JP2017127797A - 汚泥の焼却システム - Google Patents

汚泥の焼却システム Download PDF

Info

Publication number
JP2017127797A
JP2017127797A JP2016007377A JP2016007377A JP2017127797A JP 2017127797 A JP2017127797 A JP 2017127797A JP 2016007377 A JP2016007377 A JP 2016007377A JP 2016007377 A JP2016007377 A JP 2016007377A JP 2017127797 A JP2017127797 A JP 2017127797A
Authority
JP
Japan
Prior art keywords
sludge
unit
pyrolysis
pyrolysis gas
incineration ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016007377A
Other languages
English (en)
Other versions
JP6612629B2 (ja
Inventor
知志 竹下
Tomoshi Takeshita
知志 竹下
遠藤 正人
Masato Endo
正人 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2016007377A priority Critical patent/JP6612629B2/ja
Publication of JP2017127797A publication Critical patent/JP2017127797A/ja
Application granted granted Critical
Publication of JP6612629B2 publication Critical patent/JP6612629B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Abstract

【課題】リンを含有し、重金属の含有量を低下させた焼却灰を生成する。【解決手段】汚泥の焼却システム1は、汚泥を熱分解して、熱分解ガスB1と焼却灰C1とを生成する汚泥熱分解部20と、熱分解ガスB1と焼却灰C1とを分離する分離部30と、熱分解ガスB1を燃焼する熱分解ガス燃焼部40と、焼却灰C1を加熱することにより焼却灰C1中の未燃物を燃焼させ、リンを含み重金属が除去された処理焼却灰C2と、重金属を含む排ガスC3とを生成する焼却灰加熱部60と、を有する。熱分解ガス燃焼部40の燃焼温度及び焼却灰加熱部60の加熱温度は、汚泥熱分解部20の熱分解温度よりも高い。【選択図】図1

