JP2017122745A - ズームレンズ及びそれを有する撮像装置 - Google Patents

ズームレンズ及びそれを有する撮像装置 Download PDF

Info

Publication number
JP2017122745A
JP2017122745A JP2014103800A JP2014103800A JP2017122745A JP 2017122745 A JP2017122745 A JP 2017122745A JP 2014103800 A JP2014103800 A JP 2014103800A JP 2014103800 A JP2014103800 A JP 2014103800A JP 2017122745 A JP2017122745 A JP 2017122745A
Authority
JP
Japan
Prior art keywords
lens
group
lens unit
focus
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014103800A
Other languages
English (en)
Inventor
一輝 河村
Kazuteru Kawamura
一輝 河村
崇 藤倉
Takashi Fujikura
崇 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2014103800A priority Critical patent/JP2017122745A/ja
Priority to PCT/JP2015/059053 priority patent/WO2015178095A1/ja
Priority to US15/355,951 priority patent/US9958656B2/en
Publication of JP2017122745A publication Critical patent/JP2017122745A/ja
Priority to US15/927,152 priority patent/US10768396B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

【課題】小型、軽量であって、かつ、大きな変倍比と、十分に広い画角を持ちながらも諸収差が十分に低減されたズームレンズ及びそれを有する撮像装置を提供すること。【解決手段】ズームレンズは、負屈折力の前群と正屈折力の後群とからなり、前群は、負屈折力の第1のレンズを含み、第1のレンズは最も物体側に配置され、物体側に凸面を向けたメニスカスレンズであり、後群は、2つのレンズユニットを有し、変倍に際して、前群と後群との間隔は狭くなり、2つのレンズユニットの間隔は変化し、第1のレンズユニットは2つのサブレンズユニットと開口絞りとで構成され、第1のレンズユニットは第1のフォーカスレンズ群を有し、第1のフォーカスレンズ群より像側に第2のフォーカスレンズ群を有し、変倍に際して、第1のサブレンズユニットと第2のサブレンズユニットとの間隔は変化するか、又は一定である。【選択図】図1

