【解決手段】
Figure 2017160234

上記式のアルデヒドを、95%を超えるキラル純度を有する下記式の化合物と反応させ、形成化合物のカルボニルを還元し、第二級アルコールを脱保護する製造方法。
Figure 2017160234

[Z’はアルキル−COOR12;COOR12は保護基等;R2aはシリルヒドロキシ保護基;R及びRは各々独立にH等]
【選択図】図1

Description

関連出願の相互参照
本出願は、2011年6月16日に出願された米国仮出願第61/497,754号の優先権を主張するものであり、前記出願の全文が参照により本明細書に組み込まれるものとする。
本出願は、ベラプロスト(beraprost)およびその誘導体を含む単一異性ベンゾプロスタサイクリン誘導体を選択的に製造する方法に関する。
本発明はまた、ベラプロストおよび関連誘導体に至る単一異性重要中間体にアルファ側鎖を結合するための新規の方法に関する。
プロスタサイクリン誘導体は、血小板凝集阻害、胃液分泌抑制、病変抑制、および気管支拡張などの活性を有する有用な医薬化合物である。ベラプロストは、天然プロスタサイクリンの合成ベンゾプロスタサイクリン類似物であって、現在北アメリカおよびヨーロッパで肺高血圧症および血管疾患(腎疾患を除く)の治療に関する臨床試験が実施されている。
ベラプロストおよび関連する式(I)のベンゾプロスタサイクリン類似物は、米国特許第5,202,447号およびTetrahedron Lett. 31, 4493 (1990)に開示されている。さらに、米国特許第7,345,181号に記載される通り、ベンゾプロスタサイクリン類似物を製造するためのいくつかの合成法が知られている。
公知の合成法は、一般に、ベラプロストまたは関連するベンゾプロスタサイクリン類似物の薬理活性異性体を得るために1回以上の中間体の分割を必要とする。また、現在のベラプロストまたは関連するベンゾプロスタサイクリン類似物の医薬製剤は医薬化合物の数種の異性体からなり、そのうちの1種のみが主として薬物の薬理活性に関与している。現在の合成法からベラプロスト化合物の薬理活性異性体を単離するためには、複数回の分取HPLCもしくはクロマトグラフィーによる精製法または複数回の再結晶が必要であり、これは商業的に応用可能なスケールには適さない。したがって、ベラプロストまたは関連するベンゾプロスタサイクリン類似物の活性異性体を合成するための効率的な、商業的に応用可能な合成経路を実現することが望まれる。
本発明の目的は、一般式(I)により表される医薬化合物を、実質的に異性体的に純粋な形態で、先行技術よりも少ない工程で、かつ商業的に有用な量で製造することができる方法を提供することである。本発明の別の目的は、一般式(IV)および(V)により表される三環系中間体を、一般式(I)により表される医薬化合物または他の類似の化合物の製造に使用可能な実質的に異性体的に純粋な形態で製造し得る方法を提供することである。本発明のさらに別の目的は、一般式(I)により表される医薬化合物に至る単一異性重要中間体にアルファ側鎖を結合し得る新規の方法を提供することである。本発明はまた、一般式(I)のベラプロストおよび関連誘導体に変換することができる6、2a = Hである化合物(VII)(ジオール単一異性体とも呼ぶ)のみを95〜100%の純度で調製する方法を特許請求する。
一実施形態は、下記の式:
Figure 2017160234
[式中、R1はカチオン、H、またはC1-12アルキルを表し、R2およびR3はそれぞれHまたはヒドロキシ保護基を表し、R4はHまたはC1-3アルキルを表し、R5はHまたはC1-6アルキルを表す]
の化合物を調製する方法であって、
(1) 下記の式:
Figure 2017160234
[式中、R2aおよびR6は独立してヒドロキシ保護基を表す]
の化合物に対する、下記の式:
Figure 2017160234
[式中、R7はC1-6アルコキシまたはC1-12アルキル-COOR9を表し、ここでR9はC1-3アルキルを表し、かつR8はハロゲンまたはHを表す]
の化合物による環化付加反応をおこなって、下記の式:
Figure 2017160234
[式中、R2a、R6、R7、およびR8はそれぞれ上に定義された通りである]
の化合物を形成する工程;
(2) 式(IV)のシクロジエンを芳香族化して、下記の式:
Figure 2017160234
の芳香族生成物を形成する工程;
(3) 式(V)の化合物のエステルを還元してベンジルアルコールを形成し、ベンジルアルコールを酸化してアルデヒドを形成した後、前記アルデヒドに炭素を付加してアルキンを形成することにより、下記の式:
Figure 2017160234
の化合物を得る工程;
(4) 末端アルキンをN2CH2CO2R1a[式中、R1aはC1-12アルキルを表す]とカップリングした後、アルキンを水素化して対応するアルカンを得て、下記の式:
Figure 2017160234
の化合物を形成する工程;
(5) 第一級ヒドロキシ保護基を選択的に脱保護した後、第一級ヒドロキシ基を酸化して対応するアルデヒドを形成し、次いで、式:
Figure 2017160234
[式中、R4およびR5はそれぞれ上に定義された通りである]
の側鎖とカップリングして、下記の式:
Figure 2017160234
の化合物を形成する工程;
(6) ケトンを還元し、残存するヒドロキシ保護基を脱保護し、場合によりR1aをカチオンまたはHに変換して、下記の式:
Figure 2017160234
の化合物を形成する工程を含む、前記方法を提供する。別の実施形態において、式(I)の化合物は実質的に純粋な単一異性体として製造される。別の実施形態において、R1はカチオンまたはHであり、R2およびR3はHであり、R4およびR5はCH3である。別の実施形態において、R2、R3、R2aおよびR6はそれぞれ独立して、トリメチルシリル、トリエチルシリル、t-ブチルジメチルシリル、t-ブチルジフェニルシリル、フェニルジメチルシリル、またはテトラヒドロピラニルを表す。別の実施形態において、工程(1)の環化付加は逆電子要請型ディールス・アルダー反応およびそれに続く熱脱炭酸反応である。別の実施形態において、芳香族化工程(2)は式(IV)の化合物のパラジウム炭素による処理である。
別の実施形態は、下記の式:
Figure 2017160234
[式中、R2aおよびR6は独立してヒドロキシ保護基を表し、かつR7はC1-6アルコキシまたはC1-12アルキル-COOR9を表し、ここでR9はC1-3アルキルを表す]
の立体選択的に製造された異性化合物を調製する方法であって、
(1) 下記の式:
Figure 2017160234
[式中、R2aおよびR6は独立してヒドロキシ保護基を表す]
の化合物に環化付加反応をおこなって、下記の式:
Figure 2017160234
[式中、R2a、R6およびR7はそれぞれ上に定義された通りである]
の化合物を形成する工程;
(2) 式(IV)のシクロジエンを芳香族化して、下記の式:
Figure 2017160234
[式中、R2a、R6、およびR7はそれぞれ上に定義された通りである]
の芳香族生成物を形成する工程を含む、前記方法を提供する。一実施形態において、R2aおよびR6はそれぞれ独立して、トリメチルシリル、トリエチルシリル、t-ブチルジメチルシリル、t-ブチルジフェニルシリル、フェニルジメチルシリル、またはテトラヒドロピラニルを表す。別の実施形態において、工程(1)の環化付加は逆電子要請型ディールス・アルダー反応およびそれに続く熱脱炭酸反応である。別の実施形態において、芳香族化工程(2)は式(IV)の化合物のパラジウム炭素による処理である。別の実施形態は、下記の式:
Figure 2017160234
[式中、R1aはカチオン、H、またはC1-12アルキルを表す]
の化合物を調製する方法であって、
(1) 下記の式:
Figure 2017160234
[式中、R2aおよびR6は独立してヒドロキシ保護基を表す]
の化合物に対する、下記の式:
Figure 2017160234
[式中、R7はC1-6アルコキシまたはC1-12アルキル-COOR9を表し、ここでR9はC1-3アルキルを表し、かつR8はハロゲンまたはHを表す]
の化合物による環化付加反応をおこなって、下記の式:
Figure 2017160234
[式中、R2a、R6、R7、およびR8はそれぞれ上に定義された通りである]
の化合物を形成する工程;
(2) 式(IV)のシクロジエンを芳香族化して、下記の式:
Figure 2017160234
の芳香族生成物を形成する工程;
(3) 式(V)の化合物のエステルを還元してベンジルアルコールを形成し、ベンジルアルコールを酸化してアルデヒドを形成した後、前記アルデヒドに炭素を付加してアルキンを形成することにより、下記の式:
Figure 2017160234
の化合物を得る工程;
(4) 末端アルキンをN2CH2CO2R1a[式中、R1aはC1-12アルキルを表す]とカップリングした後、アルキンを水素化して対応するアルカンを得て、次いでヒドロキシ保護基を脱保護して、下記の式:
Figure 2017160234
[式中、R1aはカチオン、H、またはC1-12アルキルを表す]
の化合物を形成する工程を含む、前記方法を提供する。別の実施形態において、式(VII)の化合物は実質的に純粋な単一異性体として製造される。
別の実施形態は、式:
Figure 2017160234
[式中、xは
Figure 2017160234
または
Figure 2017160234
であり、R4はHまたはC1-3アルキルを表し、かつ
R5はHまたはC1-6アルキルを表す]
により表される化合物を提供し、前記化合物は少なくとも95%のキラル純度を有する。さらなる実施形態は、少なくとも95%、97%、99%の、または99%を超えるキラル純度を提供する。別の実施形態はR4およびR5がそれぞれCH3である化合物を提供する。
別の実施形態は、実質的に純粋な下記の式:
Figure 2017160234
[式中、
R2はHまたはヒドロキシ保護基を表し、
R4はHまたはC1-3アルキルを表し、
R5はHまたはC1-6アルキルを表し、かつ
ZはC1-12アルキル-COOR12を表し、R12はカチオン、H、またはC1-12アルキルである]
の化合物を調製する方法であって、
(1) 式:
Figure 2017160234
のアルデヒドを、実質的に純粋な式:
Figure 2017160234
[式中、Z’はC1-12アルキル-COOR12’であり、R12’はC1-6アルキルまたは保護基であり、R2aはヒドロキシ保護基であり、R4およびR5はそれぞれ上に定義された通りである]
の化合物と反応させて、下記の式:
Figure 2017160234
の化合物を形成する工程;
(2) カルボニルを選択的に還元し、第二級アルコールを脱保護して、実質的に純粋な下記の式:
Figure 2017160234
の化合物を形成する工程;および
(3) 場合により、Z’の保護された酸のエステルを脱保護して酸またはその塩を形成する工程を含む、前記方法を提供する。一実施形態において、カルボニルの選択的還元は不斉触媒を含む。一実施形態において、工程3はオプションではなく、Z’はC1-12アルキル-COOR12’であり、かつR12’はC1-6アルキルである。一実施形態において、工程3はオプションではなく、R4およびR5はそれぞれCH3であり、Zは(CH2)3COOR12であり、かつR12はカチオンまたはHである。一実施形態において、R12はカチオンであり、カチオンはK+である。一実施形態において、得られる実質的に純粋な化合物は、99%を超える下記の式:
Figure 2017160234
により表される異性体を含む。
ベラプロスト類似物のコアとカップリングするための側鎖化合物の合成の実施形態を示す図である。 ベラプロスト314dおよびその異性体を示す図である。 エノン中間体に至る選択的保護戦略の実施形態を示す図である。 エノン中間体からのベラプロストの不斉合成の実施形態を示す図である。
好ましい実施形態の詳細な説明
本明細書に引用されるすべての参照文献は、参照により全体として本明細書に組み込まれる。
本明細書に開示されるさまざまな発明および/またはそれらの実施形態は、ベラプロストまたはその関連誘導体の実質的に純粋な異性体を合成する方法に関する。1つの好ましい実施形態において、ベラプロストの実質的に純粋な異性体は式(I)により表される。別の好ましい実施形態において、ベラプロストの実質的に純粋な異性体は、ベラプロスト(314d)、またはその塩、溶媒和物もしくはプロドラッグなどの関連類似物である。他の実施形態は、本明細書に開示される1種以上の合成経路の新規の中間体である化合物を含む。
Figure 2017160234
[式中、R1はカチオン、H、またはC1-12アルキルを表し、R2およびR3はそれぞれHまたはヒドロキシ保護基を表し、R4はHまたはC1-3アルキルを表し、かつR5はHまたはC1-6アルキルを表す]
Figure 2017160234
ベラプロスト(314d)
他に特定しない限り、本明細書および特許請求の範囲全体に渡って、「a」または「an」は「1以上」を意味する。
本明細書において使用される場合、用語「または」は、他に特定されない限り「および/または」を意味する。
本明細書において化合物を調製するために必要に応じて使用し得る重要な合成法は当業者に周知であり、例えば、March’s Advanced Organic Chemistry, 6th Ed., 2007; T. W. Greene, Protective Groups in Organic Synthesis, John Wiley and Sons, 1991に記載されている。