Description

本発明は、汚泥の焼却システムに関する。
廃水等に含まれる有機性廃棄物である汚泥は、通常焼却されて廃棄されるものであるが、汚泥の有するエネルギーを再利用する技術が着目されている。例えば、特許文献1には、ガス化炉により汚泥をガス化する汚泥処理技術が記載されている。さらに、近年、汚泥の焼却灰を資源化して再利用する技術が着目されている。例えば、汚泥の焼却灰にはリンが高濃度で含まれているため、その焼却灰をリン鉱石に代替して利用するものである。
特開2013−204998号公報
しかし、焼却灰には、鉛、ヒ素、セレンなどの重金属が含有されていることがあり、リン鉱石に代替して利用するには、重金属の含有量を低減させることが必要となる。
本発明は、上記に鑑みてなされたものであって、リンを含有し、重金属の含有量を低下させた焼却灰を生成する汚泥の焼却システムを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本開示の汚泥の焼却システムは、汚泥を熱分解して、焼却灰と熱分解ガスとを生成する汚泥熱分解部と、前記焼却灰と前記熱分解ガスとを分離する分離部と、前記熱分解ガスを燃焼する熱分解ガス燃焼部と、前記焼却灰を加熱することにより焼却灰中の未燃物を燃焼させ、リンを含み重金属が除去された処理焼却灰と、重金属を含む排ガスとを生成する焼却灰加熱部と、を有し前記熱分解ガス燃焼部の燃焼温度及び前記焼却灰加熱部の加熱温度は、前記汚泥熱分解部の熱分解温度よりも高い。
前記汚泥の焼却システムにおいて、前記焼却灰加熱部の加熱温度は、前記熱分解ガス燃焼部の燃焼温度より低いことが好ましい。
前記汚泥の焼却システムにおいて、前記分離部は、前記汚泥熱分解部の熱分解温度以上の温度で、前記焼却灰と前記熱分解ガスとを分離することが好ましい。
前記汚泥の焼却システムは、前記排ガスを、前記焼却灰加熱部から前記熱分解ガス燃焼部に導入する排ガス排出管を更に有することが好ましい。
前記汚泥の焼却システムは、前記分離部から前記熱分解ガス燃焼部へ導入される前記熱分解ガスの一部を、前記焼却灰加熱部に導入する熱分解ガス分岐管を有することが好ましい。
前記汚泥の焼却システムにおいて、前記汚泥熱分解部は、300℃以上750℃以下の温度で前記汚泥を熱分解するガス化炉であることが好ましい。
前記汚泥の焼却システムにおいて、前記汚泥熱分解部は、空気比が、0.3以上1.0未満であることが好ましい。
前記汚泥の焼却システムは、前記汚泥又は前記焼却灰に塩化物を添加して、前記汚泥又は前記焼却灰中の重金属と前記塩化物とを反応させて重金属塩化物を生成する塩化物添加部を更に有することが好ましい。
本発明によれば、リンを含有し、重金属の含有量を低下させた焼却灰を生成することができる。
図1は、第1実施形態に係る汚泥の焼却システムの構成を示す模式的なブロック図である。 図2は、第1実施形態における汚泥の焼却方法を説明するフローチャートである。 図3は、第2実施形態に係る汚泥の焼却システムの構成を示す模式的なブロック図である。 図4は、鉛化合物の飽和蒸気圧曲線である。
以下に、本発明に係る汚泥の焼却システムの好適な実施形態を図面に基づいて詳細に説明する。なお、以下に説明する実施形態により本発明が限定されるものではない。
(第1実施形態)
図1は、第1実施形態に係る汚泥の焼却システムの構成を示す模式的なブロック図である。図1に示すように、焼却システム1は、汚泥乾燥部10と、汚泥熱分解部20と、分離部30と、熱分解ガス燃焼部40と、燃焼ガス処理部50と、焼却灰加熱部60と、制御部70とを有する。
汚泥乾燥部10は、脱水汚泥A0を乾燥して、乾燥汚泥A1を生成する装置である。脱水汚泥A0と乾燥汚泥A1は、廃水等に含まれる有機性廃棄物である汚泥である。脱水汚泥A0及び乾燥汚泥A1は、水分、重金属、及びリン(P)を含有している。脱水汚泥A0は、図示しない脱水装置により、水分量が80%より高い汚泥を脱水したものである。脱水汚泥A0は、水分量が70%より高く80%以下である。乾燥汚泥A1は、水分量が30%以上70%以下である。ただし、脱水汚泥A0及び乾燥汚泥A1の水分量の範囲は、これに限られない。また、脱水汚泥A0及び乾燥汚泥A1が含む重金属は、鉛(Pb)のことを指すが、これに限られず、ヒ素(As)やセレン(Se)等であってもよい。
汚泥乾燥部10は、乾燥ガス供給部12及びセンサ部14を有する。汚泥乾燥部10は、乾燥ガス供給部12から高温(例えば600℃)の乾燥ガスを乾燥機内に導入し、乾燥機内の脱水汚泥A0を乾燥させる。センサ部14は、温度センサであり、乾燥機内の温度を計測する。制御部70は、センサ部14の計測結果に基づき、乾燥ガス供給部12による乾燥ガスの供給量や、乾燥時間などを制御して、生成する乾燥汚泥A1の水分量を、30%以上70%以下の範囲内での必要とする所定の値とする。なお、汚泥乾燥部10は、脱水汚泥A0を乾燥するものであれば、このように乾燥ガスを用いた乾燥方法に限られない。
汚泥乾燥部10と汚泥熱分解部20との間には、汚泥搬送部16が設けられている。汚泥搬送部16は、コンベヤであり、汚泥乾燥部10で生成された乾燥汚泥A1を、汚泥熱分解部20に供給する。
