WO2022137385A1 - ズームレンズ及びそれを備えた撮像装置 - Google Patents

ズームレンズ及びそれを備えた撮像装置 Download PDF

Info

Publication number
WO2022137385A1
WO2022137385A1 PCT/JP2020/048155 JP2020048155W WO2022137385A1 WO 2022137385 A1 WO2022137385 A1 WO 2022137385A1 JP 2020048155 W JP2020048155 W JP 2020048155W WO 2022137385 A1 WO2022137385 A1 WO 2022137385A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
refractive power
group
zoom
Prior art date
Application number
PCT/JP2020/048155
Other languages
English (en)
French (fr)
Inventor
膳裕記
中川孝司
山田康晴
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2020/048155 priority Critical patent/WO2022137385A1/ja
Publication of WO2022137385A1 publication Critical patent/WO2022137385A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present invention relates to a zoom lens and an imaging device including the zoom lens.
  • a digital still camera for example, a digital single-lens reflex camera or a mirrorless single-lens camera
  • a mirrorless interchangeable-lens camera is a camera with interchangeable lenses, similar to a digital single-lens reflex camera.
  • mirrorless interchangeable-lens cameras do not have a quick return mirror. In recent years, mirrorless interchangeable-lens cameras have rapidly become widespread.
  • zoom lenses can be used with mirrorless interchangeable-lens cameras.
  • One of them is a zoom lens.
  • zoom lenses are required to have a high magnification ratio, and are compact and lightweight.
  • wide-angle zoom lenses have the advantage of being able to shoot a wider range and the effect of exaggerating perspective. Therefore, in a wide-angle zoom lens, it is desirable that the angle of view at the wide-angle end is wider.
  • Most of the conventional wide-angle zoom lenses have a magnification ratio of about 2.2 to 2.4 times.
  • the wide-angle zoom lens be small and lightweight.
  • a negative lead type zoom lens is known as a wide-angle zoom lens suitable for miniaturization.
  • a lens group having a negative refractive power is arranged on the most object side.
  • Patent Document 1-4 discloses a negative lead type zoom lens.
  • Patent Document 1 discloses a zoom lens having four lens groups.
  • Patent Documents 2, 3 and 4 disclose a zoom lens having five lens groups.
  • Japanese Unexamined Patent Publication No. 2019-174714 Japanese Unexamined Patent Publication No. 2010-176098 Japanese Unexamined Patent Publication No. 2015-94884 Japanese Unexamined Patent Publication No. 2019-8031
  • the aperture is integrated with the three groups. For this reason, the lens diameter becomes large because it cannot be extended to the object side at the wide-angle end. In addition, focusing is performed in the two groups before aperture, and the breathing is large.
  • the zoom lens of Patent Document 2 has a wide angle of view of 117.8 at the wide-angle end.
  • the first lens group of the zoom lens has three negative lenses in order from the object side.
  • the magnification ratio of this zoom lens is 2 times, and the change in angle of view is small.
  • the zoom lens of Patent Document 3 has a magnification ratio of 2.3 times and a small change in angle of view. Further, the object side of the aperture has a group configuration, and the image plane correction effect of the second lens group cannot be obtained.
  • the zoom lens of Patent Document 4 has a magnification ratio of 2.0 times and a small change in angle of view. Further, since the (refractive power) power of the second lens group is large, the multiplying action of the second lens group becomes stronger. Along with this, the refractive force of the third lens group also increases, so that the aberration generated by the third lens group increases.
  • the present invention has been made in view of such a problem, and is a zoom lens having a wide angle of view and a high magnification ratio, a short overall length of an optical system, and well-corrected various aberrations. It is an object of the present invention to provide an image pickup apparatus provided.
  • the zoom lenses according to at least some embodiments of the present invention are, in order from the object side, a first lens group having a negative refractive power and a second lens group.
  • the aperture diaphragm and the rear group having a positive refractive power are provided, and the aperture diaphragm moves integrally with the second lens group at the time of scaling, and satisfies the following conditional expression (1). It is characterized by that. 15 ⁇ FLG2 / FLW ⁇ 50 (1) here, FLG2 is the focal length of the second lens group, FLW is the focal length of the zoom lens at the wide-angle end. Is.
  • the image pickup apparatus includes an optical system, an image pickup element having an image pickup surface and converting an image formed on the image pickup surface by the optical system into an electric signal.
  • the optical system is the above-mentioned zoom lens.
  • the present invention it is possible to provide a zoom lens having a wide angle of view and a high magnification ratio, a short total length of an optical system, and well-corrected various aberrations, and an image pickup apparatus provided with the same.
  • the mainstream wide-angle zoom lens has a magnification ratio of about 2x, it is a wide-angle 3x class with a half-angle of view of 50 degrees or more, and has a small front lens diameter and a short overall length while having good curvature of field. It is possible to provide a corrected compact and high-performance zoom lens.
  • FIG. 1 It is a lens sectional view of the zoom lens which concerns on embodiment. It is a lens sectional view of the zoom lens which concerns on Example 1.
  • FIG. 2 is a lens sectional view of the zoom lens which concerns on Example 2.
  • FIG. 2 is a lens sectional view of the zoom lens which concerns on Example 3.
  • FIG. It is an aberration diagram of the zoom lens which concerns on Example 1.
  • FIG. It is an aberration diagram of the zoom lens which concerns on Example 2.
  • FIG. It is an aberration diagram of the zoom lens which concerns on Example 3.
  • FIG. It is sectional drawing of the image pickup apparatus. It is a front perspective view of the image pickup apparatus. It is a rear perspective view of the image pickup apparatus. It is a block diagram of the internal circuit of the main part of an image pickup apparatus.
  • the zoom lens 100 of the present embodiment has a first lens group G1 having a negative refractive power, a second lens group G2, an aperture stop S, and a positive refractive power in order from the object side.
  • the rear group RG and the aperture diaphragm S move integrally with the second lens group G2 at the time of scaling, and are characterized by satisfying the following conditional expression (1). 15 ⁇ FLG2 / FLW ⁇ 50 (1) here, FLG2 is the focal length of the second lens group G2, FLW is the focal length of the zoom lens 100 at the wide-angle end. Is.
  • the arrow in FIG. 1 indicates the movement trajectory of each lens group.
  • the zoom lens 100 has a first lens group G1 having a negative refractive power, a second lens group G2, an aperture stop S, and a rear group RG having a positive refractive power in order from the object side.
  • the aperture stop S is integrated with the second lens group G2 and moves toward the object. Therefore, the distance from the first lens group G1 to the aperture stop S can be shortened. As a result, the height of the main ray off the axis in the first lens group G1 at the wide-angle end can be suppressed, and the diameter of the zoom lens can be reduced.
  • the negative refractive power of the first lens group G1 can be further increased.
  • the diameter of the zoom lens can be further reduced.
  • Conditional expression (1) defines an appropriate ratio between the focal length of the second lens group G2 and the focal length of the zoom lens at the wide-angle end.
  • the refractive power of the second lens group G2 satisfies the conditional expression (1). This makes it possible to correct curvature of field and astigmatism at the wide-angle end.
  • the refractive power of the second lens group G2 becomes large, and the curvature of field and the amount of astigmatism generated become large. This deteriorates the optical performance.
  • the multiplying effect of the second lens group G2 becomes large. For this reason, aberrations occur due to an increase in the refractive power of the third lens group G3, which is the main variable magnification group, or the optical system of the zoom lens becomes large due to an increase in the amount of movement during the magnification change.
  • the 1-1 lens L11 having a negative refractive power and the 1-2 lens L12 having a negative refractive power are sequentially arranged from the object side. And, and satisfy the following conditional equations (2) and (3). 2.1 ⁇ (R1f + R1r) / (R1f-R1r) ⁇ 3.5 (2) 2.1 ⁇ (R2f + R2r) / (R2f-R2r) ⁇ 3.5 (3) here, R1f is the paraxial radius of curvature of the side surface of the object of the 1-1 lens L11 (r1 in FIG. 1).
  • R1r is the paraxial radius of curvature of the image side surface of the 1-1 lens L11 (r2 in FIG. 1).
  • R2f is the paraxial radius of curvature of the side surface of the object of the 1-2 lens L12 (r3 in FIG. 1).
  • R2r is the paraxial radius of curvature of the image side surface of the 1-2 lens L12 (r4 in FIG. 1). Is.
  • Conditional expressions (2) and (3) define appropriate shapes of the 1-1 lens L11 and the 1-2 lens L12, respectively.
  • the 1-1 lens L11 and the 1-2 lens L12 of the first lens group G1 are meniscus-shaped negative lenses having a convex surface facing the object side. And has the same degree of negative refractive power. As a result, since the light beam can be gently bent on the wide-angle side, it is possible to suppress the occurrence of curvature of field, astigmatism, and chromatic aberration.
  • the first lens group G1 has a 1-3 lens L13 having a negative refractive power and a positive refractive power on the image side of the 1-2 lens L12. It is desirable that the first-fourth lens L14 and the first-third lens L13 and the first-fourth lens L14 are bonded lenses CL1.
  • Chromatic aberration can be corrected by the junction lens CL1. Since this embodiment is an ultra-wide-angle optical system, the light rays are sufficiently bent by two negative lenses from the object side to reduce the size. At the same time, preferably, the second lens L12 from the object side is an aspherical lens.
  • the aspherical lens can correct aberrations, and the junction lens can correct chromatic aberration, mainly chromatic aberration of magnification.
  • the rear group RG has a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a first lens group having a positive refractive power. It is desirable to have 5 lens groups G5.