ある部分(例えば、化合物)に単数で言及する場合、複数も含まれることを意味している。したがって、特定の部分(例えば、「化合物」)に言及する場合、他に特定されない限り、これは「少なくとも1つの」その部分(例えば、「少なくとも1つの化合物」)を意味する。
本明細書において使用される場合、「ハロ」または「ハロゲン」、さらには「ハライド」は、フッ素、塩素、臭素、およびヨウ素を指し得る。
本明細書において使用される場合、「アルキル」は、直鎖、分枝鎖、または環式飽和炭化水素基を指し得る。アルキル基の例としては、メチル(Me)、エチル(Et)、プロピル(例えば、n-プロピルおよびイソプロピル)、ブチル(例えば、n-ブチル、イソブチル、sec-ブチル、tert-ブチル)、ペンチル基(例えば、n-ペンチル、イソペンチル、ネオペンチル)等が挙げられる。種々の実施形態において、アルキル基は1〜30個の炭素原子、例えば、1〜20個の炭素原子(すなわち、C1〜C20アルキル基)を有し得る。いくつかの実施形態において、アルキル基は1〜6個の炭素原子を有することができ、「低級アルキル基」と呼ばれ得る。低級アルキル基の例としては、メチル、エチル、プロピル(例えば、n-プロピルおよびイソプロピル)、およびブチル基(例えば、n-ブチル、イソブチル、sec-ブチル、tert-ブチル)が挙げられる。いくつかの実施形態において、アルキル基は本明細書に定義される通りに置換され得る。いくつかの実施形態において、置換飽和炭化水素、C1〜C6モノ-およびジ-ならびにプレ-ハロゲン(pre-halogen、訳者注:ペルハロゲン?)置換飽和炭化水素ならびにアミノ置換炭化水素が好ましく、ペルフルオロメチル、ペルクロロメチル、ペルフルオロ-tert-ブチル、およびペルクロロ-tert-ブチルが最も好ましい。用語「置換アルキル」は、任意の非分枝鎖または分枝鎖の置換飽和炭化水素を意味し、非分枝鎖C1〜C6アルキル第二級アミン、置換C1〜C6第二級アルキルアミン、および非分枝鎖C1〜C6アルキル第三級アミンも「置換アルキル」の定義に包含されるが、好ましくない。いくつかの実施形態において、用語「アルキル」は、任意の非分枝鎖または分枝鎖の置換飽和炭化水素を意味する。いくつかの実施形態において、環式炭化水素およびヘテロ原子を有する環式化合物の両方の環式化合物が「アルキル」の意味に包含される。いくつかの実施形態において、「ハロアルキル」は1個以上のハロゲン置換を有するアルキル基を指し、「アルキル」の意味に包含され得る。さまざまな実施形態において、ハロアルキル基は1〜20個の炭素原子、例えば1〜10個の炭素原子(すなわち、C1〜C10ハロアルキル基)を有し得る。ハロアルキル基の例としては、CF3、C2F5、CHF2、CH2F、CCl3、CHCl2、CH2Cl、C2Cl5等が挙げられる。ペルハロアルキル基、すなわち、すべての水素原子がハロゲン原子により置換されているアルキル基(例えば、CF3およびC2F5などのペルフルオロアルキル基)は「ハロアルキル」の定義に包含される。いくつかの実施形態において、「アルコキシ」は-O-アルキル基を指し、「アルキル」の意味に包含され得る。アルコキシ基の例としては、メトキシ、エトキシ、プロポキシ(例えば、n-プロポキシおよびイソプロポキシ)、t-ブトキシ基等が挙げられるが、これらに限定されない。-O-アルキル基におけるアルキル基は、1〜5個のR1基(R1は本明細書に定義される通りである)により置換されていてもよい。
本明細書において使用される場合、「ヒドロキシ保護基」は、T. W. Greene, Protective Groups in Organic Synthesis, John Wiley and Sons, 1991(以下に、「Greene, Protective Groups in Organic Synthesis」と記載する)に定義される通りの、アルコールまたはヒドロキシ保護基の一般に理解される定義を指す。
本明細書において使用される場合、「保護基」は当業者に公知の意味で、および、Greene, Protective Groups in Organic Synthesisに示される意味で使用される。
本明細書において使用される場合、実質的に純粋な化合物または異性体とは、得られる異性体混合物の90%である、または好ましくは得られる異性体混合物の95%である、またはより好ましくは得られる異性体混合物の98%である、またはさらに好ましくは得られる異性体混合物の99%である、および最も好ましくは得られる異性体混合物の99%を超える1つの異性体を指す。
本発明の一態様は、式(II)により表される化合物などのコーリーラクトン(Corey Lactone)から、ベラプロスト(314d)またはその塩、溶媒和物もしくはプロドラッグなどの関連類似物を合成するための合成法である。
一実施形態において、本発明は、下記の式:
Figure 2017160234
[式中、R1はカチオン、H、またはC1-12アルキルを表し、R2およびR3はそれぞれHまたはヒドロキシ保護基を表し、R4はHまたはC1-3アルキルを表し、かつR5はHまたはC1-6アルキルを表す]
のベラプロストまたはその関連誘導体の実質的に純粋な異性体を製造する方法であって、(1) 下記の式:
Figure 2017160234
[式中、R2aおよびR6は独立してヒドロキシ保護基またはHを表す]
の化合物と、下記の式:
Figure 2017160234
[式中、R7はC1-6アルコキシまたはC1-12アルキル-COOR9を表し、ここでR9はC1-3アルキルを表し、かつR8はハロゲンまたはHを表す]
の化合物との間の環化付加反応をおこなって、下記の式:
Figure 2017160234
[式中、R2a、R6、R7、およびR8はそれぞれ上に定義された通りである]
の化合物を形成する工程;
(2) 式(IV)のシクロジエン化合物を芳香族化して、下記の式:
Figure 2017160234
の芳香族生成物を形成する工程;
(3) 式(V)の化合物のエステルを還元してベンジルアルコールを形成し、ベンジルアルコールを酸化してアルデヒドを形成した後、前記アルデヒドに炭素を付加してアルキンを形成することにより、下記の式:
Figure 2017160234
の化合物を得る工程;
(4) 末端アルキンをN2CH2CO2R1a[式中、R1aはC1-12アルキルを表す]とカップリングした後、アルキンを水素化して対応するアルカンを得て、下記の式:
Figure 2017160234
の化合物を形成する工程;
(5) 第一級ヒドロキシ保護基を選択的に脱保護した後、第一級ヒドロキシ基を酸化して対応するアルデヒドを形成し、次いで、式:
Figure 2017160234
[式中、R4およびR5はそれぞれ上に定義された通りであり、(VIII)は実質的に単一異性体である]
の側鎖とカップリングして、下記の式:
Figure 2017160234
の化合物を形成する工程;
(6) ケトンを還元し、残存するヒドロキシ保護基を脱保護し、場合によりR1aをカチオンまたはHに変換して、下記の式:
Figure 2017160234
の化合物を形成する工程を含む、前記方法に関する。
本発明において、単一の薬理活性を有するベラプロスト異性体は、ベラプロスト314-d異性体またはその対応する塩または例えばプロドラッグもしくは溶媒和物などの他の製薬上有用な関連誘導体に相当する。この314-d異性化合物は、R1がカチオンまたはHであり、R2およびR3がHであり、R4およびR5がCH3である式(I)の化合物により表される。
一実施形態において、R2aおよびR6は独立してヒドロキシ保護基を表し、異なる保護基である。一実施形態において、R2aは、例えばトリメチルシリル、トリエチルシリル、t-ブチルジメチルシリル、t-ブチルジフェニルシリル、フェニルジメチルシリルなどのシリル保護基である。さらなるシリル保護基は、Greene, Protective Groups in Organic Synthesisに記載されており、参照により組み込まれる。一実施形態において、R6は例えばトリチル基などの、第二級アルコールと反応することなく第一級アルコールを保護することが可能な保護基である。この要求を満たすさらなるR6保護基は、Greene, Protective Groups in Organic Synthesisに記載されており、参照により組み込まれる。
一実施形態において、工程(1)の環化付加は、逆電子要請型ディールス・アルダー反応およびそれに続く熱脱炭酸反応により達成可能であり、endoおよびexo異性体が形成される。それに続く芳香族化による化合物(V)の形成により、前記異性体が排除される。一実施形態において、芳香族化は脱水素反応により達成可能であり、例えばパラジウム炭素を利用して化合物(IV)のジエンを化合物(V)の芳香族部分に変換することができる。
工程(6)におけるケトンの還元は、例えば水素化ホウ素ナトリウムなどの非選択的還元剤を三塩化セリウム七水和物と共に使用した後にジアステレオマーを分離することにより達成可能であり、あるいは、ケトンを選択的に還元することが可能なキラル還元剤を使用して、生成するアルコールの実質的に1つの異性体を得ることも可能である。選択的還元剤は当業者に公知であり、例えば、(R)-(+)-2-ブチル-CBS-オキサザボロリジンおよびカテコールボラン、(R)-(+)-2-メチル-CBS-オキサザボロリジンおよびカテコールボラン、(+)DIP-クロリド、NaBH4および2-(3-ニトロフェニル)-1,3,2-ジオキサボロラン-4S,5S-ジカルボン酸(D-TarB-NO2)、改変DIBAL試薬、および改変LAH試薬が挙げられる。
一実施形態において、式(I)の化合物は、式(I)により表される単一異性体として、かつ実質的に異性体的に純粋な形態で製造される。一実施形態において、式(I)により表される生成物は、得られる異性体混合物の90%を、または好ましくは得られる異性体混合物の95%を、またはより好ましくは得られる異性体混合物の98%を、またはさらに好ましくは得られる異性体混合物の99%を、および最も好ましくは得られる異性体混合物の99%を超える部分を占める。
本発明の別の実施形態は、工程(1)〜(4)、およびそれに続くすべてのアルコール保護基を脱保護してR2aおよびR6がHであり、R1aがメトキシである式(VII)の化合物を得る工程を含む方法である。この化合物は、式(VII)の化合物により表される実質的に1つの異性体として単離される。
本発明の別の態様は、一般式(I)により表される医薬化合物に至る単一異性重要中間体にアルファ側鎖を結合することができる新規の方法を提供する。この新規の方法は、式(V)の化合物を式(X)のベンジルアルコールに変換した後、ベンジルアルコールを酸化して式(XII)のアルデヒドを形成し、次いで前記アルデヒドに炭素を付加して式(VI)のアルキン化合物を形成することを含む、式(V)の化合物のコア中間体エステルからベラプロストまたはその関連誘導体の4個の炭素を有するアルファ側鎖を製造する方法を提供する。当業者はアルファ側鎖の延長が、式(X)のベンジルアルコールから、アルコールを式(XI)のR10などの脱離基に変換した後に求核置換をおこなうことにより進行可能であることを理解するであろう。さらに、式(XII)のベンジルアルデヒドに側鎖をカップリングするために、Wittig反応または同じタイプの反応を使用することができる。
別の実施形態において、単一異性重要中間体の類似物は、4個よりも多い炭素を有するアルファ側鎖を含み得る。例えば、スキーム1は、式(X)のベンジルアルコールを式(XI)の化合物に変換した後に求核置換をおこなって(XIII)を得ることができることを示す。別の実施形態において、式(XII)のアルデヒドにWittig型の反応をおこなって、式(XIII)の化合物を製造することができる。さらなる実施形態において、当業者に公知の方法または本明細書に開示される方法に類似の方法により、式(VI)のアルデヒドを式(XIII)の化合物に変換することができる。
スキーム1
Figure 2017160234
[式中、R2aおよびR6は独立してヒドロキシ保護基を表し、かつR10〜R12は上に定義された通りであり、場合により1個以上の官能基により置換されていてもよい]
式(XIII)の化合物に工程(5)および(6)をおこなってさらなるベラプロスト類似物を製造することができる。
本発明の別の態様は側鎖のカップリングおよび前記側鎖の変化に関する。ベラプロストおよびその誘導体のトランスアルケンは、Wadworth-Emmons型反応により達成される。側鎖は実質的に単一の異性体として製造される。
式(VIII)の側鎖カップリング生成物の合成は、下記の式:
Figure 2017160234
[式中、R4およびR5はそれぞれ上に定義された通りである]
の単一異性ワインレブ(Weinreb)アミド化合物から達成することができる。
さらに、式(XIV)の化合物は、当業者に公知の試薬により、式(XV):
Figure 2017160234
の化合物から、脱プロトン化およびそれに続く例えば化合物(XVI):
Figure 2017160234
などの好適な脱離基を有する化合物への選択的付加により合成することができ、その結果、化合物:
Figure 2017160234
が生成する。
式(XVII)の化合物は、当業者に公知の方法により式(XIV)の化合物に変換することができる。次に、化合物(XIV)を、本明細書に開示される方法と類似の方法により式(VIII)の化合物に変換することができる。