汚泥熱分解部20は、乾燥汚泥A1を熱分解して、熱分解ガスB1と焼却灰C1とを生成する。汚泥熱分解部20は、300℃以上750℃以下、より好ましくは500℃以上750℃以下の温度で乾燥汚泥A1を熱分解するガス化炉である。焼却灰C1は、燃焼していない未燃物を所定量含有している。また、焼却灰C1は、乾燥汚泥A1が含有していた重金属及びリンが含まれている。熱分解ガスB1は、熱分解によって生成した可燃性のガスであり、炭化水素、一酸化炭素、水素、亜酸化窒素(NO)などを含む。乾燥汚泥A1に含まれるリンは低融点であるため、高温で焼却すると炉内でクリンカが生成されるおそれがある。しかし、汚泥熱分解部20は、750℃以下の比較的低温で乾燥汚泥A1を熱分解するため、炉内でのクリンカ生成を抑制することが可能となる。
具体的には、汚泥熱分解部20は、ガス化炉21、空気供給部22、燃料供給部23及びセンサ部24を有する。ガス化炉21は、例えば循環流動床炉や気泡流動床炉などの流動床炉である。空気供給部22は、外部から空気を取得して、300℃以上750℃以下の温度に加熱し、その加熱した空気をガス化炉21に供給する。空気供給部22は、空気比0.3以上1.0未満の量の空気を供給する。空気比とは、乾燥汚泥A1中の炭素などの可燃成分を完全に燃焼するために必要な空気量に対する、供給する空気量の比である。汚泥熱分解部20は、この空気により、還元雰囲気で乾燥汚泥A1を熱分解する。汚泥熱分解部20は、乾燥汚泥A1を完全に燃焼せず、焼却灰C1中には、未燃物が残っている。
燃料供給部23は、乾燥汚泥A1の熱分解に用いる補助燃料を供給するものであり、例えば都市ガス(メタンを主成分とする天然ガスや液化天然ガスなど)等の可燃ガスを供給するものである。乾燥汚泥A1は、燃焼する成分を含有している。従って、汚泥熱分解部20は、燃料供給部23からの補助燃料を不要とする場合もあるが、乾燥汚泥A1の燃焼成分だけでは適量の未燃物を含む焼却灰C1を生成できない場合に、燃料供給部23から補助燃料を供給する。センサ部24は、温度センサであり、ガス化炉21内部の温度を計測する。
汚泥熱分解部20は、制御部70により、熱分解が制御される。制御部70は、センサ部24からの温度の情報、及び乾燥汚泥A1の水分量に基づき、空気供給部22の空気供給量、すなわち空気比と、供給する空気の温度とを制御する。また、制御部70は、センサ部24からの温度の情報及び乾燥汚泥A1の水分量に基づき、燃料供給部23による補助燃料の供給量を制御する。
分離部30は、汚泥熱分解部20から熱分解ガスB1と焼却灰C1とが供給され、熱分解ガスB1と焼却灰C1とを分離する。具体的には、分離部30は、サイクロン装置であり、熱分解ガスB1と焼却灰C1とを遠心力により分離する。また、分離部30は、汚泥熱分解部20の熱分解温度以上の温度で、熱分解ガスB1と焼却灰C1とを分離する。具体的には、分離部30内の温度は、500℃以上850℃以下である。分離部30は、この温度で熱分解ガスB1と焼却灰C1とを分離するため、分離部30により分離された焼却灰C1は、重金属の含有量が減少した状態で、分離部30から排出される。分離部30により分離された熱分解ガスB1は、揮発した重金属と共に分離部30から排出される。
分離部30には、分離部30内の温度を計測するセンサ部32が設けられている。制御部70は、このセンサ部32の測定結果に基づき、分離部30内の温度を500℃以上850℃以下の所定の温度範囲に保持する。分離部30は、内部を加熱する加熱装置を備えており、この制御部70は、この加熱装置を制御して温度を保持する。ただし、分離部30は、このような加熱装置を有していなくてもよい。また、分離部30は、汚泥熱分解部20の熱分解温度より低い温度で、熱分解ガスB1と焼却灰C1とを分離してもよい。
分離部30と熱分解ガス燃焼部40との間には、熱分解ガス排出管34が設けられている。分離部30より排出された熱分解ガスB1は、熱分解ガス排出管34を介して、熱分解ガス燃焼部40に導入される。さらに、熱分解ガス排出管34には、熱分解ガス分岐弁35を介して、熱分解ガス分岐管36の一方の端部が接続されている。熱分解ガス分岐管36の他方の端部は、焼却灰加熱部60に接続されている。熱分解ガス分岐弁35は、制御部70により開閉操作がなされ、開いている場合に、分離部30より排出された熱分解ガスB1の一部を、熱分解ガス分岐管36を介して焼却灰加熱部60に供給する。熱分解ガス分岐弁35は、閉じている場合には、分離部30より排出された熱分解ガスB1を焼却灰加熱部60に供給しない。ただし、熱分解ガス分岐弁35は設けられていなくてもよく、常に熱分解ガスB1の一部を焼却灰加熱部60に供給してもよい。
熱分解ガス燃焼部40は、分離部30から排出された熱分解ガスB1を燃焼し、燃焼ガスB2を生成する。熱分解ガス燃焼部40は、汚泥熱分解部20の熱分解温度よりも高い温度で、熱分解ガスB1を燃焼する。具体的には、熱分解ガス燃焼部40の燃焼温度は、850℃以上である。燃焼ガスB2は、熱分解ガスB1を燃焼させたものであるため、亜酸化窒素などが酸化して除去されたものとなる。また、燃焼ガスB2は、分離部30から排出された熱分解ガスB1が含有していた重金属を含む。