Description

本発明は、ズームレンズ及びそれを有する撮像装置に関する。
広い範囲の撮影が可能なレンズとして、広角レンズが知られている。従来の広角レンズとしては、特許文献1、2及び3に開示された広角レンズがある。
特開2010−060612号公報 特開2010−176098号公報 特開2010−249959号公報
特許文献1の広角レンズは、光学系の全長に対してバックフォーカスが長いか、あるいは、第1レンズ群の焦点距離に対して広角端での焦点距離が長い。そのため、特許文献1の広角レンズでは、光学系を十分に小型化することが困難であった。
また、特許文献2の広角レンズでは、Fナンバーが十分に小さくできていないか、あるいは、Fナンバーに比べて画角を十分に広角化できていない。また、第1レンズ群の焦点距離に対して広角端での焦点距離が長い。そのため、特許文献1の広角レンズでは、光学系を十分に小型化することが困難であった。
また、特許文献3の広角レンズでは、最も物体側のレンズ群がフォーカスレンズ群を備えている。このような構成では、フォーカスレンズ群の小型化や軽量化が困難である。また、このようなことから、フォーカスレンズ群の駆動機構も小型化や軽量化が困難となる。その結果、特許文献3の広角レンズでは、フォーカススピードの高速化が困難であった。
本発明は、このような課題に鑑みてなされたものであって、光学系の小型化と軽量化が十分になされ、かつ、Fナンバーに比べて十分に広い画角を持ちながらも諸収差が十分に低減されたズームレンズ及びそれを有する撮像装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明のズームレンズは、
物体側から像側に順に、
負の屈折力を有する前群と、
開口絞りを含み正の屈折力を有する後群と、からなり、
前群は、負の屈折力を有する第1のレンズを含み、
第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
後群は、物体側から像側に順に、
第1のレンズユニットと、第2のレンズユニットと、を有し、
広角端から望遠端への変倍に際して、
前群と後群との間隔は狭くなり、
第1のレンズユニットと第2のレンズユニットとの間隔は変化し、
第1のレンズユニットは、物体側から像側に順に、正の屈折力を有する第1のサブレンズユニットと、開口絞りと、第2のサブレンズユニットとで構成され、
第1のレンズユニットは、第1のフォーカスレンズ群を有し、
第1のフォーカスレンズ群より像側に、第2のフォーカスレンズ群を有し、
フォーカシングに際して、第1のフォーカスレンズ群と第2のフォーカスレンズ群のみが光軸に沿って移動し、
変倍に際して、第1のサブレンズユニットと第2のサブレンズユニットとの間隔は変化するか、又は一定であることを特徴とする。
また、本発明の撮像装置は、
上記のズームレンズと、
撮像面を持ち且つズームレンズにより撮像面上に形成された像を電気信号に変換する撮像素子と、を有することを特徴とする。
本発明によれば、光学系の小型化と軽量化が十分になされ、かつ、Fナンバーに比べて十分に広い画角を持ちながらも諸収差が十分に低減されたズームレンズ及びそれを有する撮像装置を提供できる。
実施例1に係るズームレンズの無限遠物体合焦時のレンズ断面図であって、(a)は広角端、(b)は中間、(c)は望遠端でのレンズ断面図である。 実施例2に係るズームレンズの無限遠物体合焦時のレンズ断面図であって、(a)は広角端、(b)は中間、(c)は望遠端でのレンズ断面図である。 実施例3に係るズームレンズの無限遠物体合焦時のレンズ断面図であって、(a)は広角端、(b)は中間、(c)は望遠端でのレンズ断面図である。 実施例4に係るズームレンズの無限遠物体合焦時のレンズ断面図であって、(a)は広角端、(b)は中間、(c)は望遠端でのレンズ断面図である。 実施例5に係るズームレンズの無限遠物体合焦時のレンズ断面図であって、(a)は広角端、(b)は中間、(c)は望遠端でのレンズ断面図である。 実施例6に係るズームレンズの無限遠物体合焦時のレンズ断面図であって、(a)は広角端、(b)は中間、(c)は望遠端でのレンズ断面図である。 実施例1にかかるズームレンズの無限遠物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例1にかかるズームレンズの近距離物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例2にかかるズームレンズの無限遠物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例2にかかるズームレンズの近距離物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例3にかかるズームレンズの無限遠物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例3にかかるズームレンズの近距離物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例4にかかるズームレンズの無限遠物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例4にかかるズームレンズの近距離物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例5にかかるズームレンズの無限遠物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例5にかかるズームレンズの近距離物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例6にかかるズームレンズの無限遠物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例6にかかるズームレンズの近距離物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 撮像装置の断面図である。 撮像装置の概観を示す前方斜視図である。 撮像装置の後方斜視図である。 撮像装置の主要部の内部回路の構成ブロック図である。
実施例の説明に先立ち、本発明のある態様に係る実施形態の作用効果を説明する。なお、本実施形態の作用効果を具体的に説明するに際しては、具体的な例を示して説明することになる。しかし、後述する実施例の場合と同様に、それらの例示される態様はあくまでも本発明に含まれる態様のうちの一部に過ぎず、その態様には数多くのバリエーションが存在する。したがって、本発明は例示される態様に限定されるものではない。
本実施形態のズームレンズは、物体側から像側に順に、負の屈折力を有する前群と、開口絞りを含み正の屈折力を有する後群と、からなり、前群は、負の屈折力を有する第1のレンズを含み、第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、後群は、物体側から像側に順に、第1のレンズユニットと、第2のレンズユニットと、を有し、広角端から望遠端への変倍に際して、前群と後群との間隔が狭くなり、第1のレンズユニットと第2のレンズユニットとの間隔が変化し、第1のレンズユニットは、物体側から像側に順に、正の屈折力を有する第1のサブレンズユニットと、開口絞りと、第2のサブレンズユニットとで構成され、第1のレンズユニットは、第1のフォーカスレンズ群を有し、第1のフォーカスレンズ群より像側に、第2のフォーカスレンズ群を有し、フォーカシングに際して、第1のフォーカスレンズ群と第2のフォーカスレンズ群のみが光軸に沿って移動し、変倍に際して、第1のサブレンズユニットと第2のサブレンズユニットとの間隔は変化するか、又は一定である。
本実施形態のズームレンズは、物体側から像側に順に、負の屈折力を有する前群と、正の屈折力を有する後群と、からなる。これにより、光学系の構成を、レトロフォーカスタイプの構成にすることができる。その結果、超広画角でありながら、適度な長さのバックフォーカスを確保することが容易となる。ここで、超広画角とは、例えば105°以上の画角、より好ましくは、110°以上の画角のことである。
また、前群は、負の屈折力を有する第1のレンズを含み、第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状である。
上述のように、前群は負の屈折力を有している。そこで、前群の負の屈折力を大きくすると、光学系の径を小さくすることができる。ただし、像面湾曲と非点収差の発生量は、軸外主光線の高さが高くなるにつれて増加する傾向を示す。ここで、超広画角な光学系では、軸外主光線の高さは前群を通過するときに最も高くなる。そのため、前群の負の屈折力を大きくすると、画角を超広画角にした場合に、像面湾曲と非点収差の発生量が増加しやすくなる。
そこで、前群に、負の屈折力を有する第1のレンズを配置している。そして、第1のレンズを前群の最も物体側に配置すると共に、かつ、その形状を物体側に凸面を向けたメニスカス形状にしている。
これにより、軸外の主光線の高さが最も高くなる前群において、物体側に凸面を向けたメニスカスレンズが1つ配置されることになる。このようにすることで、前群における負の屈折力を大きくしつつ、軸外光線を徐々に屈折することができる。すなわち、急激な光線の屈折を抑制することができる。この結果、像面湾曲と非点収差の発生量を低減しつつ、画角を超広画角にすることができる。
また、広角端から望遠端への変倍に際して、前群と後群との間隔は狭くなる。このようにすることで、大きな変倍作用を得ることができる。なお、前群と後群との間隔は、近軸上の間隔である。
また、後群は、物体側から像側に順に、第1のレンズユニットと、第2のレンズユニットと、を有する。そして、広角端から望遠端への変倍に際して、第1のレンズユニットと第2のレンズユニットとの間隔が変化する。なお、第1のレンズユニットと第2のレンズユニットとの間隔は、近軸上の間隔である。
上述のように、本実施形態のズームレンズでは、光学系の構成がレトロフォーカスタイプの構成になっている。レトロフォーカスタイプの構成において、更に光学系を細径化するには、前群の負の屈折力を大きくする必要がある。特に、超広画角ズームレンズにおいて、例えば、1.9倍以上の変倍比を確保した上で、光学系の全長を短縮するには、前群のみならず、後群の屈折力を大きくする必要がある。
ここで、前群の負の屈折力を大きくしすぎると、前群において大きな正の像面湾曲が発生し、かつ、変倍時に、軸外収差、特に非点収差が変動し易くなる。そこで、光学系の小型化を維持しつつ、収差の発生量の低減や収差の変動を抑制するために、後群内で収差を良好に補正しておく必要がある。
このようなことから、後群は、物体側から像側に順に、第1のレンズユニットと、第2のレンズユニットと、を有する。これにより、後群内での収差を良好に補正することができる。また、変倍時に、非点収差の変動を少なくすることができる。
そして、広角端から望遠端への変倍に際して、第1のレンズユニットと第2のレンズユニットとの間隔が変化する。これにより、変倍時に、収差の変動を少なくすることができる。
なお、第1のレンズユニットと第2のレンズユニットの両方に正レンズを配置し、正レンズの屈折力を大きくすることが好ましい。このようにすることで、像面湾曲の発生量を低減することができる。
また、第1のレンズユニットは、物体側から像側に順に、正の屈折力を有する第1のサブレンズユニットと、開口絞りと、第2のサブレンズユニットとで構成されている。
この場合、開口絞りよりも物体側に正の屈折力を有する第1のサブレンズユニットが配置され、開口絞りよりも像側に第2のサブレンズユニットが配置されることになる。このようにすることで、球面収差とコマ収差の補正が容易にできる。
また、第1のサブレンズユニットは正の屈折力を有するので、光束を収束する効果を有する。そこで、後群において、第1のサブレンズユニットを最も物体側に配置することで、後群全体を容易に小径化することができる。また、後群での軸上光線の高さを低く抑えることができるため、球面収差の発生量を低減することができる。
また、開口絞りの近傍では光束径が小さくなる。ここで、第1のサブレンズユニットと第2のサブレンズユニットは、開口絞りを挟んで対向するように配置されている。よって、第1のサブレンズユニットと第2のサブレンズユニットとを小型にすることができる。また、特に、開口絞りより像側に位置するレンズの径を小さくすることが容易となる。
また、第1のレンズユニットは、第1のフォーカスレンズ群を有し、第1のフォーカスレンズ群より像側に、第2のフォーカスレンズ群を有し、フォーカシングに際して、第1のフォーカスレンズ群と第2のフォーカスレンズ群のみが光軸に沿って移動する。
第1のレンズユニットは後群内に配置されているので、第1のレンズユニットは前群よりも像側に位置する。この場合、フォーカスレンズ群は前群よりも像側に位置する。上述のように、前群よりも像側では光束径が小さくなる。更に、第1のレンズユニットは開口絞りを有する。この場合、フォーカスレンズ群は開口絞りの近傍に位置する。開口絞りの近傍では光束径が小さくなる。このように、後群の中でレンズ径がより小さくなる場所に、フォーカスレンズ群を配置することができる。その結果、フォーカスレンズ群を小径化することができる。
また、フォーカシングに際して、第1のフォーカスレンズ群と第2のフォーカスレンズ群のみが光軸に沿って移動する。このようにすると、フォーカスレンズ群の軽量化を図ることができる。また、フォーカスレンズ群の駆動機構も小型化や軽量化ができる。その結果、高速で消費電力の少ないフォーカス駆動が可能になる。
また、超広画角な光学系では、より広い範囲を撮影することが可能である。このような光学系では、フォーカシングに際して発生する像面湾曲の変動が、結像性能を悪化させる大きな要因になる。特に、メリディオナル面における像面湾曲の変動は、近距離物体合焦時における結像性能を大きく悪化させる要因となる。
前群は、メリディオナル面における像面湾曲を大きく発生させている。そのため、フォーカシングに際して、前群を通る周辺光線の高さが変動すると、メリディオナル面における像面湾曲の変動も大きくなる。特に、近距離物体合焦時では、前群を通る周辺光線の高さが大きく変動する。
そこで、第1のレンズユニットに第1のフォーカスレンズ群を配置する。第1のレンズユニットは前群よりも像側に位置しているので、このようにすると、第1のフォーカスレンズ群は前群より像側に位置する。ここで、周辺光線の高さは、前群内に比べて前群よりも像側で低くなっている。よって、第1のフォーカス群レンズ群では、周辺光線の高さが低くなる。
この場合、第1のフォーカスレンズ群が移動しても、前群を通る周辺光線の高さの変動を小さく抑えることができる。これにより、メリディオナル面における像面湾曲の変動も抑えることができる。その結果、近距離物体へのフォーカシングに際しても、光学系の結像性能を高く維持することができる。
また、第1のフォーカスレンズ群の移動量を少なくできるので、フォーカシングの際に、前群における周辺光線の高さの変動を少なくすることができる。そのため、メリディオナル面における像面湾曲の変動を抑えることができる。この結果、近距離物体合焦時においても、光学系の結像性能を高く維持することができる。
その結果、近距離物体へのフォーカシングに際しても、良好な光学性能を維持することができる。また、第1のフォーカスレンズ群の小型化と軽量化が実現できる。これにより、フォーカススピードの高速化と、第1のフォーカスレンズ群の駆動機構の軽量化と少スペース化ができる。
なお、開口絞りの近くでは、軸上光線と周辺光線との分離量が少ない。そこで、開口絞りの近くに第1のフォーカスレンズ群を配置することが好ましい。この位置では、軸上光束の光束径が大きくなっている。軸上光束の光束径が大きいと、より効果的に第1のフォーカスレンズ群の倍率を高めることができる。
このように、開口絞りの近くに第1のフォーカスレンズ群を配置すると、より効果的に第1のフォーカスレンズ群の倍率を高められる箇所、すなわち、軸上光束が太い箇所でフォーカスできる。そのため、この位置でフォーカシングすることで、フォーカスの感度を高めつつ、前群における周辺光線の高さの変動を少なくすることができる。
また、第1のフォーカスレンズ群より像側に、第2のフォーカスレンズ群を有する。第2のフォーカスレンズ群は、第1のフォーカスレンズ群より像側に配置されている。よって、第2のフォーカスレンズ群は、後群内に配置されることになる。ここで、上述のように、後群は容易に小径化できる。よって、第2のフォーカスレンズ群の小型化と軽量化が実現できる。
また、第1のフォーカスレンズ群によるフォーカシングでは、像面湾曲の変動が残存することがある。このような場合であっても、第2のフォーカスレンズ群で、残存する像面湾曲の変動を更に良好に補正することができる。また、前群と後群の屈折力を大きくしても、2つのフォーカスレンズ群によって諸収差の変動を抑制できるので、光学系をより小型化することが可能になる。
また、第1のフォーカスレンズ群と第2のフォーカスレンズ群の両方について、小型化と軽量化ができる。よって、フォーカススピードの高速化と、フォーカスレンズ群の駆動機構の軽量化と少スペース化ができる。
また、変倍に際して、第1のサブレンズユニットと第2のサブレンズユニットとの間隔は変化するか、又は一定である。
変倍に際して、第1のサブレンズユニットと第2のサブレンズユニットとの間隔が一定の場合、第1のレンズユニット内のレンズ間隔は、いずれも不変になる。そのため、第1のレンズユニット内に、レンズの移動に必要なスペースを設ける必要がない。その結果、第1のレンズユニットを小型化することができる。また、鏡筒の構造をより簡単にできるので、鏡筒の小径化がより容易になる。なお、第1のサブレンズユニットと第2のサブレンズユニットとの間隔は、近軸上の間隔である。
また、変倍の際に、移動方向や移動量が各レンズで異なると、場合によっては、レンズの移動に必要なスペースを余分に設ける必要が生じる。その結果、第1のレンズユニットの全長が変化することがある。これに対して、第1のレンズユニットが一体となって移動すると、第1のレンズユニット内の全てのレンズが、同じ方向に、同じ量だけ移動する。この場合、第1のレンズユニットの全長は変化しない。よって、第1のレンズユニットを小型化することができる。
また、変倍に際して、第1のサブレンズユニットと第2のサブレンズユニットとの間隔が変化する場合、第1のサブレンズユニットと第2のサブレンズユニットの2つのレンズユニットによって、変倍比を負担することができる。この場合、変倍時における、第1のサブレンズユニットと、第2のサブレンズユニットの移動量を抑えることができる。そのため、光学系の全長を短縮することができる。
また、第1のレンズユニットを、第1のサブレンズユニットと第2のサブレンズユニットとで構成することで、両者に変倍作用を持たせることができる。この場合、所望の変倍比を得るために必要な倍率を、第1のサブレンズユニットと第2のサブレンズユニットとで負担することができる。そのため、変倍時における移動量を、第1のサブレンズユニットと第2のサブレンズユニットの両方で小さく抑えることができる。その結果、光学系の全長を短縮することができる。なお、第1のサブレンズユニットと第2のサブレンズユニットとの間隔は、近軸上の間隔である。
また、変倍に際しては、球面収差の変動が生じやすい。そこで、2つのサブレンズユニットの間隔を変化させることで、主に、球面収差の変動を抑制する効果を得ることができる。このようにすることは、変倍比を高めることに対して有効である。また、像面湾曲の変動量についても低減することができる。
次に、本実施形態における好ましい態様について説明する。
また、本実施形態のズームレンズでは、以下の条件式(9)を満足することが好ましい。
1.9<SPF1<9.0 (9)
ここで、
SPF1=(rF1o+rF1i)/(rF1o−rF1i
F1oは、第1のレンズの物体側面の近軸曲率半径、
F1iは、第1のレンズの像側面の近軸曲率半径、
である。
条件式(9)の下限値を上回ることで、第1のレンズにおいて、物体側面と像側面との曲率差が大きくなりすぎることを抑制できる。その結果、非点収差の発生量を低減することができる。
条件式(9)の上限値を下回ることで、第1のレンズにおいて、物体側面と像側面の曲率差が小さくなりすぎることを抑制できる。この場合、第1のレンズにおいて適切な大きさの屈折力を確保できるので、後群へ入射する光線の高さを低くできる。その結果、後群のレンズ径を小さくすることができる。また、前群の負の屈折力をある程度小さくできるので、物体側面の面頂が物体側に位置することを抑制できる。その結果、光学系の全長を短くするとともに、光学系を小径化することができる。
また、本実施形態のズームレンズでは、前群は、第1のレンズより開口絞り側に、正の屈折力を有する第3のレンズを有していることが好ましい。
このようにすることで、軸上色収差と倍率色収差の発生を抑制できる。また、望遠端付近における球面収差の発生量を軽減できる。
また、本実施形態のズームレンズでは、前群は、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、を含み、第2のレンズは第1のレンズよりも像側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であることが好ましい。
これにより、軸外の主光線の高さが最も高くなる前群において、開口絞り側に凹面を向けたメニスカスレンズが2つ配置されることになる。このようにすることで、前群における負の屈折力を大きくしつつ、軸外光線を徐々に屈折することができる。すなわち、急激な光線の屈折を抑制することができる。この結果、像面湾曲と非点収差の発生量を低減しつつ、画角を超広画角にすることができる。
また、正の屈折力を有する第3のレンズによって、軸上色収差と倍率色収差の発生を抑制できる。また、望遠端付近における球面収差の発生量を軽減できる。
また、本実施形態のズームレンズでは、前群は、更に、負の屈折力を有する第4のレンズを含むことが好ましい。
このようにすることで、前群内での球面収差を良好に補正でき、また、変倍時の球面収差の変動を抑えることができる。その結果、変倍域の全域で良好な光学性能が得られる。また、像面湾曲、非点収差及び倍率色収差の発生を抑制しながら、前群の屈折力を大きくすることができる。この結果、入射瞳がより物体側に位置するため、前群を小径化することができる。なお、前群は、更に、負の屈折力を有するレンズを含んでいても良い。このようにすることで、上述の効果をより大きくすることができる。
また、負の屈折力を有するレンズは、正の屈折力を有するレンズの近傍に配置されることが好ましい。例えば、第4のレンズは第3のレンズの近傍に配置されることが好ましい。このようにすることで、上述の効果をより大きくすることができる。
また、本実施形態のズームレンズでは、前群は、更に、負の屈折力を有する第4のレンズを含み、第4のレンズの形状はメニスカス形状であることが好ましい。
このようにすることで、前群には、メニスカスレンズが3つ配置されることになる。この場合、超広画角で前群に入射してくる光線を、3枚のメニスカスレンズにより、徐々に光線を屈折させることができる。また、各メニスカスレンズでは、レンズへ入射する光線の角度を小さく抑えながら、徐々に光線を屈折させることができる。このため、各メニスカスレンズにおいて、像面湾曲、非点収差及び倍率色収差の発生を抑制することができる。なお、前群は、更に、負メニスカスレンズを含んでいても良い。このようにすることで、上述の効果をより大きくすることができる。
また、本実施形態のズームレンズでは、前群は、更に、負の屈折力を有する第4のレンズを含み、第4のレンズの形状は、物体側に凸面を向けたメニスカス形状であることが好ましい。
このようにすることで、前群には、第1のレンズと第2のレンズ以外に、負メニスカスレンズが配置されることになる。ここで、3つの負メニスカスレンズは、いずれも、物体側に凸面を、すなわち、像側に凹面を向けている。この場合、更に前群の負屈折力を大きくしつつ、急激な光線の屈折を抑制することができる。そのため、像面湾曲と非点収差の発生量を軽減できる。その結果、更なる超広画角化と光学系の小径化が容易になる。なお、前群は、更に、物体側に凸面を向けた負メニスカスレンズを含んでいても良い。このようにすることで、上述の効果をより大きくすることができる。
また、本実施形態のズームレンズでは、第4のレンズは、第2のレンズよりも像側に配置されていることが好ましい。
これにより、像面湾曲、非点収差及び倍率色収差の発生量を低減しながら、前群の屈折力を大きくすることができる。また、入射瞳がより物体側に位置するため、前群を小径化することができる。
また、本実施形態のズームレンズでは、以下の条件式(5)を満足することが好ましい。
1.1<|rF1i/fF|<3 (5)
ここで、
F1iは、第1のレンズの像側面の近軸曲率半径、
Fは、前群の焦点距離、
である。
条件式(5)の下限値を上回ることで、第1のレンズの屈折力が大きくなりすぎることを抑制できる。その結果、像面湾曲、非点収差及び歪曲収差の発生量を低減することができる。また、前群の総厚みを薄くできるので、光学系の全長を短縮することができる。
条件式(5)の上限値を下回ることで、第1のレンズの屈折力が大きくなる。この場合、前群におけるレンズ径が小さくなるので、光学系を小型化することができる。また、像面湾曲と非点収差の発生量を低減しつつ、前群の屈折力を大きくすることができる。
また、本実施形態のズームレンズでは、以下の条件式(1−2)を満足することが好ましい。
49<νdFnmax<110 (1−2)
ここで、
νdFnmaxは、前群に含まれる負の屈折力を有するレンズのアッベ数のうち、最大となるアッベ数、
である。
条件式(1−2)の下限値を上回ることで、前群で発生する倍率色収差の発生量を低減することができる。また、条件式(1−2)の上限値を下回ることで、硝材の選択の自由度を広く確保することができる。
また、本実施形態のズームレンズでは、以下の条件式(2−2)を満足することが好ましい。
−2.5<FBw/fF<−0.3 (2−2)
ここで、
FBwは、広角端におけるバックフォーカス、
Fは、前群の焦点距離、
である。
条件式(2−2)の下限値を上回ることで、広角端におけるバックフォーカスを短くすることができる。その結果、光学系を小型化することができる。また、前群の屈折力を大きくなりすぎることを抑制できるので、像面湾曲と非点収差の発生量を低減することができる。