さらに、本発明の別の実施形態には、スキーム2に示される通りの側鎖カップリング生成物の操作が含まれる。側鎖の変化により、ベラプロストのさらなる類似物の探求が可能になる。一実施形態において、式(XV)の化合物を式(XVIII)[式中、R13はC1-12アリル、C1-12アルケン、C1-12アルキン、C1-12シクロアルキル、C1-12シクロアルケン、またはC1-12シクロアルキンである]の化合物と反応させて、本明細書において開示された方法と類似の方法または当業者に公知の方法によりさらに操作して、式(XIX)のワインレブアミドを形成することができる。これらの反応のための方法は、化合物(XIV)の製造方法と類似しているか、当業者に公知である。次に、式(XIX)の化合物を、式(VIII)の化合物と類似のWadworth-Emmons型カップリングに適したカップリング生成物に変換することができる。得られたカップリング生成物を、本明細書に開示されるWadworth-Emmons型カップリングに適した化合物(例えば、第一級ヒドロキシ保護基を選択的に脱保護した後、第一級ヒドロキシ基を酸化して対応するアルデヒドとした式(VII)の化合物)とカップリングすることができる。
スキーム2
Figure 2017160234
[式中、R4およびR13は先に定義された通りである]
一実施形態において、XはHである。別の実施形態において、XはPhである。Phの類似物および他のアリール、ヘテロアリールまたはアルキル基などのさらなる基もXとして使用し得る。一実施形態において、ホスホネート生成物は、97パーセント以上、または99パーセント以上のキラル純度で製造される。
さらなる実施形態は、構造
Figure 2017160234
または
Figure 2017160234
または
Figure 2017160234
または
Figure 2017160234
[式中、R4、R5およびR13は先に定義された通りである]
により表される側鎖化合物を含み、ここで、キラル純度は97パーセント以上または99パーセント以上である。好ましい実施形態は、構造
Figure 2017160234
または
Figure 2017160234
により表される化合物を含み、ここで、キラル純度は97パーセント以上または99パーセント以上である。
側鎖化合物は、図1に示される典型的な方法を含む、本明細書に記載される方法により製造することができる。
本発明を以下の実施例によりさらに説明するが、本発明はこれらの実施例に決して限定されない。
実施例1:式(I)の化合物の単一異性体への合成経路
Figure 2017160234
(2)の調製 メカニカルスターラー、滴下ロート、熱電対、および気泡管に連結されたアルゴンインレット-アウトレットアダプターを取り付けた1L三口丸底フラスコに、アルゴン雰囲気下でコーリー(Corey)ラクトン(1)(10 g)、無水ジクロロメタン(100 mL)、および2,6-ルチジン(27 mL)を入れた。t-ブチルジメチルトリフルオロメタンスルホネート(37.4 mL)のジクロロメタン(50 mL)溶液を反応混合物に、温度を-10℃〜-20℃に維持しながら20〜40分かけて滴加した。添加が終了した後、反応混合物を室温に温めた。2〜4時間後、反応の進行を薄層クロマトグラフィーによりモニターした。反応が終了した後、反応混合物を減圧濃縮して粗生成物を得た。粗生成物にMTBEを加えてもう一度蒸発させ、ジクロロメタンを完全に除去した。粗生成物をMTBE(100〜150 mL)に溶解し、水(1×100 mL)、飽和炭酸水素ナトリウム(1×100 mL)、食塩水(1×150 mL)により洗浄し、無水硫酸ナトリウム(10 g)により乾燥して、濾過した。濾液を減圧蒸発させて、未精製の粘性の液体(30.4 g)を得た。粗生成物をカラムクロマトグラフィーにより230〜400メッシュのシリカゲルを用いて精製した。ヘキサン中の酢酸エチル(2〜2%)の溶媒勾配を用いてカラムから生成物を溶離した。目的生成物を含有するすべてのフラクションを合わせて減圧濃縮して、純粋な生成物(2)を白色の固体(20.8 g、89.4%)として得た。
Figure 2017160234
(3)の調製 メカニカルスターラー、滴下ロート、熱電対、および気泡管に連結されたアルゴンインレット-アウトレットアダプターを取り付けた1L二口丸底フラスコに、中間体2(20.0 g)およびトルエン(200 mL)を入れた。窒素雰囲気下でドライアイス-アセトン浴を用いて反応混合物の温度を-50℃〜-70℃に維持した。反応混合物の温度を-50℃〜-70℃に維持しながら、水素化ジイソブチルアルミニウム(DIBAL、60 mL、1.0M、トルエン中)を20〜30分間かけて滴加した。反応の進行をTLCによりモニターした。反応混合物に-20℃でメタノール(10 mL)を加えて反応を止め、水(300 mL)、次いで希塩酸(約20%)を加えた。有機層を分離して、水層をMTBE(2×100 mL)により抽出した。有機層を合わせて飽和炭酸水素ナトリウム(1×150 mL)、食塩水(1×150 mL)により洗浄し、硫酸ナトリウム(10 g)により乾燥した。有機層を濾過した。濾液を減圧濃縮して、黄色の粘性のオイル(20.4 g)を得た。粗生成物をそのまま次の工程に使用した。
Figure 2017160234
(4)の調製 メカニカルスターラー、熱電対およびアルゴンインレット-アウトレットトラップを取り付けた1L三口丸底フラスコに、ラクトール中間体3(20 g)、無水ジクロロメタン(200〜250 mL)、トリエチルアミン(69.2 mL)、およびジメチルアミノピリジン(DMAP、0.6 g)を入れた。反応混合物の温度を-20℃に下げた。メタンスルホニルクロリド(7.7 mL)の溶液を、アルゴン雰囲気下で温度を約-20℃に維持しながら滴加した。添加が終了した後、反応の進行をTLCによりモニターした。反応混合物の温度を室温に上げた。反応混合物を2〜4時間加熱還流した。反応混合物を減圧濃縮して粗生成物を得た。粗生成物をカラムクロマトグラフィーにより230〜400メッシュのシリカゲルを用いて精製し、ヘキサン中の酢酸エチル(0〜10%)の勾配溶媒により溶離した。目的生成物を含有するフラクションを合わせて減圧蒸発させて、中間体4(粘性の液体として、11 g)を得た。
Figure 2017160234
(6)の調製 メカニカルスターラーおよびアルゴンインレット-アウトレットトラップを取り付けた1L二口丸底フラスコに、アルゴン雰囲気下、室温で中間体(4、10.0 g)、ジクロロエタン(DCE、100〜150 mL)、化合物5(2.6 g)、およびEu(hfc)3(1.4 g)の溶液を入れた。反応混合物を1.0時間攪拌および加熱還流し、TLCにより反応の進行をモニターして、出発物質5が完全に消費されたことを確認した。1.0時間後、反応温度を還流温度よりも下に低下させ、化合物5(1.0 g)を反応混合物に加えた。反応温度を上げて還流させた。同じようにして30分後に化合物5(0.9 g)を加えて再度反応液の還流を続けた。反応混合物のTLCにより中間体4がほぼ完全に消費されたことが示された時に、溶媒を減圧蒸発させて残留する粘性の液体を得た。褐色の粘性の液体にトルエンを加えてもう一度蒸発させ、トルエン(100〜150 mL)に溶解した。反応混合物を再度6〜8時間加熱還流した。反応の進行をTLCによりモニターした。反応が終了した後、反応液を減圧濃縮して、粗生成物6を粘性のオイルとして得た。粗生成物をカラムクロマトグラフィーにより230〜400メッシュのシリカゲルを用いて精製し、ヘキサン中の酢酸エチル(4〜40%)の勾配溶媒により溶離した。目的生成物を含有するフラクションを合わせて減圧濃縮して、中間体6を無色の粘性のオイル(9.87 g、77%)として得た。
Figure 2017160234
(7)の調製 マグネチックスターラー、アルゴンインレット-アウトレットトラップ、および冷却器を取り付けた500 mL一口丸底フラスコに、アルゴン雰囲気下で中間体6(7.6 g)のトルエン(70〜100 mL)溶液を入れた。室温でパラジウム炭素(1.52g、5%、水分50%)を入れ、反応混合物を8〜12時間加熱還流した。反応混合物を室温に冷却し、反応混合物をセライトパッドにより濾過した。濾液を減圧濃縮して、粗生成物7を粘性の液体として得た。粗生成物7をカラムクロマトグラフィーにより230〜400メッシュのシリカゲルを用いて精製した。ヘキサン中の酢酸エチル(0〜15%)の溶媒勾配を使用してカラムから生成物を溶離した。目的生成物を含有するフラクションを減圧蒸発させて、純粋な重要中間体(7)を粘性の液体(4.0 g、43%)として得た。
Figure 2017160234
(8)の調製 マグネチックスターラーおよびアルゴンインレット-アウトレットトラップおよび熱電対を取り付けた500 mL三口丸底フラスコに、中間体7(3.90 g)のトルエン(40〜60 mL、無水)溶液を入れた。反応混合物を-25℃〜-50℃に冷却して、水素化ジイソブチルアルミニウム溶液(DIBAL、16.60 mL、1.0M、トルエン中)を、反応混合物の温度を-25℃〜-50℃の間に維持しながら滴加した。反応混合物を1〜2時間攪拌した。反応の進行をTLCによりモニターした。反応混合物にメタノール(2〜4 mL)を加えて反応を止めた後、希塩酸(20%、50 mL)により酸性化した。有機層を分離して、水層をMTBE(2×50 mL)により抽出した。有機層を合わせて飽和炭酸水素ナトリウム(1×50 mL)、食塩水(1×50 mL)により洗浄し、硫酸ナトリウム(10 g)により乾燥した。有機層を濾過した。濾液を減圧濃縮して、粘性のオイル(8、3.73 g)を得た。
粗生成物8をそのまま次の工程に使用した。
Figure 2017160234
(9)の調製 マグネチックスターラーを取り付けた500 mL一口丸底フラスコに、窒素雰囲気下で、中間体8のジクロロメタン(40〜70 mL)溶液、および二酸化マンガン(8.30 g)を入れた。反応混合物を室温で一晩激しく攪拌した。反応の進行をTLCによりモニターした。反応混合物をセライトパッドにより濾過し、濾液を減圧濃縮して、粗生成物9を無色の粘性の液体オイル(3.4 g、92%)として得た。ここでは、粗生成物をそのまま次の工程に使用した(TLCにより純粋な物質であることが示されたので)。粗生成物9は場合によりカラムクロマトグラフィーにより精製してもよい。
Figure 2017160234
(10)の調製 マグネチックスターラーおよびアルゴンインレット-アウトレットトラップを取り付けた50 mL一口丸底フラスコに、アルゴン雰囲気下、室温で中間体9(260 mg)のメタノール(5〜10 mL)溶液、炭酸カリウム(232 mg)、およびジメチル(1-ジアゾ-2-オキソプロピル)ホスホネート(215 mg)を入れた。混合物を室温で一晩攪拌した。約16時間後、反応の進行をTLCによりモニターした。溶媒を減圧蒸発させ、MTBE(10〜15 mL)に溶解した。有機層を食塩水(1×10 mL)により洗浄し、無水硫酸ナトリウムにより乾燥し、濾過し、濾液を減圧濃縮して粗生成物10を粘性のオイルとして得た。
Figure 2017160234
(11)の調製 マグネチックスターラーおよびアルゴンインレット-アウトレットトラップを取り付けた50 mL一口丸底フラスコに、窒素雰囲気下、室温で中間体10(55 mg)のアセトニトリル(5〜10 mL)溶液およびヨウ化銅(3 mg)を入れた。攪拌した溶液に、ジアゾ酢酸エチル(14 mg、1.0 mLのアセトニトリルに溶解したもの)を加えた。反応混合物を一晩攪拌した。反応の進行をTLCによりモニターした。反応混合物を減圧濃縮して粗生成物11を得た。粗生成物をカラムクロマトグラフィーにより230〜400メッシュのシリカゲルを用いて精製し、カラムをヘキサン中の酢酸エチル(0〜10%)の勾配溶媒により溶離した。目的生成物を含有するフラクションを減圧蒸発させて、中間体11を無色の粘性のオイル(38 mg、60%)として得た。
Figure 2017160234
(12)の調製 マグネチックスターラーを取り付けた50 mL三口丸底フラスコに、中間体11(50 mg)の無水アセトニトリル(5〜10 mL)溶液およびパラジウム炭素(10 mg、5%、水分50%)を入れた。反応混合物を攪拌し、減圧して空気を除去した。フラスコの減圧を接続したバルーンからの水素に置換した。この方法を5〜10回繰り返した。最後に、反応混合物を水素雰囲気下、室温で一晩攪拌した。反応の進行をTLCによりモニターした。反応が終了した後、反応混合物をセライトパッドにより濾過し、濾液を減圧濃縮して粗生成物12を得た。粗生成物12をカラムクロマトグラフィーにより230〜400メッシュのシリカゲルを用いて精製した。ヘキサン中の酢酸エチル(2〜8%)の溶媒勾配を使用してカラムから生成物を溶離した。目的生成物12を含有するフラクションを合わせて減圧蒸発させて、41 mg(約80%)の生成物12を得た。
Figure 2017160234
(13)の調製 マグネチックスターラーを取り付けた25 mL一口丸底フラスコに、酢酸:THF:水(1.0:3.0:0.5)の溶液中の中間体12を入れた。反応混合物を室温で一晩攪拌した。反応の進行をTLCによりモニターした。反応がおよそ90%終了した後(TLCによる)、反応混合物を減圧濃縮して残留する粘性の液体を得た。粗生成物を酢酸エチル(10 mL)に溶解し、有機層を飽和炭酸水素ナトリウム溶液(1×10 mL)、食塩水(1×10 mL)により洗浄し、無水硫酸ナトリウム(1.0 g)により乾燥し、濾過し、濾液を減圧蒸発させた。粗生成物13をカラムクロマトグラフィーにより230〜400メッシュのシリカゲルを用いて精製した。ヘキサン中の酢酸エチル(4〜100%)の溶媒勾配を使用してカラムから生成物を溶離した。目的生成物13を含有するフラクションを合わせて減圧蒸発させて、純粋な生成物13を粘性の液体(120 mg)として得た。カラムによる粗生成物の精製により、出発物質12(36 mg)、ジオール生成物(52 mg)も得られた。