より詳しくは、熱分解ガス燃焼部40は、燃焼炉41と空気供給部42とセンサ部44とを有する。熱分解ガス燃焼部40は、空気供給部42から供給された空気を用いて、燃焼炉41内で熱分解ガスB1を燃焼し、燃焼後の燃焼ガスB2を生成する。センサ部44は、燃焼炉41内の温度を測定する温度センサである。熱分解ガス燃焼部40は、制御部70により、燃焼が制御される。制御部70は、センサ部44からの温度の情報、及び乾燥汚泥A1の水分量に基づき、空気供給部22の空気供給量及び燃焼炉41内の温度を制御する。また、制御部70は、汚泥熱分解部20の空気供給部22が供給した空気の空気比に基づき、熱分解ガスB1中の未燃ガスを燃焼させる量の空気量を算出して、空気供給部42の空気供給量を決定してもよい。制御部70は、熱分解ガスB1中の未燃ガスを完全燃焼させ、かつ、熱分解ガスB1中の亜酸化窒素を分解させる。空気供給部42に供給する空気比は、約1.3である。制御部70は、空気供給部22が供給した空気の空気比を差し引いた分の空気比で、空気供給部42に空気を供給させる。
熱分解ガス燃焼部40が生成した燃焼ガスB2は、燃焼ガス処理部50に供給される。燃焼ガスB2には、重金属や、燃焼により生成した微粒子が含まれる。燃焼ガス処理部50は、燃焼ガスB2から重金属や微粒子を除去して、有害な成分を除去した排出ガスB3を生成する。燃焼ガス処理部50は、排出ガスB3を外部に排気する。
焼却灰加熱部60は、分離部30との間に設けられた焼却灰供給路38を介して、分離部30から焼却灰C1が供給される。焼却灰加熱部60は、焼却灰C1を加熱することにより焼却灰C1中の未燃物を燃焼させ、処理焼却灰C2と排ガスC3とを生成する。焼却灰加熱部60は、汚泥熱分解部20の熱分解温度よりも高い温度で、焼却灰C1を加熱する。また、焼却灰加熱部60は、熱分解ガス燃焼部40の燃焼温度より低い温度で焼却灰C1を加熱する。具体的には、焼却灰加熱部60の加熱温度は、750℃より高く1000℃以下である。
焼却灰C1中の重金属は、主として塩化物(塩化鉛)や酸化物(酸化鉛)として存在している。従って、焼却灰加熱部60は、この温度で焼却灰C1を加熱することにより、焼却灰C1中の重金属を揮発させる。従って、処理焼却灰C2は、焼却灰C1よりも重金属の含有量が減少している。処理焼却灰C2は、リンを含有して重金属の含有量が低下されたものであるため、リンを資源として再利用することに適したものとなる。なお、排ガスC3は、未燃物の燃焼により生成した排ガスであり、焼却灰C1から揮発された重金属が含まれる。
具体的には、焼却灰加熱部60は、加熱炉61と空気供給部62と燃料供給部63とセンサ部64とを有する。加熱炉61は、内部で焼却灰C1を加熱する炉である。具体的には、加熱炉61は、回転式のキルンであり、キルンの回転数や角度により焼却灰C1の加熱時間を調整する。またキルンは直接加熱式でも間接加熱式でもよい。空気供給部62は、焼却灰C1中の未燃物を燃焼させるための空気を供給する。燃料供給部63は、焼却灰C1中の未燃物を燃焼させるための補助燃料を供給する。焼却灰C1中の未燃物は、燃焼することにより焼却灰C1自身を加熱する。従って、焼却灰加熱部60は、燃料供給部63からの補助燃料を不要とする場合もあるが、焼却灰C1中の未燃物だけでは十分に加熱できない場合に、燃料供給部63から補助燃料を供給する。センサ部64は、温度センサであり、加熱炉61内部の温度を計測する。
焼却灰加熱部60は、制御部70により、加熱が制御される。制御部70は、乾燥汚泥A1の水分量に基づき未燃物の量を算出し、センサ部64からの温度の情報に基づき、空気供給部62の空気供給量、及び補助燃料の供給量を制御する。これにより、制御部70は、加熱炉61における加熱温度を、750℃より高く1000℃以下の所定の温度に保持し、未燃物を完全燃焼させる。
また、焼却灰加熱部60には、排ガス排出管66の一方の端部が接続されている。排ガス排出管66の他方の端部は、熱分解ガス排出管34に接続されている。より具体的には、排ガス排出管66の他方の端部は、熱分解ガス分岐弁35と熱分解ガス燃焼部40との間で、熱分解ガス排出管34に接続されている。ただし、排ガス排出管66の他方の端部は、熱分解ガス燃焼部40に直接接続されていてもよい。
焼却灰加熱部60中の排ガスC3は、熱分解ガス排出管34を介して熱分解ガス燃焼部40に排出される。排ガスC3は、熱分解ガス燃焼部40で熱分解ガスB1と混合され、燃焼ガスB2を構成する。焼却システム1は、排ガスC3を熱分解ガス燃焼部40に排出することにより、排ガスC3が含有する重金属を、燃焼ガス処理部50において適切に除去することが可能となる。
また、上述のように、熱分解ガス分岐弁35が開いている場合、焼却灰加熱部60には、熱分解ガスB1の一部が供給される。熱分解ガス燃焼部40は、焼却灰加熱部60に供給される分だけ、供給される熱分解ガスB1の量が減少する。従って、この場合、熱分解ガス燃焼部40は、燃焼温度や空気供給量を低下させることができ、消費エネルギーを削減できる。焼却灰加熱部60に供給された熱分解ガスB1は、焼却灰C1中の未燃物と共に燃焼され、排ガスC3となる。しかし、焼却灰加熱部60の加熱温度は、熱分解ガス燃焼部40の燃焼温度より低い。従って、焼却灰加熱部60に供給された熱分解ガスB1中の亜酸化窒素は、焼却灰加熱部60内では除去されないおそれがある。この場合においても、焼却灰加熱部60は、排ガスC3を熱分解ガス燃焼部40に排出している。従って、亜酸化窒素は、熱分解ガス燃焼部40で除去される。