また、条件式(2−2)の上限値を下回ることで、前群の屈折力を適切に設定することができる。その結果、光学系を小径化することができる。
また、本実施形態のズームレンズでは、以下の条件式(3−2)を満足することが好ましい。
−2.3<fw×Fnowmin/fF<−0.5 (3−2)
ここで、
wは、広角端におけるズームレンズ全系の焦点距離、
Fnowminは、広角端におけるFナンバーのうち、最小となるFナンバー、
Fは、前群の焦点距離、
である。
条件式(3−2)の下限値を上回ることで、小径かつFナンバーが小さいズームレンズでありながら、画角を超広画角にすることが可能となる。また、条件式(3−2)の上限値を下回ることで、前群を小径化することができる。
また、本第5実施形態のズームレンズでは、以下の条件式(4)を満足することが好ましい。
1.25<fRw/FBw<5 (4)
ここで、
Rwは、広角端における後群の焦点距離、
FBwは、広角端におけるバックフォーカス、
である。
条件式(4)の下限値を上回ることで、広角端における後群の屈折力を適切に確保しつつ、球面収差と軸上色収差の発生量を低減することができる。また、広角端におけるバックフォーカスを短くできるため、光学系の全長を短くすることができる。更に、前群の屈折力を大きくすることができるため、光学系を小径化することができる。
また、条件式(4)の上限値を下回ることで、後群の屈折力を適切に確保しつつ、光学系の全長を短くすることができる。更に、後群の正の屈折力を大きくすることで、像面湾曲の発生量を低減することができる。
また、本実施形態のズームレンズでは、以下の条件式(11)を満足することが好ましい。
−25<DTLw<7 (11)
ここで、
DTLwは、広角端における最大画角でのディストーションであって、DTLw=(IHw1−IHw2)/IHw2×100(%)で表され、
IHw1は、無限物点からの広角端での最大画角が像面に結像する実像高、
IHw2は、無限物点からの広角端での最大画角が像面の結像する近軸像高、
である。
ディストーションの発生量を適切に設定することで、前群の屈折力を大きくして超広画角化と光学系の全長の短縮を図りつつ、光学系を小径化することができる。
条件式(11)の下限値を上回ることで、樽型ディストーションの発生量を低減することができる。その結果、パースペクティブ効果を強めることができる。また、電気的にディストーションを補正した場合、画像周辺部の画像が大きく引き伸ばされることにより画像が劣化することがあるが、この劣化を抑制することができる。
条件式(11)の上限値を下回ることで、前群を小径化することができる。その結果、光学系を小型化することができる。
また、本実施形態のズームレンズでは、以下の条件式(6)を満足することが好ましい。
0.53<θgFFn<0.55 (6)
ここで、
θgFFnは、前群に含まれる負の屈折力を有するレンズのうち、アッベ数の値が最も大きいレンズにおける部分分散比であって、θgFFn=(ng−nF)/(nF−nc)で表され、
ng、nF、ncは、それぞれ、アッベ数の値が最も大きいレンズのg線、F線、C線での屈折率、
である。
条件式(6)を満足することで、前群に用いる硝材の選択の自由度を広く確保しつつ、前群内での倍率色収差の発生を抑制することができる。
また、本実施形態のズームレンズでは、以下の条件式(7)を満足することが好ましい。
0.01<θgFFn+0.0016×νd−0.6415<0.054 (7)
ここで、
θgFFnは、前群に含まれる負の屈折力を有するレンズのうち、アッベ数の値が最も大きいレンズにおける部分分散比であって、θgFFn=(ng−nF)/(nF−nc)で表され、
ng、nF、ncは、それぞれ、アッベ数の値が最も大きいレンズのg線、F線、C線での屈折率、
νdは、アッベ数の値が最も大きいレンズのアッベ数、
である。
前群には、主に像面湾曲と非点収差の発生を抑制するために、負の屈折力を有するレンズが複数枚用いられている。ただし、負の屈折力を有するレンズによって、主に軸上色収差、倍率色収差及び球面収差が発生する場合がある。そこで、前群に正の屈折力を有するレンズを配置することで、これらの収差の発生量を低減することが容易になる。その結果、高い光学性能の確保が容易となる。
ここで、前群の負の屈折力を大きくしつつ、色収差を良好に補正するには、正の屈折力を有するレンズの分散が、高分散であることが好ましい。しかしながら、正の屈折力を有するレンズの分散が高分散であると、2次スペクトルが大きく発生する場合がある。そのため、前群の負の屈折力を有するレンズには、2次スペクトルの発生量を低減できる特性を持つ硝材を使うことが、色収差の補正に対して有効となる。
条件式(7)の下限値を上回ることで、前群内で発生する2次スペクトルの量を低減することができる。その結果、軸上色収差と倍率色収差の発生量を低減することができる。
条件式(7)の上限値を下回ることで、前群内で発生する2次スペクトルの量が、補正過剰となることを抑制することができる。その結果、軸上色収差と倍率色収差のバランスをとることが可能となる。
また、本実施形態のズームレンズでは、以下の条件式(8)を満足することが好ましい。
0.06<FBw/LTLw<0.20 (8)
ここで、
FBwは、広角端におけるバックフォーカス、
LTLwは、広角端におけるズームレンズの最も物体側の面から像面までの軸上距離、である。
条件式(8)の下限値を上回ることで、広角端において、バックフォーカスに対して光学系の全長を短くすることができる。その結果、光学系の全長を短縮することができる。軸上距離は、近軸上の距離である。
条件式(8)の上限値を下回ることで、広角端において、光学系の全長に対してバックフォーカスを短くすることができる。その結果、光学系の全長を短縮することができる。また、光学系内に光学素子を配置する場合に、光学素子を配置するスペースを十分に確保することが可能となる。そのため、変倍域の全域で、高い光学性能を確保し易くなる。
また、本実施形態のズームレンズでは、以下の条件式(13)を満足することが好ましい。
−2.0<fF/(fw×ft1/2<−1.0 (13)
Fは、前群の焦点距離、
wは、広角端におけるズームレンズ全系の焦点距離、
tは、望遠端におけるズームレンズ全系の焦点距離、
である。
条件式(13)は、前群の焦点距離と広角端および望遠端の焦点距離の積との比に関するものである。
条件式(13)の下限値を上回ることで、前群の屈折力が大きくなりすぎることを抑制することができる。その結果、広角端における非点収差と倍率色収差の発生量を低減することができる。
条件式(13)の上限値を下回ることで、前群の屈折力を適度に大きくすることができるので、入射瞳をより物体側に位置させることができる。その結果、前群を小径化することができる。
また、本実施形態のズームレンズでは、以下の条件式(14−1)を満足することが好ましい。
1.5<SPF2<7 (14−1)
ここで、
SPF2=(rF2o+rF2i)/(rF2o−rF2i
F2oは、第2のレンズの物体側面の近軸曲率半径、
F2iは、第2のレンズの像側面の近軸曲率半径、
である。
条件式(14−1)の下限値を上回ることで、第2レンズの屈曲が大きくなり過ぎることを抑制し、非点収差の発生を抑制することができる。
条件式(14−1)の上限値を下回ることで、第2レンズの曲率を適切に設定することができるので、物体側面の面頂がより物体側に位置することを抑制できる。その結果、光学系の全長を短くし、光学系を小型化することができる。また、鏡筒を小径化することができる。
また、本実施形態のズームレンズでは、以下の条件式(15)を満足することが好ましい。
0.5<SPF4<6.0 (15)
ここで、
SPF4=(rF4o+rF4i)/(rF4o-rF4i
F4oは、第4のレンズの物体側面の近軸曲率半径、
F4iは、第4のレンズの像側面の近軸曲率半径、
である。
条件式(15)の下限値を上回ることで、広角端において、バックフォーカスに対して光学系の全長を短くすることができる。その結果、光学系の全長を短縮することができる。
条件式(15)の上限値を下回ることで、第2レンズの曲率を適切に設定することができるので、物体側面の面頂がより物体側に位置することを抑制できる。その結果、光学系の全長を短くし、光学系を小型化することができる。また、鏡筒を小径化することができる。
また、本実施形態のズームレンズでは、変倍に際して、前群は移動することが好ましい。
これにより、像面湾曲の発生量を変倍域の全域で低減することができる。
また、本実施形態のズームレンズでは、第1のサブレンズユニットは、第1のフォーカスレンズ群を有することが好ましい。
第1のサブレンズユニットは、開口絞りの近傍に位置させることができる。このようにすると、第1のフォーカスレンズ群は開口絞りの近傍に位置する。開口絞りの近傍では軸外光線の高さが低くなっている。そのため、第1のフォーカスレンズ群を通過する軸外光線では、変倍に伴う光線の高さや角度の変化が少なくなる。その結果、軸外収差、特にコマ収差の変動量を、変倍域の全域で低減することができる。
また、本実施形態のズームレンズでは、第1のサブレンズユニットの一部が第1のフォーカスレンズ群であって、変倍に際して、第1のフォーカスレンズ群は、第1のサブレンズユニットと一体で移動することが好ましい。
このようにすることで、変倍については、第1のフォーカスレンズ群の移動の簡素化を図ることができる。また、フォーカシングに際しては、第1のフォーカスレンズ群のみが移動するので、第1のフォーカスレンズ群の軽量化を図ることができる。また、第1のフォーカスレンズ群の駆動機構も小型化や軽量化ができる。その結果、高速で消費電力の少ないフォーカス駆動が可能になる。
また、本実施形態のズームレンズでは、第1のサブレンズユニット全体が第1のフォーカスレンズ群であることが好ましい。
第1のサブレンズユニットは、開口絞りの近傍に位置させることができる。そのため、第1のサブレンズユニット全体をフォーカスレンズ群にすることで、第1のフォーカスレンズ群が開口絞りの近傍に位置する。
開口絞りの近傍では軸外光線の高さが低くなっている。そのため、第1のフォーカスレンズ群を通過する軸外光線では、変倍に伴う光線の高さや角度の変化が少なくなる。その結果、軸外収差、特にコマ収差の変動量を、変倍域の全域で低減することができる。
また、このようにすることで、変倍時の駆動機構とフォーカス時の駆動機構とを共通にすることできる。そのため、鏡枠構造の簡素化と小型化ができる。
また、本実施形態のズームレンズでは、第2のサブレンズユニットは、第1のフォーカスレンズ群を有することが好ましい。
第2のサブレンズユニットは、開口絞りの近傍に位置させることができる。このようにすると、第1のフォーカスレンズ群は開口絞りの近傍に位置する。開口絞りの近傍では軸外光線の高さが低くなっている。そのため、第1のフォーカスレンズ群を通過する軸外光線では、変倍に伴う光線の高さや角度の変化が少なくなる。その結果、軸外収差、特にコマ収差の変動量を、変倍域の全域で低減することができる。
また、本実施形態のズームレンズでは、第2のサブレンズユニット全体が第1のフォーカスレンズ群であることが好ましい。
第2のサブレンズユニットは、開口絞りの近傍に位置させることができる。そのため、第1のサブレンズユニット全体をフォーカスレンズ群にすることで、第1のフォーカスレンズ群が開口絞りの近傍に位置する。
開口絞りの近傍では軸外光線の高さが低くなっている。そのため、第1のフォーカスレンズ群を通過する軸外光線では、変倍に伴う光線の高さや角度の変化が少なくなる。その結果、軸外収差、特にコマ収差の変動量を、変倍域の全域で低減することができる。
また、このようにすることで、変倍時の駆動機構とフォーカス時の駆動機構とを共通にすることできる。そのため、鏡枠構造の簡素化と小型化ができる。
また、本実施形態のズームレンズでは、第2のサブレンズユニットは、第2のフォーカスレンズ群を有することが好ましい。
第2のサブレンズユニットは、開口絞りの近傍に位置させることができる。このようにすると、第2のフォーカスレンズ群は開口絞りの近傍に位置する。開口絞りの近傍では軸外光線の高さが低くなっている。そのため、第2のフォーカスレンズ群を通過する軸外光線では、変倍に伴う光線の高さや角度の変化が少なくなる。その結果、軸外収差、特にコマ収差の変動量を、変倍域の全域で低減することができる。
また、本実施形態のズームレンズでは、第2のサブレンズユニットの一部が第2のフォーカスレンズ群であって、変倍に際して、第2のフォーカスレンズ群は、第2のサブレンズユニットと一体で移動することが好ましい。
このようにすることで、変倍については、第2のフォーカスレンズ群の移動の簡素化を図ることができる。また、フォーカシングに際しては、第2のフォーカスレンズ群のみが移動するので、第2のフォーカスレンズ群の軽量化を図ることができる。また、第2のフォーカスレンズ群の駆動機構も小型化や軽量化ができる。その結果、高速で消費電力の少ないフォーカス駆動が可能になる。
また、本実施形態のズームレンズでは、第2のサブレンズユニット全体が第2のフォーカスレンズ群であることが好ましい。
第2のサブレンズユニットは、開口絞りの近傍に位置させることができる。そのため、第2のサブレンズユニット全体をフォーカスレンズ群にすることで、第2のフォーカスレンズ群が開口絞りの近傍に位置する。
開口絞りの近傍では軸外光線の高さが低くなっている。そのため、第2のフォーカスレンズ群を通過する軸外光線では、変倍に伴う光線の高さや角度の変化が少なくなる。その結果、軸外収差、特にコマ収差の変動量を、変倍域の全域で低減することができる。
また、このようにすることで、変倍時の駆動機構とフォーカス時の駆動機構とを共通にすることできる。そのため、鏡枠構造の簡素化と小型化ができる。
また、本実施形態のズームレンズでは、第1のレンズユニットは、第1のフォーカスレンズ群を有し、第2のレンズユニットは、第2のフォーカスレンズ群を有することが好ましい。
このようにすることで、変倍については、第1のフォーカスレンズ群と第2のサブレンズユニットの移動の簡素化を図ることができる。また、フォーカスについては、第1のレンズユニットでは第1のフォーカスレンズ群のみが移動し、第2のレンズユニットでは第2のフォーカスレンズ群のみが移動するので、第1のフォーカスレンズ群と第2のフォーカスレンズ群の軽量化を図ることができる。また、第1のフォーカスレンズ群と第2のフォーカスレンズ群の駆動機構も小型化や軽量化ができる。その結果、高速で消費電力の少ないフォーカス駆動が可能になる。
また、本実施形態のズームレンズでは、変倍に際して、第1のサブレンズユニットと第2のサブレンズユニットとの間隔は一定であることが好ましい。
技術的意義は上述したので、説明は省略する。
また、本実施形態のズームレンズでは、第1のレンズユニットは、正の屈折力を有するフロントレンズユニットと、リアレンズユニットと、で構成され、変倍に際して、フロントレンズユニットとリアレンズユニットとの間隔が変化し、フロントレンズユニットに第1のサブレンズユニットが含まれることが好ましい。
変倍に際しては、球面収差の変動が生じやすい。そこで、フロントレンズユニットとリアレンズユニットとの間隔が変化するようにすることで、主に球面収差の変動を抑制する効果を得ることができる。このようにすることは、変倍比を高めることに対して有効である。
また、本実施形態のズームレンズでは、リアレンズユニットは負の屈折力を有することが好ましい。
このようにすることは、球面収差の良好な補正と変倍比の更なる高倍化を行う上で望ましい。
また、本実施形態のズームレンズでは、フロントレンズユニットは、第1のフォーカスレンズ群を有することが好ましい。
フロントレンズユニットは、開口絞りの近傍に位置させることができる。このようにすると、第1のフォーカスレンズ群は開口絞りの近傍に位置する。開口絞りの近傍では軸外光線の高さが低くなっている。そのため、第1のフォーカスレンズ群を通過する軸外光線では、変倍に伴う光線の高さや角度の変化が少なくなる。その結果、軸外収差、特にコマ収差の変動量を、変倍域の全域で低減することができる。
また、本実施形態のズームレンズでは、リアレンズユニットは、第1のフォーカスレンズ群を有することが好ましい。
リアレンズユニットは、開口絞りの近傍に位置させることができる。このようにすると、第1のフォーカスレンズ群は開口絞りの近傍に位置する。開口絞りの近傍では軸外光線の高さが低くなっている。そのため、第1のフォーカスレンズ群を通過する軸外光線では、変倍に伴う光線の高さや角度の変化が少なくなる。その結果、軸外収差、特にコマ収差の変動量を、変倍域の全域で低減することができる。
また、本実施形態のズームレンズでは、リアレンズユニットは、第2のフォーカスレンズ群を有することが好ましい。
リアレンズユニットは、開口絞りの近傍に位置させることができる。このようにすると、第2のフォーカスレンズ群は開口絞りの近傍に位置する。開口絞りの近傍では軸外光線の高さが低くなっている。そのため、第2のフォーカスレンズ群を通過する軸外光線では、変倍に伴う光線の高さや角度の変化が少なくなる。その結果、軸外収差、特にコマ収差の変動量を、変倍域の全域で低減することができる。
また、本実施形態のズームレンズでは、第1のレンズユニットは手ぶれ低減レンズユニットを有し、手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することが好ましい。
手ぶれによって、像ぶれが生じる。そこで、手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることで、像ぶれの補正を行う。上述のように、前群が負の屈折力を有している。そこで、前群の像側に手ぶれ低減レンズユニットを配置し、手ぶれ低減レンズユニットに正の屈折力を持たせる。このようにすることで、手ぶれ低減レンズユニットの倍率を高めることができる。すなわち、手ぶれ低減レンズユニットの移動量に対して、像の移動量をより大きくすることができる。この結果、手ぶれ低減の感度を高めることができる。
また、本実施形態のズームレンズでは、第1のサブレンズユニットに、手ぶれ低減レンズユニットが配置されていることが好ましい。
手ぶれ低減レンズユニットは、より高速で移動できる方が好ましい。また、移動範囲も狭いほうが好ましい。そのためには、手ぶれ低減レンズユニットの径は、できるだけ小さいことが望ましい。すなわち、光束がより細くなっている位置にあるレンズ(レンズユニット)を、手ぶれ低減レンズユニットとすることが望ましい。
第1のサブレンズユニットは開口絞りの近傍に配置されている。よって、第1のサブレンズユニットに手ぶれ低減レンズユニットを配置することで、手ぶれ低減レンズユニットを開口絞りの近くに配置することができる。このようにすることで、より効果的に手ぶれ低減レンズユニットの倍率を高められる箇所、すなわち、軸上光束が太い箇所で手ぶれ低減ができる。この結果、手ぶれ低減レンズユニットの感度を高めることができる。
また、本実施形態のズームレンズでは、第2のサブレンズユニットに、手ぶれ低減レンズユニットが配置されていることが好ましい。
手ぶれ低減レンズユニットは、より高速で移動できる方が好ましい。また、移動範囲も狭いほうが好ましい。そのためには、手ぶれ低減レンズユニットの径は、できるだけ小さいことが望ましい。すなわち、光束がより細くなっている位置にあるレンズ(レンズユニット)を、手ぶれ低減レンズユニットとすることが望ましい。
第2のサブレンズユニットは開口絞りの近傍に配置されている。よって、第2のサブレンズユニットに手ぶれ低減レンズユニットを配置することで、手ぶれ低減レンズユニットを開口絞りの近くに配置することができる。このようにすることで、より効果的に手ぶれ低減レンズユニットの倍率を高められる箇所、すなわち、軸上光束が太い箇所で手ぶれ低減ができる。この結果、手ぶれ低減レンズユニットの感度を高めることができる。
また、本実施形態のズームレンズでは、第1のフォーカスレンズ群は、第1のレンズユニットの最も物体側に配置されていることが好ましい。
後群は開口絞りを有しているので、周辺光線の高さは、前群内に比べて開口絞りの位置で低くなっている。また、後群では、第1のレンズユニットは物体側に配置されている。そこで、第1のフォーカスレンズ群を第1のレンズユニットの最も物体側に配置することで、第1のフォーカスレンズ群では、周辺光線の高さが低くなる。
この場合、第1のフォーカスレンズ群が移動しても、前群を通る周辺光線の高さの変動を小さく抑えることができる。これにより、メリディオナル面における像面湾曲の変動も抑えることができる。その結果、近距離物体へのフォーカシングに際しても、光学系の結像性能を高く維持することができる。
また、本実施形態のズームレンズでは、最も像側に位置するレンズ群は正の屈折力を有することが好ましい。
超広画角化、光学系の小型化及び光学系の小径化のためには、前群の屈折力を大きくすることが必要であるが、前群の屈折力を大きくすると、前群で大きな正の像面湾曲が生じる。そこで、最も像側に正の屈折力を有するレンズ群を配置することで、前群で発生する大きな正の像面湾曲を、容易に補正することができる。その結果、変倍域の全域で像面湾曲が良好に補正された状態を確保できる。
また、本実施形態のズームレンズでは、以下のようにすることが好ましい。
前群は、物体側から像側に順に、第1のレンズと、第2のレンズと、第4のレンズと、両凹負レンズと、第3のレンズと、からなることが好ましい。
また、前群は、物体側から像側に順に、第1のレンズと、第2のレンズと、両凹負レンズと、第3のレンズと、からなることが好ましい。
また、後群では、最も物体側のレンズが、物体側に凸面を向けていることが好ましい。
また、前群は、第1レンズ群からなることが好ましい。
また、後群は、物体側から像側に順に、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、からなることが好ましい。
また、後群は、物体側から像側に順に、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、からなることが好ましい。
また、変倍に際して、前群は、像側に移動することが好ましい。
また、変倍に際して、第2レンズ群は、物体側に移動することが好ましい。
また、変倍に際して、第3レンズ群は、物体側に移動することが好ましい。
また、変倍に際して、第4レンズ群は、物体側に移動することが好ましい。
また、変倍に際して、第5レンズ群は、物体側に移動することが好ましい。
また、本実施形態のズームレンズは、上述のズームレンズと、撮像面を持ち且つズームレンズにより撮像面上に形成された像を電気信号に変換する撮像素子と、を有することを特徴とする。
このようにすることで、超広画角、小型でありながら、画質を劣化させずに高解像の画像を得るのに有利な撮像装置とすることが可能となる。
また、上述の構成は相互に複数を同時に満足することがより好ましい。また、一部の構成を同時に満足するようにしてもよい。例えば、上述のズームレンズや撮像装置の何れかにて上述のズームレンズの何れかを用いるようにしてもよい。
また、条件式については、それぞれの条件式を個別に満足させるようにしても良い。このようにすると、それぞれの効果を得やすくなるので好ましい。
また、各条件式について、以下のように下限値、または上限値を変更しても良い、このようにすることで、各条件式の効果を一層確実にできるので好ましい。
条件式(1−2)については、以下のようにすることが好ましい。
60<νdFnmax
65<νdFnmax
70<νdFnmax
72<νdFnmax
74<νdFnmax
条件式(2−2)については、以下のようにすることが好ましい。
−1.8<FBw/fF<−0.3
−1.6<FBw/fF<−0.6
条件式(3−2)については、以下のようにすることが好ましい。
−1.8<fw×Fnowmin/fF<−0.7
条件式(4)については、以下のようにすることが好ましい。
1.35<fRw/FBw<3.5
条件式(5)については、以下のようにすることが好ましい。
1.2<|rF1i/fF|<2.5
条件式(7)については、以下のようにすることが好ましい。
0.015<θgFFn+0.0016×νd−0.6415<0.048
条件式(8)については、以下のようにすることが好ましい。
0.08<FBw/LTLw<0.17
条件式(9)については、以下のようにすることが好ましい。
2.2<SPF1<6.5
2.5<SPF1<5.3
条件式(11)については、以下のようにすることが好ましい。
−20<DTLw<−5
条件式(14−1)については、以下のようにすることが好ましい。
1.7<SPF2<5.5
以下に、本発明に係る撮像装置に用いられるズームレンズの実施例を、図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
各実施例では、広角側で発生する樽型の歪曲収差を電気的に補正したうえで画像の記録や表示を行っている。本実施例のズームレンズでは、矩形の光電変換面上に像が形成される。ここで、広角端では、樽型の歪曲収差が発生する。一方、中間焦点距離状態付近や望遠端では、歪曲収差の発生が抑えられている。
この歪曲収差を電気的に補正するために、広角端では樽型形状となり、中間焦点距離状態や望遠端では矩形の形状となるように、有効撮像領域を設定している。そして、あらかじめ設定した有効撮像領域内の画像情報を画像処理により画像変換し、歪みを低減させた矩形の画像情報に変換する。
本実施例のズームレンズでは、広角端での最大像高は、中間焦点距離状態での最大像や望遠端での最大像高よりも小さくなるようにしている。
以下、ズームレンズの実施例1〜6について説明する。実施例1〜6のレンズ断面図を、それぞれ図1〜図6に示す。図中、(a)は、広角端におけるレンズ断面図、(b)は、中間焦点距離状態におけるレンズ断面図、(c)は、望遠端におけるレンズ断面図である。なお、(a)〜(c)は、いずれも、無限遠物体合焦時のレンズ断面図である。
また、第1レンズ群はG1、第2レンズ群はG2、第3レンズ群はG3、第4レンズ群はG4、第5レンズ群はG5、フォーカスレンズ群はGfo1とGfo2、開口絞り(明るさ絞り)はS、像面(撮像面)はIで示してある。また、フォーカスの際に移動するレンズ群をF、手ぶれ補正の際に移動するレンズをWで示している。