Figure 2017160234
(14)の調製 マグネチックスターラーおよびアルゴンインレット-アウトレットトラップを取り付けた100 mL一口丸底フラスコに、中間体13(160 mg)のジクロロメタン(5〜10 mL)溶液を入れた。攪拌した溶液に、窒素雰囲気下、室温でデス・マーチン(Dess-Martin)試薬(233 mg)を加えた。反応混合物を0.5〜1.0時間攪拌した。反応の進行をTLCによりモニターした。反応混合物にNaHCO3(固体粉末、500 mg)を加えて反応を止めた。生成物14を、カラムクロマトグラフィーにより230〜400メッシュのシリカゲルを用いて、反応混合物をカラムに直接載せることにより精製し、カラムをジクロロメタン(100%)により溶離した。目的生成物14を含有するフラクショを減圧蒸発させて、純粋な生成物14(125 mg、73%)を得た。
Figure 2017160234
(15)の調製 マグネチックスターラーおよびアルゴンインレット-アウトレットトラップを取り付けた50 mL三口丸底フラスコに、ホスホネート側鎖(57 mg)、THF(5 mL)、および水素化ナトリウム(9.0 mg)を入れた。混合物を窒素雰囲気下、0〜10℃で15〜20分間攪拌した。中間体14(85 mg、5 mLのTHFに溶解したもの)を、5〜10分間かけて滴加した。反応混合物を2〜3時間攪拌した。反応混合物の温度を室温に上げた。2〜3時間後に反応の進行をTLCによりモニターした。反応混合物に酢酸(2、3滴)を加えて反応を止め、反応混合物をMTBE(3×10 mL)により抽出した。有機層を合わせて飽和炭酸水素ナトリウム(1×10 mL)、食塩水(1×10 mL)により洗浄し、無水硫酸ナトリウムにより乾燥し、濾過し、減圧蒸発させて粗生成物を得た。粗生成物15をカラムクロマトグラフィーにより230〜400メッシュのシリカゲルを用いて精製し、カラムを酢酸エチルおよびヘキサンの勾配(5〜12%)により溶離した。目的生成物15を含有する純粋なフラクションを合わせて減圧蒸発させて、純粋な生成物15を粘性の液体(72 mg、70%)として得た。
Figure 2017160234
(16)の調製 マグネチックスターラーを取り付けた50 mL一口丸底フラスコに、中間体15のメタノール溶液および塩化セリウム七水和物(CeCl3.7H2O、28 mg)を入れた、反応混合物に水素化ホウ素ナトリウム(1.74 mg)を加えて、反応混合物を0〜10℃で1〜2時間攪拌した。反応の進行をTLCによりモニターした。反応混合物に酢酸(0.2 mL)、塩化アンモニウム飽和溶液(2 mL)および食塩水(10 mL)を加えて反応を止めた。反応混合物を酢酸エチル(3×15 mL)により抽出した。有機層を合わせて食塩水により洗浄し、無水硫酸ナトリウムにより乾燥し、濾過し、減圧蒸発させて粗生成物16(46 mg)を得た。粗生成物はそのまま次の工程に使用した。
Figure 2017160234
(17)の調製 マグネチックスターラーを取り付けた50 mL一口丸底フラスコに、中間体16のメタノール溶液および塩酸(2、3滴)を入れた。反応混合物を室温で1〜2時間攪拌した。反応の進行をTLCによりモニターした。反応混合物に飽和炭酸水素ナトリウム溶液を加えて反応を止め、次いで食塩水(10 mL)を加えて酢酸エチル(3×10 mL)により抽出した。有機層を合わせて食塩水(1×10 mL)により洗浄し、無水硫酸ナトリウム(1 g)により乾燥し、濾過し、濾液を減圧蒸発させて粗生成物を得た。粗生成物をカラムクロマトグラフィーにより230〜400メッシュのシリカゲルを用いて精製し、ヘキサン中の酢酸エチル(10〜70%)により溶離した。目的生成物(TLC上の低い方のスポット)を含有するフラクションを減圧蒸発させて、純粋な生成物17(22 mg、2段階で約50%、1つの異性体のみ)を得た。
Figure 2017160234
(18)の調製 マグネチックスターラーを取り付けた50 mL一口丸底フラスコに、中間体17のメタノール溶液および水酸化ナトリウム溶液(15 mg、1.0 mLの水中)を入れた。反応混合物を室温で一晩攪拌した。反応の進行をTLCによりモニターした。追加量の水酸化ナトリウム(25 mg、1.0 mLの水に溶解したもの)を加えて、反応混合物の温度を6〜8時間に渡って45℃〜55℃に上げた。反応の進行をTLCによりモニターした。溶媒を減圧蒸発させてメタノールを除去し、反応混合物に水を加えた。水層をジクロロメタン(3×10 mL)により抽出して不純物を除去した。希塩酸を加えることにより水層のpHを2〜3に調節し、水層を酢酸エチル(3×10 mL)により抽出した。有機層を合わせて水(1×10mL)、食塩水(1×10 mL)により洗浄し、無水硫酸ナトリウム(1 g)により乾燥し、濾過し、濾液を減圧蒸発させて粗生成物(ベラプロスト314-d異性体、18 mg)を得た。
(19)の調製 マグネチックスターラーを取り付けた50 mL一口丸底フラスコに、遊離のベラプロスト314-d異性体(18)のメタノール溶液および水酸化ナトリウム溶液(2 mg、1.0 mLの水に溶解したもの)を入れた。反応混合物を室温で1〜2時間攪拌した。溶媒を減圧蒸発させてメタノールおよび水を除去した。残留する黄色の粘性の物質にトルエン(5 mL)を加え、トルエンを減圧除去して固体のベラプロスト314-d異性体ナトリウム塩(21 mg)を得た。キラルHPLCアッセイにより、ベラプロスト314-d異性体(84%)が示され、それはベラプロスト314-d異性体の標品(一方の標品はベラプロスト314-d異性体からなり、他方の標品はベラプロストの314-d異性体を含む4種の異性体の混合物からなる)と比較することにより確認された。
実施例2:側鎖の形成
Figure 2017160234
(21)の調製 ベンジル置換オキサゾリジノン20を出発物質として選択した。この物質は合成において高い選択性を与えた。NaN(SiMe3)2により20を脱プロトン化し、対応するナトリウムエノラートを調製したばかりの1-ヨード-2-ブチン(市販の1-ブロモ-2-ブチンから調製された)により処理して、置換オキサゾリジノン21を70〜90%の収率で得た。1-ブロモ-2-ブチンによるオキサゾリジノン21の反応は、過剰な試薬を用いた場合でさえ、決して終了しなかった。1-ヨード-2-ブチンは、2-ブチン-1-オールまたは1-ブロモ-2-ブチンから調製することができるが、1-ブロモ-2-ブチンからの1-ヨード-2-ブチンのその場調製がより便利で好ましい。
Figure 2017160234
(22)の調製 メカニカルスターラーおよび気泡管に連結されたアルゴンインレット-アウトレットアダプターを取り付けた250 mL三口丸底フラスコに、オキサゾリジノン21(8.095 g)のEtOH(100 mL)溶液を入れた後、Ti(OEt)4(6.473)を加えた。混合物を7〜10時間加熱還流した。反応混合物をロータリーエバポレーターにより20℃/50 mbarで濃縮した。残渣をEtOAc(100 mL)に溶解し、ロータリーエバポレーターにより濃縮し、粗物質をシリカゲルに吸着させて、カラムクロマトグラフィー(勾配:酢酸エチル/ヘキサン、2〜6%)により精製して、エステル22(6.27 g)を得た。
Figure 2017160234
(23)の調製 メカニカルスターラーおよび気泡管に連結されたアルゴンインレット-アウトレットアダプターを取り付けた250 mL三口丸底フラスコに、エステル22(6.0 g)および[MeO(Me)NH2]Cl(9.5 g)のTHF(75 mL)溶液を入れた。20℃で45分間かけて滴下ロートにより溶液にi-PrMgCl(48.6 mL、2.0 M、THF中)を滴加した。混合物を20℃で30分間攪拌した後、NH4Cl水溶液(4 mL)を加えた。混合物を室温に温め、MTBE(25 mL)により希釈した。懸濁液をセライトパッドにより濾過して減圧濃縮した。粗生成物をカラムクロマトグラフィー(勾配:EtOAc/ヘキサン、5〜25%)により精製して、ワインレブアミド23(3.45 g、2段階で73%)を無色のオイルとして得た。
Figure 2017160234
(24)の調製 メカニカルスターラーおよび気泡管に連結されたアルゴンインレット-アウトレットアダプターを取り付けた250 mL三口丸底フラスコに、ジメチルメチルホスホネート(5.279 g)のTHF(30 mL)溶液を入れた後、78℃で滴下ロートによりn-BuLi(22.16 mL、1.6 M、ヘキサン中)を滴加した。混合物を約78℃で1時間攪拌した後、アミド23(3.00 g)のTHF(20 mL)溶液を滴下ロートにより30〜45分間かけて加えた。混合物を約78℃で2時間攪拌した後、NH4Cl水溶液(4 mL)を加えた。反応混合物を室温に温め、MTBE(50 mL)により希釈し、濾過し、減圧濃縮した。粗生成物をカラムクロマトグラフィー(勾配、EtOAc/ヘキサン、0〜8%)により精製して、ホスホネート24(3.799 g、92%)を得た。
実施例3:エステルジオールからのエノン中間体の調製
Figure 2017160234
工程1:第一級アルコールの保護
マグネチックスターラーバーおよびアルゴンインレット-アウトレットアダプターを取り付けた500 mL二口丸底フラスコに、エステルジオール(1)(10.00 g)のジクロロメタン(200 mL)溶液を入れた。この溶液に、アルゴン雰囲気下、室温でトリエチルアミン(13.21 g)、4-(ジメチルアミノ)ピリジン(4.0 g)、およびDMF(20 mL)を加えた。透明な溶液が得られるまで混合物を攪拌した。反応液を室温で約31時間攪拌した。約31時間後に、反応の進行をTLCによりモニターした。混合物を飽和塩化アンモニウム(200 mL)により洗浄した。有機層を分離し、無水硫酸ナトリウムにより乾燥し、濾過し、減圧濃縮して粗生成物(2)を粘性のオイルとして得た。別の10 gのバッチからの粗生成物を合わせて、カラムクロマトグラフィーにより230〜400メッシュのシリカゲルを用いて精製し、ヘキサン中の酢酸エチル(5〜50%)の勾配溶媒により溶離した。目的化合物を含むフラクション(TLCによる)を減圧蒸発させて、トリチルエーテル(2)(33.82g、2つの10 gバッチから94.6%)を得た。化合物をスペクトルデータにより解析した。
工程2:第二級アルコールの保護
マグネチックスターラーバーおよびアルゴンインレット-アウトレットアダプターを取り付けた1000 mL二口丸底フラスコに、トリチルエーテル(2)(39.50 g)の無水ジクロロメタン(600 mL)溶液を入れた。この溶液に、アルゴン雰囲気下、室温で2,6-ルチジン(18.51 g)を加えた。混合物を透明な溶液が得られるまで攪拌した。混合物を-15℃に冷却し、TBDMSトリフレート(22.84 g)を、温度を-10℃未満に維持しながら少しずつ加えた。反応液を約1時間攪拌し、反応の進行をTLCによりモニターした。この段階で反応が終了した。反応混合物にヘキサンを加え(600 mL)、温度を室温に上げた。この混合物を230〜400メッシュのシリカゲル(384 g)のパッドに通し、ヘキサン中の酢酸エチル(5〜15%)の勾配溶媒により溶離した。目的化合物を含むフラクションを減圧蒸発させて、シリルエーテル(3)(47.70 g、99.6 %)を得た。化合物をスペクトルデータにより解析した。
工程3:第一級アルコールの脱保護
マグネチックスターラーバーおよびアルゴンインレット-アウトレットアダプターを取り付けた500 mL二口丸底フラスコに、トリチルオキシ-TBDMSエーテル(3)(14.58 g)の無水ジクロロメタン(175 mL)溶液を入れた。この溶液に、アルゴン雰囲気下、室温でジエチルアルミニムクロリド(22.00 mL、1M、ジクロロメタン中、1.0当量)を加えた。反応液を約3時間攪拌し、反応の進行をTLCによりモニターした。この段階で反応は終了しておらず、追加の1当量のジエチルアルミニムクロリド(22.00 L、1M、ジクロロメタン中、1.0当量)を室温で加えて、反応の進行をTLCによりモニターしながら、反応混合物をさらに3時間攪拌した。合計6時間後に反応混合物がいくらかの出発物質の存在を示したので、さらに0.5当量のジエチルアルミニムクロリド(11.00 mL、1M、ヘプタン中、0.5当量)を室温で加えて、反応混合物をさらに1時間攪拌し、反応の進行をTLCによりモニターした。この段階で反応が終了し、反応混合物を0℃に冷却した。反応混合物に飽和炭酸水素ナトリウム溶液(240 mL)を加えた(注2)。温度を室温に上げた後、化合物をジクロロメタンにより抽出した。ジクロロメタン抽出物を合わせて、食塩水により洗浄し、硫酸ナトリウムにより乾燥し、減圧蒸発させて、未精製の粘性のオイル(14.01 g)を得た。この粗化合物を230〜400メッシュのシリカゲル(197 g)のパッドに通し、ヘキサン中の酢酸エチル(10〜50%)の勾配溶媒混合物により溶離した。目的化合物を含むフラクションを減圧蒸発させて、ヒドロキシ-シリルエーテル(4)(8.54 g、92.3%)を得た。化合物をスペクトルデータにより解析した。