  • the first lens group G1 has a large negative refractive power
  • the second lens group G2 has a small positive refractive power. Therefore, the lens group on the object side of the aperture stop S has a negative refractive power. Therefore, the divergent light from the first lens group G1 is suppressed by the third lens group G3 having a positive refractive power.
  • the fifth lens having a positive refractive power which is the final group, corrects the aberration generated in the third lens group G3 having a positive refractive power by the fourth lens group G4 having a negative refractive power. Make it telecentric in group G5.
  • the second lens group G2 has a positive refractive power.
  • the second lens group G2 is integrated with the aperture stop S and is located on the object side of the aperture stop S. Since the second lens group G2 has a positive refractive power, it is possible to suppress the height of light rays when incident on the rear group RG.
  • the second lens group G2 includes a second lens L21 having a negative refractive power and a second lens L22 having a positive refractive power in this order from the object side. It is desirable that the 2-1 lens L21 and the 2-2 lens L22 are bonded lenses CL2.
  • chromatic aberration can be reduced by using the second lens group G2 as a junction lens.
  • the optical system can be miniaturized.
  • the fourth lens group G4 is a lens group having a negative refractive power, and by using two lenses, a positive lens and a negative lens, it is possible to suppress the occurrence of chromatic aberration on the near side.
  • the optical system has an optical system and an image pickup element having an image pickup surface I and converting an image formed on the image pickup surface by the optical system into an electric signal. It is characterized by the above-mentioned zoom lens 100.
  • the lower limit value or the upper limit value may be changed as follows, which is preferable because the effect of each conditional expression can be further ensured.
  • conditional expression (1) is as follows. 20 ⁇ FLG2 / FLW ⁇ 50 (1') 25 ⁇ FLG2 / FLW ⁇ 50 (1'') 30 ⁇ FLG2 / FLW ⁇ 50 (1''')
  • conditional expressions (2) and (3) are as follows. 2.1 ⁇ (R1f + R1r) / (R1f-R1r) ⁇ 3.2 (2') 2.1 ⁇ (R1f + R1r) / (R1f-R1r) ⁇ 2.9 (2'') 2.2 ⁇ (R1f + R1r) / (R1f-R1r) ⁇ 2.8 (2''')
  • the cross-sectional view of the lens is a cross-sectional view of the lens when the point at infinity is in focus.
  • the aberration diagram is an aberration diagram when the point at infinity is in focus.
  • FIG. 2A is a cross-sectional view of the lens at the wide-angle end
  • FIG. 2B is a cross-sectional view of the lens in the intermediate focus state
  • FIG. 2C is a cross-sectional view of the lens at the telephoto end of the zoom lens 101 of the first embodiment. ..
  • the zoom lens of the first embodiment has a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, an aperture aperture S, and a positive refractive power in order from the object side. It has a third lens group G3, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.
  • the third lens group G3, the fourth lens group G4, and the fifth lens group G5 form a rear group GR.
  • the image plane (image plane) I is present on the image side of the rear group GR.
  • the first lens group G1 includes a negative meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, a biconcave negative lens L13, and a positive meniscus lens having a convex surface facing the object side. It has L14 and. Here, the biconcave negative lens L13 and the positive meniscus lens L14 are joined to form a bonded lens CL1.
  • the second lens group G2 is composed of a biconvex positive lens L21 and a negative meniscus lens L22 with a convex surface facing the image side.
  • the biconvex positive lens L21 and the negative meniscus lens L22 are joined to form a bonded lens CL2.
  • the third lens group G3 includes a biconvex positive lens L31, a negative meniscus lens L32 with a convex surface facing the image side, a biconvex positive lens L33, a negative meniscus lens L34 with a convex surface facing the object side, and biconvex positive. It has a lens L35.
  • the biconvex positive lens L31 and the negative meniscus lens L32 are joined.
  • the negative meniscus lens L34 and the biconvex positive lens L35 are joined.
  • the fourth lens group G4 has a biconvex positive lens L41 and a biconcave negative lens L42.
  • the biconvex positive lens L41 and the biconcave negative lens L42 are joined.
  • the fifth lens group G5 has a biconvex positive lens L51, a negative meniscus lens L52 with a convex surface facing the object side, and a biconvex positive lens L53.
  • the negative meniscus lens L52 and the biconvex positive lens L53 are joined.
  • the first lens group G1 moves to the image side and then to the object side.
  • the second lens group G2, the third lens group G3, and the fourth lens group G4 both move toward the object side.
  • the fifth lens group G5 is fixed.
  • the 4th lens group G4 moves to the image plane side.
  • the aspherical surface is provided on both sides of the negative meniscus lens L12, the image side surface of the biconvex positive lens L35, and both sides of the biconvex positive lens L51, for a total of five surfaces.
  • FIG. 3A is a cross-sectional view of the lens at the wide-angle end
  • FIG. 3B is a cross-sectional view of the lens in the intermediate focus state
  • FIG. 3C is a cross-sectional view of the lens at the telephoto end of the zoom lens 102 of the second embodiment. ..
  • the zoom lens of the second embodiment has a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, an aperture aperture S, and a positive refractive power in order from the object side. It has a third lens group G3, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.
  • the third lens group G3, the fourth lens group G4, and the fifth lens group G5 form a rear group GR.
  • the image plane (image plane) I is present on the image side of the rear group GR.
  • the first lens group G1 includes a negative meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, a biconcave negative lens L13, and a positive meniscus lens having a convex surface facing the object side. It has L14 and. Here, the biconcave negative lens L13 and the positive meniscus lens L14 are joined to form a bonded lens CL1.
  • the second lens group G2 is composed of a biconvex positive lens L21 and a negative meniscus lens L22 with a convex surface facing the image side.
  • the biconvex positive lens L21 and the negative meniscus lens L22 are joined to form a bonded lens CL2.
  • the third lens group G3 includes a biconvex positive lens L31, a negative meniscus lens L32 with a convex surface facing the image side, a biconvex positive lens L33, a negative meniscus lens L34 with a convex surface facing the object side, and biconvex positive. It has a lens L35.
  • the biconvex positive lens L31 and the negative meniscus lens L32 are joined.
  • the negative meniscus lens L34 and the biconvex positive lens L35 are joined.
  • the fourth lens group G4 has a biconvex positive lens L41 and a biconcave negative lens L42.
  • the biconvex positive lens L41 and the biconcave negative lens L42 are joined.
  • the fifth lens group G5 has a biconvex positive lens L51, a negative meniscus lens L52 with a convex surface facing the object side, and a biconvex positive lens L53.
  • the negative meniscus lens L52 and the biconvex positive lens L53 are joined.
  • the first lens group G1 moves to the image side and then to the object side.
  • the second lens group G2, the third lens group G3, and the fourth lens group G4 both move toward the object side.
  • the fifth lens group G5 is fixed.
  • the 4th lens group G4 moves to the image plane side.
  • the aspherical surface is provided on both sides of the negative meniscus lens L12, the image side surface of the biconvex positive lens L35, and both sides of the biconvex positive lens L51, for a total of five surfaces.
  • FIG. 4A is a cross-sectional view of the lens at the wide-angle end
  • FIG. 4B is a cross-sectional view of the lens in the intermediate focus state
  • FIG. 4C is a cross-sectional view of the lens at the telephoto end of the zoom lens 103 of the third embodiment. ..
  • the zoom lens of Example 3 has a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, an aperture aperture S, and a positive refractive power in order from the object side. It has a third lens group G3, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.
  • the third lens group G3, the fourth lens group G4, and the fifth lens group G5 form a rear group GR.
  • the image plane (image plane) I is present on the image side of the rear group GR.
  • the first lens group G1 includes a negative meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, a biconcave negative lens L13, and a positive meniscus lens having a convex surface facing the object side. It has L14 and. Here, the biconcave negative lens L13 and the positive meniscus lens L14 are joined to form a bonded lens CL1.
  • the second lens group G2 is composed of a biconvex positive lens L21 and a negative meniscus lens L22 with a convex surface facing the image side.
  • the biconvex positive lens L21 and the negative meniscus lens L22 are joined to form a bonded lens CL2.
  • the third lens group G3 includes a biconvex positive lens L31, a negative meniscus lens L32 with a convex surface facing the image side, a biconvex positive lens L33, a negative meniscus lens L34 with a convex surface facing the object side, and biconvex positive. It has a lens L35.
  • the biconvex positive lens L31 and the negative meniscus lens L32 are joined.
  • the negative meniscus lens L34 and the biconvex positive lens L35 are joined.
  • the fourth lens group G4 has a biconvex positive lens L41 and a biconcave negative lens L42.
  • the biconvex positive lens L41 and the biconcave negative lens L42 are joined.
  • the fifth lens group G5 has a biconvex positive lens L51, a negative meniscus lens L52 with a convex surface facing the object side, and a biconvex positive lens L53.
  • the negative meniscus lens L52 and the biconvex positive lens L53 are joined.
  • the first lens group G1 moves to the image side and then to the object side.
  • the second lens group G2, the third lens group G3, and the fourth lens group G4 both move toward the object side.
  • the fifth lens group G5 is fixed.
  • the 4th lens group G4 moves to the image plane side.
  • the aspherical surface is provided on both sides of the negative meniscus lens L12, the image side surface of the biconvex positive lens L35, and both sides of the biconvex positive lens L51, for a total of five surfaces.
  • FIG. 5 (a) shows spherical aberration (SA) at the wide-angle end