なお、最も像側に位置するレンズ群と像面Iとの間に、ローパスフィルタを構成する平行平板や、電子撮像素子のカバーガラスを配置しても良い。この場合、平行平板の表面に、赤外光を制限する波長域制限コートを施しても良い。また、カバーガラスの表面に波長域制限用の多層膜を施してもよい。また、そのカバーガラスにローパスフィルタ作用を持たせるようにしてもよい。
実施例1のズームレンズは、図1に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、物体側から像側に順に、第1のレンズユニットLU1と、第2のレンズユニットLU2と、を有する。第1のレンズユニットLU1は、第1のフォーカスレンズ群Gfo1と第2のフォーカスレンズ群Gfo2とを有する。第1のフォーカスレンズ群Gfo1は開口絞りSよりも物体側に位置し、第2のフォーカスレンズ群Gfo2は開口絞りSよりも像側に位置している。
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、負屈折力の第3レンズ群G3と、正屈折力の第4レンズ群G4と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凹負レンズL4と、物体側に凸面を向けた正メニスカスレンズL5と、で構成されている。
第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL6と、両凸正レンズL7と、で構成されている。ここで、負メニスカスレンズL6と両凸正レンズL7とが接合されている。
第3レンズ群G3は、像側に凸面を向けた正メニスカスレンズL8と、両凹負レンズL9と、両凸正レンズL10と、両凹負レンズL11と、で構成されている。
第4レンズ群G4は、両凸レンズL12と、物体側に凸面を向けた負メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14と、両凸正レンズL15と、両凹負レンズL16と、両凸正レンズL17と、像側に凸面を向けた負メニスカスレンズL18と、で構成されている。ここで、負メニスカスレンズL13と正メニスカスレンズL14とが接合されている。また、両凹負レンズL16と両凸正レンズL17とが接合されている。
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動する。第2レンズ群G2は物体側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。開口絞りSは、第3レンズ群G3共に物体側に移動する。
合焦時、第2レンズ群G2と第3レンズ群G3とが光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第2レンズ群G2と第3レンズ群G3とが、共に像側に移動する。
非球面は、負メニスカスレンズL2の両面と、負メニスカスレンズL3の両面と、両凸レンズL12の両面と、負メニスカスレンズL18の像側面との、合計7面に設けられている。
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4で構成されている。第1のレンズユニットLU1は、第2レンズ群G2と、第3レンズ群G3と、で構成されている。第2のレンズユニットLU2は、第4レンズ群G4で構成されている。フォーカスレンズ群Gfo1は、第2レンズ群G2で構成されている。フォーカスレンズ群Gfo2は、第3レンズ群G3で構成されている。第1のサブレンズユニットは第2レンズ群G2、第2のサブレンズユニットは第3レンズ群G3である。
第2レンズ群G2と第3レンズ群G3との間隔は、変倍に際して変化している。よって、変倍に際して、第1のサブレンズユニットと第2のサブレンズユニットとの間隔は変化する。
実施例2のズームレンズは、図2に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、物体側から像側に順に、第1のレンズユニットLU1と、第2のレンズユニットLU2と、を有する。第1のレンズユニットLU1は、第1のフォーカスレンズ群Gfo1を有する。第2のレンズユニットLU2は、第2のフォーカスレンズ群Gfo2を有する。第1のフォーカスレンズ群Gfo1は開口絞りSよりも物体側に位置し、第2のフォーカスレンズ群Gfo2は開口絞りSよりも像側に位置している。
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凹負レンズL3と、物体側に凸面を向けた正メニスカスレンズL4と、で構成されている。
第2レンズ群G2は、両凸正レンズL5で構成されている。
第3レンズ群G3は、像側に凸面を向けた負メニスカスレンズL6と、両凸正レンズL7と、で構成されている。
第4レンズ群G4は、像側に凸面を向けた負メニスカスレンズL8で構成されている。
第5レンズ群G5は、両凸正レンズL9と、物体側に凸面を向けた負メニスカスレンズL10と、物体側に凸面を向けた正メニスカスレンズL11と、両凸正レンズL12と、両凹負レンズL13と、両凸正レンズL14、像側に凸面を向けた負メニスカスレンズL15と、で構成されている。ここで、負メニスカスレンズL10と正メニスカスレンズL11とが接合されている。また、両凹負レンズL13、両凸正レンズL14及び負メニスカスレンズL15が接合されている。
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動する。第2レンズ群G2は像側に移動した後、物体側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。第5レンズ群G5は物体側に移動する。開口絞りSは物体側に移動する。なお、開口絞りSは、第2レンズ群G2や第3レンズ群G3とは独立して移動する。
合焦時、第2レンズ群G2と第4レンズ群G4とが光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第2レンズ群G2と第4レンズ群G4とが、共に像側に移動する。
非球面は、負メニスカスレンズL2の両面と、両凸正レンズL5の両面と、両凸正レンズL9の両面と、負メニスカスレンズL15の像側面との、合計7面に設けられている。
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5で構成されている。第1のレンズユニットLU1は、第2レンズ群G2と、第3レンズ群G3と、で構成されている。第2のレンズユニットLU2は、第4レンズ群G4で構成されている。フォーカスレンズ群Gfo1は、第2レンズ群G2で構成されている。フォーカスレンズ群Gfo2は、第4レンズ群G4で構成されている。第1のサブレンズユニットは第2レンズ群G2、第2のサブレンズユニットは第3レンズ群G3である。
第2レンズ群G2と第3レンズ群G3との間隔は、変倍に際して変化している。よって、変倍に際して、第1のサブレンズユニットと第2のサブレンズユニットとの間隔は変化する。
実施例3のズームレンズは、図3に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、物体側から像側に順に、第1のレンズユニットLU1と、第2のレンズユニットLU2と、を有する。第1のレンズユニットLU1は、第1のフォーカスレンズ群Gfo1を有する。第2のレンズユニットLU2は、第2のフォーカスレンズ群Gfo2を有する。第1のフォーカスレンズ群Gfo1と第2のフォーカスレンズ群Gfo2は、共に開口絞りSよりも像側に位置している。
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凹負レンズL4と、両凸正レンズL5と、で構成されている。
第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL6と、両凸正レンズL7と、で構成されている。ここで、負メニスカスレンズL6と両凸正レンズL7とが接合されている。
第3レンズ群G3は、両凸正レンズL8と、両凹負レンズL9と、物体側に凸面を向けた正メニスカスレンズL10と、で構成されている。
第4レンズ群G4は、両凹負レンズL11で構成されている。
第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた負メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14と、両凸正レンズL15と、両凹負レンズL16と、両凸正レンズL17と、像側に凸面を向けた負メニスカスレンズL18と、で構成されている。ここで、負メニスカスレンズL13と正メニスカスレンズL14とが接合されている。また、両凹負レンズL16と両凸正レンズL17とが接合されている。
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動する。第2レンズ群G2は物体側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。第5レンズ群G5は物体側に移動する。開口絞りSは物体側に移動する。なお、開口絞りSは、第2レンズ群G2や第3レンズ群G3とは独立して移動する。
合焦時、第3レンズ群G3と第4レンズ群G4とが光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第3レンズ群G3と第4レンズ群G4とが、共に物体側に移動する。
非球面は、負メニスカスレンズL2の両面と、正メニスカスレンズL12の両面と、負メニスカスレンズL18の像側面との、合計5面に設けられている。
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5で構成されている。第1のレンズユニットLU1は、第2レンズ群G2と、第3レンズ群G3と、で構成されている。第2のレンズユニットLU2は、第4レンズ群G4で構成されている。フォーカスレンズ群Gfo1は、第3レンズ群G3で構成されている。フォーカスレンズ群Gfo2は、第4レンズ群G4で構成されている。第1のサブレンズユニットは第2レンズ群G2、第2のサブレンズユニットは第3レンズ群G3である。
第2レンズ群G2と第3レンズ群G3との間隔は、変倍に際して変化している。よって、変倍に際して、第1のサブレンズユニットと第2のサブレンズユニットとの間隔は変化する。
実施例4のズームレンズは、図4に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、物体側から像側に順に、第1のレンズユニットLU1と、第2のレンズユニットLU2と、を有する。第1のレンズユニットLU1は、第1のフォーカスレンズ群Gfo1を有する。第2のレンズユニットLU2は、第2のフォーカスレンズ群Gfo2を有する。第1のフォーカスレンズ群Gfo1は開口絞りSよりも物体側に位置し、第2のフォーカスレンズ群Gfo2は開口絞りSよりも像側に位置している。
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凹負レンズL4と、物体側に凸面を向けた正メニスカスレンズL5と、で構成されている。
第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL6で構成されている。
第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL7と、物体側に凸面を向けた負メニスカスレンズL8と、両凸正レンズL9と、両凹負レンズL10と、両凸正レンズL11と、両凸正レンズL12と、両凸正レンズL13と、で構成されている。ここで、正メニスカスレンズL7、負メニスカスレンズL8及び両凸正レンズL9が接合されている。また、両凹負レンズL10と両凸正レンズL11とが接合されている。
第4レンズ群G4は、像側に凸面を向けた負メニスカスレンズL14で構成されている。
第5レンズ群G5は、両凸正レンズL15で構成されている。
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動した後、物体側に移動する。第2レンズ群G2は物体側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。第5レンズ群G5は固定である。開口絞りSは、第3レンズ群G3と共に物体側に移動する。
合焦時、第2レンズ群G2と第4レンズ群G4とが光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第2レンズ群G2が像側に移動し、第4レンズ群G4が物体側に移動する。また、手ぶれ補正時、第3レンズ群G3の正メニスカスレンズL7、負メニスカスレンズL8及び両凸正レンズL9が光軸と直交する方向に移動する。
非球面は、負メニスカスレンズL3の両面と、両凹負レンズL4の物体側面と、負メニスカスレンズL14の像側面との、合計4面に設けられている。
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5で構成されている。第1のレンズユニットLU1は、第2レンズ群G2と、第3レンズ群G3と、で構成されている。第2のレンズユニットLU2は、第4レンズ群G4で構成されている。フォーカスレンズ群Gfo1は、第2レンズ群G2で構成されている。フォーカスレンズ群Gfo2は、第4レンズ群G4で構成されている。第1のサブレンズユニットは第2レンズ群G2、第2のサブレンズユニットは第3レンズ群G3である。
第2レンズ群G2と第3レンズ群G3との間隔は、変倍に際して変化している。よって、変倍に際して、第1のサブレンズユニットと第2のサブレンズユニットとの間隔は変化する。
実施例5のズームレンズは、図5に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、物体側から像側に順に、第1のレンズユニットLU1と、第2のレンズユニットLU2と、を有する。第1のレンズユニットLU1は、第1のフォーカスレンズ群Gfo1を有する。第2のレンズユニットLU2は、第2のフォーカスレンズ群Gfo2を有する。第1のフォーカスレンズ群Gfo1は開口絞りSよりも物体側に位置し、第2のフォーカスレンズ群Gfo2は開口絞りSよりも像側に位置している。
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、負屈折力の第3レンズ群G3と、正屈折力の第4レンズ群G4と、で構成されている。開口絞りSは、第2レンズ群G2中に配置されている。
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凹負レンズL4と、物体側に凸面を向けた正メニスカスレンズL5と、で構成されている。
第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL6と、物体側に凸面を向けた正メニスカスレンズL7と、物体側に凸面を向けた負メニスカスレンズL8と、両凸正レンズL9と、両凹負レンズL10と、両凸正レンズL11と、両凸正レンズL12と、両凸正レンズL13と、で構成されている。ここで、正メニスカスレンズL7、負メニスカスレンズL8及び両凸正レンズL9が接合されている。また、両凹負レンズL10と両凸正レンズL11とが接合されている。
第3レンズ群G3は、像側に凸面を向けた負メニスカスレンズL14で構成されている。
第4レンズ群G4は、両凸正レンズL15で構成されている。
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動した後、物体側に移動する。第2レンズ群G2は物体側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。開口絞りSは、第2レンズ群G2と共に物体側に移動する。
合焦時、第2レンズ群G2の正メニスカスレンズL6と第4レンズ群G4とが光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第2レンズ群G2の正メニスカスレンズが像側に移動し、第4レンズ群G4が物体側に移動する。また、手ぶれ補正時、第2レンズ群G2の正メニスカスレンズL7、負メニスカスレンズL8及び両凸正レンズL9が光軸と直交する方向に移動する。
非球面は、負メニスカスレンズL3の両面と、両凹負レンズL4の像側面と、負メニスカスレンズL14の像側面との、合計4面に設けられている。
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4で構成されている。第1のレンズユニットLU1は、第2レンズ群G2で構成されている。第2のレンズユニットLU2は、第3レンズ群G3で構成されている。フォーカスレンズ群Gfo1は、第2レンズ群G2の正メニスカスレンズL6で構成されている。フォーカスレンズ群Gfo2は、第4レンズ群G4で構成されている。第1のサブレンズユニットは第2レンズ群G2の正メニスカスレンズL6、第2のサブレンズユニットは第2レンズ群G2の正メニスカスレンズL7から両凸正レンズL13までである。
第2レンズ群G2において、正メニスカスレンズL6と正メニスカスレンズL7との間隔は、変倍に際して変化しない。よって、変倍に際して、第1のサブレンズユニットと第2のサブレンズユニットとの間隔は一定である。
実施例6のズームレンズは、図6に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、物体側から像側に順に、第1のレンズユニットLU1と、第2のレンズユニットLU2と、を有する。第1のレンズユニットLU1は、第1のフォーカスレンズ群Gfo1と第2のフォーカスレンズ群Gfo2とを有する。第1のフォーカスレンズ群Gfo1は開口絞りSよりも物体側に位置し、第2のフォーカスレンズ群Gfo2は開口絞りSよりも像側に位置している。
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、負屈折力の第3レンズ群G3と、正屈折力の第4レンズ群G4と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凹負レンズL4と、両凸正レンズL5と、で構成されている。
第2レンズ群G2は、両凸正レンズL6と、物体側に凸面を向けた負メニスカスレンズL7と、物体側に凸面を向けた正メニスカスレンズL8と、で構成されている。ここで、負メニスカスレンズL7と正メニスカスレンズL8とが接合されている。
第3レンズ群G3は、像側に凸面を向けた正メニスカスレンズL9と、両凹負レンズL10と、両凸正レンズL11と、両凹負レンズL12と、で構成されている。
第4レンズ群G4は、両凸正レンズL13と、物体側に凸面を向けた負メニスカスレンズL14と、両凸正レンズL15と、両凸正レンズL16と、両凹負レンズL17と、両凸正レンズL18と、両凹負レンズL19と、で構成されている。ここで、負メニスカスレンズL14と両凸正レンズL15とが接合されている。また、両凹負レンズL17と両凸正レンズL18とが接合されている。
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動する。第2レンズ群G2は物体側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。開口絞りSは、第3レンズ群G3と共に物体側に移動する。
合焦時、第2レンズ群G2の両凸正レンズL6と第3レンズ群G3の正メニスカスレンズL9が光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第2レンズ群G2の両凸正レンズL6が像側に移動し、第3レンズ群G3の正メニスカスレンズL9が物体側に移動する。また、手ぶれ補正時、第2レンズ群G2の負メニスカスレンズL7と正メニスカスレンズL8、又は、第3レンズ群G3の両凹負レンズL10、両凸正レンズL11及び両凹負レンズL12が光軸と直交する方向に移動する。
非球面は、負メニスカスレンズL2の両面と、負メニスカスレンズL3の両面と、両凸正レンズL6の像側面と、両凸正レンズL13の両面と、両凹負レンズL19の像側面との、合計8面に設けられている。
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4で構成されている。第1のレンズユニットLU1は、第2レンズ群G2と、第3レンズ群G3と、で構成されている。第2のレンズユニットLU2は、第4レンズ群G4で構成されている。フォーカスレンズ群Gfo1は、第2レンズ群G2の両凸正レンズL6で構成されている。フォーカスレンズ群Gfo2は、第3レンズ群G3の正メニスカスレンズL9で構成されている。第1のサブレンズユニットは第2レンズ群G2、第2のサブレンズユニットは第3レンズ群G3である。
第2レンズ群G2と第3レンズ群G3との間隔は、変倍に際して変化している。よって、変倍に際して、第1のサブレンズユニットと第2のサブレンズユニットとの間隔は変化する。
以下に、上記各実施例の数値データを示す。記号は上記の外、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、ndは各レンズのd線の屈折率、νdは各レンズのアッベ数、*印は非球面である。また、fは全系の焦点距離、FNO.はFナンバー、ωは半画角、IHは像高、FBはバックフォーカス、全長は、ズームレンズの最も物体側のレンズ面から最も像側のレンズ面までの距離にFB(バックフォーカス)を加えたもの、f1、f2…は各レンズ群の焦点距離である。また、fGRは後群の焦点距離である。なお、FBは、レンズ最終面から近軸像面までの距離を空気換算して表したものである。また、広角は広角端、中間は中間焦点距離状態、望遠は望遠端を表している。
また、数値データにおけるズームデータは、無限遠物体合焦時のデータである。なお、例えば、数値実施例6のズームデータには、d12、d16及びd18の値が記載されている。d12、d16及びd18の値は、広角端、中間焦点距離状態及び望遠端のいずれにおいても同じである。このように、d12、d16及びd18は変倍の際に変化する間隔ではないので、ズームデータとして記載する必要がないが、フォーカスレンズ群の移動を示すために記載している。
フォーカスレンズ群の移動の様子は、無限遠物体合焦時の間隔、すなわちズームデータにおける間隔と近距離物体合焦時における間隔とから知ることができる。例えば、数値実施例6における第1のフォーカスレンズ群の移動は、d12について、無限遠物体合焦時の間隔と近距離物体合焦時における間隔を比較すれば良い。また、第2のフォーカスレンズ群の移動は、d18について、無限遠物体合焦時の間隔と近距離物体合焦時における間隔を比較すれば良い。
広角端では、無限遠物体合焦時と近距離物体合焦時のd12とd18の値は、それぞれ、以下の通りである。
無限遠物体合焦時 d12=1.13
近距離物体合焦時 d12=0.97
無限遠物体合焦時 d18=0.50
近距離物体合焦時 d18=1.03
上記のように、d12の値は、無限遠物体合焦時よりも近距離物体合焦時の方が小さい。ここで、d12は、第2レンズ群G2の両凸正レンズL6の位置を示している。よって、無限遠物体合焦時と近距離物体合焦時のd12の値は、数値実施例6では、無限遠物体から近距離物体への合焦時に、両凸正レンズL6が像側に移動することを示している。中間焦点距離状態と望遠端についても、同じようにしてフォーカスレンズ群の移動の様子を知ることができる。
また、d18の値は、無限遠物体合焦時よりも近距離物体合焦時の方が大きい。ここで、d18は、第3レンズ群G3の正メニスカスレンズL9の位置を示している。よって、無限遠物体合焦時と近距離物体合焦時のd18の値は、数値実施例6では、無限遠物体から近距離物体への合焦時に、正メニスカスレンズL9が物体側に移動することを示している。中間焦点距離状態と望遠端についても、同じようにしてフォーカスレンズ群の移動の様子を知ることができる。
また、非球面形状は、光軸方向をz、光軸に直交する方向をyにとり、円錐係数をk、非球面係数をA4、A6、A8、A10としたとき、次の式で表される。
z=(y2/r)/[1+{1−(1+k)(y/r)21/2
+A4y4+A6y6+A8y8+A10y10
また、非球面係数において、「e−n」(nは整数)は、「10−n」を示している。なお、これら諸元値の記号は後述の実施例の数値データにおいても共通である。
数値実施例1
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 42.379 2.50 1.73000 51.37
2 26.000 4.95
3* 21.383 2.80 1.49700 81.61
4* 7.778 11.67
5* 16.453 1.50 1.49700 81.61
6* 11.672 5.94
7 -651.990 1.15 1.49700 81.61
8 17.319 3.38
9 19.538 2.48 1.91082 35.25
10 30.349 可変
11 46.648 0.70 1.90366 31.32
12 15.189 3.83 1.65412 39.68
13 -34.871 可変
14(絞り) ∞ 1.10
15 -582.288 2.07 1.51742 52.43
16 -18.513 0.10
17 -28.291 0.70 1.91082 35.25
18 61.296 0.10
19 21.509 2.50 1.80810 22.76
20 -68.495 0.33
21 -34.588 0.74 1.91082 35.25
22 35.798 可変
23* 14.272 3.85 1.49700 81.54
24* -74.069 0.10
25 34.532 0.70 1.88300 40.76
26 11.398 3.66 1.49700 81.61
27 279.489 0.19
28 24.986 5.08 1.49700 81.61
29 -14.208 0.10
30 -24.581 0.70 1.51633 64.14
31 11.928 7.00 1.49700 81.54
32 -13.997 0.30
33 -14.780 1.33 1.69350 53.18
34* -198.144 可変
像面 ∞