工程4:第一級アルコールの酸化およびカップリングによるエノン中間体の生成
冷却し(-78℃)、攪拌した塩化オキサリル(23.00 mL)のジクロロメタン(60mL)溶液に、アルゴン雰囲気下で、ジメチルスルホキシド(4.33 mL)のジクロロメタン(35 mL)溶液をゆっくりと加えた。-78℃〜-70℃で45分間攪拌した後、アルコール(4)(8.54 g)のジクロロメタン(60 mL)溶液を、温度を-65℃未満に維持しながらこの反応混合物に加えた。-65℃で60分間攪拌した後、反応混合物の温度を-45℃〜-40℃に上げて、この温度で60分間攪拌した。この反応混合物を-65℃に冷却して、トリエチルアミン(14.15 mL)をゆっくりと加えることにより反応を止めた(注1)。反応混合物を-65℃でさらに30分間攪拌し、反応の終了をTLCにより確認した。反応混合物の温度を室温に上げ、水(60 mL)を加えた。2相混合物を室温で5分間攪拌した後、有機相を分離して、生成物が完全に有機層に抽出されることを保証するために水相をジクロロメタン(2×75 mL)により抽出した。有機抽出物を合わせて、食塩水(100 mL)により洗浄し、硫酸ナトリウムにより乾燥し、減圧蒸発させて粗アルデヒド(9.77 g)を得た。別のマグネチックスターラーバーおよびアルゴンインレット-アウトレットアダプターを取り付けた500 mL二口丸底フラスコに、ホスホネート側鎖(8.50 g)のMTBE(175 mL)溶液を入れた。これに、LiOH・H20(1.86 g)を加えて、混合物を約1時間攪拌した。約1時間後に、粗アルデヒド(5)のMTBE(175 mL)溶液を10分間かけてゆっくりと加えて、反応が終了するまで攪拌した(注3)。反応の進行をTLCによりモニターした(注3)。反応が終了した後、反応混合物に水(175 mL)を加えて反応を止め、混合物を15分間攪拌した。有機層を分離して、水層を酢酸エチル(3×70 mL)により抽出した。有機抽出物を合わせて、水(70 mL)、食塩水(30 mL)により洗浄し、硫酸ナトリウムにより乾燥し、減圧蒸発させて、エノン中間体(6)の未精製の粘性の液体(11.22 g)を得た。この粗エノン中間体(6)を230〜400メッシュのシリカゲル(328 g)のパッドに通して、ヘキサン中の酢酸エチル(2〜20%)の勾配溶媒により溶離した。目的化合物を含むフラクションを減圧蒸発させて、エノン(6)(19.42 g、80%;この粗化合物を他のロットからの14.99 gの粗化合物と合わせて、2つのロットに対してカラムクロマトグラフィーをおこなった)を得た。純粋な化合物をスペクトルデータにより解析した。
実施例4:化合物(A)の調製
Figure 2017160234
オプション1:還元/脱保護
工程1:選択的還元
マグネチックスターラーバー、熱電対、およびアルゴンインレット-アウトレットアダプターを取り付けた100 mL三口丸底フラスコに、エノン化合物(0.11 g)および無水トルエン(5.0 mL)を入れた。アルゴン雰囲気下、室温で(R)-(+)-2-メチルCBSオキサザボロリジン溶液(1.0 M、トルエン中)(0.43 mL)を加えた。混合物をO℃以下に冷却し(ドライアイス/アセトン浴)、温度を-40℃〜-30℃の間に維持しながらボラン-硫化メチル錯体(0.32 mL)をゆっくりと加えた。添加が終了した後、反応混合物を-30℃〜-25℃で1〜2時間攪拌した。反応の進行をTLCによりモニターした。反応混合物に、温度を-15℃および-10℃の間に維持しながらメタノール(2.0 mL)を2〜3分間かけてゆっくりと加えることにより注意深く反応を止めた。反応混合物を室温に温め、さらに20〜30分間攪拌を続けた。この段階で、飽和塩化アンモニウム水溶液(5.0 ml)を攪拌しながら加えた。有機層を分離し、水層を酢酸エチル(2×15 mL)により抽出した。有機層を合わせて食塩水(10 mL)により洗浄し、無水硫酸ナトリウムにより乾燥し、濾過し、減圧濃縮して、粗アルコール(A)(0.27 g)を得た。この粗アルコール(A)を230〜400メッシュのシリカゲル(22.5 g)のパッドに通し、ヘキサン中の酢酸エチル(0〜12%)の勾配溶媒により溶離した。目的化合物を含むフラクションを減圧蒸発させて、純粋なアルコール(7)(0.096 g、87.2%)を得た。化合物をスペクトルデータにより解析した。
工程2:保護されたアルコールの脱保護
TBDMS保護エーテル(2.67 g)のメタノール(50 mL)溶液に、室温で10% HCl水溶液(10.00 mL)を加えた。反応混合物を室温で反応が終了するまで攪拌した。約1時間後に反応混合物をTLCによりチェックして反応の終了を確認した。この段階で、反応混合物を飽和炭酸水素ナトリウム(10 mL)により中和してpH 7〜8として、減圧濃縮してメタノールを除去した。反応混合物を水(10 mL)により希釈した後、混合物を酢酸エチル(3×30 mL)により抽出した。酢酸エチル抽出物を合わせて、食塩水(15 mL)により洗浄し、乾燥し(Na2SO4)、濾過し、減圧濃縮して、ベラプロストエステル(A)を、未精製の淡黄色の粘性の液体(2.31 g)として得た。粗生成物をヘキサン中の酢酸エチル(0〜90%)の勾配溶媒を用いるカラムクロマトグラフィーにより精製した。目的化合物を含むフラクションを減圧蒸発させて、ベラプロストエステル(A)(1.26 g)を得た。これを酢酸エチルとシクロペンタンとの混合物を用いて結晶化して、96.24%のキラル純度(HPLCによる)を有するエステルを得た(mp 82〜83℃(dec.);理論値: C =72.79; H =7.82; 測定値C =72.86; H = 7.41)。化合物をスペクトルデータにより解析した。
オプション2:脱保護/還元
工程1:保護されたアルコールの脱保護
エノン(0.450 g)のメタノール(10 mL)溶液に、室温で10% HCl水溶液(0.90 mL)を加えた。反応混合物を室温で反応が終了するまで攪拌した。約3時間後に反応混合物をTLCによりチェックして反応の終了を確認した。この段階で、反応混合物を飽和炭酸水素ナトリウムにより中和してpH 7〜8として、減圧濃縮してメタノールを除去した。反応物の塊を水(10 mL)により希釈して、混合物を酢酸エチル(2×15 mL)により抽出した。酢酸エチル抽出物を合わせて、食塩水(10 mL)により洗浄し、乾燥し(Na2SO4)、濾過し、減圧濃縮して、ケトアルコールを、未精製の淡黄色の粘性の液体(0.400 g)として得た。酢酸エチルとヘキサンとの混合物を用いて粗生成物を結晶化して、純粋な結晶性ケト-アルコール(0.210 g、60%)を得た(mp 75〜76℃)。化合物をスペクトルデータにより解析した。
工程2:選択的還元
マグネチックスターラーバー、熱電対、およびアルゴンインレット-アウトレットアダプターを取り付けた100 mL三口丸底フラスコに、ケト-アルコール(8)(3.25 g)および無水トルエン(100 mL)を入れた。アルゴン雰囲気下、室温で(R)-(+)-2-ブチルCBSオキサザボロリジン(1.0 M、トルエン中)(23.8 mL)の溶液を加えた。混合物を-15℃に冷却し(ドライアイス/アセトン浴)、温度を-15℃〜-10℃の間に維持しながら、カテコールボラン(23.8 mL)をゆっくりと加えた。添加が終了した後、反応混合物を1〜2時間攪拌し、その間に温度をゆっくりと室温に上げた。反応の進行をTLCによりモニターした。反応混合物に、温度を-15℃〜-10℃の間に維持しながらメタノール(50 mL)を10分間かけてゆっくりと加えることにより注意深く反応を止めた。反応混合物を室温に温め、さらに20〜30分間攪拌を続けた。この段階で、飽和塩化アンモニウム水溶液(10 ml)を攪拌しながら加えた。有機層を分離し、水層を酢酸エチル(3×50 mL)により抽出した。有機層を合わせて食塩水(15 mL)により洗浄し、無水硫酸ナトリウムにより乾燥し、濾過し、減圧濃縮して、粗ベラプロストエステル(A)を得た。粗生成物をカラムクロマトグラフィーにより、ヘキサン中の酢酸エチル(0〜90%)の勾配溶媒を用いて精製した。目的化合物を含むフラクションを減圧蒸発させて、ベラプロストエステル(A)(2.53 g、77%)を得た。少量のサンプルを酢酸エチルとヘキサンとの混合物を用いて結晶化して、分析的に純粋なベラプロストエステルジオールを得た(mp 75〜76℃)。化合物をスペクトルデータにより解析した。
実施例5:化合物Aからベラプロスト314d、ベラプロスト314dから塩
ベラプロスト314dの合成
ベラプロストエステル(A)(0.700 g)のメタノール(10 mL)溶液に、室温で水酸化ナトリウム溶液(0.815 g、2.0 mLの水中)を加えた。反応混合物を室温で約16時間攪拌し、反応の進行をTLCによりモニターした。反応混合物を減圧濃縮してメタノールを除去し、水(10 mL)により希釈した。この混合物を10%塩酸溶液によりpH 2〜3に酸性化した。混合物を酢酸エチル(2×10 mL)により抽出した。酢酸エチル抽出物を合わせて、食塩水(1×10 mL)により洗浄し、乾燥し(Na2SO4)、濾過し、減圧濃縮して、目的のベラプロストの立体異性体(314d)を、泡状の固体(0.700 g)として得た。この酸をそのままカリウム塩の形成に使用した。
ベラプロスト(314d)カリウム塩の合成
Figure 2017160234
マグネチックスターラーおよび温度計を取り付けた100 mL二口丸底フラスコに、ベラプロスト(314d)(0.500 g)および酢酸エチル(15 mL)を入れた。この混合物を75〜80℃に温めて透明な溶液を得た。この透明な溶液に水酸化カリウム(0.066 g)のエタノール(3.0 mL)溶液を加えて75〜80℃で2、3分攪拌した後、およそ2時間かけて混合物を室温に冷却した。室温で、沈殿した生成物を濾過により単離して、エタノールにより洗浄した。生成物をブフナーロートからガラス皿に移してドラフト中で一晩空気乾燥して、流動性の白色固体のベラプロスト塩(0.420 g)を得た。固体をエタノールおよび水から結晶化してベラプロストカリウム塩の純粋な立体異性体を得た(キラルHPLCによりキラル純度99.6%;mp 270〜272℃(dec.); 理論値: C =66.03; H =6.70; 測定値 C =65.82; H =6.67)。化合物をスペクトルデータにより解析した。
実施例6:キラルメチルを有する側鎖の合成
Figure 2017160234
工程1:メカニカルスターラーおよび気泡管に連結されたアルゴンインレット-アウトレットアダプターを取り付けた2 L三口丸底フラスコに、(R)-(+)-4-(ジフェニルメチル)2-オキサゾリジノン溶液(2、25 g、200 mLのTHF中)を入れた。溶液をアルゴン雰囲気下で-78℃に冷却した。溶液に、-78℃で、45〜60分の時間をかけてヘキサン中のn-ブチルリチウム(1.6 M、64.80 mL)を滴加した。反応混合物を-78℃で30〜45分間攪拌した。次に、塩化プロピオニル(20.10 g、30〜50 mLの無水THFに溶解したもの)を、-78℃で15〜30分の時間をかけて滴加した。混合物を-78℃で1〜2時間攪拌した(注1)。反応混合物に-78℃〜-60℃で塩化アンモニウム飽和溶液(15 mL)を加えて反応を止めた後、室温に温めた。反応混合物に室温で追加量の塩化アンモニウム(100 mL)を加えて、混合物を分液ロート中で旋回させた。有機層を水層から分離した。水相をMTBE(2×100 mL)により抽出した。有機相を合わせてNaHCO3水溶液(100 mL)、食塩水(100 mL)により洗浄し、次いで無水Na2SO4により乾燥させた後、濾過した。濾液を減圧濃縮して、未精製の固体生成物(30.38 g、定量的)を得た。
工程2:マグネチックスターラーおよび気泡管に連結されたアルゴンインレット-アウトレットアダプターを取り付けた500 mL丸底フラスコに、アルゴン雰囲気下、室温で1-ブロモ-2-ブチン(23.21 g)およびTHF(100〜120 mL)を入れた。1-ブロモ-2-ブチンの溶液にヨウ化ナトリウム(27.90 g)を加えた。反応混合物を室温で2〜3時間攪拌した。ワットマン(Whatmann)濾紙No. 50を用いて懸濁液を濾過し、固体を無水THF(15〜30 mL)により洗浄した。THF中にl-ヨード-2-ブチンを含む濾液を次の工程に使用した。
工程3:メカニカルスターラーおよび気泡管に連結されたアルゴンインレット-アウトレットアダプターを取り付けた2 L三口丸底フラスコに、NaN(SiMe3)2(1.0 M、174 mL)の溶液を入れた。この溶液に、-78℃で、オキサゾリジノン溶液(36 g、50〜80 mLのTHF中)を滴加した。混合物を-78℃で60〜120分間攪拌した後、-78℃で、滴下ロートを用いて45〜60分の時間をかけてl-ヨード-2-ブチン(工程1においてTHF中に調製されたばかりのもの)を滴加した。混合物を2時間攪拌した後、反応混合物に-78℃で酢酸(11 mL)を加えて反応を止めた。混合物を室温に温め、塩化ナトリウム水溶液(500〜750 mL)を加えた。有機層を水層から分離した。水相をMTBE(3×400 mL)により抽出した。有機層を合わせてNaHCO3水溶液(100 mL)により洗浄し、次いで無水Na2SO4により乾燥した後、濾過した。濾液を総体積の1/5まで減圧濃縮した。エタノール(150 mL)を加えて、混合物を減圧濃縮してスラリーを得た。反応および後処理で使用した他の溶媒を除去するために、追加量のエタノール(200 mL)を加えた後、再度減圧濃縮してスラリーを得た。