  • FIG. 5 (b) shows astigmatism (AS) at the wide-angle end
  • FIG. 5 (c) shows distortion at the wide-angle end
  • FIG. 5 (d) shows the chromatic aberration of magnification (CC) at the wide-angle end.
  • FIG. 5 (e) shows spherical aberration (SA) in the intermediate focal length state
  • FIG. 5 (f) shows astigmatism (AS) in the intermediate focal length state
  • FIG. 5 (g) shows intermediate.
  • FIG. 5 (h) shows chromatic aberration of magnification (CC) in the intermediate focal length state.
  • FIG. 5 (i) shows spherical aberration (SA) at the telephoto end
  • FIG. 5 (j) shows astigmatism (AS) at the telephoto end
  • FIG. 5 (k) shows distortion aberration at the telephoto end
  • FIG. 5 (l) shows the chromatic aberration of magnification (CC) at the telephoto end.
  • FIG. 6 (a) shows spherical aberration (SA) at the wide-angle end
  • FIG. 6 (b) shows astigmatism (AS) at the wide-angle end
  • FIG. 6 (c) shows distortion at the wide-angle end
  • FIG. 6 (d) shows the chromatic aberration of magnification (CC) at the wide-angle end.
  • FIG. 6 (e) is spherical aberration (SA) in the intermediate focal length state
  • FIG. 6 (f) is astigmatism (AS) in the intermediate focal length state
  • FIG. 6 (g) is intermediate.
  • FIG. 6 (h) shows the chromatic aberration of magnification (CC) in the intermediate focal length state.
  • FIG. 6 (i) shows spherical aberration (SA) at the telephoto end
  • FIG. 6 (j) shows astigmatism (AS) at the telephoto end
  • FIG. 6 (k) shows distortion aberration at the telephoto end
  • FIG. 6 (l) shows the chromatic aberration of magnification (CC) at the telephoto end.
  • FIG. 7 (a) shows spherical aberration (SA) at the wide-angle end
  • FIG. 7 (b) shows astigmatism (AS) at the wide-angle end
  • FIG. 7 (c) shows distortion at the wide-angle end
  • FIG. 7 (d) shows the chromatic aberration of magnification (CC) at the wide-angle end.
  • FIG. 7 (e) is spherical aberration (SA) in the intermediate focal length state
  • FIG. 7 (f) is astigmatism (AS) in the intermediate focal length state
  • FIG. 7 (g) is intermediate.
  • FIG. 7 (h) shows the chromatic aberration of magnification (CC) in the intermediate focal length state.
  • FIG. 7 (i) shows spherical aberration (SA) at the telephoto end
  • FIG. 7 (j) shows astigmatism (AS) at the telephoto end
  • FIG. 7 (k) shows distortion aberration at the telephoto end
  • FIG. 7 (l) shows the chromatic aberration of magnification (CC) at the telephoto end.
  • the numerical data of each of the above examples is shown below.
  • r is the radius of curvature of each lens surface
  • d is the distance between each lens surface
  • nd is the refractive index of the d line of each lens
  • ⁇ d is the Abbe number of each lens
  • * is an aspherical surface.
  • the diaphragm is an aperture diaphragm.
  • the focal length is the focal length of the entire zoom lens system, and FNO. Is the F number, 2 ⁇ is the angle of view, FY is the image height, and fb is the back focus.
  • the back focus is expressed by converting the distance from the lens surface on the image side to the paraxial image surface in terms of air.
  • the total length is the distance from the lens surface on the object side to the lens surface on the image side with the back focus added.
  • the front lens ED is the most effective diameter of the side surface of the object.
  • focal length f1, f2 ... are the focal lengths of each lens group.
  • the aspherical shape has the following equation when the optical axis direction is z, the direction orthogonal to the optical axis is y, the conical coefficient is k, and the aspherical coefficient is A4, A6, A8, A10, A12 .... expressed.
  • z (y 2 / r) / [1 + ⁇ 1- (1 + k) (y / r) 2 ⁇ 1/2 ] + A4y 4 + A6y 6 + A8y 8 + A10y 10 + A12y 12 +...
  • "En” (n is an integer) indicates "10 -n ".
  • the symbols of these specification values are also common to the numerical data of the examples described later.
  • Example 1 Example 2
  • Example 3 (1) FLG2 / FLW 42.60 33.08 48.76 (2) (R1f + R1r) / (R1f-R1r) 2.24 2.26 2.31 (3) (R2f + R2r) / (R2f-R2r) 2.76 2.76 2.78
  • FIG. 8 is a cross-sectional view of a single-lens mirrorless camera as an image pickup device.
  • the photographing optical system 2 is arranged in the lens barrel of the single-lens mirrorless camera 1.
  • the mount portion 3 allows the photographing optical system 2 to be attached to and detached from the body of the single-lens mirrorless camera 1.
  • a screw type mount, a bayonet type mount, or the like is used as the mount portion 3.
  • a bayonet type mount is used.
  • an image pickup element surface 4 and a back monitor 5 are arranged on the body of the single-lens mirrorless camera 1.
  • the image pickup device a small CCD, CMOS, or the like is used.
  • the zoom lens 101 shown in the above embodiment is used.
  • FIG. 9 and 10 show a conceptual diagram of the configuration of the image pickup device.
  • 9 is a front perspective view of the digital camera 40 as an image pickup device
  • FIG. 10 is a rear perspective view of the digital camera 40.
  • the zoom lens of this embodiment is used in the photographing optical system 41 of the digital camera 40.
  • the digital camera 40 of this embodiment includes a photographing optical system 41, a shutter button 45, a liquid crystal display monitor 47, etc. located on the photographing optical path 42, and when the shutter button 45 arranged on the upper part of the digital camera 40 is pressed, the digital camera 40 is pressed.
  • photography is performed through the photographing optical system 41, for example, the zoom lens of the first embodiment.
  • the object image formed by the photographing optical system 41 is formed on an image pickup element (photoelectric conversion surface) provided in the vicinity of the image plane.
  • the object image received by the image pickup element is displayed as an electronic image on the liquid crystal display monitor 47 provided on the back surface of the camera by the processing means. Further, the captured electronic image can be recorded in the storage means.
  • FIG. 11 is a block diagram showing an internal circuit of a main part of the digital camera 40.
  • the above-mentioned processing means is composed of, for example, a CDS / ADC unit 24, a temporary storage memory 17, an image processing unit 18, and the like, and the storage means is composed of a storage medium unit 19 and the like.
  • the digital camera 40 is connected to the operation unit 12, the control unit 13 connected to the operation unit 12, and the control signal output port of the control unit 13 via buses 14 and 15. It includes an image pickup drive circuit 16, a temporary storage memory 17, an image processing unit 18, a storage medium unit 19, a display unit 20, and a setting information storage memory unit 21.
  • the temporary storage memory 17, the image processing unit 18, the storage medium unit 19, the display unit 20, and the setting information storage memory unit 21 can mutually input and output data via the bus 22. Further, the CCD 49 and the CDS / ADC unit 24 are connected to the image pickup drive circuit 16.
  • the operation unit 12 is provided with various input buttons and switches, and notifies the control unit 13 of event information input from the outside (camera user) via these.
  • the control unit 13 is a central processing unit including, for example, a CPU, and has a built-in program memory (not shown), and controls the entire digital camera 40 according to a program stored in the program memory.
  • the CCD 49 is an image pickup element that is driven and controlled by an image pickup drive circuit 16 and converts the amount of light for each pixel of an object image formed via the photographing optical system 41 into an electric signal and outputs the light amount to the CDS / ADC unit 24.
  • the CDS / ADC unit 24 amplifies the electric signal input from the CCD 49 and performs analog / digital conversion, and the video raw data (Bayer data, hereinafter referred to as RAW data) obtained by performing the amplification and digital conversion. Is a circuit that outputs the data to the temporary storage memory 17.
  • the temporary storage memory 17 is a buffer made of, for example, SDRAM or the like, and is a memory device that temporarily stores RAW data output from the CDS / ADC unit 24.
  • the image processing unit 18 reads out the RAW data stored in the temporary storage memory 17 or the RAW data stored in the storage medium unit 19, and includes distortion correction based on the image quality parameter specified by the control unit 13. It is a circuit that electrically performs various image processing.
  • the storage medium unit 19 is detachably attached to, for example, a card-type or stick-type recording medium made of a flash memory or the like, and the RAW data or image processing unit 18 transferred from the temporary storage memory 17 to these flash memories. Record and retain image data that has undergone image processing.
  • the display unit 20 is composed of a liquid crystal display monitor 47 or the like, and displays captured RAW data, image data, an operation menu, and the like.
  • the setting information storage memory unit 21 includes a ROM unit in which various image quality parameters are stored in advance, and a RAM unit that stores image quality parameters read from the ROM unit by an input operation of the operation unit 12.
  • the present invention can take various modifications without departing from the spirit of the present invention.
  • the number of shapes shown in each of the above embodiments is not necessarily limited.
  • the cover glass does not necessarily have to be arranged.
  • a lens not shown in each of the above embodiments and having substantially no refractive power may be arranged in or outside each lens group.
  • the present invention is suitable for a zoom lens having a wide angle of view and a high magnification ratio, a short overall length of an optical system, and well-corrected various aberrations, and an image pickup apparatus equipped with the same.
  • G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group RG rear group CL1, CL2 junction lens S aperture aperture I image plane (image plane) 100, 101, 102, 103 Zoom lens AX Optical axis 1 Single-lens mirrorless camera 2 Imaging optical system 3 Mount unit 4 Image sensor surface 5 Back monitor 12 Operation unit 13 Control unit 14, 15 Bus 16 Image pickup drive circuit 17 Temporary storage memory 18 Image processing unit 19 Storage medium unit 20 Display unit 21 Setting information storage memory unit 22 Bus 24 CDS / ADC unit 40 Digital camera 41 Imaging optical system 42 Optical path for imaging 45 Shutter button 47 LCD display monitor 49 CCD

