JP2017152732A - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
JP2017152732A
JP2017152732A JP2017091476A JP2017091476A JP2017152732A JP 2017152732 A JP2017152732 A JP 2017152732A JP 2017091476 A JP2017091476 A JP 2017091476A JP 2017091476 A JP2017091476 A JP 2017091476A JP 2017152732 A JP2017152732 A JP 2017152732A
Authority
JP
Japan
Prior art keywords
conductivity type
region
semiconductor
metal film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017091476A
Other languages
English (en)
Inventor
明将 木下
Akimasa Kinoshita
明将 木下
崇 辻
Takashi Tsuji
崇 辻
福田 憲司
Kenji Fukuda
憲司 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fuji Electric Co Ltd
Priority to JP2017091476A priority Critical patent/JP2017152732A/ja
Publication of JP2017152732A publication Critical patent/JP2017152732A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】高耐圧を維持することができ、高い信頼性を有するワイドバンドギャップ半導体を用いて構成された半導体装置およびその製造方法を提供すること。
【解決手段】炭化珪素基板基体の表面層には、p+型領域3,4およびp型領域5が選択的に設けられている。p+型領域3は、活性領域101を囲む耐圧構造部102に設けられる。p+型領域4は、活性領域101に設けられ、JBS構造を構成する。p型領域5は、p+型領域3を囲み接合終端(JTE)構造を構成する。ショットキー電極9は、n型炭化珪素エピタキシャル層2とショットキー接合を形成する。また、ショットキー電極9は、p+型領域3の一部およびp型領域5を覆う層間絶縁膜6上に張り出しており、この張り出した部分はフィールドプレートとして機能する。
【選択図】図1

Description

この発明は、半導体装置および半導体装置の製造方法に関する。
従来、高電圧や大電流を制御するパワー半導体装置の構成材料として、シリコン(Si)が用いられている。パワー半導体装置は、バイポーラトランジスタやIGBT(絶縁ゲート型バイポーラトランジスタ)、MOSFET(絶縁ゲート型電界効果トランジスタ)など複数種類あり、これらは用途に合わせて使い分けられている。
例えば、バイポーラトランジスタやIGBTは、MOSFETに比べて電流密度は高く大電流化が可能であるが、高速にスイッチングさせることができない。具体的には、バイポーラトランジスタは数kHz程度のスイッチング周波数での使用が限界であり、IGBTは数十kHz程度のスイッチング周波数での使用が限界である。一方、パワーMOSFETは、バイポーラトランジスタやIGBTに比べて電流密度が低く大電流化が難しいが、数MHz程度までの高速スイッチング動作が可能である。
しかしながら、市場では大電流と高速性とを兼ね備えたパワー半導体装置への要求が強く、IGBTやパワーMOSFETはその改良に力が注がれ、現在ではほぼ材料限界に近いところまで開発が進んでいる。パワー半導体装置の観点からシリコンに代わる半導体材料が検討されており、低オン電圧、高速特性、高温特性に優れた次世代のパワー半導体装置を作製(製造)可能な半導体材料として炭化珪素(SiC)が注目を集めている(下記、非特許文献1参照)。
炭化珪素は、化学的に非常に安定した半導体材料であり、バンドギャップが3eVと広く、高温でも半導体として極めて安定的に使用することができる。また、炭化珪素は、最大電界強度もシリコンより1桁以上大きいため、オン抵抗を十分に小さくすることができる半導体材料として期待される。このような炭化珪素の特長は、他のワイドバンドギャップ半導体である例えば窒化ガリウム(GaN)にもあてはまる。このため、ワイドバンドギャップ半導体を用いることにより、半導体装置の高耐圧化を図ることができる(例えば、下記非特許文献2参照)。
しかしながら、高耐圧半導体装置では、素子構造が形成された活性領域だけでなく、活性領域の周辺部に設けられ耐圧を保持する耐圧構造部にも高電圧が印加され、耐圧構造部に電界が集中する。高耐圧半導体装置の耐圧は、半導体の不純物濃度、厚さおよび電界強度によって決定され、このように半導体固有の特長によって決定される破壊耐量は活性領域から耐圧構造部にわたって等しい。このため、耐圧構造部に電界が集中することにより、耐圧構造部に破壊耐量を超えた電気的負荷がかかり破壊に至る虞がある。
耐圧構造部の電界を緩和または分散させることで高耐圧半導体装置全体の耐圧を向上させた装置として、接合終端(JTE:Junction Termination Extension)構造や、フローティングリミッティングリング(FLR:Field Limiting Ring)構造などの終端構造を耐圧構造部に形成した半導体装置が公知である。また、FLRに接するフローティングの金属電極をフィールドプレート(FP:Field Plate)として配置し、耐圧構造部に生じた電荷を放出させることにより信頼性の向上を図った半導体装置が公知である(例えば、下記特許文献1参照)。
特開2010−50147号公報
ケイ・シェナイ(K.Shenai)、外2名、オプティウム セミコンダクターズ フォー ハイパワー エレクトロニクス(Optimum Semiconductors for High−Power Electronics)、アイ・トリプル・イー トランザクションズ オン エレクトロン デバイシズ(IEEE Transactions on Electron Devices)、1989年9月、第36巻、第9号、p.1811−1823 ビー・ジャヤン・バリガ(B.Jayant Baliga)著、シリコン カーバイド パワー デバイシズ(Silicon Carbide Power Divices)、(米国)、ワールド パブリッシング カンパニー(World Scientific Publishing Co.)、2006年3月30日、p.61
しかしながら、上述したJTE構造やFLR構造などの終端構造は、半導体装置の仕様となる初期特性としての耐圧を向上させるための構造であり、半導体装置を使用する環境によっては動作時の耐圧が大きく変動し、半導体装置の信頼性が低下する虞がある。例えば、高温や高湿度等の環境下では、半導体装置を保護する封止材などの樹脂中に不純物として存在する荷電イオンや、この荷電イオンによる配線腐食により生じた金属イオンが、半導体装置の動作時に生じた電界により耐圧構造部上に移動する。この荷電イオンや金属イオンにより生じた電荷の悪影響をうけて耐圧構造部での電界が変化し、半導体装置の動作時の耐圧が大きく変動するため、半導体装置の信頼性が低下する。
上記特許文献1では、シリコンで構成された半導体装置にフィールドプレートを設けることにより、半導体装置の動作時に耐圧構造部に生じた電荷を放出させている。しかしながら、ワイドバンドギャップ半導体で構成された半導体装置は、上記非特許文献2で開示されるように、シリコンで構成された半導体装置よりも不純物濃度の高い半導体基板に素子構造が形成される。このため、FLR構造を数μm以下の微細構造で設計しなければならず、ワイドバンドギャップ半導体で構成された半導体装置にフィールドプレートを配置することは難しい。したがって、ワイドバンドギャップ半導体で構成された半導体装置では、動作時の耐圧変動を抑制することが困難であるという問題がある。