結晶化:得られたスラリーに、300〜350 mLのエタノールを加えて、混合物を加熱して透明な溶液を得た。透明な溶液をゆっくりと室温に冷却した。得られた固体を濾過により収集して、エタノールのヘキサン溶液(50%、50〜150 mL)により洗浄した。固体生成物をガラス皿に移して空気乾燥して、白色の結晶性オキサゾリジノン(24.74 g、59%)を得た(mp 128〜130℃)。
実施例7:ホスホネート側鎖の合成
Figure 2017160234
工程1:メカニカルスターラーを取り付けた500 mL丸底フラスコに、オキサゾリジノン8(24.50 g)のTHF(295 mL)溶液、水(114 mL)およびLiOH(2.273 g)を入れた。混合物を室温で16〜24時間攪拌した。反応混合物に炭酸水素ナトリウム飽和溶液(50〜75 mL)を攪拌しながらゆっくりと加えた。反応混合物をMTBE(5×100 mL)により抽出して、キラル補助剤および不純物を除去した。水層に希塩酸を加えることによりpH 3〜4に調節し、MTBE(3×150 mL)により抽出した。有機層を合わせて、食塩水(1×150 mL)により洗浄し、次いで無水Na2SO4により乾燥した後、濾過した。濾液を減圧濃縮して、粗カルボン酸(6.4 g、74.5%)を得た。
工程2:マグネチックスターラーを取り付けた500 mL丸底フラスコに、THF(70〜100 mL)中のカルボン酸(10)(6.35 g)、2-クロロ-4,6-ジメトキシ-1,3,5-トリアジン(11.93 g)、およびN-メチルモルホリン(14.6 mL)を入れた。懸濁液を室温で1〜2時間攪拌した。1〜2時間攪拌した後、MeO(Me)NH・HCI(5.89 g)を加えて、混合物を室温で一晩(16〜18時間)攪拌した。反応混合物に、ヘキサン(50〜100 mL)を加えた。スラリーをセライトパッドにより濾過した。セライト上の層をヘキサン(50〜100 mL)により洗浄した。濾液を減圧濃縮して粗アミド(11)を得た。粗生成物をヘキサン(50〜100 mL)に溶解し、再度セライトパッドにより濾過して懸濁する固体不純物を除去した。セライト上の層をヘキサン(50〜100 mL)により洗浄した。濾液を減圧濃縮して粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(勾配:EtOAc/ヘキサン、5〜25%)により精製して、ワインレブアミド(7.2 g、85%)を純度98.42%(キラルHPLCによる)の無色のオイルとして得た。
工程3:マグネチックスターラーおよび気泡管に連結されたアルゴンインレット-アウトレットアダプターを取り付けた500 mL三口丸底フラスコに、ジメチルメチルホスホネート(A)(13.00 g)のTHF(50 mL)溶液を入れた後、-78℃で、n-BuLi(1.6 M、ヘキサン中、52.50 mL)を滴下ロートを用いて滴加した。混合物を-78℃で1時間攪拌した後、アミド11(7.10 g)のTHF(20〜30 mL)溶液を滴下ロートを用いて30〜45分間かけて加えた。添加が終了した後、混合物を-78℃で2時間攪拌し、次にNH4Cl水溶液(100 mL)により反応を止めた。混合物を室温に温めた。混合物を酢酸エチル(3×75 mL)により抽出した。有機層を合わせて食塩水(l×50 mL)により洗浄し、次いで無水Na2SO4により乾燥した後、濾過した。濾液を減圧濃縮して粗生成物を得た。粗生成物をカラムクロマトグラフィー(勾配、EtOAc/ヘキサン、10〜100%)により精製して、(S)-3-メチル-2-オキソヘプト-5-イニルホスホン酸ジメチルエステル(9.218 g、95%)を得た。
本明細書において引用したすべての出版物、特許出願および特許は、その全体が参照により本明細書に組み込まれるものとする。
前述に特定の好ましい実施形態を参照したが、本発明はそれに限定されないことが理解されるであろう。開示された実施形態に対してさまざまな変更を行うことができること、およびそのような変更が本発明の範囲に包含されることが意図されることが、当業者に想起されるであろう。
前述に特定の好ましい実施形態を参照したが、本発明はそれに限定されないことが理解されるであろう。開示された実施形態に対してさまざまな変更を行うことができること、およびそのような変更が本発明の範囲に包含されることが意図されることが、当業者に想起されるであろう。
本発明の実施形態として例えば以下を挙げることができる。
[実施形態1]
下記の式:
Figure 2017160234
[式中、R 1 はカチオン、H、またはC 1-12 アルキルを表し、
R 2 およびR 3 はそれぞれHまたはヒドロキシ保護基を表し、
R 4 はHまたはC 1-3 アルキルを表し、かつ
R 5 はHまたはC 1-6 アルキルを表す]
の化合物を調製する方法であって、
(1) 下記の式:
Figure 2017160234
[式中、R 2a およびR 6 は独立してヒドロキシ保護基を表す]
の化合物に対する、下記の式:
Figure 2017160234
[式中、R 7 はC 1-6 アルコキシまたはC 1-12 アルキル-COOR 9 を表し、ここでR 9 はC 1-3 アルキルを表し、かつR 8 はハロゲンまたはHを表す]
の化合物による環化付加反応をおこなって、下記の式:
Figure 2017160234
[式中、R 2a 、R 6 、R 7 、およびR 8 はそれぞれ上に定義された通りである]
の化合物を形成する工程;
(2) 式(IV)のシクロジエンを芳香族化して、下記の式:
Figure 2017160234
の芳香族生成物を形成する工程;
(3) 式(V)の化合物のエステルを還元してベンジルアルコールを形成し、ベンジルアルコールを酸化してアルデヒドを形成した後、前記アルデヒドに炭素を付加してアルキンを形成することにより、下記の式:
Figure 2017160234
の化合物を得る工程;
(4) 末端アルキンをN 2 CH 2 CO 2 R 1a [式中、R 1a はC 1-12 アルキルを表す]とカップリングした後、アルキンを水素化して対応するアルカンを得て、下記の式:
Figure 2017160234
の化合物を形成する工程;
(5) 第一級ヒドロキシ保護基を選択的に脱保護した後、第一級ヒドロキシ基を酸化して対応するアルデヒドを形成し、次いで、式:
Figure 2017160234
[式中、R 4 およびR 5 はそれぞれ上に定義された通りである]
の側鎖とカップリングして、下記の式:
Figure 2017160234
の化合物を形成する工程;
(6) ケトンを還元し、残存するヒドロキシ保護基を脱保護し、場合によりR 1a をカチオンまたはHに変換して、下記の式:
Figure 2017160234
の化合物を形成する工程を含む、前記方法。
[実施形態2]
式(I)の化合物が実質的に純粋な単一異性体として製造される、実施形態1に記載の方法。
[実施形態3]
R 1 がカチオンまたはHであり、R 2 およびR 3 がHであり、R 4 およびR 5 がCH 3 である、実施形態1に記載の方法。
[実施形態4]
R 2 、R 3 、R 2a およびR 6 がそれぞれ独立して、トリメチルシリル、トリエチルシリル、t-ブチルジメチルシリル、t-ブチルジフェニルシリル、フェニルジメチルシリル、またはテトラヒドロピラニルを表す、実施形態1に記載の方法。
[実施形態5]
工程(1)の環化付加が、逆電子要請型ディールス・アルダー反応およびそれに続く熱脱炭酸反応である、実施形態1に記載の方法。
[実施形態6]
芳香族化工程(2)が式(IV)の化合物のパラジウム炭素による処理である、実施形態1に記載の方法。
[実施形態7]
下記の式:
Figure 2017160234
[式中、R 2a およびR 6 は独立してヒドロキシ保護基を表し、かつR 7 はC 1-6 アルコキシまたはC 1-12 アルキル-COOR 9 を表し、ここでR 9 はC 1-3 アルキルを表す]
の立体選択的に製造された異性化合物を調製する方法であって、
(1) 下記の式:
Figure 2017160234
[式中、R 2a およびR 6 は独立してヒドロキシ保護基を表す]
の化合物に環化付加反応をおこなって、下記の式:
Figure 2017160234
[式中、R 2a 、R 6 、およびR 7 はそれぞれ上に定義された通りである]
の化合物を形成する工程;
(2) 式(IV)のシクロジエンを芳香族化して、下記の式:
Figure 2017160234
[式中、R 2a 、R 6 、およびR 7 はそれぞれ上に定義された通りである]
の芳香族生成物を形成する工程を含む、前記方法。
[実施形態8]
R 2a およびR 6 がそれぞれ独立して、トリメチルシリル、トリエチルシリル、t-ブチルジメチルシリル、t-ブチルジフェニルシリル、フェニルジメチルシリル、またはテトラヒドロピラニルを表す、実施形態7に記載の方法。
[実施形態9]
工程(1)の環化付加が逆電子要請型ディールス・アルダー反応およびそれに続く熱脱炭酸反応である、実施形態7に記載の方法。
[実施形態10]
芳香族化工程(2)が式(IV)の化合物のパラジウム炭素による処理である、実施形態7に記載の方法。
[実施形態11]
下記の式:
Figure 2017160234
[式中、R 1a はカチオン、H、またはC 1-12 アルキルを表す]
の化合物を調製する方法であって、
(1) 下記の式:
Figure 2017160234
[式中、R 2a およびR 6 は独立してヒドロキシ保護基を表す]
の化合物に対する、下記の式:
Figure 2017160234
[式中、R 7 はC 1-6 アルコキシまたはC 1-12 アルキル-COOR 9 を表し、ここでR 9 はC 1-3 アルキルを表し、かつR 8 はハロゲンまたはHを表す]
の化合物による環化付加反応をおこなって、下記の式:
Figure 2017160234
[式中、R 2a 、R 6 、R 7 、およびR 8 はそれぞれ上に定義された通りである]
の化合物を形成する工程;
(2) 式(IV)のシクロジエンを芳香族化して、下記の式:
Figure 2017160234
の芳香族生成物を形成する工程;
(3) 式(V)の化合物のエステルを還元してベンジルアルコールを形成し、ベンジルアルコールを酸化してアルデヒドを形成した後、前記アルデヒドに炭素を付加してアルキンを形成することにより、下記の式:
Figure 2017160234
の化合物を得る工程;
(4) 末端アルキンをN 2 CH 2 CO 2 R 1a [式中、R 1a はC 1-12 アルキルを表す]とカップリングした後、アルキンを水素化して対応するアルカンを得て、次いでヒドロキシ保護基を脱保護して、下記の式:
Figure 2017160234
[式中、R 1a はカチオン、H、またはC 1-12 アルキルを表す]
の化合物を形成する工程を含む、前記方法。
[実施形態12]
式(VII)の化合物が実質的に純粋な単一異性体として製造される、実施形態11に記載の方法。
[実施形態13]
式:
Figure 2017160234
[式中、xは
Figure 2017160234
または
Figure 2017160234
であり、R 4 はHまたはC 1-3 アルキルを表し、かつ
R 5 はHまたはC 1-6 アルキルを表す]
により表される化合物であって、前記化合物が少なくとも95%のキラル純度を有する、前記化合物。
[実施形態14]
R 4 およびR 5 がそれぞれCH 3 である、実施形態13に記載の化合物。
[実施形態15]
実質的に純粋な下記の式:
Figure 2017160234
[R 2 はHまたはヒドロキシ保護基を表し、
R 4 はHまたはC 1-3 アルキルを表し、
R 5 はHまたはC 1-6 アルキルを表し、かつ
ZはC 1-12 アルキル-COOR 12 を表し、R 12 はカチオン、H、またはC 1-12 アルキルである]
の化合物を調製する方法であって、
(1) 式
Figure 2017160234
のアルデヒドを、実質的に純粋な式:
Figure 2017160234
[式中、Z’はC 1-12 アルキル-COOR 12’ であり、R 12’ はC 1-6 アルキルまたは保護基であり、R 2a はヒドロキシ保護基であり、R 4 およびR 5 はそれぞれ上に定義された通りである]
の化合物と反応させて、下記の式:
Figure 2017160234
の化合物を形成する工程;
(2) カルボニルを選択的に還元し、第二級アルコールを脱保護して、実質的に純粋な下記の式:
Figure 2017160234
の化合物を形成する工程;および
(3) 場合により、Z’の保護された酸のエステルを脱保護して酸またはその塩を形成する工程を含む、前記方法。
[実施形態16]
カルボニルの選択的還元が不斉触媒を含む、実施形態15に記載の方法。
[実施形態17]
工程3がオプションではなく、Z’がC 1-12 アルキル-COOR 12’ であり、かつR 12’ がC 1-6 アルキルである、実施形態15に記載の方法。
[実施形態18]
工程3がオプションではなく、R 4 およびR 5 がそれぞれCH 3 であり、Zが(CH 2 ) 3 COOR 12 であり、かつR 12 がカチオンまたはHである、実施形態15に記載の方法。
[実施形態19]
R 12 がカチオンであり、カチオンがK + である、実施形態18に記載の方法。
[実施形態20]
得られる実質的に純粋な化合物が、99%を超える下記の式:
Figure 2017160234
により表される異性体を含む、実施形態19に記載の方法。