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

広い画角と高い変倍比を有し、光学系の全長が短く、諸収差が良好に補正されたズームレンズ及びそれを備えた撮像装置を提供する。 ズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、正の屈折力を有する後群RGと、を有し、開口絞りSは変倍の際に第2レンズ群G2と一体的に移動し、以下の条件式(1)を満足する。 15<FLG2/FLW<50 (1) ここで、 FLG2は、第2レンズ群G2の焦点距離、 FLWは、広角端におけるズームレンズ100の焦点距離、 である。

Description

ズームレンズ及びそれを備えた撮像装置
 本発明は、ズームレンズ及びそれを備えた撮像装置に関する。
 電子撮像素子を用いた撮像装置として、デジタルスチルカメラ、例えば、デジタル一眼レフカメラや、ミラーレス一眼カメラが知られている。ミラーレス一眼カメラは、デジタル一眼レフカメラと同様に、レンズ交換ができるカメラである。ただし、ミラーレス一眼カメラは、デジタル一眼レフカメラとは異なり、クイックリターンミラーを持たない。近年、ミラーレス一眼カメラが急速に普及している。
 ミラーレス一眼カメラでは、様々な種類のレンズが使用できる。その1つに、ズームレンズがある。ズームレンズには、高い光学性能を持つことに加え、変倍比が高く、小型で軽量であることが要求されている。
 特に広角ズームレンズには、より広範囲の撮影ができるという利点や、遠近感が誇張できる効果が強くなるという利点がある。そのため、広角ズームレンズでは、広角端での画角がより広い方が望ましい。
 従来の広角ズームレンズは、変倍比が2.2倍から2.4倍程度のものが多い。
 また、上述のように、広角ズームレンズは、小型で軽量であることが望ましい。
 小型化に適した広角ズームレンズとして、ネガティブリードタイプのズームレンズが知られている。ネガティブリードタイプのズームレンズでは、最も物体側に負の屈折力のレンズ群が配置されている。特許文献1-4には、ネガティブリードタイプのズームレンズが開示されている。
 特許文献1には、4つのレンズ群を有するズームレンズが開示されている。特許文献2、3、4には、5つのレンズ群を有するズームレンズが開示されている。
特開2019-174714号公報 特開2010-176098号公報 特開2015-94884号公報 特開2019-8031号公報
 特許文献1のズームレンズでは、絞りは3群と一体となっている。このため、広角端で物体側に繰り出せないためにレンズ径が大きくなる。また、フォーカシングは、絞り前の2群で行っており、ブリージング大きい。
 特許文献2のズームレンズは、広角端の全画角は117.8と広い。ズームレンズの第1レンズ群は、物体側から順に、負レンズを3枚有している。このズームレンズの変倍比は、2倍であり、画角変化が小さくなる。
 特許文献3のズームレンズは、変倍比は2.3倍であり、画角変化が小さい。また、絞りより物体側は、1群構成になっており、第2レンズ群での像面補正効果が得られない。
 特許文献4のズームレンズは、変倍比は2.0倍であり、画角変化が小さい。また、第2レンズ群の(屈折力)パワーが大きいため、第2レンズ群の減倍作用が強くなる。これに合わせて、第3レンズ群の屈折力も大きくなることで、第3レンズ群による収差発生が大きくなる。
 本発明は、このような課題に鑑みてなされたものであって、広い画角と高い変倍比を有し、光学系の全長が短く、諸収差が良好に補正されたズームレンズ及びそれを備えた撮像装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係るズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群と、第2レンズ群と、開口絞りと、正の屈折力を有する後群と、を有し、開口絞りは、変倍の際に第2レンズ群と一体的に移動し、以下の条件式(1)を満足することを特徴とする。
 15<FLG2/FLW<50 (1)
 ここで、
 FLG2は、第2レンズ群の焦点距離、
 FLWは、広角端におけるズームレンズの焦点距離、
である。
 また、本発明の少なくとも幾つかの実施形態に係る撮像装置は、光学系と、撮像面を有し、且つ光学系により前記撮像面上に形成された像を電気信号に変換する撮像素子と、を有し、光学系が上述のズームレンズであることを特徴とする。
 本発明によれば、広い画角と高い変倍比を有し、光学系の全長が短く、諸収差が良好に補正されたズームレンズ及びそれを備えた撮像装置を提供することができる。特に、広角ズームレンズの変倍比は2倍程度が主流であるなか、半画角50度以上の広角3倍クラスで、前玉径を小さく、全長を短縮しながら、像面湾曲が良好に補正された小型・高性能なズームレンズを提供できる。
実施形態に係るズームレンズのレンズ断面図である。 実施例1に係るズームレンズのレンズ断面図である。 実施例2に係るズームレンズのレンズ断面図である。 実施例3に係るズームレンズのレンズ断面図である。 実施例1に係るズームレンズの収差図である。 実施例2に係るズームレンズの収差図である。 実施例3に係るズームレンズの収差図である。 撮像装置の断面図である。 撮像装置の前方斜視図である。 撮像装置の後方斜視図である。 撮像装置の主要部の内部回路の構成ブロック図である。
 実施例の説明に先立ち、本発明のある態様に係る実施形態の作用効果を説明する。なお、本実施形態の作用効果を具体的に説明するに際しては、具体的な例を示して説明することになる。しかし、後述する実施例の場合と同様に、それらの例示される態様はあくまでも本発明に含まれる態様のうちの一部に過ぎず、その態様には数多くのバリエーションが存在する。従って、本発明は例示される態様に限定されるものではない。
 図1に示すように、本実施形態のズームレンズ100は、物体側から順に、負の屈折力を有する第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、正の屈折力を有する後群RGと、を有し、開口絞りSは、変倍の際に第2レンズ群G2と一体的に移動し、以下の条件式(1)を満足することを特徴とする。
 15<FLG2/FLW<50 (1)
 ここで、
 FLG2は、第2レンズ群G2の焦点距離、
 FLWは、広角端におけるズームレンズ100の焦点距離、
である。
 図1における矢印は、各レンズ群の移動軌跡を示す。
 ズームレンズ100は、物体側から順に、負の屈折力を有する第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、正の屈折力を有する後群RGと、を有する。
 広角端において、開口絞りSが第2レンズ群G2と一体となり、物体側に移動する。従って、第1レンズ群G1から開口絞りSまでの距離を短くできる。これにより、広角端での第1レンズ群G1での軸外の主光線高を抑えることができ、ズームレンズの径を小さくできる。
 また、第1レンズ群G1と開口絞りSとの間隔が狭くなることで、大きな負の屈折力を有する第1レンズ群G1による歪曲収差発生を抑えられる。そのため、第1レンズ群G1の負の屈折力をより大きくできる。第1レンズ群G1の屈折力を大きくすることで、ズームレンズの径を更に小さくできる。
 条件式(1)は、第2レンズ群G2の焦点距離と、広角端におけるズームレンズの焦点距離との適切な比を規定している。
 第2レンズ群G2の屈折力は、条件式(1)を満足する。これにより、広角端での像面湾曲及び非点収差を補正できる。
 条件式(1)の上限値を上回ると、第2レンズ群G2の屈折力が小さくなり、ズームレンズの光学系が大きくなってしまう。
 条件式(1)の下限値を下回ると、第2レンズ群G2の屈折力が大きくなり、像面湾曲及び非点収差発生量が大きくなる。これにより、光学性能が悪化する。また、第2レンズ群G2による減倍作用が大きくなる。このため、主たる変倍群である第3レンズ群G3の屈折力を大きくすることによる収差が発生すること、あるいは、変倍時の移動量の増加によりズームレンズの光学系が大きくなってしまう。
 また、本実施形態の好ましい態様によれば、第1レンズ群G1は、物体側から順に、負の屈折力を有する第1-1レンズL11と、負の屈折力を有する第1-2レンズL12と、を有し、以下の条件式(2)、(3)を満足する。
 2.1<(R1f+R1r)/(R1f-R1r)<3.5 (2)
 2.1<(R2f+R2r)/(R2f-R2r)<3.5 (3)
 ここで、
 R1fは、第1-1レンズL11の物体側面の近軸曲率半径(図1のr1)、
 R1rは、第1-1レンズL11の像側面の近軸曲率半径(図1のr2)、
 R2fは、第1-2レンズL12の物体側面の近軸曲率半径(図1のr3)、
 R2rは、第1-2レンズL12の像側面の近軸曲率半径(図1のr4)、
である。
 条件式(2)、(3)は、それぞれ第1-1レンズL11、第1-2レンズL12の適切な形状を規定している。
 大きな負の屈折力を有する第1レンズ群G1において、像面湾曲、非点収差、色収差の発生を抑えることが望ましい。
 条件式(2)、(3)を満足することで、第1レンズ群G1の第1-1レンズL11と、第1-2レンズL12とは、物体側に凸面を向けたメニスカス形状の負レンズで、同程度の負の屈折力を有する。これにより、広角側で緩やかに光線を曲げられるために像面湾曲、非点収差、色収差の発生を抑えることができる。
 また、本実施形態の好ましい態様によれば、第1レンズ群G1は、第1-2レンズL12の像側に、負の屈折力を有する第1-3レンズL13と、正の屈折力を有する第1-4レンズL14と、を有し、第1-3レンズL13と第1-4レンズL14とは接合された接合レンズCL1であることが望ましい。
 接合レンズCL1により、色収差を補正できる。本実施形態は、超広角光学系のため、物体側から2枚の負レンズにより、十分に光線を曲げて小型化する。同時に、好ましくは、物体側から2枚目のレンズL12を非球面レンズとする。非球面レンズにより、収差の補正、接合レンズで色収差、主に倍率色収差を補正できる。
 また、本実施形態の好ましい態様によれば、後群RGは、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、を有することが望ましい。
 この構成により、収差補正と小型化の両立できる効果を奏する。第1レンズ群G1は大きな負の屈折力を有し、第2レンズ群G2は小さな正の屈折力を有する。このため、開口絞りSよりも物体側のレンズ群は、負の屈折力を有する。このため、第1レンズ群G1による発散光を、正の屈折力を有する第3レンズ群G3で光線高を抑える。正の屈折力を有する第3レンズ群G3で発生した収差を、負の屈折力を有する第4レンズ群G4で補正しつつ、跳ね上がった光線を最終群である正の屈折力を有する第5レンズ群G5でテレセントリックにする。
 また、本実施形態の好ましい態様によれば、第2レンズ群G2は正の屈折力を有することが望ましい。
 第2レンズ群G2は開口絞りSと一体で、開口絞りSより物体側に位置している。第2レンズ群G2が正の屈折力であることにより、後群RGへの入射時の光線高を抑えることができる。
 また、本実施形態の好ましい態様によれば、第2レンズ群G2は、物体側から順に、負の屈折力を有する第2-1レンズL21と、正の屈折力を有する第2-2レンズL22と、を有し、第2-1レンズL21と第2-2レンズL22は接合された接合レンズCL2であることが望ましい。
 これにより、色収差を発生させずに、像面湾曲及び非点収差を補正できる。第2レンズ群G2を接合レンズとしておくことで、色収差を低減できる。また、光学系を小型化できる。
 また、フォーカシングは、開口絞りSより像面側(後ろ側)の第4レンズ群G4の移動により行う。第4レンズ群G4は、負の屈折力を有するレンズ群であり、且つ、正レンズと負レンズの2枚のレンズを使用することで、至近側での色収差発生を抑えることができる。