この発明は、上述した従来技術による問題点を解消するため、高耐圧を維持することができる半導体装置および半導体装置の製造方法を提供することを目的とする。また、この発明は、上述した従来技術による問題点を解消するため、信頼性の高い半導体装置および半導体装置の製造方法を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、第1導電型ワイドバンドギャップ半導体基板と、前記第1導電型ワイドバンドギャップ半導体基板の表面に堆積された、前記第1導電型ワイドバンドギャップ半導体基板よりも不純物濃度の低い第1導電型ワイドバンドギャップ半導体堆積層と、前記第1導電型ワイドバンドギャップ半導体堆積層の、前記第1導電型ワイドバンドギャップ半導体基板側に対して反対側の表面層に選択的に設けられた第1の第2導電型半導体領域と、少なくとも、前記第1導電型ワイドバンドギャップ半導体堆積層上において金属−半導体接合を形成する1層構造の第1金属膜と、前記第1の第2導電型半導体領域とで構成された素子構造と、前記第1導電型ワイドバンドギャップ半導体堆積層の、前記第1導電型ワイドバンドギャップ半導体基板側に対して反対側の表面層に選択的に設けられ、前記素子構造の周辺部を囲む第2の第2導電型半導体領域と、前記第2の第2導電型半導体領域の周辺部を囲み接合終端構造を構成する、前記第2の第2導電型半導体領域よりも不純物濃度の低い第3の第2導電型半導体領域と、前記第3の第2導電型半導体領域を覆う層間絶縁膜と、前記第1金属膜上に設けられた1層構造の第2金属膜と、を備え、前記第1金属膜は、チタンからなり、前記層間絶縁膜上に、前記層間絶縁膜を介して前記第3の第2導電型半導体領域の一部を覆う位置まで延出されており、前記第2金属膜は、アルミニウムを主成分とする材料からなり、前記第1金属膜を介して前記層間絶縁膜を覆う位置まで延出し、端部が前記第1金属膜上で前記第1金属膜の端部よりも内側に位置しており、前記第2金属膜の厚さは、前記第1金属膜の厚さよりも厚いことを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第1金属膜は、前記第1導電型ワイドバンドギャップ半導体堆積層とショットキー接合を形成することを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第1導電型ワイドバンドギャップ半導体堆積層上に選択的に堆積された第2導電型ワイドバンドギャップ半導体堆積層をさらに備え、前記第1金属膜は、前記第2導電型ワイドバンドギャップ半導体堆積層とオーミック接合を形成することを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記素子構造は、前記第1の第2導電型半導体領域を覆う、前記第1の第2導電型半導体領域よりも不純物濃度の低い前記第2導電型ワイドバンドギャップ半導体堆積層からなる第2導電型ベース領域と、前記第2導電型ベース領域の内部に選択的に設けられた第1導電型ソース領域と、前記第2導電型ベース領域を深さ方向に貫通し前記第1導電型ワイドバンドギャップ半導体堆積層に達する第1導電型ウェル領域と、前記第2導電型ベース領域の、前記第1導電型ソース領域と前記第1導電型ウェル領域とに挟まれた部分の表面にゲート絶縁膜を介して設けられたゲート電極と、前記第2導電型ベース領域および前記第1導電型ソース領域に接する前記第1金属膜からなるソース電極と、で構成されていることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第3の第2導電型半導体領域の周辺部を囲み、前記第3の第2導電型半導体領域と接合終端構造を構成する、前記第3の第2導電型半導体領域よりも不純物濃度の低い第4の第2導電型半導体領域をさらに備えることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記層間絶縁膜上に張り出した前記第1金属膜の端部は、前記第3の第2導電型半導体領域上で終端していることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第2の第2導電型半導体領域の不純物濃度は、1.0×1018cm-3〜1.0×1020cm-3であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第3の第2導電型半導体領域の不純物濃度は、1.0×1017cm-3〜1.0×1018cm-3であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第4の第2導電型半導体領域の不純物濃度は、前記第3の第2導電型半導体領域の不純物濃度の0.4〜0.7倍であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、ワイドバンドギャップ半導体は、炭化珪素であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、ワイドバンドギャップ半導体は、窒化ガリウムであることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第1の第2導電型半導体領域は、接合障壁ショットキー構造を構成することを特徴とする。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、第1導電型ワイドバンドギャップ半導体基板の表面に、前記第1導電型ワイドバンドギャップ半導体基板よりも不純物濃度の低い第1導電型ワイドバンドギャップ半導体堆積層を堆積する工程と、前記第1導電型ワイドバンドギャップ半導体堆積層の表面層に、第1の第2導電型半導体領域を選択的に形成する工程と、前記第1導電型ワイドバンドギャップ半導体堆積層の表面層に、前記第1の第2導電型半導体領域の周辺部を囲むように、第2の第2導電型半導体領域を選択的に形成する工程と、前記第1導電型ワイドバンドギャップ半導体堆積層の表面層に、前記第2の第2導電型半導体領域の周辺部を囲み接合終端構造を構成する、前記第2の第2導電型半導体領域よりも不純物濃度の低い第3の第2導電型半導体領域を選択的に形成する工程と、前記第1導電型ワイドバンドギャップ半導体堆積層の表面に、前記第3の第2導電型半導体領域を覆う層間絶縁膜を選択的に形成する工程と、前記第1導電型ワイドバンドギャップ半導体堆積層および前記層間絶縁膜の表面に、前記第1導電型ワイドバンドギャップ半導体堆積層または前記第1導電型ワイドバンドギャップ半導体堆積層上に堆積される半導体層と金属−半導体接合を形成する1層構造の第1金属膜を形成する工程と、前記第1金属膜を選択的に除去し、前記金属−半導体接合が形成された側から前記層間絶縁膜上に張り出すように、かつ、前記層間絶縁膜を介して前記第3の第2導電型半導体領域の一部を覆うように前記第1金属膜を残す工程と、前記第1金属膜を選択的に除去した後、チタンからなる前記第1金属膜の表面に、アルミニウムを主成分とし、かつ前記第1金属膜の厚さよりも厚い1層構造の第2金属膜を形成する工程と、前記第2金属膜を選択的に除去し、前記金属−半導体接合が形成された側から前記第1金属膜を介して前記層間絶縁膜を覆う位置まで延出し、かつ端部が前記第1金属膜上で前記第1金属膜の端部よりも内側に位置するように前記第2金属膜を残す工程と、を含むことを特徴とする。
上述した発明によれば、活性領域に設けた電極の層間絶縁膜上に張り出させた部分をフィールドプレートとして機能させることができる。このため、半導体装置の動作時に耐圧構造部に生じる電界を分散させることができる。また、半導体装置の動作時に耐圧構造部に生じる電荷を外部へ放出させることができる。これにより、半導体装置の動作時に耐圧が変動することを抑制することができる。
上述した発明によれば、終端構造をJTE構造とすることにより、例えば数μm以下の微細構造で設計しなければならないFLR構造とする場合に比べて、活性領域の素子構造を形成するための一般的な方法によって、容易に、耐圧構造部の層間絶縁膜上に張り出させるようにフィールドプレートを配置することができる。このため、半導体材料としてワイドバンドギャップ半導体を用いて高耐圧半導体装置を作製する場合であっても、動作時に耐圧が変動しにくい高耐圧半導体装置を作製することができる。