Claims (20)

  1. 下記の式:
    Figure 2017160234
    [式中、R1はカチオン、H、またはC1-12アルキルを表し、
    R2およびR3はそれぞれHまたはヒドロキシ保護基を表し、
    R4はHまたはC1-3アルキルを表し、かつ
    R5はHまたはC1-6アルキルを表す]
    の化合物を調製する方法であって、
    (1) 下記の式:
    Figure 2017160234
    [式中、R2aおよびR6は独立してヒドロキシ保護基を表す]
    の化合物に対する、下記の式:
    Figure 2017160234
    [式中、R7はC1-6アルコキシまたはC1-12アルキル-COOR9を表し、ここでR9はC1-3アルキルを表し、かつR8はハロゲンまたはHを表す]
    の化合物による環化付加反応をおこなって、下記の式:
    Figure 2017160234
    [式中、R2a、R6、R7、およびR8はそれぞれ上に定義された通りである]
    の化合物を形成する工程;
    (2) 式(IV)のシクロジエンを芳香族化して、下記の式:
    Figure 2017160234
    の芳香族生成物を形成する工程;
    (3) 式(V)の化合物のエステルを還元してベンジルアルコールを形成し、ベンジルアルコールを酸化してアルデヒドを形成した後、前記アルデヒドに炭素を付加してアルキンを形成することにより、下記の式:
    Figure 2017160234
    の化合物を得る工程;
    (4) 末端アルキンをN2CH2CO2R1a[式中、R1aはC1-12アルキルを表す]とカップリングした後、アルキンを水素化して対応するアルカンを得て、下記の式:
    Figure 2017160234
    の化合物を形成する工程;
    (5) 第一級ヒドロキシ保護基を選択的に脱保護した後、第一級ヒドロキシ基を酸化して対応するアルデヒドを形成し、次いで、式:
    Figure 2017160234
    [式中、R4およびR5はそれぞれ上に定義された通りである]
    の側鎖とカップリングして、下記の式:
    Figure 2017160234
    の化合物を形成する工程;
    (6) ケトンを還元し、残存するヒドロキシ保護基を脱保護し、場合によりR1aをカチオンまたはHに変換して、下記の式:
    Figure 2017160234
    の化合物を形成する工程を含む、前記方法。
  2. 式(I)の化合物が実質的に純粋な単一異性体として製造される、請求項1に記載の方法。
  3. R1がカチオンまたはHであり、R2およびR3がHであり、R4およびR5がCH3である、請求項1に記載の方法。
  4. R2、R3、R2aおよびR6がそれぞれ独立して、トリメチルシリル、トリエチルシリル、t-ブチルジメチルシリル、t-ブチルジフェニルシリル、フェニルジメチルシリル、またはテトラヒドロピラニルを表す、請求項1に記載の方法。
  5. 工程(1)の環化付加が、逆電子要請型ディールス・アルダー反応およびそれに続く熱脱炭酸反応である、請求項1に記載の方法。
  6. 芳香族化工程(2)が式(IV)の化合物のパラジウム炭素による処理である、請求項1に記載の方法。
  7. 下記の式:
    Figure 2017160234
    [式中、R2aおよびR6は独立してヒドロキシ保護基を表し、かつR7はC1-6アルコキシまたはC1-12アルキル-COOR9を表し、ここでR9はC1-3アルキルを表す]
    の立体選択的に製造された異性化合物を調製する方法であって、
    (1) 下記の式:
    Figure 2017160234
    [式中、R2aおよびR6は独立してヒドロキシ保護基を表す]
    の化合物に環化付加反応をおこなって、下記の式:
    Figure 2017160234
    [式中、R2a、R6、およびR7はそれぞれ上に定義された通りである]
    の化合物を形成する工程;
    (2) 式(IV)のシクロジエンを芳香族化して、下記の式:
    Figure 2017160234
    [式中、R2a、R6、およびR7はそれぞれ上に定義された通りである]
    の芳香族生成物を形成する工程を含む、前記方法。
  8. R2aおよびR6がそれぞれ独立して、トリメチルシリル、トリエチルシリル、t-ブチルジメチルシリル、t-ブチルジフェニルシリル、フェニルジメチルシリル、またはテトラヒドロピラニルを表す、請求項7に記載の方法。
  9. 工程(1)の環化付加が逆電子要請型ディールス・アルダー反応およびそれに続く熱脱炭酸反応である、請求項7に記載の方法。
  10. 芳香族化工程(2)が式(IV)の化合物のパラジウム炭素による処理である、請求項7に記載の方法。
  11. 下記の式:
    Figure 2017160234
    [式中、R1aはカチオン、H、またはC1-12アルキルを表す]
    の化合物を調製する方法であって、
    (1) 下記の式:
    Figure 2017160234
    [式中、R2aおよびR6は独立してヒドロキシ保護基を表す]
    の化合物に対する、下記の式:
    Figure 2017160234
    [式中、R7はC1-6アルコキシまたはC1-12アルキル-COOR9を表し、ここでR9はC1-3アルキルを表し、かつR8はハロゲンまたはHを表す]
    の化合物による環化付加反応をおこなって、下記の式:
    Figure 2017160234
    [式中、R2a、R6、R7、およびR8はそれぞれ上に定義された通りである]
    の化合物を形成する工程;
    (2) 式(IV)のシクロジエンを芳香族化して、下記の式:
    Figure 2017160234
    の芳香族生成物を形成する工程;
    (3) 式(V)の化合物のエステルを還元してベンジルアルコールを形成し、ベンジルアルコールを酸化してアルデヒドを形成した後、前記アルデヒドに炭素を付加してアルキンを形成することにより、下記の式:
    Figure 2017160234
    の化合物を得る工程;
    (4) 末端アルキンをN2CH2CO2R1a[式中、R1aはC1-12アルキルを表す]とカップリングした後、アルキンを水素化して対応するアルカンを得て、次いでヒドロキシ保護基を脱保護して、下記の式:
    Figure 2017160234
    [式中、R1aはカチオン、H、またはC1-12アルキルを表す]
    の化合物を形成する工程を含む、前記方法。
  12. 式(VII)の化合物が実質的に純粋な単一異性体として製造される、請求項11に記載の方法。
  13. 式:
    Figure 2017160234
    [式中、xは
    Figure 2017160234
    または
    Figure 2017160234
    であり、R4はHまたはC1-3アルキルを表し、かつ
    R5はHまたはC1-6アルキルを表す]
    により表される化合物であって、前記化合物が少なくとも95%のキラル純度を有する、前記化合物。
  14. R4およびR5がそれぞれCH3である、請求項13に記載の化合物。
  15. 実質的に純粋な下記の式:
    Figure 2017160234
    [R2はHまたはヒドロキシ保護基を表し、
    R4はHまたはC1-3アルキルを表し、
    R5はHまたはC1-6アルキルを表し、かつ
    ZはC1-12アルキル-COOR12を表し、R12はカチオン、H、またはC1-12アルキルである]
    の化合物を調製する方法であって、
    (1) 式
    Figure 2017160234
    のアルデヒドを、実質的に純粋な式:
    Figure 2017160234
    [式中、Z’はC1-12アルキル-COOR12’であり、R12’はC1-6アルキルまたは保護基であり、R2aはヒドロキシ保護基であり、R4およびR5はそれぞれ上に定義された通りである]
    の化合物と反応させて、下記の式:
    Figure 2017160234
    の化合物を形成する工程;
    (2) カルボニルを選択的に還元し、第二級アルコールを脱保護して、実質的に純粋な下記の式:
    Figure 2017160234
    の化合物を形成する工程;および
    (3) 場合により、Z’の保護された酸のエステルを脱保護して酸またはその塩を形成する工程を含む、前記方法。
  16. カルボニルの選択的還元が不斉触媒を含む、請求項15に記載の方法。
  17. 工程3がオプションではなく、Z’がC1-12アルキル-COOR12’であり、かつR12’がC1-6アルキルである、請求項15に記載の方法。
  18. 工程3がオプションではなく、R4およびR5がそれぞれCH3であり、Zが(CH2)3COOR12であり、かつR12がカチオンまたはHである、請求項15に記載の方法。
  19. R12がカチオンであり、カチオンがK+である、請求項18に記載の方法。
  20. 得られる実質的に純粋な化合物が、99%を超える下記の式:
    Figure 2017160234
    により表される異性体を含む、請求項19に記載の方法。
JP2017089019A 2011-06-16 2017-04-28 ベラプロストの製造方法 Active JP6691891B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161497754P 2011-06-16 2011-06-16
US61/497,754 2011-06-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014516043A Division JP6174575B2 (ja) 2011-06-16 2012-06-15 ベラプロストの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018217080A Division JP2019065015A (ja) 2011-06-16 2018-11-20 ベラプロストの製造方法