非球面データ
第3面
k=-0.650
A4=-2.80409e-05,A6=-3.07351e-08,A8=2.93806e-10,A10=-5.58279e-13,A12=4.46930e-16
第4面
k=-0.917
A4=1.72731e-05,A6=-2.75487e-07,A8=-1.41900e-09,A10=4.76038e-12,A12=5.37084e-15
第5面
k=-1.754
A4=-1.77069e-04,A6=3.04854e-07,A8=2.39607e-09,A10=-1.03995e-11,A12=1.23846e-14
第6面
k=-5.053
A4=1.15629e-04,A6=-2.98533e-06,A8=4.33574e-08,A10=-2.72864e-10,A12=7.78197e-13
第23面
k=0.000
A4=-3.36547e-05,A6=5.89797e-07,A8=-1.10876e-09,A10=8.89272e-11
第24面
k=0.000
A4=6.05585e-05,A6=1.10310e-06,A8=-2.14934e-09,A10=1.61473e-10
第34面
k=0.000
A4=8.67321e-05,A6=1.90690e-07,A8=-1.63483e-09,A10=6.73794e-11,A12=-4.61220e-13

ズームデータ
ズーム比 1.92
広角 中間 望遠
f 6.12 8.75 11.76
FNO. 2.88 2.88 2.88
2ω 122.44 104.79 86.22
IH 10.19 11.15 11.15
FB(in air) 14.66 19.64 25.02
全長(in air) 112.87 104.67 102.19

d10 14.83 5.65 1.27
d13 5.88 4.28 2.68
d22 5.94 3.54 1.66
d34 14.66 19.64 25.02

近距離物体合焦時
広角 中間 望遠
d10 16.59 7.22 2.71
d13 5.12 3.44 1.80
d22 4.94 2.80 1.10
d34 14.66 19.64 25.02