また、焼却システム1は、熱分解ガス分岐管36を有しており、制御部70により、センサ部64からの温度の情報に基づき、焼却灰加熱部60への空気供給量又は補助燃料の供給量の制御を実行している場合、更に次のような制御を実行してもよい。すなわち、制御部70は、このような場合、熱分解ガス燃焼部40の燃焼炉41内の温度に基づき、乾燥汚泥A1の水分量を制御してもよい。なお、上述のように、制御部70は、汚泥乾燥部10における乾燥ガスの供給量や乾燥時間を制御して、乾燥汚泥A1の水分量を制御する。
以上説明した汚泥の焼却方法を、フローチャートを用いて説明する。図2は、第1実施形態における汚泥の焼却方法を説明するフローチャートである。図2に示すように、焼却システム1は、最初に、汚泥乾燥部10により、脱水汚泥A0を乾燥させて、乾燥汚泥A1を生成する(ステップS10)。乾燥汚泥A1を生成した後、焼却システム1は、汚泥熱分解部20により、乾燥汚泥A1を熱分解して熱分解ガスB1と焼却灰C1とを生成し(ステップS12)、分離部30により熱分解ガスB1と焼却灰C1とを分離する(ステップS14)。ステップS12における熱分解温度は、300℃以上750℃以下であるため、クリンカの生成が抑制される。
熱分解ガスB1と焼却灰C1とを分離した後、焼却システム1は、熱分解ガスB1を熱分解ガス燃焼部40に導入し(ステップS16)、熱分解ガス燃焼部40において熱分解ガスB1を燃焼して燃焼ガスB2を生成し(ステップS18)、燃焼ガス処理部50において燃焼ガスB2を処理して排出ガスB3を生成する(ステップS20)。ステップS18における燃焼温度は、850℃以上であるため、燃焼して生成された燃焼ガスB2は、亜酸化窒素が除去されたものとなる。燃焼ガス処理部50は、ステップS20において燃焼ガスB2中の重金属を除去するため、排出ガスB3は、外部に安全に排気可能となる。
また、ステップS22において熱分解ガスB1と焼却灰C1とを分離した後、焼却システム1は、焼却灰C1を焼却灰加熱部60に導入し(ステップS22)、焼却灰加熱部60において焼却灰C1を加熱して処理焼却灰C2を生成する(ステップS24)。ステップS24において、焼却灰加熱部60は、750℃より高く1000℃以下の加熱温度で焼却灰C1を加熱し、未燃物を燃焼させて処理焼却灰C2を生成する。従って、処理焼却灰C2は、重金属が除去されリンを含有する焼却灰となる。
ステップS20で排出ガスB3を生成し、ステップS24で処理焼却灰C2を生成して、本処理は終了する。
なお、焼却システム1は、熱分解ガス分岐管36を通じて熱分解ガスB1の一部を焼却灰加熱部60に導入する。また、焼却システム1は、排ガス排出管66を通じて排ガスC3を熱分解ガス燃焼部40に導入する。焼却システム1は、熱分解ガスB1の一部を焼却灰加熱部60に導入することで、熱分解ガス燃焼部40の燃焼温度や空気供給量を低下させることができる。また、焼却システム1は、排ガスC3を熱分解ガス燃焼部40に導入することで、排ガスC3中の重金属を燃焼ガス処理部50において適切に除去し、また、焼却灰加熱部60に導入された熱分解ガスB1に含まれる亜酸化窒素を、熱分解ガス燃焼部40で適切に除去することができる。ただし、焼却システム1は、熱分解ガス排出管34及び排ガス排出管66を有していなくてもよい。このような場合であっても、焼却システム1は、汚泥熱分解部20におけるクリンカの生成を抑制し、焼却灰加熱部60において、重金属が除去されリンを含有する処理焼却灰C2を適切に生成することができる。
以上説明したように、第1実施形態に係る焼却システム1は、汚泥熱分解部20と分離部30と熱分解ガス燃焼部40と焼却灰加熱部60とを有する。汚泥熱分解部20は、汚泥、ここでは乾燥汚泥A1を熱分解して、熱分解ガスB1と焼却灰C1とを生成する。分離部30は、熱分解ガスB1と焼却灰C1とを分離する。熱分解ガス燃焼部40は、熱分解ガスB1を燃焼する。焼却灰加熱部60は、焼却灰C1を加熱することにより焼却灰C1中の未燃物を燃焼させ、リンを含み重金属が除去された処理焼却灰C2と、重金属を含む排ガスC3とを生成する。また、熱分解ガス燃焼部40の燃焼温度及び焼却灰加熱部60の加熱温度は、汚泥熱分解部20の熱分解温度よりも高い。
この焼却システム1は、汚泥熱分解部20で熱分解された焼却灰C1を焼却灰加熱部60で加熱して、処理焼却灰C2を生成する。焼却灰加熱部60の加熱温度は、汚泥熱分解部20の熱分解温度よりも高い。従って、この焼却システム1は、汚泥熱分解部20におけるクリンカの生成を抑制しつつ、焼却灰加熱部60においてリンを含み重金属が除去された処理焼却灰C2を適切に生成することができる。このように、この焼却システム1は、リンを含有し重金属の含有量を低下させた処理焼却灰C2を、適切に生成することができる。
また、焼却灰加熱部60の加熱温度は、熱分解ガス燃焼部40の燃焼温度より低い。焼却灰加熱部60は、重金属の含有量を低下させる加熱温度であるため、リンを含有し重金属の含有量を低下させた処理焼却灰C2を適切に生成することができる。一方、熱分解ガス燃焼部40は、焼却灰加熱部60の加熱温度より高い燃焼温度で、熱分解ガスB1を燃焼することで、熱分解ガスB1中の亜酸化窒素を適切に除去できる。また、焼却灰加熱部60は、重金属の含有量を低下させる温度で焼却灰C1の加熱を行っており、焼却灰C1に含まれない亜酸化窒素を分解する温度までは温度を上げていない。従って、この焼却システム1は、加熱温度を不要な値まで上げることなく、消費エネルギーを抑制することができる。