本発明にかかる半導体装置および半導体装置の製造方法によれば、高耐圧を維持することができるという効果を奏する。また、本発明にかかる半導体装置および半導体装置の製造方法によれば、半導体装置の信頼性を向上させることができるという効果を奏する。
実施の形態1にかかる炭化珪素半導体装置の構成を示す断面図である。 実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を模式的に示す断面図である。 実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を模式的に示す断面図である。 実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を模式的に示す断面図である。 実施の形態2にかかる炭化珪素半導体装置の構成を示す断面図である。 実施例にかかる炭化珪素半導体装置の耐圧構造部の構成を示す断面図である。 比較例の炭化珪素半導体装置の耐圧構造部の構成を示す断面図である。 実施例にかかる炭化珪素半導体装置の耐圧特性を示す特性図である。 比較例の炭化珪素半導体装置の耐圧特性を示す特性図である。
以下に添付図面を参照して、この発明にかかる半導体装置および半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、本明細書では、ミラー指数の表記において、“−”はその直後の指数につくバーを意味しており、指数の前に“−”を付けることで負の指数をあらわしている。
(実施の形態1)
本発明にかかる半導体装置は、ワイドバンドギャップ半導体を用いて構成される。実施の形態1においては、ワイドバンドギャップ半導体として例えば炭化珪素(SiC)を用いて作製された炭化珪素半導体装置について、接合障壁ショットキー(JBS:Junction Barrier Shottky)構造のダイオードを例に説明する。図1は、実施の形態1にかかる炭化珪素半導体装置の構成を示す断面図である。図1に示すように、実施の形態1にかかる炭化珪素半導体装置は、n+型炭化珪素基板(ワイドバンドギャップ半導体基板)1の主面上にn型炭化珪素エピタキシャル層(ワイドバンドギャップ半導体堆積層)2が堆積されている。
+型炭化珪素基板1は、例えば窒素(N)がドーピングされた炭化珪素単結晶基板である。n型炭化珪素エピタキシャル層2は、n+型炭化珪素基板1よりも低い不純物濃度で例えば窒素がドーピングされてなる低濃度n型ドリフト層である。以下、n+型炭化珪素基板1単体、またはn+型炭化珪素基板1とn型炭化珪素エピタキシャル層2とを併せて炭化珪素半導体基体とする。n型炭化珪素エピタキシャル層2のn+型炭化珪素基板1側に対して反対側(炭化珪素半導体基体のおもて面側)の表面層には、p+型領域3,4およびp型領域5が選択的に設けられている。
+型領域3(第2の第2導電型半導体領域)は、活性領域101の周辺部に設けられ活性領域101を囲む耐圧構造部102に設けられている。耐圧構造部102は、耐圧を保持する領域である。また、p+型領域3は、ダイオードの素子構造が形成された活性領域101側に設けられ、n型炭化珪素エピタキシャル層2とショットキー接合を形成するショットキー電極9に接する。ショットキー電極9については後述する。
+型領域3は、p型領域5よりも高い不純物濃度で例えばアルミニウム(Al)がドーピングされてなる。p+型領域3の不純物濃度は、1.0×1018cm-3〜1.0×1020cm-3であるのが好ましい。その理由は、本発明の効果が顕著にあらわれるからである。p+型領域3は、n型炭化珪素エピタキシャル層2とショットキー電極9との接合端部の電界集中を回避する機能を有する。
+型領域(第1の第2導電型半導体領域)4は、活性領域101に所定の間隔で複数設けられ、JBS構造(素子構造)を構成する(二点差線で示す部分)。また、p+型領域4は、p+型領域3と離れて設けられる。p+型領域4の不純物濃度は、p+型領域3の不純物濃度と等しくてもよい。p型領域(第3の第2導電型半導体領域)5は、p+型領域3の周辺部に接し、当該p+型領域3を囲むように設けられ、接合終端(JTE)構造を構成する。すなわち、活性領域101側から耐圧構造部102へ向かって、p+型領域3およびp型領域5の順で並列に配置されている。
p型領域5の不純物濃度は、1.0×1017cm-3〜1.0×1018cm-3であるのが好ましい。その理由は、所望の耐圧を得やすくなるとともに、本発明の効果が顕著にあらわれるからである。p型領域5は、活性領域101の周辺部においてさらに電界を分散させる機能を有する。p+型領域4およびp型領域5は、それぞれ例えばアルミニウムがドーピングされてなる。
耐圧構造部102上には、p+型領域3のp型領域5側およびp型領域5を覆うように層間絶縁膜6が設けられている。n+型炭化珪素基板1のn型炭化珪素エピタキシャル層2側に対して反対側の表面(炭化珪素半導体基体の裏面)には、n+型炭化珪素基板1とオーミック接合8を形成する裏面電極(オーミック電極)7が設けられている。裏面電極7は、カソード電極を構成する。n型炭化珪素エピタキシャル層2のn+型炭化珪素基板1側に対して反対側の表面(炭化珪素半導体基体のおもて面)には、アノード電極を構成するショットキー電極9が設けられている。ショットキー電極9は、活性領域101から耐圧構造部102の一部にわたって設けられている。
具体的には、ショットキー電極9は、活性領域101において露出するn型炭化珪素エピタキシャル層2の表面(炭化珪素半導体基体のおもて面)全面を覆い、活性領域101の周辺部においてp+型領域3に接する。また、ショットキー電極9は、活性領域101から耐圧構造部102へと延在して設けられ、層間絶縁膜6上に張り出している。そして、ショットキー電極9は、層間絶縁膜6上に、層間絶縁膜6を介してp+型領域3およびp型領域5の一部を覆う位置まで延出されている。すなわち、ショットキー電極9の最も耐圧構造部102側の端部は、JTE構造用のp型領域5上で終端している。ショットキー電極9の層間絶縁膜6上に張り出した部分は、耐圧構造部102に生じた電荷を放出させるフィールドプレート(FP)として機能する。
ショットキー電極9は、次の材料でできているのがよい。その理由は、本発明の効果が顕著にあらわれるからである。ショットキー電極9は、例えば、IVa族金属、Va族金属、VIa族金属、アルミニウムまたはシリコンでできているのがよい。または、ショットキー電極9は、IVa族金属、Va族金属、VIa族金属、アルミニウムおよびシリコンのうちの2元素または3元素を含む複合膜でできているのがよい。特に、ショットキー電極9は、チタン(Ti)、アルミニウムまたはシリコンでできている、もしくは、チタン、アルミニウムおよびシリコンのうちの2元素または3元素を含む複合膜であるのが好ましい。さらに好ましくは、ショットキー電極9は、n型炭化珪素エピタキシャル層2とショットキー接合を形成する部分が例えばチタン(Ti)でできているのがよい。
ショットキー電極9とn型炭化珪素エピタキシャル層2とのショットキー障壁高さは、実施の形態1にかかる炭化珪素半導体装置を高耐圧半導体装置として使用する場合には、例えば1eV以上であるのが好ましい。また、ショットキー電極9のショットキー障壁高さは、実施の形態1にかかる炭化珪素半導体装置を電源装置として使用する場合には、例えば0.5eV以上1eV未満であるのが好ましい。
ショットキー電極9上には、例えばアルミニウムでできた電極パッド10が設けられている。電極パッド10は、活性領域101から耐圧構造部102へと延在し、かつその最も耐圧構造部102側の端部はショットキー電極9上で終端している。JTE構造上には、ショットキー電極9および電極パッド10の最も耐圧構造部102側の各端部を覆うように、例えばポリイミドからなるパッシベーション膜などの保護膜11が設けられている。保護膜11は、放電防止の機能を有する。
次に、実施の形態1にかかる炭化珪素半導体装置の製造方法について、例えば600V以上の耐圧クラスのJBS構造の高耐圧ダイオードを作製する場合を例に説明する。図2〜4は、実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を模式的に示す断面図である。まず、図2に示すように、例えば1×1018cm-3の不純物濃度で窒素がドーピングされた厚さ300μmのn+型炭化珪素基板1を用意する。n+型炭化珪素基板1の主面は、例えば(0001)面であってもよい。