 また、本実施形態によれば、光学系と、撮像面Iを有し、且つ前記光学系により撮像面上に形成された像を電気信号に変換する撮像素子と、を有し、光学系が上述のズームレンズ100であることを特徴とする。
 これにより、超広角、高変倍であり小型なズームレンズを有する撮像装置を得ることができる。
 各条件式について、以下のように下限値、又は上限値を変更しても良い、このようにすることで、各条件式の効果を一層確実にできるので好ましい。
 条件式(1)については、以下の通りである。
 20<FLG2/FLW<50 (1’)
 25<FLG2/FLW<50 (1’’)
 30<FLG2/FLW<50 (1’’’)
 条件式(2)、(3)については、以下の通りである。
 2.1<(R1f+R1r)/(R1f-R1r)<3.2(2’)
 2.1<(R1f+R1r)/(R1f-R1r)<2.9(2’’)
 2.2<(R1f+R1r)/(R1f-R1r)<2.8(2’’’)
 2.1<(R2f+R2r)/(R2f-R2r)<3.2 (3’)
 2.1<(R2f+R2r)/(R2f-R2r)<2.9 (3’’)
 2.2<(R2f+R2r)/(R2f-R2r)<2.8 (3’’’)
 以下に、ズームレンズの実施例を、図面に基づいて詳細に説明する。
レンズ断面図は、無限遠物点合焦時のレンズ断面図である。収差図は、無限遠物点合焦時の収差図である。
 実施例1のズームレンズ101の、図2(a)は広角端のレンズ断面図、図2(b)は中間焦点状態のレンズ断面図、図2(c)は望遠端のレンズ断面図である。
 実施例1のズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とを有する。第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5とで後群GRを構成する。後群GRの像側に撮像面(像面)Iが存在する。
 第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、両凹負レンズL13と、物体側に凸面を向けた正メニスカスレンズL14と、を有する。ここで、両凹負レンズL13と正メニスカスレンズL14とは接合され接合レンズCL1を構成する。
 第2レンズ群G2は、両凸正レンズL21と、像側に凸面を向けた負メニスカスレンズL22で構成されている。両凸正レンズL21と負メニスカスレンズL22とは接合され接合レンズCL2を構成する。
 第3レンズ群G3は、両凸正レンズL31と、像側に凸面を向けた負メニスカスレンズL32と、両凸正レンズL33と、物体側に凸面を向けた負メニスカスレンズL34と、両凸正レンズL35と、を有する。ここで、両凸正レンズL31と負メニスカスレンズL32が接合されている。負メニスカスレンズL34と、両凸正レンズL35は接合されている。
 第4レンズ群G4は、両凸正レンズL41と、両凹負レンズL42と、を有する。両凸正レンズL41と両凹負レンズL42とは接合されている。
 第5レンズ群G5は、両凸正レンズL51と、物体側に凸面を向けた負メニスカスレンズL52と、両凸正レンズL53を有する。負メニスカスレンズL52と両凸正レンズL53は接合されている。
 広角端から望遠端への変倍時、第1レンズ群G1は、像側に移動した後、物体側に移動する。第2レンズ群G2と第3レンズ群G3と第4レンズ群G4は、共に物体側に移動する。第5レンズ群G5は、固定されている。
 無限遠物体から近距離物体へのフォーカシング時、第4レンズ群G4が像面側に移動する。
 非球面は、負メニスカスレンズL12の両面と、両凸正レンズL35の像側面と、両凸正レンズL51の両面と、の合計5面に設けられている。
 実施例2のズームレンズ102の、図3(a)は広角端のレンズ断面図、図3(b)は中間焦点状態のレンズ断面図、図3(c)は望遠端のレンズ断面図である。
 実施例2のズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とを有する。第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5とで後群GRを構成する。後群GRの像側に撮像面(像面)Iが存在する。
 第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、両凹負レンズL13と、物体側に凸面を向けた正メニスカスレンズL14と、を有する。ここで、両凹負レンズL13と正メニスカスレンズL14とは接合され接合レンズCL1を構成する。
 第2レンズ群G2は、両凸正レンズL21と、像側に凸面を向けた負メニスカスレンズL22で構成されている。両凸正レンズL21と負メニスカスレンズL22とは接合され接合レンズCL2を構成する。
 第3レンズ群G3は、両凸正レンズL31と、像側に凸面を向けた負メニスカスレンズL32と、両凸正レンズL33と、物体側に凸面を向けた負メニスカスレンズL34と、両凸正レンズL35と、を有する。ここで、両凸正レンズL31と負メニスカスレンズL32が接合されている。負メニスカスレンズL34と両凸正レンズL35は接合されている。
 第4レンズ群G4は、両凸正レンズL41と、両凹負レンズL42と、を有する。両凸正レンズL41と両凹負レンズL42とは接合されている。
 第5レンズ群G5は、両凸正レンズL51と、物体側に凸面を向けた負メニスカスレンズL52と、両凸正レンズL53を有する。負メニスカスレンズL52と両凸正レンズL53は接合されている。
 広角端から望遠端への変倍時、第1レンズ群G1は、像側に移動した後、物体側に移動する。第2レンズ群G2と第3レンズ群G3と第4レンズ群G4は、共に物体側に移動する。第5レンズ群G5は、固定されている。
 無限遠物体から近距離物体へのフォーカシング時、第4レンズ群G4が像面側に移動する。
 非球面は、負メニスカスレンズL12の両面と、両凸正レンズL35の像側面と、両凸正レンズL51の両面と、の合計5面に設けられている。
 実施例3のズームレンズ103の、図4(a)は広角端のレンズ断面図、図4(b)は中間焦点状態のレンズ断面図、図4(c)は望遠端のレンズ断面図である。
 実施例3のズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とを有する。第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5とで後群GRを構成する。後群GRの像側に撮像面(像面)Iが存在する。
 第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、両凹負レンズL13と、物体側に凸面を向けた正メニスカスレンズL14と、を有する。ここで、両凹負レンズL13と正メニスカスレンズL14とは接合され接合レンズCL1を構成する。
 第2レンズ群G2は、両凸正レンズL21と、像側に凸面を向けた負メニスカスレンズL22で構成されている。両凸正レンズL21と負メニスカスレンズL22とは接合され接合レンズCL2を構成する。
 第3レンズ群G3は、両凸正レンズL31と、像側に凸面を向けた負メニスカスレンズL32と、両凸正レンズL33と、物体側に凸面を向けた負メニスカスレンズL34と、両凸正レンズL35と、を有する。ここで、両凸正レンズL31と負メニスカスレンズL32が接合されている。負メニスカスレンズL34と両凸正レンズL35は接合されている。
 第4レンズ群G4は、両凸正レンズL41と、両凹負レンズL42と、を有する。両凸正レンズL41と両凹負レンズL42とは接合されている。
 第5レンズ群G5は、両凸正レンズL51と、物体側に凸面を向けた負メニスカスレンズL52と、両凸正レンズL53を有する。負メニスカスレンズL52と両凸正レンズL53は接合されている。
 広角端から望遠端への変倍時、第1レンズ群G1は、像側に移動した後、物体側に移動する。第2レンズ群G2と第3レンズ群G3と第4レンズ群G4は、共に物体側に移動する。第5レンズ群G5は、固定されている。
 無限遠物体から近距離物体へのフォーカシング時、第4レンズ群G4が像面側に移動する。
 非球面は、負メニスカスレンズL12の両面と、両凸正レンズL35の像側面と、両凸正レンズL51の両面と、の合計5面に設けられている
 実施例1のズームレンズに関して、図5(a)は広角端における球面収差(SA)、図5(b)は広角端における非点収差(AS)、図5(c)は広角端における歪曲収差(DT)、図5(d)は広角端における倍率色収差(CC)を示している。
 実施例1のズームレンズに関して、図5(e)は中間焦点距離状態における球面収差(SA)、図5(f)は中間焦点距離状態における非点収差(AS)、図5(g)は中間焦点距離状態における歪曲収差(DT)、図5(h)は中間焦点距離状態における倍率色収差(CC)を示している。
 実施例1のズームレンズに関して、図5(i)は望遠端における球面収差(SA)、図5(j)は望遠端における非点収差(AS)、図5(k)は望遠端における歪曲収差(DT)、図5(l)は望遠端における倍率色収差(CC)を示している。
 実施例2のズームレンズに関して、図6(a)は広角端における球面収差(SA)、図6(b)は広角端における非点収差(AS)、図6(c)は広角端における歪曲収差(DT)、図6(d)は広角端における倍率色収差(CC)を示している。
 実施例2のズームレンズに関して、図6(e)は中間焦点距離状態における球面収差(SA)、図6(f)は中間焦点距離状態における非点収差(AS)、図6(g)は中間焦点距離状態における歪曲収差(DT)、図6(h)は中間焦点距離状態における倍率色収差(CC)を示している。
 実施例2のズームレンズに関して、図6(i)は望遠端における球面収差(SA)、図6(j)は望遠端における非点収差(AS)、図6(k)は望遠端における歪曲収差(DT)、図6(l)は望遠端における倍率色収差(CC)を示している。
 実施例3のズームレンズに関して、図7(a)は広角端における球面収差(SA)、図7(b)は広角端における非点収差(AS)、図7(c)は広角端における歪曲収差(DT)、図7(d)は広角端における倍率色収差(CC)を示している。
 実施例3のズームレンズに関して、図7(e)は中間焦点距離状態における球面収差(SA)、図7(f)は中間焦点距離状態における非点収差(AS)、図7(g)は中間焦点距離状態における歪曲収差(DT)、図7(h)は中間焦点距離状態における倍率色収差(CC)を示している。
 実施例3のズームレンズに関して、図7(i)は望遠端における球面収差(SA)、図7(j)は望遠端における非点収差(AS)、図7(k)は望遠端における歪曲収差(DT)、図7(l)は望遠端における倍率色収差(CC)を示している。
 以下に、上記各実施例の数値データを示す。面データにおいて、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、ndは各レンズのd線の屈折率、νdは各レンズのアッベ数、*印は非球面である。絞りは開口絞りである。
 ズームデータにおいて、焦点距離は、ズームレンズ全系の焦点距離、また、FNO.はFナンバー、2ωは画角、FIYは像高、fbはバックフォーカスである。バックフォーカスは、最も像側のレンズ面から近軸像面までの距離を空気換算して表したものである。全長は、最も物体側のレンズ面から最も像側のレンズ面までの距離にバックフォーカスを加えたものである。前玉EDは、最も物体側面の有効径である。
 また、各群焦点距離において、f1、f2…は各レンズ群の焦点距離である。
 また、非球面形状は、光軸方向をz、光軸に直交する方向をyにとり、円錐係数をk、非球面係数をA4、A6、A8、A10、A12…としたとき、次の式で表される。
 z=(y2/r)/[1+{1-(1+k)(y/r)21/2
    +A4y4+A6y6+A8y8+A10y10+A12y12+…
 また、非球面係数において、「E-n」(nは整数)は、「10-n」を示している。なお、これら諸元値の記号は後述の実施例の数値データにおいても共通である。