また、分離部30は、汚泥熱分解部20の熱分解温度以上の温度で、熱分解ガスB1と焼却灰C1とを分離する。すなわち、この焼却システム1は、分離部30と焼却灰加熱部60との両方で重金属を除去しているため、リンを含有し重金属が除去された処理焼却灰C2を、より適切に生成することができる。
また、焼却システム1は、排ガスC3を、熱分解ガス燃焼部40に導入する排ガス排出管66を更に有する。この焼却システム1は、排ガスC3を熱分解ガス燃焼部40に導入することで、排ガスC3中の重金属を適切に除去することができる。
また、焼却システム1は、分離部30から熱分解ガス燃焼部40へ導入される熱分解ガスB1の一部を、焼却灰加熱部60に導入する熱分解ガス分岐管36を有する。この焼却システム1は、熱分解ガスB1の一部を焼却灰加熱部60に導入することで、熱分解ガス燃焼部40の燃焼温度や空気供給量を低下させることができる。また、この焼却システム1は、排ガス排出管66で排ガスC3を熱分解ガス燃焼部40に導入することで、焼却灰加熱部60に導入された熱分解ガスB1に含まれる亜酸化窒素を、熱分解ガス燃焼部40で適切に除去することができる。
また、汚泥熱分解部20は、750℃以下の温度で汚泥を熱分解するガス化炉である。汚泥熱分解部20は、このような低温で汚泥を熱分解することで、クリンカの生成を適切に抑制することができる。
また、汚泥熱分解部20は、空気比が、0.3以上1.0未満である。この汚泥熱分解部20は、このように低空気比で熱分解を行うことで、焼却灰C1に未燃物を残留させ、焼却灰加熱部60における未燃物による燃焼を適切に行わせることが可能となる。
(第2実施形態)
次に、第2実施形態について説明する。第2実施形態に係る焼却システム1aは、塩化物添加部80を有する点で、第1実施形態とは異なる。第2実施形態において第1実施形態と構成が共通する箇所は、説明を省略する。
図3は、第2実施形態に係る汚泥の焼却システムの構成を示す模式的なブロック図である。図3に示すように、焼却システム1aは、塩化物添加部80を有する。塩化物添加部80は、汚泥搬送部16に接続されて、汚泥搬送部16中の乾燥汚泥A1に塩化物を添加する。なお、本実施形態における塩化物は、塩化カルシウム(CaCl)であるが、これに限られず、他の塩化物であってもよい。塩化物添加部80は、乾燥汚泥A1に塩化物を添加することで、乾燥汚泥A1中の重金属と塩化物とを反応させて、重金属塩化物を生成する。重金属塩化物とは、本実施形態では塩化鉛であるが、塩化セレンや塩化ヒ素であってもよい。
図4は、鉛化合物の飽和蒸気圧曲線である。図4の横軸は温度であり、縦軸は飽和蒸気圧である。図4の曲線L1は、鉛単体(Pb)の飽和蒸気圧曲線であり、曲線L2は、酸化鉛(PbO)の飽和蒸気圧曲線であり、曲線L3は、硫化鉛(PbS)の飽和蒸気圧曲線であり、曲線L4は、塩化鉛(PbCl)の飽和蒸気圧曲線である。図4に示すように、塩化鉛は、約600℃で蒸気圧を有するため気化、すなわち揮発を開始するものである。塩化鉛は、鉛単体、酸化鉛、及び硫化鉛よりも、低温で揮発する。図4は鉛化合物について説明したものであるが、他の重金属も、塩化物としたほうが、より低温で揮発する。
このように、重金属は、塩化化合物とすることでより揮発しやすくなる。焼却システム1aは、塩化物添加部80による塩化物の添加で、汚泥中の重金属を重金属塩化物とする。従って、焼却システム1aは、処理焼却灰C2中の重金属をより多く除去することができる。また、焼却システム1aは、焼却灰加熱部60の加熱温度をより低温にしても、重金属を適切に除去することも可能となる。
なお、塩化物添加部80は、汚泥搬送部16に接続されて、乾燥汚泥A1に塩化物を添加したが、これに限られず、汚泥(脱水前の汚泥、脱水汚泥A0、若しくは乾燥汚泥A1)、又は焼却灰C1に塩化物を添加するものであれば、その接続先は任意である。すなわち、塩化物添加部80は、例えば、汚泥熱分解部20と分離部30との間、焼却灰供給路38、又は焼却灰加熱部60に接続されていてもよい。ただし、塩化物添加部80は、分離部30よりも汚泥熱分解部20側に設けられることが好ましい。分離部30は、高温で分離を行うことで、焼却灰C1中の重金属を除去することも可能なので、分離部30の上流で塩化物を添加することで、重金属の除去性能をより高くすることができる。
以上、本発明の実施形態及び変形例を説明したが、これら実施形態等の内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態等の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。
1 焼却システム
10 汚泥乾燥部
20 汚泥熱分解部
30 分離部
36 熱分解ガス分岐管
40 熱分解ガス燃焼部
50 燃焼ガス処理部
60 焼却灰加熱部
66 排ガス排出管
70 制御部
A0 脱水汚泥
A1 乾燥汚泥
B1 熱分解ガス
B2 燃焼ガス
B3 排出ガス
C1 焼却灰
C2 処理焼却灰
C3 排ガス