次に、n+型炭化珪素基板1の(0001)面上に、1.0×1016cm-3の不純物濃度で窒素がドーピングされた厚さ10μmのn型炭化珪素エピタキシャル層2を成長させる。次に、図3に示すように、フォトリソグラフィおよびイオン注入によって、n型炭化珪素エピタキシャル層2の表面層に、終端構造用のp+型領域3およびJBS構造用のp+型領域4を選択的に形成する。p+型領域3,4は、例えばアルミニウムを多段イオン注入し、深さ0.5μmおよび3×1019cm-3の不純物濃度のボックスプロファイルで形成する。
+型領域3,4を形成するためのイオン注入は、加速エネルギーおよびドーピング濃度を例えば5段階に変化させて行ってもよい。この場合、例えば、第1注入〜第5注入の加速エネルギーおよびドーピング濃度は、それぞれ、300keVおよび5×1014個/cm2、200keVおよび3×1014個/cm2、150keVおよび3×1014個/cm2、100keVおよび2×1014個/cm2、50keVおよび3×1014個/cm2であってもよい。
次に、図4に示すように、フォトリソグラフィおよびイオン注入によって、n型炭化珪素エピタキシャル層2の表面層に、JTE構造用のp型領域5を選択的に形成する。このイオン注入では、例えばアルミニウムを3×1017cm-3のドーパント濃度で注入する。次に、アルゴン(Ar)雰囲気中において1650℃の温度で240秒間の熱活性化処理を行い、n型炭化珪素エピタキシャル層2に注入されたアルミニウムを活性化する。
次に、n型炭化珪素エピタキシャル層2の表面(炭化珪素半導体基体のおもて面)全体に、層間絶縁膜6として例えば0.5μmの厚さの酸化膜を形成する。次に、層間絶縁膜6をパターニングして選択的に除去し、活性領域101におけるn型炭化珪素エピタキシャル層2およびp+型領域3の活性領域101側を露出させる。これにより、p+型領域3のp型領域5側およびp型領域5を覆うように層間絶縁膜6が形成される。次に、n+型炭化珪素基板1の表面(炭化珪素半導体基体の裏面)に、裏面電極7として例えばニッケル(Ni)膜を50nmの厚さで成膜する。次に、アルゴン雰囲気中において1100℃の温度で2分間の熱処理を行う。この熱処理により、n+型炭化珪素基板1と裏面電極7とのオーミック接合8が形成される。
次に、炭化珪素半導体基体のおもて面側の全面に、活性領域101に露出するn型炭化珪素エピタキシャル層2に接するように、ショットキー電極9として例えばチタン膜を100nmの厚さで成膜する。次に、チタン膜の最も耐圧構造部102側の端部がp型領域5上で終端するように、耐圧構造部102上のチタン膜を選択的に除去する。次に、アルゴン雰囲気中において500℃の温度で5分間の熱処理を行う。この熱処理により、n型炭化珪素エピタキシャル層2とショットキー電極9とのショットキー接合が形成される。
次に、炭化珪素半導体基体のおもて面の全面に、ショットキー電極9を覆うように、電極パッド10として例えばアルミニウム膜を5μmの厚さで堆積する。次に、アルミニウム膜の最も耐圧構造部102側の端部が、耐圧構造部102上にあり、かつショットキー電極9上で終端するように、アルミニウム膜を選択的に除去する。その後、放電防止のためのポリイミドからなる保護膜11を例えば8μmの厚さで形成することにより、図1に示すJBS構造のダイオードが完成する。
以上、説明したように、実施の形態1によれば、活性領域に設けた電極を、JTE構造を覆う層間絶縁膜上に張り出させた構成とすることにより、電極の層間絶縁膜上に張り出させた部分をフィールドプレートとして機能させることができる。このため、電極の層間絶縁膜上に張り出させた部分によって半導体装置の動作時に耐圧構造部に生じる電界を分散させることができる。また、電極の層間絶縁膜上に張り出させた部分によって、半導体装置の動作時に耐圧構造部に生じる電荷を外部へ放出させることができる。これにより、半導体装置の動作時に耐圧が変動することを抑制することができる。したがって、半導体装置の信頼性を向上させることができる。
また、実施の形態1によれば、終端構造をJTE構造とすることにより、例えば数μm以下の微細構造で設計しなければならないFLR構造に比べて、活性領域の素子構造を形成するための一般的な方法によって、容易に、耐圧構造部の層間絶縁膜上に張り出させるようにフィールドプレートを形成することができる。このため、半導体材料としてワイドバンドギャップ半導体を用いて高耐圧半導体装置を作製する場合であっても、動作時に耐圧が変動しにくい高耐圧半導体装置を作製することができる。
(実施の形態2)
図5は、実施の形態2にかかる炭化珪素半導体装置の構成を示す断面図である。実施の形態2にかかる炭化珪素半導体装置が実施の形態1にかかる炭化珪素半導体装置と異なる点は、ダイオードの素子構造に代えて、MOSFETの素子構成を形成した点である。実施の形態2にかかる炭化珪素半導体装置については、縦型プレーナーゲート構造のMOSFETを例に説明する。実施の形態2においては、n+型炭化珪素基板1、n型炭化珪素エピタキシャル層2および後述するpベース層13を併せて炭化珪素半導体基体とする。
図5に示すように、実施の形態2にかかる炭化珪素半導体装置は、ドレイン領域となるn+型炭化珪素基板1の主面上に、n型炭化珪素エピタキシャル層2が堆積されている。n+型炭化珪素基板1およびn型炭化珪素エピタキシャル層2は、実施の形態1のn+型炭化珪素基板およびn型炭化珪素エピタキシャル層と同様である。n+型炭化珪素基板1のn型炭化珪素エピタキシャル層2側に対して反対側の表面(炭化珪素半導体基体の裏面)には、実施の形態1と同様に裏面電極7が設けられている。裏面電極7は、ドレイン電極を構成する。
活性領域101において、炭化珪素半導体基体のおもて面側には、MOS(金属−酸化膜−半導体からなる絶縁ゲート)構造(素子構造)が形成されている。具体的には、活性領域101において、n型炭化珪素エピタキシャル層2のn+型炭化珪素基板1側に対して反対側(炭化珪素半導体基体のおもて面側)の表面層には、p+型領域(第1の第2導電型半導体領域)12が選択的に設けられている。p+型領域12は、例えばアルミニウムがドーピングされてなる。
隣り合うp+型領域12、および当該隣り合うp+型領域12に挟まれたn型炭化珪素エピタキシャル層2の表面には、p型炭化珪素エピタキシャル層(以下、pベース層とする、前記第2導電型ワイドバンドギャップ半導体堆積層)13が選択的に堆積されている。pベース層13は、活性領域101にのみ堆積されている。pベース層13の不純物濃度は、p+型領域12の不純物濃度よりも低い。pベース層13は、例えばアルミニウムがドーピングされてなる。
pベース層13のp+型領域12上の部分には、n+ソース領域14およびp+コンタクト領域15が設けられている。n+ソース領域14は、pベース層13のp+型領域12側に対して反対側の表面からp+型領域12に達しない深さで設けられている。また、n+ソース領域14およびp+コンタクト領域15は互いに接する。p+コンタクト領域15は、n+ソース領域14よりも耐圧構造部102側に配置されている。
また、pベース層13の、n型炭化珪素エピタキシャル層2上の部分には、深さ方向にpベース層13を貫通しn型炭化珪素エピタキシャル層2に達するnウェル領域16が設けられている。nウェル領域16は、n型炭化珪素エピタキシャル層2とともにドリフト領域を構成する。pベース層13の、n+ソース領域14とnウェル領域16とに挟まれた部分の表面には、ゲート絶縁膜17を介してゲート電極18が設けられている。ゲート電極18は、ゲート絶縁膜17を介して、nウェル領域16の表面に設けられていてもよい。
層間絶縁膜20は、炭化珪素半導体基体のおもて面側の全面に、ゲート電極18を覆うように設けられている。ソース電極19は、層間絶縁膜20に開口されたコンタクトホールを介して、n+ソース領域14およびp+コンタクト領域15に接する。ソース電極19は、層間絶縁膜20によって、ゲート電極18と電気的に絶縁されている。