数値実施例1
単位  mm

面データ
  面番号       r          d         nd        νd
      1      46.300      2.50     1.87070    40.73
      2      17.761      4.00
      3*     20.000      2.50     1.58313    59.38
      4*      9.356      9.70
      5     -35.763      1.50     1.43875    94.66
      6      23.884      4.07     1.95375    32.32
      7     108.916      可変
      8     134.228      5.05     1.65412    39.68
      9     -16.050      0.80     1.87070    40.73
     10     -76.206      1.20
     11(絞り)  ∞        可変
     12      40.515      5.00     1.51633    64.14
     13     -16.081      0.80     1.87070    40.73
     14     -90.360      0.20
     15      39.928      4.00     1.87070    40.73
     16     -68.697      2.62
     17      52.048      1.10     1.91082    35.25
     18      14.339      7.70     1.49650    81.53
     19*    -27.949      可変
     20     608.292      2.20     1.94595    17.98
     21     -47.486      0.80     1.72916    54.09
     22      23.209      可変
     23*     18.600      7.50     1.49650    81.53
     24*    -39.471      0.20
     25     281.401      1.30     2.00100    29.13
     26      20.928      5.40     1.49700    81.54
     27     -69.651      15.27
 撮像面(像面)  ∞

非球面データ
第3面
k=-0.616
A4=7.11175e-06,A6=-1.77307e-07,A8=-3.75941e-10,
A10=5.44033e-12,A12=-1.01366e-14

第4面
k=-2.139
A4=2.00546e-04,A6=-1.33919e-06,A8=7.35434e-10,
A10=2.78642e-11,A12=-8.04539e-14

第19面
k=0.000
A4=1.32052e-05,A6=-3.25690e-08,A8=1.57723e-10,
A10=-1.94759e-12

第23面
k=0.000
A4=-1.98693e-05,A6=-6.84928e-08,A8=3.23400e-10,
A10=-2.17457e-12

第24面
k=0.000
A4=1.66946e-05,A6=-7.49583e-08,A8=3.04157e-10,
A10=-1.62111e-12

ズームデータ
                 広角端      中間    望遠端
焦点距離           8.16     14.14     24.51
FNO.           4.08      4.08      4.08
画角2ω         112.08     75.95     46.44
fb (in air)       15.27     15.27     15.29
全長 (in air)    130.58    121.59    123.90

      d7          22.85     11.43      1.20 
      d11         15.88      5.01      1.60 
      d19          2.70     10.51     26.63 
      d22          3.74      9.21      9.03 