Publications (2)

Publication Number Publication Date
JP2017160234A true JP2017160234A (ja) 2017-09-14
JP6691891B2 JP6691891B2 (ja) 2020-05-13

Family

ID=47354204

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2014516043A Active JP6174575B2 (ja) 2011-06-16 2012-06-15 ベラプロストの製造方法
JP2017089019A Active JP6691891B2 (ja) 2011-06-16 2017-04-28 ベラプロストの製造方法
JP2018217080A Pending JP2019065015A (ja) 2011-06-16 2018-11-20 ベラプロストの製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014516043A Active JP6174575B2 (ja) 2011-06-16 2012-06-15 ベラプロストの製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018217080A Pending JP2019065015A (ja) 2011-06-16 2018-11-20 ベラプロストの製造方法

Country Status (8)

Country Link
US (7) US8779170B2 (ja)
EP (2) EP3461817B1 (ja)
JP (3) JP6174575B2 (ja)
KR (1) KR101978530B1 (ja)
CN (3) CN105418567B (ja)
CA (1) CA2839424C (ja)
ES (1) ES2717226T3 (ja)
WO (1) WO2012174407A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065015A (ja) * 2011-06-16 2019-04-25 ラング バイオテクノロジー インコーポレーテッド ベラプロストの製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2968362A4 (en) * 2013-03-15 2016-10-05 Gemmus Pharma Inc BERAPROST ISOMER AS A MEANS FOR THE TREATMENT OF VIRUS INFECTIONS
EP2978313B1 (en) 2013-03-25 2018-02-21 United Therapeutics Corporation Process of making prostacyclin compounds with linker thiol and pegylated forms
WO2015179427A1 (en) 2014-05-20 2015-11-26 Lung Biotechnology Pbc Methods for producing beraprost and its derivatives
KR101986966B1 (ko) * 2015-08-12 2019-06-07 유나이티드 쎄러퓨틱스 코포레이션 베라프로스트의 제조 방법
CN105503595B (zh) * 2015-12-30 2017-07-07 上海北卡医药技术有限公司 一种r型2‑甲基‑己‑4‑炔酸甲酯的制备方法
HU231033B1 (hu) 2016-03-22 2019-12-30 CHINOIN Gyógyszer és Vegyészeti Termékek Gyára Zrt. Eljárás 3-as kötést tartalmazó optikailag aktív karbonsavak, karbonsav sók és karbonsav származékok előállítására
HU231080B1 (hu) * 2016-04-05 2020-07-28 CHINOIN Gyógyszer és Vegyészeti Termékek Gyára Zrt. Eljárás optikailag aktív Beraprost előállítására
SG11202000629QA (en) 2017-07-27 2020-02-27 Allergan Inc Prostacyclin receptor agonists for reduction of body fat
CN108047075A (zh) * 2017-12-20 2018-05-18 蓬莱星火化工有限公司 (甲基)丙烯酰胺丙基二甲基胺的合成方法
EP3870285A1 (en) * 2018-10-22 2021-09-01 United Therapeutics Corporation Synthesis of esuberaprost prodrugs
CN109305986B (zh) * 2018-11-13 2021-02-19 济南康和医药科技有限公司 一种贝前列素钠中间体的合成方法
US10577340B1 (en) * 2018-11-26 2020-03-03 Chirogate International Inc. Beraprost-314d crystals and methods for preparation thereof
US10577341B1 (en) * 2018-11-26 2020-03-03 Chirogate International Inc. Beraprost-314d monohydrate crystals and methods for preparation thereof
CN110746450A (zh) * 2019-09-17 2020-02-04 济南康和医药科技有限公司 一种贝前列素钠关键中间体的合成方法
CN112778254A (zh) * 2020-12-31 2021-05-11 南京栖云高活医药科技有限公司 一种环戊并[b]苯并呋喃-5-丁酸钠的合成方法
US11884640B2 (en) 2021-06-02 2024-01-30 Chirogate International Inc. Processes and intermediates for the preparations of benzoprostacyclin analogues and benzoprostacyclin analogues prepared therefrom
CN114957326A (zh) * 2022-06-28 2022-08-30 吉尔多肽生物制药(大连市)有限公司 一种贝前列素钠膦叶立德中间体的合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124778A (ja) * 1982-01-20 1983-07-25 Toray Ind Inc 5,6,7−トリノル−4,8−インタ−m−フエニレンPGI↓2誘導体
JPS63264475A (ja) * 1986-12-11 1988-11-01 Toray Ind Inc 2,5,6,7−テトラノル−18,18,19,19−テトラデヒドロ−4,8−インタ−m−フエニレンPGI2誘導体
JPH08225561A (ja) * 1989-02-27 1996-09-03 Toray Ind Inc 5,6,7−トリノル−4,8−インターm−フェニレンPGI2 誘導体の中間体及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152524A (en) * 1974-04-02 1979-05-01 American Cyanamid Company Cycloalkyl and cycloalkenyl prostaglandin congeners
JPS57144276A (en) * 1981-03-03 1982-09-06 Toray Ind Inc 5,6,7-trinor-4,8-inter-m-phenylene pgi2 derivative
US4424376A (en) * 1981-09-24 1984-01-03 E. R. Squibb & Sons, Inc. Prostacyclin intermediates
JPS59134787A (ja) * 1983-01-19 1984-08-02 Toray Ind Inc 5,6,7−トリノル−4,8−インタ−m−フエニレンPGI↓2誘導体の製造法
DE3765646D1 (de) * 1986-01-24 1990-11-29 Toray Industries 2,5,6,7-tetranor-4,8-inter-m-phenylen-pgi2-derivate.
JPH1017561A (ja) * 1996-06-25 1998-01-20 Asahi Glass Co Ltd アリルアルコール類およびその製造方法
HU227157B1 (en) * 2001-07-30 2010-09-28 Chinoin Gyogyszer Es Vegyeszet Production of beraprost ester by selective oxidation
KR100903311B1 (ko) 2002-09-18 2009-06-17 연성정밀화학(주) 프로스타글란딘 유도체의 제조방법 및 그를 위한 출발물질
US7501405B2 (en) * 2003-04-11 2009-03-10 High Point Pharmaceuticals, Llc Combination therapy using an 11β-hydroxysteroid dehydrogenase type 1 inhibitor and an antihypertensive agent for the treatment of metabolic syndrome and related diseases and disorders
US7858831B2 (en) * 2007-12-21 2010-12-28 The Regents Of The University Of California General method for increasing stereoselectivity in stereoselective reactions
JP6174575B2 (ja) * 2011-06-16 2017-08-02 ラング バイオテクノロジー インコーポレーテッド ベラプロストの製造方法
WO2015179427A1 (en) * 2014-05-20 2015-11-26 Lung Biotechnology Pbc Methods for producing beraprost and its derivatives

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124778A (ja) * 1982-01-20 1983-07-25 Toray Ind Inc 5,6,7−トリノル−4,8−インタ−m−フエニレンPGI↓2誘導体
JPS63264475A (ja) * 1986-12-11 1988-11-01 Toray Ind Inc 2,5,6,7−テトラノル−18,18,19,19−テトラデヒドロ−4,8−インタ−m−フエニレンPGI2誘導体
JPH08225561A (ja) * 1989-02-27 1996-09-03 Toray Ind Inc 5,6,7−トリノル−4,8−インターm−フェニレンPGI2 誘導体の中間体及びその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
COREY, E. J. ET AL.: "A New Chiral Catalyst for the Enantioselective Synthesis of Secondary Alcohols and Deuterated Primar", TETRAHEDRON LETTERS, vol. 30, no. 46, JPN6016041523, 1989, pages 6275 - 6278, XP026608285, ISSN: 0003840537, DOI: 10.1016/S0040-4039(01)93871-7 *
COREY, E. J. ET AL.: "A New System for Catalytic Enantioselective Reduction of Achiral Ketones to Chiral Alcohols. Synthes", TETRAHEDRON LETTERS, vol. 31, no. 5, JPN6016041525, 1990, pages 611 - 614, XP002090908, ISSN: 0003840538, DOI: 10.1016/S0040-4039(00)94581-7 *
WAKITA, H. ET AL.: "TOTAL SYNTHESIS OF OPTICALLY ACTIVE m-PHENYLENE PGI2 DERIVATIVE: BERAPROST", HETEROCYCLES, vol. 53, no. 5, JPN7015003655, 2000, pages 1085 - 1110, ISSN: 0003840534 *
檜山 爲次郎, 最新有機合成法 —設計と戦略, vol. 第1版 第1刷, JPN7017004034, 15 February 2009 (2009-02-15), pages 66 - 69, ISSN: 0003840535 *
鈴木信夫, 実験化学講座26 有機合成VIII −不斉合成・還元・糖・標識化合物−, vol. 第4版、第3刷, JPN7015003656, 5 October 1996 (1996-10-05), pages 39 - 59, ISSN: 0003840536 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065015A (ja) * 2011-06-16 2019-04-25 ラング バイオテクノロジー インコーポレーテッド ベラプロストの製造方法

Also Published As

Publication number Publication date
CN103717585A (zh) 2014-04-09
US9181212B2 (en) 2015-11-10
US20120323025A1 (en) 2012-12-20
CN105418567A (zh) 2016-03-23
US20180237408A1 (en) 2018-08-23
EP2721017A1 (en) 2014-04-23
CN105315247B (zh) 2019-07-26
US10266509B2 (en) 2019-04-23
US9969706B2 (en) 2018-05-15
US20170158658A1 (en) 2017-06-08
US20140275573A1 (en) 2014-09-18
EP3461817B1 (en) 2020-11-04
US9334255B2 (en) 2016-05-10
JP2014522811A (ja) 2014-09-08
US9611243B2 (en) 2017-04-04
KR20140035484A (ko) 2014-03-21
US8779170B2 (en) 2014-07-15
CN103717585B (zh) 2015-11-25
US20190194156A1 (en) 2019-06-27
JP6691891B2 (ja) 2020-05-13
US10710973B2 (en) 2020-07-14
US20160244422A1 (en) 2016-08-25
CN105315247A (zh) 2016-02-10
ES2717226T3 (es) 2019-06-19
KR101978530B1 (ko) 2019-05-14
CA2839424C (en) 2020-04-07
EP2721017A4 (en) 2014-12-03
CA2839424A1 (en) 2012-12-20
EP2721017B1 (en) 2018-11-28
JP2019065015A (ja) 2019-04-25
US20150183757A1 (en) 2015-07-02
EP3461817A1 (en) 2019-04-03
CN105418567B (zh) 2019-09-06
JP6174575B2 (ja) 2017-08-02
WO2012174407A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
JP6174575B2 (ja) ベラプロストの製造方法
JP2004529973A (ja) 17−フェニル−18,19,20−トリノル−PGF2αおよびその誘導体の新製法
JP6440896B2 (ja) ベラプロストを作製するための方法
JP2010100629A (ja) プロスタグランジン誘導体の製造方法及びその出発物質
KR101522218B1 (ko) 프로스타글란딘 제조를 위한 방법 및 중간체
JPS60169459A (ja) フエノキシプロスタトリエン酸誘導体の製造法
JP4742239B2 (ja) ビシクロ[3.1.0]ヘキサン誘導体およびその中間体の製造方法
JPH07112968A (ja) 1α,24―ジヒドロキシコレカルシフェロール類の製造法
JP2000336094A (ja) 抗骨粗鬆症剤の製造法
HU190996B (en) Process for preparing prostaglandin e down 1 compounds
US20130006003A1 (en) New synthones for preparation of 19-nor vitamin d derivatives

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R150 Certificate of patent or registration of utility model

Ref document number: 6691891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250