また、ソース電極19は、活性領域101から耐圧構造部102へと延在し、耐圧構造部102の層間絶縁膜20上に張り出している。そして、ソース電極19は、層間絶縁膜20を介して、後述するp-型領域5aの一部を覆う。すなわち、ソース電極19の最も耐圧構造部102側の端部は、JTE構造用のp-型領域5a上で終端している。ソース電極19の層間絶縁膜20上に張り出した部分は、耐圧構造部102に生じた電荷を放出させるフィールドプレート(FP)として機能する。
ソース電極19上には、電極パッド21が設けられている。電極パッド21は、活性領域101から耐圧構造部102へと延在し、かつその最も耐圧構造部102側の端部はソース電極19上で終端している。耐圧構造部102上には、ソース電極19および電極パッド21の最も耐圧構造部102側の各端部を覆うように、例えばポリイミドからなるパッシベーション膜などの保護膜22が設けられている。保護膜22は、放電防止の機能を有する。
耐圧構造部102において、n型炭化珪素エピタキシャル層2のn+型炭化珪素基板1側に対して反対側の表面層には、p-型領域(第3の第2導電型半導体領域)5aおよびp--型領域(第4の第2導電型半導体領域)5bが設けられている。p-型領域5aおよびp--型領域5bは、ダブルゾーンJTE構造を構成する。JTE構造は、層間絶縁膜20によって活性領域の素子構造と電気的に絶縁されている。ダブルゾーンJTE構造とは、不純物濃度の異なる2つのp型領域が接するように並列された構成のJTE構造である。
-型領域5aは、p+型領域12の周辺部に接し、当該p+型領域12を囲む。p--型領域5bは、p-型領域5aの周辺部に接し、当該p-型領域5aを囲む。すなわち、活性領域101側から耐圧構造部102側へ向かって、p+型領域12、p-型領域5aおよびp--型領域5bの順に並列に配置されている。p-型領域5aの不純物濃度は、pベース層13の不純物濃度よりも低い。p--型領域5bの不純物濃度は、p-型領域5aの不純物濃度よりも低い。
好ましくは、p--型領域5bの不純物濃度は、p-型領域5aの不純物濃度の0.4倍〜0.7倍であるのがよい。その理由は、本発明の効果が顕著にあらわれるからである。p-型領域5aおよびp--型領域5bは、それぞれ例えばアルミニウムがドーピングされてなる。図5では、活性領域101に1つのMOS構造のみを図示しているが、複数のMOS構造が並列に配置されていてもよい。
次に、実施の形態2にかかる炭化珪素半導体装置の製造方法について、例えば1200Vの耐圧クラスのMOSFETを作成する場合を例に説明する。まず、例えば2×1019cm-3程度の不純物濃度で窒素がドーピングされたn+型炭化珪素基板1を用意する。n+型炭化珪素基板1は、主面が例えば<11−20>方向に4度程度のオフ角を有する(000−1)面であってもよい。次に、n+型炭化珪素基板1の(000−1)面上に、1.8×1016cm-3の不純物濃度で窒素がドーピングされた厚さ10μmのn型炭化珪素エピタキシャル層2を成長させる。
次に、フォトリソグラフィおよびイオン注入によって、n型炭化珪素エピタキシャル層2の表面層に、p+型領域12を選択的に形成する。このイオン注入では、例えば、ドーパントをアルミニウムとし、p+型領域12の不純物濃度が1.0×1018cm-3となるようにドーズ量を設定してもよい。p+型領域12の幅および深さは、それぞれ13μmおよび0.5μmであってもよい。隣り合うp+型領域12間の距離は、例えば2μmであってもよい。
次に、n型炭化珪素エピタキシャル層2の表面に、pベース層13となるp型炭化珪素エピタキシャル層を例えば0.5μmの厚さで成長させる。このとき、例えば、pベース層13の不純物濃度が2.0×1016cm-3となるようにアルミニウムがドーピングされたp型炭化珪素エピタキシャル層を成長させてもよい。
次に、フォトリソグラフィおよびイオン注入によって、pベース層13のn型炭化珪素エピタキシャル層2上の部分の導電型を反転させて、nウェル領域16を選択的に形成する。このイオン注入では、例えば、ドーパントを窒素とし、nウェル領域16の不純物濃度が5.0×1016cm-3となるようにドーズ量を設定してもよい。nウェル領域16の幅および深さは、それぞれ2.0μmおよび1.5μmであってもよい。
次に、フォトリソグラフィおよびイオン注入によって、pベース層13のp+型領域12上の部分の表面層に、n+ソース領域14を選択的に形成する。次に、フォトリソグラフィおよびイオン注入によって、pベース層13のp+型領域12上の部分の表面層に、p+コンタクト領域15を選択的に形成する。次に、n+ソース領域14、p+コンタクト領域15およびnウェル領域16を活性化させるための熱処理(アニール)を行う。このときの熱処理温度および熱処理時間は、それぞれ1620℃および2分間であってもよい。
次に、エッチングによって、耐圧構造部102上のpベース層13を例えば0.7μmの深さで除去し、n型炭化珪素エピタキシャル層2を露出させる。次に、フォトリソグラフィおよびイオン注入を行い、エッチングによって露出したn型炭化珪素エピタキシャル層2の表面層に、p-型領域5aを選択的に形成する。このイオン注入は、例えば、ドーパントをアルミニウムとし、ドーズ量は6.0×1013cm-2としてもよい。
次に、フォトリソグラフィおよびイオン注入を行い、エッチングによって露出したn型炭化珪素エピタキシャル層2の表面層に、p--型領域5bを選択的に形成する。このイオン注入は、例えば、ドーパントをアルミニウムとし、ドーズ量は1.0×1013cm-2としてもよい。次に、p-型領域5aおよびp--型領域5bを活性化させるための熱処理(アニール)を行う。このときの熱処理温度および熱処理時間は、それぞれ1620℃および2分間であってもよい。
-型領域5aおよびp--型領域5bを活性化させるための熱処理は、n+ソース領域14、p+コンタクト領域15およびnウェル領域16を活性化させるための熱処理と同時に行ってもよい。n+ソース領域14、p+コンタクト領域15、nウェル領域16、p-型領域5aおよびp--型領域5bを形成する順序は種々変更可能である。
次に、炭化珪素半導体基体のおもて面側を熱酸化し、ゲート絶縁膜17を100nmの厚さで形成する。この熱酸化は、水素雰囲気中において1000℃程度の温度の熱処理によって行ってもよい。これにより、pベース層13およびn型炭化珪素エピタキシャル層2の表面に形成された各領域がゲート絶縁膜17で覆われる。
次に、ゲート絶縁膜17上に、ゲート電極18として、例えばリン(P)がドープされた多結晶シリコン層を形成する。次に、多結晶シリコン層をパターニングして選択的に除去し、pベース層13の、n+ソース領域14とnウェル領域16とに挟まれた部分上に多結晶シリコン層を残す。このとき、nウェル領域16上に多結晶シリコン層を残してもよい。
次に、ゲート絶縁膜17を覆うように、層間絶縁膜20として例えばリンガラス(PSG:Phospho Silicate Glass)を1.0μmの厚さで成膜する。次に、層間絶縁膜20およびゲート絶縁膜17をパターニングして選択的に除去してコンタクトホールを形成し、n+ソース領域14およびp+コンタクト領域15を露出させる。次に、層間絶縁膜20を平坦化するための熱処理(リフロー)を行う。
次に、層間絶縁膜20の表面に、ソース電極19を成膜する。このとき、コンタクトホール内にもソース電極19を埋め込み、n+ソース領域14およびp+コンタクト領域15とソース電極19とを接触させる。次に、ソース電極19の最も耐圧構造部102側の端部がp-型領域5a上で終端するように、耐圧構造部102上のソース電極19を選択的に除去する。
次に、例えばスパッタ法によって、炭化珪素半導体基体のおもて面の全面にソース電極19を覆うように、電極パッド21を堆積する。電極パッド21の層間絶縁膜20上の部分の厚さは、例えば5μmであってもよい。電極パッド21は、例えば、1%の割合でシリコンを含んだアルミニウム(Al−Si)で形成してもよい。次に、電極パッド21の最も耐圧構造部102側の端部が、耐圧構造部102上にあり、かつソース電極19上で終端するように、電極パッド21を選択的に除去する。