各群焦点距離
f1=-11.17 f2=46.40 f3=-48.06 f4=18.30
fRw=23.0317
数値実施例2
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 36.700 2.70 1.72916 54.68
2 20.150 4.10
3* 16.721 3.00 1.80610 40.88
4* 8.739 10.92
5 -131.574 1.15 1.43700 95.10
6 15.649 4.33
7 22.220 2.50 1.90366 31.32
8 35.809 可変
9* 32.791 4.10 1.59201 67.02
10* -366.151 可変
11(絞り) ∞ 可変
12 -36.447 0.70 2.00069 25.46
13 -527.825 0.99
14 73.690 2.62 1.84666 23.78
15 -27.614 可変
16 -31.077 0.70 1.91082 35.25
17 -2248.959 可変
18* 15.466 4.35 1.49700 81.61
19* -181.581 0.15
20 30.932 1.66 1.80400 46.58
21 11.354 4.07 1.43700 95.10
22 45.401 0.21
23 17.951 6.09 1.43700 95.10
24 -17.826 0.19
25 -276.478 0.85 1.76200 40.10
26 24.976 4.68 1.43700 95.10
27 -16.698 3.10 1.69350 53.18
28* -60.410 可変
像面 ∞

非球面データ
第3面
k=-0.738
A4=-3.32210e-05,A6=2.01738e-09,A8=8.98035e-11,A10=-1.06672e-13,A12=-1.20757e-16
第4面
k=-0.961
A4=-3.29474e-06,A6=-1.68777e-07,A8=1.62251e-10,A10=3.45269e-12,A12=-1.59091e-14
第9面
k=0.000
A4=5.97024e-05,A6=3.25057e-07,A8=1.47629e-09,A10=3.18914e-11
第10面
k=0.000
A4=7.11384e-05,A6=3.32785e-07,A8=3.20108e-09,A10=5.87491e-11
第18面
k=0.000
A4=-1.10028e-05,A6=2.57400e-07,A8=-3.86307e-09,A10=4.42730e-11
第19面
k=0.000
A4=4.63599e-05,A6=4.66308e-07,A8=-6.13407e-09,A10=6.79383e-11
第28面
k=0.000
A4=6.97818e-05,A6=3.62133e-07,A8=-3.09710e-09,A10=4.99556e-11,A12=-1.77046e-13

ズームデータ
ズーム比 1.92
広角 中間 望遠
f 7.14 9.90 13.72
FNO. 2.44 2.43 2.44
2ω 110.75 98.37 77.73
IH 9.48 11.15 11.15
FB(in air) 14.64 19.10 24.73
全長(in air) 112.36 101.95 97.72

d8 17.23 7.41 1.92
d10 3.84 3.25 4.51
d11 6.03 4.60 1.30
d15 0.36 0.74 1.60
d17 7.11 3.68 0.50
d28 14.64 19.10 24.73

近距離物体合焦時
広角 中間 望遠
d8 18.26 8.75 3.27
d10 2.81 1.91 3.15
d11 6.03 4.60 1.30
d15 0.94 1.22 1.75
d17 6.52 3.20 0.35
d28 14.64 19.10 24.73

各群焦点距離
f1=-13.42 f2=51.03 f3=53.54 f4=-34.60 f5=22.26
fRw=25.7928
数値実施例3
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 37.000 2.70 1.72916 54.68
2 23.000 5.82
3* 18.616 3.00 1.69350 53.18
4* 8.735 7.34
5 25.165 1.50 1.83481 42.73
6 13.500 8.18
7 -33.282 1.15 1.43700 95.10
8 38.702 0.15
9 28.445 4.13 1.88300 40.76
10 -197.232 可変
11 31.568 0.70 1.91082 35.25
12 12.768 3.60 1.64769 33.79
13 -158.303 可変
14(絞り) ∞ 可変
15 76.820 2.23 1.60300 65.44
16 -24.516 0.15
17 -51.221 0.70 1.90366 31.32
18 31.308 0.10
19 25.736 2.00 1.80810 22.76
20 276.287 可変
21 -113.365 0.75 1.91082 35.25
22 38.040 可変
23* 15.068 2.89 1.55332 71.68
24* 83.964 0.16
25 17.947 0.70 1.78800 47.37
26 10.300 4.80 1.49700 81.61
27 89.426 0.15
28 27.065 4.78 1.43700 95.10
29 -16.156 0.48
30 -42.801 1.14 1.69350 53.21
31 21.308 4.46 1.43700 95.10
32 -16.301 0.00
33 -16.301 1.02 1.58313 59.38
34* -71.361 可変
像面 ∞

非球面データ
第3面
k=-0.750
A4=-2.98949e-05,A6=1.35148e-07,A8=-5.04561e-10,A10=1.03660e-12,A12=-9.63544e-16
第4面
k=-0.872
A4=-1.42375e-05,A6=2.22844e-07,A8=-1.43145e-09,A10=5.15792e-12,A12=-2.08995e-14
第23面
k=0.000
A4=-1.46372e-06,A6=2.01907e-07,A8=1.08339e-09,A10=3.63691e-11,A12=-4.40410e-14
第24面
k=0.000
A4=5.63308e-05,A6=3.80425e-07,A8=2.67981e-09,A10=3.93847e-11
第34面
k=0.000
A4=1.20535e-04,A6=6.00850e-07,A8=-4.19104e-09,A10=1.12503e-10,A12=-7.93015e-13

ズームデータ
ズーム比 1.92
広角 中間 望遠
f 7.14 9.90 13.72
FNO. 2.88 2.88 2.88
2ω 114.73 96.49 76.59
IH 10.40 11.15 11.15
FB(in air) 15.73 19.89 25.27
全長(in air) 114.08 102.87 98.03

d10 22.61 9.07 1.00
d13 1.50 1.97 1.50
d14 4.67 3.70 2.56
d20 1.80 1.20 1.71
d22 2.99 2.25 1.20
d34 15.73 19.89 25.27

近距離物体合焦時
広角 中間 望遠
d10 22.61 9.07 1.00
d13 1.50 1.97 1.50
d14 4.37 2.77 1.20
d20 0.82 1.08 1.88
d22 4.26 3.30 2.39
d34 15.73 19.89 25.27

各群焦点距離
f1=-15.91 f2=80.42 f3=68.84 f4=-31.20 f5=18.53
fRw=23.7992
数値実施例4
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 32.119 2.00 1.72916 54.68
2 21.473 5.55
3 27.000 2.00 1.72916 54.68
4 16.000 5.05
5* 19.158 2.00 1.49700 81.54
6* 8.094 9.29
7* -209.030 1.20 1.49700 81.61
8 14.558 1.25
9 17.547 2.90 2.00069 25.46
10 30.000 可変
11 27.294 1.69 1.83481 42.71
12 205.914 可変
13(絞り) ∞ 2.00
14 18.621 1.60 1.74000 28.30
15 35.746 0.80 1.88300 40.80
16 10.775 2.74 1.49700 81.54
17 -33.141 1.28
18 -12.171 0.80 1.88300 40.76
19 47.647 2.39 1.49700 81.54
20 -19.480 0.20
21 134.532 4.44 1.49700 81.54
22 -13.417 0.20
23 57.986 3.43 1.43875 94.93
24 -38.090 可変
25 -58.774 1.00 1.72903 54.04
26* -340.638 可変
27 64.337 3.81 1.59201 67.02
28 -47.521 可変
像面 ∞

非球面データ
第5面
k=0.000
A4=-6.46916e-06,A6=-7.86901e-08
第6面
k=-0.892
A4=-1.54378e-05,A6=-2.33394e-07,A8=-2.23616e-09
第7面
k=0.000
A4=-1.97928e-05,A6=1.28669e-07,A8=-1.04555e-09
第26面
k=0.000
A4=3.83890e-05

ズームデータ
ズーム比 1.91
広角 中間 望遠
f 6.15 8.50 11.77
FNO. 4.00 4.00 4.00
2ω 124.23 108.32 87.15
IH 10.26 11.15 11.15
FB(in air) 14.29 14.29 14.29
全長(in air) 99.63 97.53 99.63

d10 17.09 7.98 1.28
d12 4.96 5.49 5.58
d24 3.50 6.58 10.84
d26 2.15 5.56 10.00
d28 14.29 14.29 14.29

近距離物体合焦時
広角 中間 望遠
d10 19.25 10.43 3.96
d12 2.81 3.03 2.90
d24 2.34 4.21 7.09
d26 3.31 7.93 13.76
d28 14.29 14.29 14.29

各群焦点距離
f1=-11.09 f2=37.53 f3=25.90 f4=-97.58 f5=46.76
fRw=22.9166
数値実施例5
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 32.119 2.00 1.72916 54.68
2 21.473 5.55
3 27.000 2.00 1.72916 54.68
4 16.000 5.05
5* 19.158 2.00 1.49700 81.54
6* 8.094 9.29
7* -209.030 1.20 1.49700 81.61
8 14.558 1.25
9 17.547 2.90 2.00069 25.46
10 30.000 可変
11 27.294 1.69 1.83481 42.71
12 205.914 5.00
13(絞り) ∞ 2.00
14 18.621 1.60 1.74000 28.30
15 35.746 0.80 1.88300 40.80
16 10.775 2.74 1.49700 81.54
17 -33.141 1.28
18 -12.171 0.80 1.88300 40.76
19 47.647 2.39 1.49700 81.54
20 -19.480 0.20
21 134.532 4.44 1.49700 81.54
22 -13.417 0.20
23 57.986 3.43 1.43875 94.93
24 -38.090 可変
25 -58.774 1.00 1.72903 54.04
26* -340.638 可変
27 64.337 3.81 1.59201 67.02
28 -47.521 可変
像面 ∞

非球面データ
第5面
k=0.000
A4=-6.46916e-06,A6=-7.86901e-08
第6面
k=-0.892
A4=-1.54378e-05,A6=-2.33394e-07,A8=-2.23616e-09
第7面
k=0.000
A4=-1.97928e-05,A6=1.28669e-07,A8=-1.04555e-09
第26面
k=0.000
A4=3.83890e-05

ズームデータ
ズーム比 1.93
広角 中間 望遠
f 6.15 8.53 11.86
FNO. 4.00 4.00 4.00
2ω 124.21 108.39 86.86
IH 10.26 11.15 11.15
FB(in air) 14.29 14.30 14.34
全長(in air) 99.67 97.05 99.11

d10 17.09 7.98 1.28
d12 5.00 5.00 5.00
d24 3.50 6.58 10.92
d26 2.15 5.56 9.92
d28 14.29 14.30 14.34

近距離物体合焦時
広角 中間 望遠
d10 19.18 10.34 3.87
d12 2.91 2.63 2.41
d24 2.40 4.34 7.31
d26 3.25 7.80 13.54
d28 14.29 14.30 14.34

各群焦点距離
f1=-11.09 f2=22.67 f3=-97.58 f4=46.76
fRw=22.9437
数値実施例6
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 33.241 2.90 1.72916 54.68
2 26.000 7.50
3* 17.155 2.80 1.49700 81.61
4* 7.510 13.77
5* 20.853 1.50 1.49700 81.61
6* 12.391 5.87
7 -44.673 1.15 1.80400 46.57
8 20.635 1.53
9 27.042 3.90 1.90366 31.32
10 -210.877 可変
11 90.190 2.22 1.61772 49.81
12* -71.803 1.13
13 39.213 0.76 1.75520 27.51
14 12.162 3.47 1.63980 34.46
15 351.293 可変
16(絞り) ∞ 1.23
17 -108.349 1.77 1.49700 81.54
18 -19.724 0.50
19 -22.779 0.70 1.91082 35.25
20 87.789 0.03
21 35.091 2.96 1.84666 23.78
22 -18.968 0.11
23 -18.568 0.70 1.90366 31.32
24 133.287 可変
25* 15.936 3.02 1.49700 81.54
26* -102.980 0.15
27 88.806 0.71 1.83481 42.71
28 15.238 4.52 1.49700 81.61
29 -34.512 0.10
30 39.392 5.36 1.43875 94.93
31 -13.791 0.10
32 -27.724 0.70 1.51823 58.90
33 20.901 4.60 1.49700 81.54
34 -22.763 0.30
35 -25.930 1.00 1.69350 53.18
36* 166.590 可変
像面 ∞

非球面データ
第3面
k=-0.941
A4=-3.74147e-05,A6=-3.37982e-08,A8=2.91531e-10,A10=-4.80009e-13,A12=3.03435e-16
第4面
k=-0.894
A4=3.68214e-05,A6=-1.92590e-07,A8=-2.10875e-09,A10=2.77193e-12,A12=7.89439e-15
第5面
k=-1.490
A4=-1.79309e-04,A6=2.92455e-07,A8=2.35867e-09,A10=-1.03471e-11,A12=1.26343e-14
第6面
k=-6.014
A4=8.11374e-05,A6=-3.19735e-06,A8=4.37848e-08,A10=-2.60010e-10,A12=6.69506e-13
第12面
k=0.000
A4=-3.52582e-06,A6=-1.35083e-08,A8=1.59153e-11,A10=1.02882e-13
第25面
k=0.000
A4=-3.66163e-05,A6=7.44649e-07,A8=1.12731e-09,A10=9.37459e-11
第26面
k=0.000
A4=6.02042e-05,A6=1.04226e-06,A8=3.77046e-09,A10=1.51335e-10
第36面
k=0.000
A4=8.16580e-05,A6=2.85490e-07,A8=-2.35708e-09,A10=6.53440e-11,A12=-4.18521e-13

ズームデータ
ズーム比 1.92
広角 中間 望遠
f 6.12 8.75 11.76
FNO. 2.88 2.88 2.88
2ω 122.44 105.54 86.79
IH 10.07 11.15 11.15
FB(in air) 15.59 20.61 26.03
全長(in air) 119.08 110.90 108.00

d10 16.05 6.09 1.00
d12 1.13 1.13 1.13
d15 4.31 4.47 3.40
d16 1.23 1.23 1.23
d18 0.50 0.50 0.50
d24 6.06 2.66 0.50
d36 15.59 20.61 26.03

近距離物体合焦時
広角 中間 望遠
d10 16.22 6.69 1.81
d12 0.97 0.53 0.32
d15 4.31 4.47 3.40
d16 0.71 0.82 0.86
d18 1.03 0.92 0.88
d24 6.06 2.66 0.50

各群焦点距離
f1=-11.20 f2=42.79 f3=-62.71 f4=19.86
fRw=23.9716
以上の実施例1〜6の収差図を、それぞれ図7〜図18に示す。一つの実施例に対して収差図は2つあり、無限遠物体合焦時における収差図、近距離物体合焦時における収差図の順に示している。また、各図中、”FIY”は最大像高を示す。
これらの収差図において、(a)、(b)、(c)、(d)は、それぞれ、広角端における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
また、(e)、(f)、(g)、(h)は、それぞれ、中間焦点距離状態2における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
また、(i)、(j)、(k)、(l)は、それぞれ、望遠端における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
次に、各実施例における条件式の値を掲げる。
実施例1 実施例2 実施例3 実施例4
(1-2)νdFnmax 81.61 95.1 95.1 81.61
(2-2)FBw/fF -1.31 -1.09 -0.99 -1.29
(3-2)fw×Fnowmin/fF -1.58 -1.30 -1.29 -2.22
(4)fRw/FBw 1.57 1.76 1.51 1.60
(5)|rF1i/fF| 2.33 1.50 1.45 1.94
(6)θgFFn 0.5375 0.5334 0.5334 0.5388
(7)θgFFn+0.0016 0.026576 0.04406 0.04406 0.04946
×νd-0.6415
(8)FBw/LTLw 0.13 0.13 0.14 0.14
(9)SPF1 4.17 3.44 4.29 5.03
(11)DTLw -8.56 -9.60 -6.71 -11.69
(13)fF/(fw×ft)1/2 -1.32 -1.36 -1.61 -1.30
(14-1)SPF2 2.14 3.19 2.77 3.91
(15)SPF4 5.88 0.79 3.31 2.46

実施例5 実施例6
(1-2)νdFnmax 81.61 81.61
(2-2)FBw/fF -1.29 -1.39
(3-2)fw×Fnowmin/fF -2.22 -1.57
(4)fRw/FBw 1.61 1.54
(5)|rF1i/fF| 1.94 2.32
(6)θgFFn 0.5388 0.5375
(7)θgFFn+0.0016 0.04946 0.026576
×νd-0.6415
(8)FBw/LTLw 0.14 0.13
(9)SPF1 5.03 8.18
(11)DTLw -11.64 -9.63
(13)fF/(fw×ft)1/2 -1.30 -1.32
(14-1)SPF2 3.91 2.56
(15)SPF4 2.46 3.93
図19は、電子撮像装置としての一眼ミラーレスカメラの断面図である。図19において、一眼ミラーレスカメラ1の鏡筒内には撮影光学系2が配置される。マウント部3は、撮影光学系2を一眼ミラーレスカメラ1のボディに着脱可能とする。マウント部3としては、スクリュータイプのマウントやバヨネットタイプのマウント等が用いられる。この例では、バヨネットタイプのマウントを用いている。また、一眼ミラーレスカメラ1のボディには、撮像素子面4、バックモニタ5が配置されている。なお、撮像素子としては、小型のCCD又はCMOS等が用いられている。
そして、一眼ミラーレスカメラ1の撮影光学系2として、例えば上記実施例1〜6に示したズームレンズが用いられる。
図20、図21は、実施例1〜6に示したズームレンズを有する撮像装置の構成の概念図を示す。図20は撮像装置としてのデジタルカメラ40の外観を示す前方斜視図、図21は同後方斜視図である。このデジタルカメラ40の撮影光学系41に、本実施例のズームレンズが用いられている。
この実施形態のデジタルカメラ40は、撮影用光路42上に位置する撮影光学系41、シャッターボタン45、液晶表示モニター47等を含み、デジタルカメラ40の上部に配置されたシャッターボタン45を押圧すると、それに連動して撮影光学系41、例えば実施例1のズームレンズを通して撮影が行われる。撮影光学系41によって形成された物体像が、結像面近傍に設けられた撮像素子(光電変換面)上に形成される。この撮像素子で受光された物体像は、処理手段によって電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、撮影された電子画像は記録手段に記録することができる。
図22は、デジタルカメラ40の主要部の内部回路を示すブロック図である。なお、以下の説明では、前述した処理手段は、例えばCDS/ADC部24、一時記憶メモリ17、画像処理部18等で構成され、記憶手段は、記憶媒体部19等で構成される。
図22に示すように、デジタルカメラ40は、操作部12と、この操作部12に接続された制御部13と、この制御部13の制御信号出力ポートにバス14及び15を介して接続された撮像駆動回路16並びに一時記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21を備えている。
上記の一時記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21は、バス22を介して相互にデータの入力、出力が可能とされている。また、撮像駆動回路16には、CCD49とCDS/ADC部24が接続されている。
操作部12は、各種の入力ボタンやスイッチを備え、これらを介して外部(カメラ使用者)から入力されるイベント情報を制御部13に通知する。制御部13は、例えばCPUなどからなる中央演算処理装置であって、不図示のプログラムメモリを内蔵し、プログラムメモリに格納されているプログラムにしたがって、デジタルカメラ40全体を制御する。
CCD49は、撮像駆動回路16により駆動制御され、撮像光学系41を介して形成された物体像の画素ごとの光量を電気信号に変換し、CDS/ADC部24に出力する撮像素子である。
CDS/ADC部24は、CCD49から入力する電気信号を増幅し、かつ、アナログ/デジタル変換を行って、この増幅とデジタル変換を行っただけの映像生データ(ベイヤーデータ、以下RAWデータという。)を一時記憶メモリ17に出力する回路である。
一時記憶メモリ17は、例えばSDRAM等からなるバッファであり、CDS/ADC部24から出力されるRAWデータを一時的に記憶するメモリ装置である。画像処理部18は、一時記憶メモリ17に記憶されたRAWデータ又は記憶媒体部19に記憶されているRAWデータを読み出して、制御部13にて指定された画質パラメータに基づいて歪曲収差補正を含む各種画像処理を電気的に行う回路である。
記憶媒体部19は、例えばフラッシュメモリ等からなるカード型又はスティック型の記録媒体を着脱自在に装着して、これらのフラッシュメモリに、一時記憶メモリ17から転送されるRAWデータや画像処理部18で画像処理された画像データを記録して保持する。
表示部20は、液晶表示モニター47などにて構成され、撮影したRAWデータ、画像データや操作メニューなどを表示する。設定情報記憶メモリ部21には、予め各種の画質パラメータが格納されているROM部と、操作部12の入力操作によってROM部から読み出された画質パラメータを記憶するRAM部が備えられている。
このように構成されたデジタルカメラ40は、撮影光学系41として本実施例のズームレンズを採用することで、超広画角、小型でありながら、画質を劣化させずに高解像の画像を得るのに有利な撮像装置とすることが可能となる。
以上のように、本発明は、光学系の小型化と軽量化が十分になされ、かつ、Fナンバーに比べて十分に広い画角を持ちながらも諸収差が十分に低減されたズームレンズ及びそれを有する撮像装置に適している。
GF 前群
GR 後群
Gfo1 第1のフォーカスレンズ群
Gfo2 第2のフォーカスレンズ群
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
LU1 第1レンズユニット
LU2 第2レンズユニット
S 開口絞り
I 像面
1 一眼ミラーレスカメラ
2 撮影光学系
3 鏡筒のマウント部
4 撮像素子面
5 バックモニタ
12 操作部
13 制御部
14、15 バス
16 撮像駆動回路
17 一時記憶メモリ
18 画像処理部
19 記憶媒体部
20 表示部
21 設定情報記憶メモリ部
22 バス
24 CDS/ADC部
40 デジタルカメラ
41 撮影光学系
42 撮影用光路
45 シャッターボタン
47 液晶表示モニター
49 CCD

Claims (41)