Claims (8)

  1. 汚泥を熱分解して、焼却灰と熱分解ガスとを生成する汚泥熱分解部と、
    前記焼却灰と前記熱分解ガスとを分離する分離部と、
    前記熱分解ガスを燃焼する熱分解ガス燃焼部と、
    前記焼却灰を加熱することにより焼却灰中の未燃物を燃焼させ、リンを含み重金属が除去された処理焼却灰及び重金属を含む排ガスを生成する焼却灰加熱部と、を有し
    前記熱分解ガス燃焼部の燃焼温度及び前記焼却灰加熱部の加熱温度は、前記汚泥熱分解部の熱分解温度よりも高い、汚泥の焼却システム。
  2. 前記焼却灰加熱部の加熱温度は、前記熱分解ガス燃焼部の燃焼温度より低い、請求項1に記載の汚泥の焼却システム。
  3. 前記分離部は、前記汚泥熱分解部の熱分解温度以上の温度で、前記焼却灰と前記熱分解ガスとを分離する、請求項2に記載の汚泥の焼却システム。
  4. 前記排ガスを、前記焼却灰加熱部から前記熱分解ガス燃焼部に導入する排ガス排出管を更に有する、請求項1から請求項3のいずれか1項に記載の汚泥の焼却システム。
  5. 前記分離部から前記熱分解ガス燃焼部へ導入される前記熱分解ガスの一部を、前記焼却灰加熱部に導入する熱分解ガス分岐管を有する、請求項4に記載の汚泥の焼却システム。
  6. 前記汚泥熱分解部は、300℃以上750℃以下の温度で前記汚泥を熱分解するガス化炉である、請求項1から請求項5のいずれか1項に記載の汚泥の焼却システム。
  7. 前記汚泥熱分解部は、空気比が、0.3以上1.0未満である、請求項6に記載の汚泥の焼却システム。
  8. 前記汚泥又は前記焼却灰に塩化物を添加して、前記汚泥又は前記焼却灰中の重金属と前記塩化物とを反応させて重金属塩化物を生成する塩化物添加部を更に有する、請求項1から請求項7のいずれか1項に記載の汚泥の焼却システム。
JP2016007377A 2016-01-18 2016-01-18 汚泥の焼却システム Active JP6612629B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016007377A JP6612629B2 (ja) 2016-01-18 2016-01-18 汚泥の焼却システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016007377A JP6612629B2 (ja) 2016-01-18 2016-01-18 汚泥の焼却システム