次に、n+型炭化珪素基板1の表面(炭化珪素半導体基体の裏面)に、裏面電極7として例えばニッケル膜を成膜する。そして、例えば970℃の温度で熱処理し、n+型炭化珪素基板1と裏面電極7とのオーミック接合8を形成する。次に、ニッケル膜の表面に、裏面電極7として例えばチタン、ニッケルおよび金(Au)をこの順に成膜する。そして、炭化珪素半導体基体のおもて面側に、ソース電極19および電極パッド21の最も耐圧構造部102側の各端部を覆うように保護膜22を形成することにより、図5に示すMOSFETが完成する。
以上、説明したように、実施の形態2によれば、MOSFETの素子構成を形成した場合においても実施の形態1と同様の効果を得ることができる。
(実施例)
次に、フィールドプレートの有無による炭化珪素半導体装置の耐圧特性について検証した。図6−1は、実施例にかかる炭化珪素半導体装置の耐圧構造部の構成を示す断面図である。図6−2は、比較例の炭化珪素半導体装置の耐圧構造部の構成を示す断面図である。まず、実施の形態1にしたがい、JBS構造のダイオードを作製した。具体的には、図6−1に示すように、耐圧構造部102の層間絶縁膜6上にショットキー電極9を張り出させて、ショットキー電極9の層間絶縁膜6上の部分をフィールドプレートとして機能させたダイオードを作成した(符号Aで示す部分、以下、フィールドプレート有とする)。
比較として、図6−2に示すように、耐圧構造部102の層間絶縁膜6上にショットキー電極9が張り出させない構成のダイオードを作製した(符号Bで示す部分、以下、フィールドプレート無とする)。実施例および比較例は、ショットキー電極9以外の構成は同一とした。具体的には、層間絶縁膜6の厚さを0.5μmとした。エピタキシャル層2の濃度を1×1016cm-3とし、厚さを10μmとした。p型領域5の幅および深さをそれぞれ30μmおよび0.5μmとした。そして、p型領域5の不純物濃度を2×1017cm-3〜4×1017cm-3の範囲で変化させて、層間絶縁膜6上に−5×1012cm-2〜+5×1012cm-2の電荷量で電荷を分布させたときの実施例および比較例のそれぞれの耐圧を算出した。そのシミュレーション結果を図7−1,7−2に示す。
図7−1は、実施例にかかる炭化珪素半導体装置の耐圧特性を示す特性図である。図7−2は、比較例の炭化珪素半導体装置の耐圧特性を示す特性図である。図7−1に示すように、フィールドプレート有の実施例は、耐圧の変動はほぼ見られないことが確認された。図7−1には、エピタキシャル層2の濃度を1.0×1016cm-3、厚さを10μmの条件におけるp型領域5の不純物濃度が2×1017cm-3〜4×1017cm-3の範囲におけるシミュレーション結果のみを示しているが、エピ濃度が低くなれば、p型領域5の不純物濃度が1.0×1017cm-3以上2×1017cm-3未満の範囲で耐圧変動が生じなくなり、また、エピ濃度が高くなれば4×1017cm-3より大きく1.0×1018cm-3以下である場合において耐圧変動はほぼ生じない。一方、図7−2に示すように、フィールドプレート無の比較例は、層間絶縁膜6上の電荷量によっては耐圧が500V以上低下することが確認された。したがって、活性領域に設けた電極を、JTE構造を覆う層間絶縁膜上に張り出させた構成とすることにより、耐圧の変動を抑制することができ、かつ例えば1400V以上の高耐圧を実現することができることが確認された。
以上において本発明では、炭化珪素でできた炭化珪素基板の主面を(0001)面とし当該(0001)面上にショットキーバリアダイオードを構成した場合を例に説明したが、これに限らず、基板主面の面方位や、基板を構成するワイドバンドギャップ半導体材料などを種々変更可能である。例えば、炭化珪素基板の主面を(000−1)面とし当該(000−1)面上にショットキーバリアダイオードを構成してもよいし、窒化ガリウム(GaN)などのワイドバンドギャップ半導体でできた半導体基板を用いてもよい。
また、本発明では、JBS構造のダイオードや縦型MOSFETを例に説明しているが、上述した実施の形態に限らず、活性領域を囲む耐圧構造部を備えたさまざまな構成の半導体装置に適用することが可能である。したがって、活性領域の素子構造の構成は、素子構造を構成する各領域とワイドバンドギャップ半導体基体との接合が金属−半導体接合を備えた構成、または金属−半導体接合と絶縁体−半導体接合とを備えた構成であってもよい。金属−半導体接合のみを備えた素子構造は、例えばダイオードの素子構造である。金属−半導体接合と絶縁体−半導体接合とを備えた素子構造は、例えばMOSFETの素子構造などである。
また、本発明では、炭化珪素半導体基体とショットキー接合を形成する金属としてチタンを例に説明したが、これに限らず、炭化珪素半導体基体とのショットキー接合を形成することができる材料でショットキー電極を形成してもよい。また、JTE構造の構成例としてダブルゾーンJTE構造について説明しているが、さらに、不純物濃度の異なる3つ以上のp型領域が接するように並列された構成のマルチゾーンJTE構造としてもよい。また、耐圧構造部にJTE構造を形成した場合を例に説明したが、製造の難易度によらずFLR構造のように複数のp型領域が所定間隔で配置された構成の終端構造に本発明を適用してもよい。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。
以上のように、本発明にかかる半導体装置および半導体装置の製造方法は、電力変換装置や種々の産業用機械などの電源装置などに使用される高耐圧半導体装置に有用である。
1 n+型炭化珪素基板
2 n型炭化珪素エピタキシャル層
3 活性領域の周辺部に設けられたp+型領域
4 JBS構造用のp+型領域
5 JTE構造用のp型領域
6 層間絶縁膜
7 裏面電極
8 オーミック接合
9 ショットキー電極
10 電極パッド
11 保護膜
101 活性領域
102 耐圧構造部

Claims (13)

  1. 第1導電型ワイドバンドギャップ半導体基板と、
    前記第1導電型ワイドバンドギャップ半導体基板の表面に堆積された、前記第1導電型ワイドバンドギャップ半導体基板よりも不純物濃度の低い第1導電型ワイドバンドギャップ半導体堆積層と、
    前記第1導電型ワイドバンドギャップ半導体堆積層の、前記第1導電型ワイドバンドギャップ半導体基板側に対して反対側の表面層に選択的に設けられた第1の第2導電型半導体領域と、
    少なくとも、前記第1導電型ワイドバンドギャップ半導体堆積層上において金属−半導体接合を形成する1層構造の第1金属膜と、前記第1の第2導電型半導体領域とで構成された素子構造と、
    前記第1導電型ワイドバンドギャップ半導体堆積層の、前記第1導電型ワイドバンドギャップ半導体基板側に対して反対側の表面層に選択的に設けられ、前記素子構造の周辺部を囲む第2の第2導電型半導体領域と、
    前記第2の第2導電型半導体領域の周辺部を囲み接合終端構造を構成する、前記第2の第2導電型半導体領域よりも不純物濃度の低い第3の第2導電型半導体領域と、
    前記第3の第2導電型半導体領域を覆う層間絶縁膜と、
    前記第1金属膜上に設けられた1層構造の第2金属膜と、
    を備え、
    前記第1金属膜は、チタンからなり、前記層間絶縁膜上に、前記層間絶縁膜を介して前記第3の第2導電型半導体領域の一部を覆う位置まで延出されており、
    前記第2金属膜は、アルミニウムを主成分とする材料からなり、前記第1金属膜を介して前記層間絶縁膜を覆う位置まで延出し、端部が前記第1金属膜上で前記第1金属膜の端部よりも内側に位置しており、
    前記第2金属膜の厚さは、前記第1金属膜の厚さよりも厚いことを特徴とする半導体装置。
  2. 前記第1金属膜は、前記第1導電型ワイドバンドギャップ半導体堆積層とショットキー接合を形成することを特徴とする請求項1に記載の半導体装置。
  3. 前記第1導電型ワイドバンドギャップ半導体堆積層上に選択的に堆積された第2導電型ワイドバンドギャップ半導体堆積層をさらに備え、
    前記第1金属膜は、前記第2導電型ワイドバンドギャップ半導体堆積層とオーミック接合を形成することを特徴とする請求項1に記載の半導体装置。
  4. 前記素子構造は、
    前記第1の第2導電型半導体領域を覆う、前記第1の第2導電型半導体領域よりも不純物濃度の低い前記第2導電型ワイドバンドギャップ半導体堆積層からなる第2導電型ベース領域と、
    前記第2導電型ベース領域の内部に選択的に設けられた第1導電型ソース領域と、
    前記第2導電型ベース領域を深さ方向に貫通し前記第1導電型ワイドバンドギャップ半導体堆積層に達する第1導電型ウェル領域と、
    前記第2導電型ベース領域の、前記第1導電型ソース領域と前記第1導電型ウェル領域とに挟まれた部分の表面にゲート絶縁膜を介して設けられたゲート電極と、
    前記第2導電型ベース領域および前記第1導電型ソース領域に接する前記第1金属膜からなるソース電極と、
    で構成されていることを特徴とする請求項3に記載の半導体装置。
  5. 前記第3の第2導電型半導体領域の周辺部を囲み、前記第3の第2導電型半導体領域と接合終端構造を構成する、前記第3の第2導電型半導体領域よりも不純物濃度の低い第4の第2導電型半導体領域をさらに備えることを特徴とする請求項1〜4のいずれか一つに記載の半導体装置。
  6. 前記層間絶縁膜上に張り出した前記第1金属膜の端部は、前記第3の第2導電型半導体領域上で終端していることを特徴とする請求項1〜5のいずれか一つに記載の半導体装置。
  7. 前記第2の第2導電型半導体領域の不純物濃度は、1.0×1018cm-3〜1.0×1020cm-3であることを特徴とする請求項1〜6のいずれか一つに記載の半導体装置。
  8. 前記第3の第2導電型半導体領域の不純物濃度は、1.0×1017cm-3〜1.0×1018cm-3であることを特徴とする請求項1〜7のいずれか一つに記載の半導体装置。
  9. 前記第4の第2導電型半導体領域の不純物濃度は、前記第3の第2導電型半導体領域の不純物濃度の0.4〜0.7倍であることを特徴とする請求項5に記載の半導体装置。
  10. ワイドバンドギャップ半導体は、炭化珪素であることを特徴とする請求項1〜9のいずれか一つに記載の半導体装置。
  11. ワイドバンドギャップ半導体は、窒化ガリウムであることを特徴とする請求項1〜9のいずれか一つに記載の半導体装置。
  12. 前記第1の第2導電型半導体領域は、接合障壁ショットキー構造を構成することを特徴とする請求項1、2、5〜11のいずれか一つに記載の半導体装置。
  13. 第1導電型ワイドバンドギャップ半導体基板の表面に、前記第1導電型ワイドバンドギャップ半導体基板よりも不純物濃度の低い第1導電型ワイドバンドギャップ半導体堆積層を堆積する工程と、
    前記第1導電型ワイドバンドギャップ半導体堆積層の表面層に、第1の第2導電型半導体領域を選択的に形成する工程と、
    前記第1導電型ワイドバンドギャップ半導体堆積層の表面層に、前記第1の第2導電型半導体領域の周辺部を囲むように、第2の第2導電型半導体領域を選択的に形成する工程と、
    前記第1導電型ワイドバンドギャップ半導体堆積層の表面層に、前記第2の第2導電型半導体領域の周辺部を囲み接合終端構造を構成する、前記第2の第2導電型半導体領域よりも不純物濃度の低い第3の第2導電型半導体領域を選択的に形成する工程と、
    前記第1導電型ワイドバンドギャップ半導体堆積層の表面に、前記第3の第2導電型半導体領域を覆う層間絶縁膜を選択的に形成する工程と、
    前記第1導電型ワイドバンドギャップ半導体堆積層および前記層間絶縁膜の表面に、前記第1導電型ワイドバンドギャップ半導体堆積層または前記第1導電型ワイドバンドギャップ半導体堆積層上に堆積される半導体層と金属−半導体接合を形成する1層構造の第1金属膜を形成する工程と、
    前記第1金属膜を選択的に除去し、前記金属−半導体接合が形成された側から前記層間絶縁膜上に張り出すように、かつ、前記層間絶縁膜を介して前記第3の第2導電型半導体領域の一部を覆うように前記第1金属膜を残す工程と、
    前記第1金属膜を選択的に除去した後、チタンからなる前記第1金属膜の表面に、アルミニウムを主成分とし、かつ前記第1金属膜の厚さよりも厚い1層構造の第2金属膜を形成する工程と、
    前記第2金属膜を選択的に除去し、前記金属−半導体接合が形成された側から前記第1金属膜を介して前記層間絶縁膜を覆う位置まで延出し、かつ端部が前記第1金属膜上で前記第1金属膜の端部よりも内側に位置するように前記第2金属膜を残す工程と、
    を含むことを特徴とする半導体装置の製造方法。
JP2017091476A 2017-05-01 2017-05-01 半導体装置および半導体装置の製造方法 Pending JP2017152732A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017091476A JP2017152732A (ja) 2017-05-01 2017-05-01 半導体装置および半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017091476A JP2017152732A (ja) 2017-05-01 2017-05-01 半導体装置および半導体装置の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012104234A Division JP2013232564A (ja) 2012-04-27 2012-04-27 半導体装置および半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2017152732A true JP2017152732A (ja) 2017-08-31

Family

ID=59741998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017091476A Pending JP2017152732A (ja) 2017-05-01 2017-05-01 半導体装置および半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2017152732A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198416A1 (ja) * 2018-04-13 2019-10-17 住友電気工業株式会社 半導体装置
CN113228236A (zh) * 2019-07-29 2021-08-06 富士电机株式会社 碳化硅半导体装置以及碳化硅半导体装置的制造方法
WO2021215178A1 (ja) * 2020-04-22 2021-10-28 ローム株式会社 半導体装置およびその製造方法
CN113990934A (zh) * 2021-10-29 2022-01-28 西安微电子技术研究所 一种SiC JBS元胞结构及制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138771A (ja) * 1986-11-29 1988-06-10 Tdk Corp シヨツトキバリア形半導体装置およびその製造方法
JP2003101039A (ja) * 2001-07-17 2003-04-04 Toshiba Corp 高耐圧半導体装置
JP2007234925A (ja) * 2006-03-02 2007-09-13 National Institute Of Advanced Industrial & Technology ショットキーダイオードを内蔵した炭化ケイ素mos電界効果トランジスタおよびその製造方法
JP2007324218A (ja) * 2006-05-30 2007-12-13 Toshiba Corp 半導体整流素子
JP2008034646A (ja) * 2006-07-28 2008-02-14 Toshiba Corp 高耐圧半導体装置
JP2008227151A (ja) * 2007-03-13 2008-09-25 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2008251772A (ja) * 2007-03-30 2008-10-16 Toshiba Corp 半導体装置
JP2008282973A (ja) * 2007-05-10 2008-11-20 Denso Corp ジャンクションバリアショットキーダイオードを備えた炭化珪素半導体装置
JP2009502040A (ja) * 2005-07-20 2009-01-22 クレー・スウェーデン・アクチボラゲット 半導体装置およびその製造方法
JP2010034381A (ja) * 2008-07-30 2010-02-12 Denso Corp ワイドバンドギャップ半導体装置
JP2010147222A (ja) * 2008-12-18 2010-07-01 Denso Corp 炭化珪素半導体装置およびその製造方法
US7851881B1 (en) * 2008-03-21 2010-12-14 Microsemi Corporation Schottky barrier diode (SBD) and its off-shoot merged PN/Schottky diode or junction barrier Schottky (JBS) diode
JP2011165856A (ja) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp 炭化珪素半導体装置の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138771A (ja) * 1986-11-29 1988-06-10 Tdk Corp シヨツトキバリア形半導体装置およびその製造方法
JP2003101039A (ja) * 2001-07-17 2003-04-04 Toshiba Corp 高耐圧半導体装置
JP2009502040A (ja) * 2005-07-20 2009-01-22 クレー・スウェーデン・アクチボラゲット 半導体装置およびその製造方法
JP2007234925A (ja) * 2006-03-02 2007-09-13 National Institute Of Advanced Industrial & Technology ショットキーダイオードを内蔵した炭化ケイ素mos電界効果トランジスタおよびその製造方法
JP2007324218A (ja) * 2006-05-30 2007-12-13 Toshiba Corp 半導体整流素子
JP2008034646A (ja) * 2006-07-28 2008-02-14 Toshiba Corp 高耐圧半導体装置
JP2008227151A (ja) * 2007-03-13 2008-09-25 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2008251772A (ja) * 2007-03-30 2008-10-16 Toshiba Corp 半導体装置
JP2008282973A (ja) * 2007-05-10 2008-11-20 Denso Corp ジャンクションバリアショットキーダイオードを備えた炭化珪素半導体装置
US7851881B1 (en) * 2008-03-21 2010-12-14 Microsemi Corporation Schottky barrier diode (SBD) and its off-shoot merged PN/Schottky diode or junction barrier Schottky (JBS) diode
JP2010034381A (ja) * 2008-07-30 2010-02-12 Denso Corp ワイドバンドギャップ半導体装置
JP2010147222A (ja) * 2008-12-18 2010-07-01 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2011165856A (ja) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp 炭化珪素半導体装置の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198416A1 (ja) * 2018-04-13 2019-10-17 住友電気工業株式会社 半導体装置
CN111954933A (zh) * 2018-04-13 2020-11-17 住友电气工业株式会社 半导体装置
JPWO2019198416A1 (ja) * 2018-04-13 2021-05-13 住友電気工業株式会社 半導体装置
US11189722B2 (en) 2018-04-13 2021-11-30 Sumitomo Electric Industries, Ltd. Semiconductor device
JP7314930B2 (ja) 2018-04-13 2023-07-26 住友電気工業株式会社 半導体装置
CN111954933B (zh) * 2018-04-13 2024-03-01 住友电气工业株式会社 半导体装置
CN113228236A (zh) * 2019-07-29 2021-08-06 富士电机株式会社 碳化硅半导体装置以及碳化硅半导体装置的制造方法
WO2021215178A1 (ja) * 2020-04-22 2021-10-28 ローム株式会社 半導体装置およびその製造方法
CN113990934A (zh) * 2021-10-29 2022-01-28 西安微电子技术研究所 一种SiC JBS元胞结构及制备方法

Similar Documents

Publication Publication Date Title
WO2013161449A1 (ja) 半導体装置および半導体装置の製造方法
JP6194779B2 (ja) 半導体装置および半導体装置の製造方法
JP6580267B2 (ja) 半導体装置および半導体装置の製造方法
JP6052481B2 (ja) 半導体装置
US10090417B2 (en) Silicon carbide semiconductor device and fabrication method of silicon carbide semiconductor device
JP6705155B2 (ja) 半導体装置および半導体装置の製造方法
JP2018206873A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2019004078A (ja) 半導体装置および半導体装置の製造方法
JP2017152732A (ja) 半導体装置および半導体装置の製造方法
JP6384944B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP6399161B2 (ja) 半導体装置および半導体装置の製造方法
JP2017112193A (ja) 半導体装置および半導体装置の製造方法
JP6648852B1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP6919713B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2018082056A (ja) 半導体装置および半導体装置の製造方法
JP7074173B2 (ja) 半導体装置および半導体装置の製造方法
JP2016058660A (ja) 半導体装置
JP6233537B2 (ja) 半導体装置および半導体装置の製造方法
JP2017092364A (ja) 半導体装置および半導体装置の製造方法
JP2021044274A (ja) 半導体装置
JP2016058661A (ja) 半導体装置
WO2019077878A1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US20230246077A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP7103435B2 (ja) 半導体装置および半導体装置の製造方法
JP6183234B2 (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180829

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20181005