  1. 物体側から像側に順に、
    負の屈折力を有する前群と、
    開口絞りを含み正の屈折力を有する後群と、からなり、
    前記前群は、負の屈折力を有する第1のレンズを含み、
    前記第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
    前記後群は、物体側から像側に順に、
    第1のレンズユニットと、第2のレンズユニットと、を有し、
    広角端から望遠端への変倍に際して、
    前記前群と前記後群との間隔は狭くなり、
    前記第1のレンズユニットと前記第2のレンズユニットとの間隔は変化し、
    前記第1のレンズユニットは、物体側から像側に順に、正の屈折力を有する第1のサブレンズユニットと、前記開口絞りと、第2のサブレンズユニットとで構成され、
    前記第1のレンズユニットは、第1のフォーカスレンズ群を有し、
    前記第1のフォーカスレンズ群より像側に、第2のフォーカスレンズ群を有し、
    フォーカシングに際して、前記第1のフォーカスレンズ群と前記第2のフォーカスレンズ群のみが光軸に沿って移動し、
    変倍に際して、前記第1のサブレンズユニットと前記第2のサブレンズユニットとの間隔は変化するか、又は一定であることを特徴とするズームレンズ。
  2. 以下の条件式を満足することを特徴とする請求項1に記載のズームレンズ。
    1.9<SPF1<9.0
    ここで、
    SPF1=(rF1o+rF1i)/(rF1o−rF1i)、
    F1oは、前記第1のレンズの物体側面の近軸曲率半径、
    F1iは、前記第1のレンズの像側面の近軸曲率半径、
    である。
  3. 前記前群は、前記第1のレンズより前記開口絞り側に、正の屈折力を有する第3のレンズを有していることを特徴とする請求項1又は2に記載のズームレンズ。
  4. 前記前群は、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、を含み、
    前記第2のレンズは前記第1のレンズよりも像側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であることを特徴とする請求項1から3のいずれか一項に記載のズームレンズ。
  5. 前記前群は、更に、負の屈折力を有する第4のレンズを含むことを特徴とする請求項1から4のいずれか一項に記載のズームレンズ。
  6. 前記前群は、更に、負の屈折力を有する第4のレンズを含み、
    前記第4のレンズの形状はメニスカス形状であることを特徴とする請求項1から5のいずれか一項に記載のズームレンズ。
  7. 前記前群は、更に、負の屈折力を有する第4のレンズを含み、
    前記第4のレンズの形状は、物体側に凸面を向けたメニスカス形状であることを特徴とする請求項1から5のいずれか一項に記載のズームレンズ。
  8. 前記第4のレンズは、前記第2のレンズよりも像側に配置されていることを特徴とする請求項5から8のいずれか一項に記載のズームレンズ。
  9. 以下の条件式を満足することを特徴とする請求項1から8のいずれか一項に記載のズームレンズ。
    1.1<|rF1i/fF|<3
    ここで、
    F1iは、前記第1のレンズの像側面の近軸曲率半径、
    Fは、前記前群の焦点距離、
    である。
  10. 以下の条件式を満足することを特徴とする請求項1から9のいずれか一項に記載のズームレンズ。
    49<νdFnmax<110
    ここで、
    νdFnmaxは、前記前群に含まれる負の屈折力を有するレンズのアッベ数のうち、最大となるアッベ数、
    である。
  11. 以下の条件式を満足することを特徴とする請求項1から10のいずれか一項に記載のズームレンズ。
    −2.5<FBw/fF<−0.3
    ここで、
    FBwは、広角端におけるバックフォーカス、
    Fは、前記前群の焦点距離、
    である。
  12. 以下の条件式を満足することを特徴とする請求項1から11のいずれか一項に記載のズームレンズ。
    −2.3<fw×Fnowmin/fF−0.5
    ここで、
    wは、広角端における前記ズームレンズ全系の焦点距離、
    Fnowminは、広角端におけるFナンバーのうち、最小となるFナンバー、
    Fは、前記前群の焦点距離、
    である。
  13. 以下の条件式を満足することを特徴とする請求項1から12のいずれか一項に記載のズームレンズ。
    1.25<fRw/FBw<5
    ここで、
    Rwは、広角端における前記後群の焦点距離、
    FBwは、広角端におけるバックフォーカス、
    である。
  14. 以下の条件式を満足することを特徴とする請求項1から13のいずれか一項に記載のズームレンズ。
    −25<DTLw<7
    ここで、
    DTLwは、広角端における最大画角でのディストーションであって、DTLw=(IHw1−IHw2)/IHw2×100(%)で表され、
    IHw1は、無限物点からの広角端での最大画角が像面に結像する実像高、
    IHw2は、無限物点からの広角端での最大画角が像面の結像する近軸像高、
    である。
  15. 以下の条件式を満足することを特徴とする請求項1から14のいずれか一項に記載のズームレンズ。
    0.53<θgFFn<0.55
    ここで、
    θgFFnは、前記前群に含まれる負の屈折力を有するレンズのうち、アッベ数の値が最も大きいレンズにおける部分分散比であって、θgFFn=(ng−nF)/(nF−nc)で表され、
    ng、nF、ncは、それぞれ、前記アッベ数の値が最も大きいレンズのg線、F線、C線での屈折率、
    である。
  16. 以下の条件式を満足することを特徴とする請求項1から15のいずれか一項に記載のズームレンズ。
    0.01<θgFFn+0.0016×νd−0.6415<0.054
    ここで、
    θgFFnは、前記前群に含まれる負の屈折力を有するレンズのうち、アッベ数の値が最も大きいレンズにおける部分分散比であって、θgFFn=(ng−nF)/(nF−nc)で表され、
    ng、nF、ncは、それぞれ、前記アッベ数の値が最も大きいレンズのg線、F線、C線での屈折率、
    νdは、前記アッベ数の値が最も大きいレンズのアッベ数、
    である。
  17. 以下の条件式を満足することを特徴とする請求項1から16のいずれか一項に記載のズームレンズ。
    0.06<FBw/LTLw<0.20
    ここで、
    FBwは、広角端におけるバックフォーカス、
    LTLwは、広角端におけるズームレンズの最も物体側の面から像面までの軸上距離、である。
  18. 以下の条件式を満足することを特徴とする請求項1から17のいずれか一項に記載のズームレンズ。
    −2.0<fF/(fw×ft1/2<−1.0
    Fは、前記前群の焦点距離、
    wは、広角端における前記ズームレンズ全系の焦点距離、
    tは、望遠端における前記ズームレンズ全系の焦点距離、
    である。
  19. 以下の条件式を満足することを特徴とする請求項1から18のいずれか一項に記載のズームレンズ。
    1.5<SPF2<7
    ここで、
    SPF2=(rF2o+rF2i)/(rF2o−rF2i
    F2oは、前記第2のレンズの物体側面の近軸曲率半径、
    F2iは、前記第2のレンズの像側面の近軸曲率半径、
    である。
  20. 以下の条件式を満足することを特徴とする請求項5から8のいずれか一項に記載のズームレンズ。
    0.5<SPF4<6.0
    ここで、
    SPF4=(rF4o+rF4i)/(rF4o-rF4i
    F4oは、前記第4のレンズの物体側面の近軸曲率半径、
    F4iは、前記第4のレンズの像側面の近軸曲率半径、
    である。
  21. 変倍に際して、前記前群は移動することを特徴とする請求項1から19のいずれか一項に記載のズームレンズ。
  22. 前記第1のサブレンズユニットは、前記第1のフォーカスレンズ群を有することを特徴とする請求項1から21のいずれか一項に記載のズームレンズ。
  23. 前記第1のサブレンズユニットの一部が前記第1のフォーカスレンズ群であって、
    変倍に際して、前記第1のフォーカスレンズ群は、前記第1のサブレンズユニットと一体で移動することを特徴とする請求項22に記載のズームレンズ。
  24. 前記第1のサブレンズユニット全体が前記第1のフォーカスレンズ群であることを特徴とする請求項22に記載のズームレンズ。
  25. 前記第2のサブレンズユニットは、前記第1のフォーカスレンズ群を有することを特徴とする請求項1から21のいずれか一項に記載のズームレンズ。
  26. 前記第2のサブレンズユニット全体が前記第1のフォーカスレンズ群であることを特徴とする請求項25に記載のズームレンズ。
  27. 前記第2のサブレンズユニットは、前記第2のフォーカスレンズ群を有することを特徴とする請求項1から21のいずれか一項に記載のズームレンズ。
  28. 前記第2のサブレンズユニットの一部が前記第2のフォーカスレンズ群であって、変倍に際して、前記第2のフォーカスレンズ群は、前記第2のサブレンズユニットと一体で移動することを特徴とする請求項27に記載のズームレンズ。
  29. 前記第2のサブレンズユニット全体が前記第2のフォーカスレンズ群であることを特徴とする請求項27に記載のズームレンズ。
  30. 前記第1のレンズユニットは、前記第1のフォーカスレンズ群を有し、
    前記第2のレンズユニットは、前記第2のフォーカスレンズ群を有することを特徴とする請求項1から21のいずれか一項に記載のズームレンズ。
  31. 変倍に際して、前記第1のサブレンズユニットと前記第2のサブレンズユニットとの間隔は一定であることを特徴とする請求項1から21のいずれか一項に記載のズームレンズ。
  32. 前記第1のレンズユニットは、正の屈折力を有するフロントレンズユニットと、リアレンズユニットと、で構成され、
    変倍に際して、前記フロントレンズユニットと前記リアレンズユニットとの間隔が変化し、
    前記フロントレンズユニットに前記第1のサブレンズユニットが含まれることを特徴とする請求項1から31のいずれか一項に記載のズームレンズ。
  33. 前記リアレンズユニットは負の屈折力を有することを特徴とする請求項32に記載のズームレンズ。
  34. 前記フロントレンズユニットは、前記第1のフォーカスレンズ群を有することを特徴とする請求項32又は33に記載のズームレンズ。
  35. 前記リアレンズユニットは、前記第1のフォーカスレンズ群を有することを特徴とする請求項32又は33に記載のズームレンズ。
  36. 前記リアレンズユニットは、前記第2のフォーカスレンズ群を有することを特徴とする請求項32から34のいずれか一項に記載のズームレンズ。
  37. 前記第1のレンズユニットは手ぶれ低減レンズユニットを有し、
    前記手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することを特徴とする請求項1から36のいずれか一項に記載のズームレンズ。
  38. 前記第1のサブレンズユニットに、前記手ぶれ低減レンズユニットが配置されていることを特徴とする請求項37に記載のズームレンズ。
  39. 前記第2のサブレンズユニットに、前記手ぶれ低減レンズユニットが配置されていることを特徴とする請求項37に記載のズームレンズ。
  40. 最も像側に位置するレンズ群は正の屈折力を有することを特徴とする請求項1から39のいずれか一項に記載のズームレンズ。
  41. 請求項1から40のいずれか一項に記載のズームレンズと、
    撮像面を持ち且つ前記ズームレンズにより前記撮像面上に形成された像を電気信号に変換する撮像素子と、を有することを特徴とする撮像装置。
JP2014103800A 2014-05-19 2014-05-19 ズームレンズ及びそれを有する撮像装置 Pending JP2017122745A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014103800A JP2017122745A (ja) 2014-05-19 2014-05-19 ズームレンズ及びそれを有する撮像装置
PCT/JP2015/059053 WO2015178095A1 (ja) 2014-05-19 2015-03-25 ズームレンズ及びそれを有する撮像装置
US15/355,951 US9958656B2 (en) 2014-05-19 2016-11-18 Zoom lens and image pickup apparatus using the same
US15/927,152 US10768396B2 (en) 2014-05-19 2018-03-21 Zoom lens and image pickup apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014103800A JP2017122745A (ja) 2014-05-19 2014-05-19 ズームレンズ及びそれを有する撮像装置

Publications (1)

Publication Number Publication Date
JP2017122745A true JP2017122745A (ja) 2017-07-13

Family

ID=59306841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014103800A Pending JP2017122745A (ja) 2014-05-19 2014-05-19 ズームレンズ及びそれを有する撮像装置

Country Status (1)

Country Link
JP (1) JP2017122745A (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174711A (ja) * 2018-03-29 2019-10-10 富士フイルム株式会社 ズームレンズ及び撮像装置
JP2019184733A (ja) * 2018-04-05 2019-10-24 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2020042221A (ja) * 2018-09-13 2020-03-19 株式会社シグマ 広角レンズ系
JP2020056963A (ja) * 2018-10-04 2020-04-09 キヤノン株式会社 ズームレンズおよびそれを有する光学機器
JP2020134806A (ja) * 2019-02-22 2020-08-31 株式会社ニコン 変倍光学系、光学機器、及び変倍光学系の製造方法
JP2020170053A (ja) * 2019-04-01 2020-10-15 株式会社ニコン 変倍光学系、光学機器、及び変倍光学系の製造方法
JP2020170054A (ja) * 2019-04-01 2020-10-15 株式会社ニコン 変倍光学系、光学機器、及び変倍光学系の製造方法
JP2020170055A (ja) * 2019-04-01 2020-10-15 株式会社ニコン 変倍光学系、光学機器、及び変倍光学系の製造方法
JP2021018277A (ja) * 2019-07-18 2021-02-15 キヤノン株式会社 光学系および光学機器
JP2021033242A (ja) * 2019-08-29 2021-03-01 株式会社ニコン 変倍光学系、光学装置および変倍光学系の製造方法
JP2021033241A (ja) * 2019-08-29 2021-03-01 株式会社ニコン 光学系、光学装置および光学系の製造方法
WO2021039695A1 (ja) * 2019-08-29 2021-03-04 株式会社ニコン 光学系、光学装置および光学系の製造方法
JPWO2021039696A1 (ja) * 2019-08-29 2021-03-04
JPWO2021117429A1 (ja) * 2019-12-10 2021-06-17
WO2021200257A1 (ja) * 2020-03-31 2021-10-07 ソニーグループ株式会社 ズームレンズおよび撮像装置

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11640049B2 (en) 2018-03-29 2023-05-02 Fujifilm Corporation Zoom lens and imaging apparatus
US11480775B2 (en) 2018-03-29 2022-10-25 Fujifilm Corporation Zoom lens and imaging apparatus
US11327282B2 (en) 2018-03-29 2022-05-10 Fujifilm Corporation Zoom lens and imaging apparatus
US10914929B2 (en) 2018-03-29 2021-02-09 Fujifilm Corporation Zoom lens and imaging apparatus
JP2019174711A (ja) * 2018-03-29 2019-10-10 富士フイルム株式会社 ズームレンズ及び撮像装置
JP2019184733A (ja) * 2018-04-05 2019-10-24 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2020042221A (ja) * 2018-09-13 2020-03-19 株式会社シグマ 広角レンズ系
JP7160326B2 (ja) 2018-09-13 2022-10-25 株式会社シグマ 広角レンズ系
JP2020056963A (ja) * 2018-10-04 2020-04-09 キヤノン株式会社 ズームレンズおよびそれを有する光学機器
JP7158981B2 (ja) 2018-10-04 2022-10-24 キヤノン株式会社 ズームレンズおよびそれを有する光学機器
JP2020134806A (ja) * 2019-02-22 2020-08-31 株式会社ニコン 変倍光学系、光学機器、及び変倍光学系の製造方法
JP7256957B2 (ja) 2019-02-22 2023-04-13 株式会社ニコン 変倍光学系及び光学機器
JP2020170053A (ja) * 2019-04-01 2020-10-15 株式会社ニコン 変倍光学系、光学機器、及び変倍光学系の製造方法
JP7240631B2 (ja) 2019-04-01 2023-03-16 株式会社ニコン 変倍光学系及び光学機器
JP7372587B2 (ja) 2019-04-01 2023-11-01 株式会社ニコン 変倍光学系及び光学機器
JP7214078B2 (ja) 2019-04-01 2023-01-30 株式会社ニコン 変倍光学系及び光学機器
JP2020170055A (ja) * 2019-04-01 2020-10-15 株式会社ニコン 変倍光学系、光学機器、及び変倍光学系の製造方法
JP2020170054A (ja) * 2019-04-01 2020-10-15 株式会社ニコン 変倍光学系、光学機器、及び変倍光学系の製造方法
JP7293017B2 (ja) 2019-07-18 2023-06-19 キヤノン株式会社 光学系および光学機器
JP2021018277A (ja) * 2019-07-18 2021-02-15 キヤノン株式会社 光学系および光学機器
JP7215587B2 (ja) 2019-08-29 2023-01-31 株式会社ニコン 光学系および光学装置
WO2021039695A1 (ja) * 2019-08-29 2021-03-04 株式会社ニコン 光学系、光学装置および光学系の製造方法
CN114258506A (zh) * 2019-08-29 2022-03-29 株式会社尼康 光学系统、光学装置以及光学系统的制造方法
CN114258506B (zh) * 2019-08-29 2024-02-09 株式会社尼康 光学系统以及光学装置
JP2021033242A (ja) * 2019-08-29 2021-03-01 株式会社ニコン 変倍光学系、光学装置および変倍光学系の製造方法
JP7218692B2 (ja) 2019-08-29 2023-02-07 株式会社ニコン 変倍光学系および光学装置
JP7218813B2 (ja) 2019-08-29 2023-02-07 株式会社ニコン 変倍光学系及び光学機器
JP7238701B2 (ja) 2019-08-29 2023-03-14 株式会社ニコン 光学系および光学装置
JPWO2021039696A1 (ja) * 2019-08-29 2021-03-04
JPWO2021039695A1 (ja) * 2019-08-29 2021-03-04
JP2021033241A (ja) * 2019-08-29 2021-03-01 株式会社ニコン 光学系、光学装置および光学系の製造方法
CN114761854A (zh) * 2019-12-10 2022-07-15 株式会社尼康 光学系统、光学设备以及光学系统的制造方法
JPWO2021117429A1 (ja) * 2019-12-10 2021-06-17
WO2021200257A1 (ja) * 2020-03-31 2021-10-07 ソニーグループ株式会社 ズームレンズおよび撮像装置

Similar Documents

Publication Publication Date Title
JP2017122745A (ja) ズームレンズ及びそれを有する撮像装置
JP6172918B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP6300507B2 (ja) ズームレンズ及びそれを有するズームレンズ装置
JP5592925B2 (ja) ズームレンズ及びそれを備えた撮像装置
WO2015178095A1 (ja) ズームレンズ及びそれを有する撮像装置
JP6491319B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP6518039B2 (ja) ズームレンズ及びそれを有する撮像装置
JP6266165B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP2015001550A (ja) ズームレンズ及びそれを有する撮像装置
JP5781244B2 (ja) ズームレンズ及びそれを有する撮像装置
JP2014178478A (ja) ズームレンズ及びそれを有する撮像装置
JP5939788B2 (ja) ズームレンズおよびそれを有する撮像装置
JP2014095754A (ja) ズームレンズ及びそれを用いた撮像装置
JP2017062318A (ja) ズームレンズ及びそれを備えた撮像装置
JP2017122747A (ja) ズームレンズ及びそれを有する撮像装置
JP5344589B2 (ja) ズームレンズ及びそれを有する撮像装置
JP6518040B2 (ja) ズームレンズ及びそれを有する撮像装置
JP6406660B2 (ja) ズームレンズ及びそれを有する撮像装置
JP6720131B2 (ja) ズームレンズ及び撮像装置
JP5881846B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP2016099362A (ja) インナーフォーカスマクロレンズ及びそれを用いた撮像装置
JP7204554B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP7063640B2 (ja) 変倍光学系及びそれを備えた撮像装置
JP2017116702A (ja) ズームレンズ及びそれを有する撮像装置
WO2022137385A1 (ja) ズームレンズ及びそれを備えた撮像装置