各群焦点距離
f1=-15.70   f2=347.70   f3=27.20   f4=-39.75   f5=38.45 

焦点距離(135mm換算)  16.32-49  mm
全長 130.58 mm
前玉EDφ 39.6  mm
FIY 10.815 mm
数値実施例2
単位  mm

面データ
  面番号       r          d         nd        νd
      1      46.327      2.50     1.87070    40.73
      2      17.900      4.00
      3*     19.926      2.50     1.58253    59.32
      4*      9.332     10.00
      5     -33.734      1.50     1.43875    94.66
      6      23.614      4.07     1.95375    32.32
      7      97.690      可変
      8     110.972      3.94     1.65412    39.68
      9     -17.583      0.82     1.87070    40.73
     10     -86.483      1.20
     11(絞り)  ∞        可変
     12      36.832      5.00     1.51633    64.14
     13     -15.143      0.80     1.87070    40.73
     14    -419.457      0.20
     15      46.749      3.70     1.85150    40.78
     16     -46.749      2.87
     17      38.545      1.10     1.91082    35.25
     18      14.392      8.30     1.49650    81.53
     19*    -28.862      可変
     20     160.981      2.30     1.94595    17.98
     21     -55.520      0.85     1.72916    54.09
     22      21.035      可変
     23*     18.400      7.60     1.49650    81.53
     24*    -35.483      0.20
     25     600.000      1.30     2.00100    29.13
     26      19.257      5.98     1.49700    81.54
     27     -71.584     14.88
 撮像面(像面)  ∞

非球面データ
第3面
k=-0.764
A4=2.31201e-07,A6=-1.27960e-07,A8=6.11189e-11,
A10=2.62381e-12,A12=-5.25132e-15

第4面
k=-2.000
A4=1.73256e-04,A6=-1.12048e-06,A8=2.10241e-09,
A10=1.31211e-11,A12=-4.12883e-14

第19面
k=0.000
A4=1.24216e-05,A6=-2.95451e-08,A8=9.23569e-11,
A10=-1.67505e-12

第23面
k=0.000
A4=-1.61602e-05,A6=-1.16560e-07,A8=5.50493e-10,
A10=-2.28948e-12

第24面
k=0.000
A4=2.17979e-05,A6=-1.66279e-07,A8=8.65173e-10,
A10=-2.46047e-12

ズームデータ
                 広角端      中間    望遠端
焦点距離           8.16     14.14     24.51
FNO.           4.08      4.08      4.08
画角2ω         112.09     76.17     46.44
fb (in air)       14.88     14.90     14.90
全長 (in air)    131.41    122.63    124.79

      d7          24.10     12.01      1.60 
      d11         15.09      4.89      1.60 
      d19          2.85     10.37     26.52 
      d22          3.75      9.72      9.44 
      d27         14.88     14.90     14.90 

各群焦点距離
f1=-15.15   f2=270.01   f3=27.41   f4=-40.81   f5=41.62 

焦点距離(135mm換算) 16.32-49 mm
全長  131.41 mm
前玉EDφ 39.92 mm
FIY 10.815 mm
数値実施例3
単位  mm

面データ
  面番号       r          d         nd        νd
      1      45.051      2.50     1.87070    40.73
      2      17.823      4.00
      3*     19.128      2.50     1.58253    59.32
      4*      9.013      9.58
      5     -42.856      1.50     1.43875    94.66
      6      21.234      3.66     1.95375    32.32
      7      66.872      可変
      8     105.920      3.50     1.65412    39.68
      9     -17.795      0.82     1.87070    40.73
     10    -103.226      1.28
     11(絞り)  ∞        可変
     12      39.585      5.00     1.51633    64.14
     13     -15.107      0.80     1.87070    40.73
     14    -480.277      0.20
     15      49.256      3.52     1.85150    40.78
     16     -49.256      3.05
     17      36.303      1.10     1.91082    35.25
     18      14.832      8.00     1.49650    81.53
     19*    -26.199      可変
     20     357.424      2.30     1.94595    17.98
     21     -46.444      0.85     1.72916    54.09
     22      22.910      可変
     23*     17.277      8.86     1.49650    81.53
     24*    -28.874      0.20
     25     284.724      1.30     2.00100    29.13
     26      16.941      5.34     1.49700    81.54
     27    -310.873     14.85
 撮像面(像面)  ∞

非球面データ
第3面
k=-0.885
A4=-1.28839e-06,A6=-1.70242e-07,A8=5.79221e-10,
A10=4.23384e-13,A12=-2.48524e-15

第4面
k=-1.909
A4=1.79879e-04,A6=-1.18967e-06,A8=2.64255e-09,
A10=1.27829e-11,A12=-5.36397e-14

第19面
k=0.000
A4=1.32006e-05,A6=-2.85936e-08,A8=9.50292e-11,
A10=-1.72718e-12

第23面
k=0.000
A4=-2.59188e-05,A6=-7.97958e-08,A8=5.30226e-10,
A10=-2.04500e-12

第24面
k=0.000
A4=2.41110e-05,A6=-8.43567e-08,A8=7.31113e-10,
A10=-1.94872e-12

ズームデータ
                 広角端      中間    望遠端
焦点距離           8.17     14.15     24.47
FNO.           4.08      4.08      4.08
画角2ω         112.07     76.13     46.46
fb (in air)       14.85     14.90     14.86
全長 (in air)    129.15    120.12    124.46

      d7          23.16     10.97      1.60 
      d11         14.72      5.18      1.60 
      d19          2.87     11.21     26.95 
      d22          3.70      8.01      9.59 

各群焦点距離
f1=-15.26   f2=398.50   f3=26.91   f4=-41.13   f5=4

焦点距離(135mm換算)  16.34-48.94 mm
全長 129.15 mm
前玉EDφ 40.08  mm
FIY  10.815  mm
 次に、各実施例における条件式の値を以下に掲げる。

                       実施例1   実施例2   実施例3
(1)FLG2/FLW              42.60      33.08      48.76
(2)(R1f+R1r)/(R1f-R1r)    2.24       2.26       2.31
(3)(R2f+R2r)/(R2f-R2r)    2.76       2.76       2.78
 図8は、撮像装置としての一眼ミラーレスカメラの断面図である。図8において、一眼ミラーレスカメラ1の鏡筒内には撮影光学系2が配置される。マウント部3は、撮影光学系2を一眼ミラーレスカメラ1のボディに着脱可能とする。マウント部3としては、スクリュータイプのマウントやバヨネットタイプのマウント等が用いられる。この例では、バヨネットタイプのマウントを用いている。また、一眼ミラーレスカメラ1のボディには、撮像素子面4、バックモニタ5が配置されている。なお、撮像素子としては、小型のCCD又はCMOS等が用いられている。
 そして、一眼ミラーレスカメラ1の撮影光学系2として、例えば上記実施例に示したズームレンズ101が用いられる。
 図9、図10は、撮像装置の構成の概念図を示す。図9は撮像装置としてのデジタルカメラ40の前方斜視図、図10は同後方斜視図である。このデジタルカメラ40の撮影光学系41に、本実施例のズームレンズが用いられている。
 この実施形態のデジタルカメラ40は、撮影用光路42上に位置する撮影光学系41、シャッターボタン45、液晶表示モニター47等を含み、デジタルカメラ40の上部に配置されたシャッターボタン45を押圧すると、それに連動して撮影光学系41、例えば実施例1のズームレンズを通して撮影が行われる。撮影光学系41によって形成された物体像が、結像面近傍に設けられた撮像素子(光電変換面)上に形成される。この撮像素子で受光された物体像は、処理手段によって電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、撮影された電子画像は記憶手段に記録することができる。
 図11は、デジタルカメラ40の主要部の内部回路を示すブロック図である。なお、以下の説明では、前述した処理手段は、例えばCDS/ADC部24、一時記憶メモリ17、画像処理部18等で構成され、記憶手段は、記憶媒体部19等で構成される。
 図11に示すように、デジタルカメラ40は、操作部12と、この操作部12に接続された制御部13と、この制御部13の制御信号出力ポートにバス14及び15を介して接続された撮像駆動回路16並びに一時記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21を備えている。
 上記の一時記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21は、バス22を介して相互にデータの入力、出力が可能とされている。また、撮像駆動回路16には、CCD49とCDS/ADC部24が接続されている。
 操作部12は、各種の入力ボタンやスイッチを備え、これらを介して外部(カメラ使用者)から入力されるイベント情報を制御部13に通知する。制御部13は、例えばCPUなどからなる中央演算処理装置であって、不図示のプログラムメモリを内蔵し、プログラムメモリに格納されているプログラムにしたがって、デジタルカメラ40全体を制御する。
 CCD49は、撮像駆動回路16により駆動制御され、撮影光学系41を介して形成された物体像の画素ごとの光量を電気信号に変換し、CDS/ADC部24に出力する撮像素子である。
 CDS/ADC部24は、CCD49から入力する電気信号を増幅し、かつ、アナログ/デジタル変換を行って、この増幅とデジタル変換を行っただけの映像生データ(ベイヤーデータ、以下RAWデータという。)を一時記憶メモリ17に出力する回路である。
 一時記憶メモリ17は、例えばSDRAM等からなるバッファであり、CDS/ADC部24から出力されるRAWデータを一時的に記憶するメモリ装置である。画像処理部18は、一時記憶メモリ17に記憶されたRAWデータ又は記憶媒体部19に記憶されているRAWデータを読み出して、制御部13にて指定された画質パラメータに基づいて歪曲収差補正を含む各種画像処理を電気的に行う回路である。
 記憶媒体部19は、例えばフラッシュメモリ等からなるカード型又はスティック型の記録媒体を着脱自在に装着して、これらのフラッシュメモリに、一時記憶メモリ17から転送されるRAWデータや画像処理部18で画像処理された画像データを記録して保持する。
 表示部20は、液晶表示モニター47などにて構成され、撮影したRAWデータ、画像データや操作メニューなどを表示する。設定情報記憶メモリ部21には、予め各種の画質パラメータが格納されているROM部と、操作部12の入力操作によってROM部から読み出された画質パラメータを記憶するRAM部が備えられている。
 なお、本発明は、その趣旨を逸脱しない範囲で様々な変形例をとることができる。また、上記各実施例により示された形状枚数には必ずしも限定されない。また、上記各実施例において、カバーガラスは必ずしも配置しなくても良い。また、各レンズ群内又は各レンズ群外に、上記各実施例に図示されていないレンズであって実質的に屈折力を有さないレンズを配置してもよい。
 以上のように、本発明は、広い画角と高い変倍比を有し、光学系の全長が短く、諸収差が良好に補正されたズームレンズ及びそれを備えた撮像装置に適している。
 G1 第1レンズ群
 G2 第2レンズ群
 G3 第3レンズ群
 G4 第4レンズ群
 G5 第5レンズ群
 RG 後群
 CL1、CL2 接合レンズ
 S 開口絞り
 I 撮像面(像面)
 100、101、102、103 ズームレンズ
 AX 光軸
 1 一眼ミラーレスカメラ
 2 撮影光学系
 3 マウント部
 4 撮像素子面
 5 バックモニタ
 12 操作部
 13 制御部
 14、15 バス
 16 撮像駆動回路
 17 一時記憶メモリ
 18 画像処理部
 19 記憶媒体部
 20 表示部
 21 設定情報記憶メモリ部
 22 バス
 24 CDS/ADC部
 40 デジタルカメラ
 41 撮影光学系
 42 撮影用光路
 45 シャッターボタン
 47 液晶表示モニター
 49 CCD