Publications (2)

Publication Number Publication Date
JP2017127797A true JP2017127797A (ja) 2017-07-27
JP6612629B2 JP6612629B2 (ja) 2019-11-27

Family

ID=59394188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016007377A Active JP6612629B2 (ja) 2016-01-18 2016-01-18 汚泥の焼却システム

Country Status (1)

Country Link
JP (1) JP6612629B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108569836A (zh) * 2018-05-09 2018-09-25 中国科学院城市环境研究所 一种含铬污泥的脱水稳定化方法及装置
JP2019034301A (ja) * 2017-08-10 2019-03-07 日立造船株式会社 リン回収方法およびリン回収装置
CN109945210A (zh) * 2019-02-01 2019-06-28 九洲环境科技(天津)有限公司 一种带热能回收利用的污泥物相分离热处理设备以及方法
JP2020128325A (ja) * 2019-02-08 2020-08-27 日立造船株式会社 水素製造方法および水素製造装置
JP2020128326A (ja) * 2019-02-08 2020-08-27 日立造船株式会社 水素製造方法および水素製造装置
JP2020128327A (ja) * 2019-02-08 2020-08-27 日立造船株式会社 水素製造方法および水素製造装置
CN113970101A (zh) * 2020-07-22 2022-01-25 中冶长天国际工程有限责任公司 一种危险废物热解焚烧系统及其温度控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163965A (ja) * 1993-12-15 1995-06-27 Mitsubishi Heavy Ind Ltd 廃棄物の処理方法
JP2000169269A (ja) * 1998-12-04 2000-06-20 Nkk Plant Engineering Corp 汚泥溶融固化体の製造方法
WO2001054800A1 (de) * 2000-01-25 2001-08-02 Paul Scherrer Institut Verfahren zur aufbereitung von metallhaltigen sekundärrohstoffen in brennbarem verbund
JP2004181323A (ja) * 2002-12-02 2004-07-02 Jfe Engineering Kk 灰処理システムの操業方法及び灰処理システム
JP2007252992A (ja) * 2006-03-20 2007-10-04 Nippon Steel Corp 汚泥からの可燃性ガス及びスラグの回収方法、及び汚泥のガス化溶融炉
WO2014189433A1 (en) * 2013-05-24 2014-11-27 Ekobalans Fenix Ab Production of nutrient-rich biochar from a residual material
US20150175423A1 (en) * 2012-06-21 2015-06-25 Outotec (Finland) Oy Process and plant for separating heavy metals from phosphoric starting material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163965A (ja) * 1993-12-15 1995-06-27 Mitsubishi Heavy Ind Ltd 廃棄物の処理方法
JP2000169269A (ja) * 1998-12-04 2000-06-20 Nkk Plant Engineering Corp 汚泥溶融固化体の製造方法
WO2001054800A1 (de) * 2000-01-25 2001-08-02 Paul Scherrer Institut Verfahren zur aufbereitung von metallhaltigen sekundärrohstoffen in brennbarem verbund
JP2004181323A (ja) * 2002-12-02 2004-07-02 Jfe Engineering Kk 灰処理システムの操業方法及び灰処理システム
JP2007252992A (ja) * 2006-03-20 2007-10-04 Nippon Steel Corp 汚泥からの可燃性ガス及びスラグの回収方法、及び汚泥のガス化溶融炉
US20150175423A1 (en) * 2012-06-21 2015-06-25 Outotec (Finland) Oy Process and plant for separating heavy metals from phosphoric starting material
WO2014189433A1 (en) * 2013-05-24 2014-11-27 Ekobalans Fenix Ab Production of nutrient-rich biochar from a residual material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022031298A (ja) * 2017-08-10 2022-02-18 日立造船株式会社 水素回収方法および水素回収装置
JP2019034301A (ja) * 2017-08-10 2019-03-07 日立造船株式会社 リン回収方法およびリン回収装置
JP7154368B2 (ja) 2017-08-10 2022-10-17 日立造船株式会社 水素回収方法および水素回収装置
JP7055718B2 (ja) 2017-08-10 2022-04-18 日立造船株式会社 リン回収方法およびリン回収装置
CN108569836B (zh) * 2018-05-09 2021-05-18 中国科学院城市环境研究所 一种含铬污泥的脱水稳定化方法及装置
CN108569836A (zh) * 2018-05-09 2018-09-25 中国科学院城市环境研究所 一种含铬污泥的脱水稳定化方法及装置
CN109945210A (zh) * 2019-02-01 2019-06-28 九洲环境科技(天津)有限公司 一种带热能回收利用的污泥物相分离热处理设备以及方法
CN109945210B (zh) * 2019-02-01 2024-04-05 九洲环境科技(天津)有限公司 一种带热能回收利用的污泥物相分离热处理设备以及方法
JP2020128327A (ja) * 2019-02-08 2020-08-27 日立造船株式会社 水素製造方法および水素製造装置
JP2020128326A (ja) * 2019-02-08 2020-08-27 日立造船株式会社 水素製造方法および水素製造装置
JP2020128325A (ja) * 2019-02-08 2020-08-27 日立造船株式会社 水素製造方法および水素製造装置
JP7369053B2 (ja) 2019-02-08 2023-10-25 日立造船株式会社 水素製造方法および水素製造装置
JP7440285B2 (ja) 2019-02-08 2024-02-28 日立造船株式会社 水素製造方法および水素製造装置
CN113970101A (zh) * 2020-07-22 2022-01-25 中冶长天国际工程有限责任公司 一种危险废物热解焚烧系统及其温度控制方法
CN113970101B (zh) * 2020-07-22 2023-06-23 中冶长天国际工程有限责任公司 一种危险废物热解焚烧系统及其温度控制方法

Also Published As

Publication number Publication date
JP6612629B2 (ja) 2019-11-27

Similar Documents

Publication Publication Date Title
JP6612629B2 (ja) 汚泥の焼却システム
JP5176363B2 (ja) 廃棄物熱分解ガス化方法及び装置
JP5521187B2 (ja) 廃棄物をガス化する可燃ガス生成装置および可燃ガス製造方法
JP4502331B2 (ja) 炭化炉による熱併給発電方法及びシステム
JP4958855B2 (ja) 有機系廃棄物の処理方法
JP5148809B2 (ja) 汚泥の燃料化方法及び装置
JP2009139043A (ja) 汚泥の焼却装置及びこれを用いた汚泥の焼却方法
JP2011190969A (ja) 廃棄物処理システム
JP2005319373A (ja) 汚泥の燃料化方法及び装置
JP4855644B2 (ja) 有機系廃棄物の処理方法
DK141215B (da) Fremgangsmåde til destruktion af affald ved forgasning og forbrænding.
JP3806428B2 (ja) 汚泥の炭化処理方法及び装置並びに発電方法
JP2005200522A (ja) 高含水有機物の炭化処理方法及び装置並びに白煙防止方法
JP2006207960A (ja) 高含水物処理装置及び方法
JP5411312B2 (ja) 有機性廃棄物の処理装置、有機性廃棄物の処理方法、および制御装置
JP2008215661A (ja) 燃焼炉、廃棄物ガス化システム、可燃性ガス処理方法
JP4594344B2 (ja) 高含水有機物の炭化処理装置
JP6074255B2 (ja) 放射性廃棄物の処理装置および処理方法
JPS6152883B2 (ja)
JP5040174B2 (ja) 乾燥汚泥と廃棄物炭化物の混合燃料製造方法及び装置
JP5892832B2 (ja) 有機性廃棄物の処理装置および有機性廃棄物の処理方法
JP2005319372A (ja) 汚泥の炭化処理方法及び装置並びに発電方法
JPH02122109A (ja) 都市ごみ焼却灰の処理方法
JPH10169944A (ja) 廃棄物熱分解炉における流動層制御方法
JP4198664B2 (ja) 下水汚泥のガス化発電設備および下水汚泥のガス化発電方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191031

R150 Certificate of patent or registration of utility model

Ref document number: 6612629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250