Claims (7)

  1.  物体側から順に、
     負の屈折力を有する第1レンズ群と、
     第2レンズ群と、
     開口絞りと、
     正の屈折力を有する後群と、を有し、
     前記開口絞りは、変倍の際に前記第2レンズ群と一体的に移動し、
     以下の条件式(1)を満足することを特徴とするズームレンズ。
     15<FLG2/FLW<50 (1)
     ここで、
     FLG2は、前記第2レンズ群の焦点距離、
     FLWは、広角端における前記ズームレンズの焦点距離、
    である。
  2.  前記第1レンズ群は、物体側から順に、
     負の屈折力を有する第1-1レンズと、
     負の屈折力を有する第1-2レンズと、を有し、
     以下の条件式(2)、(3)を満足することを特徴とする請求項1に記載のズームレンズ。
     2.1<(R1f+R1r)/(R1f-R1r)<3.5 (2)
     2.1<(R2f+R2r)/(R2f-R2r)<3.5 (3)
     ここで、
     R1fは、前記第1-1レンズの物体側面の近軸曲率半径、
     R1rは、前記第1-1レンズの像側面の近軸曲率半径、
     R2fは、前記第1-2レンズの物体側面の近軸曲率半径、
     R2rは、前記第1-2レンズの像側面の近軸曲率半径、
    である。
  3.  前記第1レンズ群は、前記第1-2レンズの像側に、
     負の屈折力を有する第1-3レンズと、
     正の屈折力を有する第1-4レンズと、を有し、
     前記1-3レンズと前記1-4レンズとは接合された接合レンズであることを特徴とする請求項1に記載のズームレンズ。
  4.  前記後群は、
     正の屈折力を有する第3レンズ群と、
     負の屈折力を有する第4レンズ群と、
     正の屈折力を有する第5レンズ群と、
    を有することを特徴とする請求項1に記載のズームレンズ。
  5.  前記第2レンズ群は正の屈折力を有することを特徴とする請求項4に記載のズームレンズ。
  6.  前記第2レンズ群は、物体側から順に、
     負の屈折力を有する第2-1レンズと、
     正の屈折力を有する第2-2レンズと、を有し、
     前記第2-1レンズと前記第2-2レンズは接合された接合レンズであることを特徴とする請求項1に記載のズームレンズ。
  7.  光学系と、
     撮像面を持ち、且つ前記光学系により撮像面上に形成された像を電気信号に変換する撮像素子と、を有し、
     前記光学系が請求項1に記載のズームレンズであることを特徴とする撮像装置。
PCT/JP2020/048155 2020-12-23 2020-12-23 ズームレンズ及びそれを備えた撮像装置 WO2022137385A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/048155 WO2022137385A1 (ja) 2020-12-23 2020-12-23 ズームレンズ及びそれを備えた撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/048155 WO2022137385A1 (ja) 2020-12-23 2020-12-23 ズームレンズ及びそれを備えた撮像装置

Publications (1)

Publication Number Publication Date
WO2022137385A1 true WO2022137385A1 (ja) 2022-06-30

Family

ID=82158702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048155 WO2022137385A1 (ja) 2020-12-23 2020-12-23 ズームレンズ及びそれを備えた撮像装置

Country Status (1)

Country Link
WO (1) WO2022137385A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094883A (ja) * 2013-11-13 2015-05-18 富士フイルム株式会社 ズームレンズおよび撮像装置
WO2015178095A1 (ja) * 2014-05-19 2015-11-26 オリンパス株式会社 ズームレンズ及びそれを有する撮像装置
WO2018235881A1 (ja) * 2017-06-21 2018-12-27 株式会社ニコン 変倍光学系、光学装置および変倍光学系の製造方法
JP2019191307A (ja) * 2018-04-23 2019-10-31 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2020101750A (ja) * 2018-12-25 2020-07-02 株式会社タムロン ズームレンズ及び撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094883A (ja) * 2013-11-13 2015-05-18 富士フイルム株式会社 ズームレンズおよび撮像装置
WO2015178095A1 (ja) * 2014-05-19 2015-11-26 オリンパス株式会社 ズームレンズ及びそれを有する撮像装置
WO2018235881A1 (ja) * 2017-06-21 2018-12-27 株式会社ニコン 変倍光学系、光学装置および変倍光学系の製造方法
JP2019191307A (ja) * 2018-04-23 2019-10-31 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2020101750A (ja) * 2018-12-25 2020-07-02 株式会社タムロン ズームレンズ及び撮像装置

Similar Documents

Publication Publication Date Title
JP6266165B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP5217698B2 (ja) ズームレンズ、撮像装置、ズームレンズの変倍方法
JP5931117B2 (ja) 撮像装置
JP2017122745A (ja) ズームレンズ及びそれを有する撮像装置
JP2010186011A (ja) 広角光学系及びそれを用いた撮像装置
CN109597190B (zh) 变倍光学系统和具有该变倍光学系统的摄像装置
CN109143557B (zh) 变焦透镜和图像拾取装置
JP2017062318A (ja) ズームレンズ及びそれを備えた撮像装置
JP7055652B2 (ja) ズームレンズおよび撮像装置
JP5433958B2 (ja) ズームレンズ及びこれを備えた光学機器
JP6489634B2 (ja) インナーフォーカスマクロレンズ及びそれを用いた撮像装置
JP2020003714A (ja) ズームレンズ及び撮像装置
JP6406660B2 (ja) ズームレンズ及びそれを有する撮像装置
JP5344589B2 (ja) ズームレンズ及びそれを有する撮像装置
JP2018025579A (ja) ズームレンズ及びそれを有する光学機器
JP2017116702A (ja) ズームレンズ及びそれを有する撮像装置
JP5881846B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP6320904B2 (ja) 撮像レンズおよび撮像装置
CN110095855B (zh) 变倍光学系统和具有该变倍光学系统的摄像装置
WO2022137385A1 (ja) ズームレンズ及びそれを備えた撮像装置
JP6892818B2 (ja) ズームレンズおよび撮像装置
JP7063640B2 (ja) 変倍光学系及びそれを備えた撮像装置
JP5767334B2 (ja) ズームレンズおよび撮像装置
JP2020154139A (ja) 撮像レンズ及びそれを備えた撮像装置
JP2020003711A (ja) ズームレンズ及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP