JP2017122747A - ズームレンズ及びそれを有する撮像装置 - Google Patents

ズームレンズ及びそれを有する撮像装置 Download PDF

Info

Publication number
JP2017122747A
JP2017122747A JP2014117156A JP2014117156A JP2017122747A JP 2017122747 A JP2017122747 A JP 2017122747A JP 2014117156 A JP2014117156 A JP 2014117156A JP 2014117156 A JP2014117156 A JP 2014117156A JP 2017122747 A JP2017122747 A JP 2017122747A
Authority
JP
Japan
Prior art keywords
lens
group
refractive power
object side
lens group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014117156A
Other languages
English (en)
Inventor
一輝 河村
Kazuteru Kawamura
一輝 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2014117156A priority Critical patent/JP2017122747A/ja
Priority to PCT/JP2015/059053 priority patent/WO2015178095A1/ja
Priority to US15/355,951 priority patent/US9958656B2/en
Publication of JP2017122747A publication Critical patent/JP2017122747A/ja
Priority to US15/927,152 priority patent/US10768396B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

【課題】小型、軽量で、かつ、十分に広い画角を持ちながらも諸収差が補正されたズームレンズ及びそれを有する撮像装置を提供すること。
【解決手段】ズームレンズは、負屈折力の前群と、開口絞りを含み正屈折力の後群と、からなり、前群は、負屈折力の第1のレンズと、負屈折力の第2のレンズと、正屈折力の第3のレンズと、を含み、第1のレンズと第2のレンズは、物体側に凸面を向けたメニスカス形状のレンズであり、後群は、第1のレンズユニットと、第2のレンズユニットと、を有し、広角端から望遠端への変倍に際して、前群と後群との間隔は狭くなり、2つのレンズユニットの間隔は変化し、第1のレンズユニットは、開口絞りよりも物体側に正屈折力のフォーカスレンズ群を有し、合焦時、フォーカスレンズ群のみが移動し、以下の条件式を満足する。
72<νdFnmax<110
−1.45<FBw/fF<−0.3
【選択図】図1

Description

本発明は、ズームレンズ及びそれを有する撮像装置に関する。
広い範囲の撮影が可能なレンズとして、広角レンズが知られている。従来の広角レンズとしては、特許文献1、2及び3に開示された広角レンズがある。
特開2010−060612号公報 特開2010−176098号公報 特開2010−249959号公報
特許文献1の広角レンズは、光学系の全長に対してバックフォーカスが長いか、あるいは、第1レンズ群の焦点距離に対して広角端での焦点距離が長い。そのため、特許文献1の広角レンズでは、光学系を十分に小型化することが困難であった。
また、特許文献2の広角レンズでは、Fナンバーが十分に小さくできていないか、あるいは、Fナンバーに比べて画角を十分に広角化できていない。また、第1レンズ群の焦点距離に対して広角端での焦点距離が長い。そのため、特許文献1の広角レンズでは、光学系を十分に小型化することが困難であった。
また、特許文献3の広角レンズでは、最も物体側のレンズ群がフォーカスレンズ群を備えている。このような構成では、フォーカスレンズ群の小型化や軽量化が困難である。また、このようなことから、フォーカスレンズ群の駆動機構も小型化や軽量化が困難となる。その結果、特許文献3の広角レンズでは、フォーカススピードの高速化が困難であった。
本発明は、このような課題に鑑みてなされたものであって、光学系の小型化と軽量化が十分になされ、かつ、Fナンバーに比べて十分に広い画角を持ちながらも諸収差が十分に低減されたズームレンズ及びそれを有する撮像装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、第1の側面の発明のズームレンズは、
物体側から像側に順に、
負の屈折力を有する前群と、
開口絞りを含み正の屈折力を有する後群と、からなり、
前群は、負の屈折力を有する第1のレンズと、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、を含み、
第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
第2のレンズは第1のレンズよりも像側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
後群は、物体側から像側に順に、
正の屈折力を有し、開口絞りより物体側に位置する第2レンズ群と、
負の屈折力を有し、第3レンズ群と、
正の屈折力を有する第4レンズ群と、を有し、
第2レンズ群又は第3レンズ群は、フォーカスレンズ群を有し、
広角端から望遠端への変倍に際して、
各レンズ群の間隔は変化し、かつ、
前群と後群との間隔は狭くなり、
以下の条件式を満足することを特徴とする。
72<νdFnmax<110
−1.45<FBw/fF<−0.3
ここで、
νdFnmaxは、前群に含まれる負の屈折力を有するレンズのアッベ数のうち、最大となるアッベ数、
FBwは、広角端におけるバックフォーカス、
Fは、前群の焦点距離、
である。
また、第2の側面の発明のズームレンズは、
物体側から像側に順に、
負の屈折力を有する前群と、
開口絞りを含み正の屈折力を有する後群と、からなり、
前群は、負の屈折力を有する第1のレンズと、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、を含み、
第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
第2のレンズは第1のレンズよりも像側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
後群は、物体側から像側に順に、
正の屈折力を有し、開口絞りより物体側に位置する第2レンズ群と、
負の屈折力を有し、第3レンズ群と、
正の屈折力を有する第4レンズ群と、を有し、
第2レンズ群又は第3レンズ群は、フォーカスレンズ群を有し、
広角端から望遠端への変倍に際して、
各レンズ群の間隔は変化し、かつ、
前群と後群との間隔は狭くなり、
以下の条件式を満足することを特徴とする。
72<νdFnmax<110
1.2<fRw/FBw<5
ここで、
νdFnmaxは、前群に含まれる負の屈折力を有するレンズのアッベ数のうち、最大となるアッベ数、
Rwは、広角端における後群の焦点距離、
FBwは、広角端におけるバックフォーカス、
である。
また、第3の側面の発明のズームレンズは、
物体側から像側に順に、
負の屈折力を有する前群と、
開口絞りを含み正の屈折力を有する後群と、からなり、
前群は、負の屈折力を有する第1のレンズと、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、を含み、
第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
第2のレンズは第1のレンズよりも像側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
後群は、物体側から像側に順に、
正の屈折力を有し、開口絞りより物体側に位置する第2レンズ群と、
負の屈折力を有し、第3レンズ群と、
正の屈折力を有する第4レンズ群と、を有し、
第2レンズ群又は第3レンズ群は、フォーカスレンズ群を有し、
広角端から望遠端への変倍に際して、
各レンズ群の間隔は変化し、かつ、
前群と後群との間隔は狭くなり、
以下の条件式を満足することを特徴とする。
72<νdFnmax<110
−1.8<fw×Fnowmin/fF<−0.5
ここで、
νdFnmaxは、前群に含まれる負の屈折力を有するレンズのアッベ数のうち、最大となるアッベ数、
wは、広角端における前記ズームレンズ全系の焦点距離、
Fnowminは、広角端におけるFナンバーのうち、最小となるFナンバー、
Fは、前群の焦点距離、
である。
また、第4の側面の発明のズームレンズは、
物体側から像側に順に、
負の屈折力を有する前群と、
開口絞りを含み正の屈折力を有する後群と、からなり、
前群は、負の屈折力を有する第1のレンズと、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、を含み、
第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
第2のレンズは第1のレンズよりも像側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
後群は、物体側から像側に順に、
正の屈折力を有し、開口絞りより物体側に位置する第2レンズ群と、
負の屈折力を有し、第3レンズ群と、
正の屈折力を有する第4レンズ群と、を有し、
第2レンズ群又は第3レンズ群は、フォーカスレンズ群を有し、
広角端から望遠端への変倍に際して、
各レンズ群の間隔は変化し、かつ、
前群と後群との間隔は狭くなり、
以下の条件式を満足することを特徴とする。
2.6<f3/fF<15
ここで、
3は、第3レンズ群の焦点距離、
Fは、前群の焦点距離、
である。
また、第5の側面の発明のズームレンズは、
物体側から像側に順に、
負の屈折力を有する前群と、
開口絞りを含み正の屈折力を有する後群と、からなり、
前群は、負の屈折力を有する第1のレンズと、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、を含み、
第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
第2のレンズは第1のレンズよりも像側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
後群は、物体側から像側に順に、
正の屈折力を有し、開口絞りより物体側に位置する第2レンズ群と、
負の屈折力を有し、第3レンズ群と、
正の屈折力を有する第4レンズ群と、を有し、
第2レンズ群又は前記第3レンズ群は、フォーカスレンズ群を有し、
広角端から望遠端への変倍に際して、
各レンズ群の間隔は変化し、かつ、
前群と後群との間隔は狭くなり、
以下の条件式を満足することを特徴とするズームレンズ。
−25<f3/fw<−4
ここで、
3は、前記第3レンズ群の焦点距離、
wは、広角端における前記ズームレンズ全系の焦点距離、
である。
また、本発明の撮像装置は、
上記のいずれか1つのズームレンズと、
撮像面を持ち且つズームレンズにより撮像面上に形成された像を電気信号に変換する撮像素子と、を有することを特徴とする。
本発明によれば、光学系の小型化と軽量化が十分になされ、かつ、Fナンバーに比べて十分に広い画角を持ちながらも諸収差が十分に低減されたズームレンズ及びそれを有する撮像装置を提供できる。
実施例1に係るズームレンズの無限遠物体合焦時のレンズ断面図であって、(a)は広角端、(b)は中間、(c)は望遠端でのレンズ断面図である。 実施例2に係るズームレンズの無限遠物体合焦時のレンズ断面図であって、(a)は広角端、(b)は中間、(c)は望遠端でのレンズ断面図である。 実施例3に係るズームレンズの無限遠物体合焦時のレンズ断面図であって、(a)は広角端、(b)は中間、(c)は望遠端でのレンズ断面図である。 実施例4に係るズームレンズの無限遠物体合焦時のレンズ断面図であって、(a)は広角端、(b)は中間、(c)は望遠端でのレンズ断面図である。 実施例5に係るズームレンズの無限遠物体合焦時のレンズ断面図であって、(a)は広角端、(b)は中間、(c)は望遠端でのレンズ断面図である。 実施例6に係るズームレンズの無限遠物体合焦時のレンズ断面図であって、(a)は広角端、(b)は中間、(c)は望遠端でのレンズ断面図である。 実施例1にかかるズームレンズの無限遠物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例1にかかるズームレンズの近距離物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例2にかかるズームレンズの無限遠物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例2にかかるズームレンズの近距離物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例3にかかるズームレンズの無限遠物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例3にかかるズームレンズの近距離物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例4にかかるズームレンズの無限遠物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例4にかかるズームレンズの近距離物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例5にかかるズームレンズの無限遠物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例5にかかるズームレンズの近距離物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例6にかかるズームレンズの無限遠物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 実施例6にかかるズームレンズの近距離物体合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)〜(d)は広角端、(e)〜(h)は中間、(i)〜(l)は望遠端での状態を示している。 撮像装置の断面図である。 撮像装置の概観を示す前方斜視図である。 撮像装置の後方斜視図である。 撮像装置の主要部の内部回路の構成ブロック図である。
実施例の説明に先立ち、本発明のある態様に係る実施形態の作用効果を説明する。なお、本実施形態の作用効果を具体的に説明するに際しては、具体的な例を示して説明することになる。しかし、後述する実施例の場合と同様に、それらの例示される態様はあくまでも本発明に含まれる態様のうちの一部に過ぎず、その態様には数多くのバリエーションが存在する。したがって、本発明は例示される態様に限定されるものではない。
本実施形態のズームレンズについて説明する。まず、基本構成について説明する。
本実施形態のズームレンズの基本構成では、ズームレンズは、物体側から像側に順に、負の屈折力を有する前群と、開口絞りを含み正の屈折力を有する後群と、からなり、前群は、負の屈折力を有する第1のレンズと、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、を含み、第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、第2のレンズは第1のレンズよりも像側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、後群は、物体側から像側に順に、正の屈折力を有し、開口絞りより物体側に位置する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、を有し、第2レンズ群又は第3レンズ群は、フォーカスレンズ群を有し、広角端から望遠端への変倍に際して、各レンズ群の間隔は変化し、かつ、前群と後群との間隔は狭くなる。
基本構成では、ズームレンズは、物体側から像側に順に、負の屈折力を有する前群と、開口絞りを含み正の屈折力を有する後群と、からなる。これにより、光学系の構成を、レトロフォーカスタイプの構成にすることができる。その結果、超広画角でありながら、適度な長さのバックフォーカスを確保することが容易となる。ここで、超広画角とは、例えば105°以上の画角、より好ましくは、110°以上の画角のことである。
また、基本構成では、前群は、負の屈折力を有する第1のレンズと、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、を含み、第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、第2のレンズは第1のレンズよりも像側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状である。
上述のように、前群は負の屈折力を有している。そこで、前群の負の屈折力を大きくすると、光学系の径を小さくすることができる。ただし、像面湾曲と非点収差の発生量は、軸外主光線の高さが高くなるにつれて増加する傾向を示す。ここで、超広画角な光学系では、軸外主光線の高さは前群を通過するときに最も高くなる。そのため、前群の負の屈折力を大きくすると、画角を超広画角にした場合に、像面湾曲と非点収差の発生量が増加しやすくなる。
そこで、前群に、負の屈折力を有する第1のレンズと、負の屈折力を有する第2のレンズと、を配置している。そして、第1のレンズを前群の最も物体側に配置すると共に、第1のレンズの形状を物体側に凸面を向けたメニスカス形状にしている。また、第2のレンズを第1のレンズよりも像側に配置すると共に、第2のレンズの形状を物体側に凸面を向けたメニスカス形状にしている。
これにより、軸外の主光線の高さが最も高くなる前群において、開口絞り側に凹面を向けたメニスカスレンズが2つ配置されることになる。このようにすることで、前群における負の屈折力を大きくしつつ、軸外光線を徐々に屈折することができる。すなわち、急激な光線の屈折を抑制することができる。この結果、像面湾曲と非点収差の発生量を低減しつつ、画角を超広画角にすることができる。
更に、前群に、正の屈折力を有する第3のレンズを配置している。このようにすることで、軸上色収差と倍率色収差の発生を抑制できる。また、望遠端付近における球面収差の発生量を軽減できる。
また、広角端から望遠端への変倍に際して、前群と後群との間隔は狭くなる。このようにすることで、大きな変倍作用を得ることができる。なお、前群と後群との間隔は、近軸上の間隔である。
また、後群は、物体側から像側に順に、正の屈折力を有し、開口絞りより物体側に位置する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、を有する。そして、広角端から望遠端への変倍に際して、各レンズ群の間隔が変化する。なお、各レンズ群の間隔は、近軸上の間隔である。
上述のように、基本構成では、光学系の構成がレトロフォーカスタイプの構成になっている。レトロフォーカスタイプの構成において、更に光学系を細径化するには、前群の負の屈折力を大きくする必要がある。特に、超広画角ズームレンズにおいて、例えば、1.9倍以上の変倍比を確保した上で、光学系の全長を短縮するには、前群のみならず、後群の屈折力を大きくする必要がある。
ここで、前群の負の屈折力を大きくしすぎると、前群において大きな正の像面湾曲が発生し、かつ、変倍時に、軸外収差、特に非点収差が変動し易くなる。そこで、光学系の小型化を維持しつつ、収差の発生量の低減や収差の変動を抑制するために、後群内で収差を良好に補正しておく必要がある。
上述のレンズ群構成により、広角端から望遠端への変倍に際して、前群で発生する負のディストーションを第2レンズ群および第3レンズ群で低減することができる。また、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群によって、前群で発生する負のディストーションを良好に補正ができる。
ることができる。
なお、第2レンズ群と第3レンズ群の両方に正レンズを配置し、正レンズの屈折力を大きくすることが好ましい。このようにすることで、像面湾曲の発生量を低減することができる。
また、第2レンズ群又は第3レンズ群は、フォーカスレンズ群を有する。
第2レンズ群又は第3レンズ群においてフォーカスレンズ群を配置すると、広角端付近で、開口絞りの近傍にフォーカスレンズ群が位置することになる。ここで、開口絞りの近傍では光束径が小さくなる。よって、後群の中でレンズ径がより小さくなる場所に、フォーカスレンズ群を配置することができる。その結果、フォーカスレンズ群を小径化することができる。
また、開口絞りよりも物体側に正の屈折力を有するフォーカスレンズ群を配置し、かつ、フォーカシングに際して、フォーカスレンズ群のみが、光軸に沿って移動することが好ましい。このようにすると、開口絞りよりも像側には、フォーカシングの際に移動するレンズ群が存在しない。そのため、開口絞りよりも像側に、所定のスペースを確保する必要がなくなる。その結果、開口絞りよりも像側に位置するレンズ群を小径化することができる。なお、所定のスペースとは、フォーカシングの際にレンズ群が移動するために必要なスペースである。
また、超広画角な光学系では、より広い範囲を撮影することが可能である。このような光学系では、フォーカシングに際して発生する像面湾曲の変動が、結像性能を悪化させる場合ある。特に、メリディオナル面における像面湾曲の変動は、近距離物体合焦時における結像性能を悪化させる場合がある。
前群は、メリディオナル面における像面湾曲を大きく発生させる場合がある。この場合、フォーカシングに際して、前群を通る周辺光線の高さが変動すると、メリディオナル面における像面湾曲の変動も大きくなる。特に、近距離物体合焦時では、前群を通る周辺光線の高さが大きく変動する。
そこで、フォーカスレンズ群を、開口絞りより物体側に配置することが好ましい。このようにすると、フォーカスレンズ群は前群より像側に位置する。ここで、周辺光線の高さは、前群内に比べて前群よりも像側で低くなっている。よって、フォーカスレンズ群では、周辺光線の高さが低くなる。
この場合、フォーカスレンズ群が移動しても、前群を通る周辺光線の高さの変動を小さく抑えることができる。これにより、メリディオナル面における像面湾曲の変動も抑えることができる。その結果、近距離物体へのフォーカシングに際しても、光学系の結像性能を高く維持することができる。
また、フォーカスの感度は、フォーカスレンズ群の倍率と所定のレンズ群の倍率とに影響される。ここで、所定のレンズ群は、フォーカスレンズ群の像側面から像面までの間に位置するレンズ群である。そこで、開口絞りよりも物体側にフォーカスレンズ群を配置し、所定のレンズ群の倍率を適切に設定することによって、フォーカスの感度を高めることができる。その結果、フォーカスレンズ群の移動量を少なくすることができる。
また、フォーカスレンズ群の移動量を少なくできるので、フォーカシングの際に、前群における周辺光線の高さの変動を少なくすることができる。そのため、メリディオナル面における像面湾曲の変動を抑えることができる。この結果、近距離物体合焦時においても、光学系の結像性能を高く維持することができる。
その結果、近距離物体へのフォーカシングに際しても、良好な光学性能を維持することができる。また、フォーカスレンズ群の小型化と軽量化が実現できる。これにより、フォーカススピードの高速化と、フォーカスレンズ群の駆動機構の軽量化と少スペース化ができる。
なお、開口絞りの近くでは、軸上光線と周辺光線との分離量が少ない。そこで、開口絞りの近くにフォーカスレンズ群を配置することが好ましい。この位置では、軸上光束の光束径が大きくなっている。軸上光束の光束径が大きいと、より効果的にフォーカスレンズ群の倍率を高めることができる。
このように、開口絞りの近くにフォーカスレンズ群を配置すると、より効果的にフォーカスレンズ群の倍率を高められる箇所、すなわち、軸上光束が太い箇所でフォーカスできる。そのため、この位置でフォーカシングすることで、フォーカスの感度を高めつつ、前群における周辺光線の高さの変動を少なくすることができる。
次に、本実施形態における好ましい態様について説明する。
第1実施形態のズームレンズは、上述の基本構成を備えると共に、以下の条件式(1)、(2)を満足することが好ましい。
72<νdFnmax<110 (1)
−1.45<FBw/fF<−0.3 (2)
ここで、
νdFnmaxは、前群に含まれる負の屈折力を有するレンズのアッベ数のうち、最大となるアッベ数、
FBwは、広角端におけるバックフォーカス、
Fは、前群の焦点距離、
である。
条件式(1)の下限値を上回ることで、前群で発生する倍率色収差の発生量を低減することができる。また、条件式(1)上限値を下回ることで、硝材の選択の自由度を広く確保することができる。
条件式(2)の下限値を上回ることで、広角端におけるバックフォーカスを短くすることができる。その結果、光学系を小型化することができる。また、前群の屈折力が大きくなりすぎることを抑制できるので、像面湾曲と非点収差の発生量を低減することができる。
また、条件式(2)上限値を下回ることで、前群の屈折力を適切に設定することができる。その結果、光学系を小径化することができる。
第2実施形態のズームレンズは、上述の基本構成を備えると共に、以下の条件式(1)、(4−1)を満足することが好ましい。
72<νdFnmax<110 (1)
1.2<fRw/FBw<5 (4−1)
ここで、
νdFnmaxは、前群に含まれる負の屈折力を有するレンズのアッベ数のうち、最大となるアッベ数、
Rwは、広角端における後群の焦点距離、
FBwは、広角端におけるバックフォーカス、
である。
条件式(1)の技術的意義は上述したので、説明は省略する。
第3実施形態のズームレンズは、上述の基本構成を備えると共に、以下の条件式(1)、(2−1)及び(3−3)を満足することが好ましい。
72<νdFnmax<110 (1)
−1.8<fw×Fnowmin/fF<−0.5 (3−3)
ここで、
νdFnmaxは、前群に含まれる負の屈折力を有するレンズのアッベ数のうち、最大となるアッベ数、
Fは、前群の焦点距離、
wは、広角端におけるズームレンズ全系の焦点距離、
Fnowminは、広角端におけるFナンバーのうち、最小となるFナンバー、
である。
条件式(1)の技術的意義は上述したので、説明は省略する。
条件式(3−3)の下限値を上回ることで、小径かつFナンバーが小さいズームレンズでありながら、画角を超広画角にすることが可能となる。また、条件式(3−3)の上限値を下回ることで、前群を小径化することができる。
第4実施形態のズームレンズは、上述の基本構成を備えると共に、以下の条件式(16)を満足することが好ましい。
2.6<f3/fF<15 (16)
ここで、
3は、第3レンズ群の焦点距離、
Fは、前群の焦点距離、
である。
条件式(16)の下限値を上回ることで、第3レンズ群の負の屈折力を、強めることができる。その結果、前群で発生し得る負のディストーションを良好に低減することができる。また、条件式(16)の上限値を下回ることで、周辺光線が跳ね上がることを抑制し、第4レンズ群を小径化することができる。その結果、ズームレンズ全体を小型化することができる。
第5実施形態のズームレンズは、上述の基本構成を備えると共に、以下の条件式(17)を満足することが好ましい。
−25<f3/fw<−4 (17)
ここで、
3は、第3レンズ群の焦点距離、
wは、広角端における前記ズームレンズ全系の焦点距離、
である。
条件式(17)の下限値を上回ることで、第3レンズ群の負の屈折力を、強めることができる。その結果、前群で発生し得る負のディストーションを良好に低減することができる。また、条件式(17)の上限値を下回ることで、周辺光線が跳ね上がることを抑制し、第4レンズ群を小径化することができる。その結果、ズームレンズ全体を小型化することができる。
第1〜第5実施形態のズームレンズにおける好ましい態様について説明する。以下の説明では、第1〜第5実施形態のズームレンズを、単に「本実施形態のズームレンズ」という。
本実施形態のズームレンズでは、前群は、更に、負の屈折力を有する第4のレンズを含むことが好ましい。
このようにすることで、前群内での球面収差を良好に補正でき、また、変倍時の球面収差の変動を抑えることができる。その結果、変倍域の全域で良好な光学性能が得られる。また、像面湾曲、非点収差及び倍率色収差の発生を抑制しながら、前群の屈折力を大きくすることができる。この結果、入射瞳がより物体側に位置するため、前群を小径化することができる。なお、前群は、更に、負の屈折力を有するレンズを含んでいても良い。このようにすることで、上述の効果をより大きくすることができる。
また、負の屈折力を有するレンズは、正の屈折力を有するレンズの近傍に配置されることが好ましい。例えば、第4のレンズは第3のレンズの近傍に配置されることが好ましい。このようにすることで、上述の効果をより大きくすることができる。
また、本実施形態のズームレンズでは、前群は、更に、負の屈折力を有する第4のレンズを含み、第4のレンズの形状はメニスカス形状であることが好ましい。
このようにすることで、前群には、メニスカスレンズが3つ配置されることになる。この場合、超広画角で前群に入射してくる光線を、3枚のメニスカスレンズにより、徐々に光線を屈折させることができる。また、各メニスカスレンズでは、レンズへ入射する光線の角度を小さく抑えながら、徐々に光線を屈折させることができる。このため、各メニスカスレンズにおいて、像面湾曲、非点収差及び倍率色収差の発生を抑制することができる。なお、前群は、更に、負メニスカスレンズを含んでいても良い。このようにすることで、上述の効果をより大きくすることができる。
また、本実施形態のズームレンズでは、前群は、更に、負の屈折力を有する第4のレンズを含み、第4のレンズの形状は、物体側に凸面を向けたメニスカス形状であることが好ましい。
このようにすることで、前群には、第1のレンズと第2のレンズ以外に、負メニスカスレンズが配置されることになる。ここで、3つの負メニスカスレンズは、いずれも、物体側に凸面を、すなわち、像側に凹面を向けている。この場合、更に前群の負屈折力を大きくしつつ、急激な光線の屈折を抑制することができる。そのため、像面湾曲と非点収差の発生量を軽減できる。その結果、更なる超広画角化と光学系の小径化が容易になる。なお、前群は、更に、物体側に凸面を向けた負メニスカスレンズを含んでいても良い。このようにすることで、上述の効果をより大きくすることができる。
また、本実施形態のズームレンズでは、第4のレンズは、第2のレンズよりも像側に配置されていることが好ましい。
これにより、像面湾曲、非点収差及び倍率色収差の発生量を低減しながら、前群の屈折力を大きくすることができる。また、入射瞳がより物体側に位置するため、前群を小径化することができる。
また、本実施形態のズームレンズでは、以下の条件式(5)を満足することが好ましい。
1.1<|rF1i/fF|<3 (5)
ここで、
F1iは、第1のレンズの像側面の近軸曲率半径、
Fは、前群の焦点距離、
である。
条件式(5)の下限値を上回ることで、第1のレンズの屈折力が大きくなりすぎることを抑制できる。その結果、像面湾曲、非点収差及び歪曲収差の発生量を低減することができる。また、前群の総厚みを薄くできるので、光学系の全長を短縮することができる。
条件式(5)の上限値を下回ることで、第1のレンズの屈折力が大きくなる。この場合、前群におけるレンズ径が小さくなるので、光学系を小型化することができる。また、像面湾曲と非点収差の発生量を低減しつつ、前群の屈折力を大きくすることができる。
また、本実施形態のズームレンズでは、以下の条件式(6)を満足することが好ましい。
0.53<θgFFn<0.55 (6)
ここで、
θgFFnは、前群に含まれる負の屈折力を有するレンズのうち、アッベ数の値が最も大きいレンズにおける部分分散比であって、θgFFn=(ng−nF)/(nF−nc)で表され、
ng、nF、ncは、それぞれ、アッベ数の値が最も大きいレンズのg線、F線、C線での屈折率、
である。
条件式(6)を満足することで、前群に用いる硝材の選択の自由度を広く確保しつつ、前群内での倍率色収差の発生を抑制することができる。
また、本実施形態のズームレンズでは、以下の条件式(7)を満足することが好ましい。
0.01<θgFFn+0.0016×νd−0.6415<0.054 (7)
ここで、
θgFFnは、前群に含まれる負の屈折力を有するレンズのうち、アッベ数の値が最も大きいレンズにおける部分分散比であって、θgFFn=(ng−nF)/(nF−nc)で表され、
ng、nF、ncは、それぞれ、アッベ数の値が最も大きいレンズのg線、F線、C線での屈折率、
νdは、アッベ数の値が最も大きいレンズのアッベ数、
である。
前群には、主に像面湾曲と非点収差の発生を抑制するために、負の屈折力を有するレンズが複数枚用いられている。ただし、負の屈折力を有するレンズによって、主に軸上色収差、倍率色収差及び球面収差が発生する場合がある。そこで、前群に正の屈折力を有するレンズを配置することで、これらの収差の発生量を低減することが容易になる。その結果、高い光学性能の確保が容易となる。
ここで、前群の負の屈折力を大きくしつつ、色収差を良好に補正するには、正の屈折力を有するレンズの分散が、高分散であることが好ましい。しかしながら、正の屈折力を有するレンズの分散が高分散であると、2次スペクトルが大きく発生する場合がある。そのため、前群の負の屈折力を有するレンズには、2次スペクトルの発生量を低減できる特性を持つ硝材を使うことが、色収差の補正に対して有効となる。
条件式(7)の下限値を上回ることで、前群内で発生する2次スペクトルの量を低減することができる。その結果、軸上色収差と倍率色収差の発生量を低減することができる。
条件式(7)の上限値を下回ることで、前群内で発生する2次スペクトルの量が、補正過剰となることを抑制することができる。その結果、軸上色収差と倍率色収差のバランスをとることが可能となる。
また、本実施形態のズームレンズでは、以下の条件式(8)を満足することが好ましい。
0.06<FBw/LTLw<0.20 (8)
ここで、
FBwは、広角端におけるバックフォーカス、
LTLwは、広角端におけるズームレンズの最も物体側の面から像面までの軸上距離、である。
条件式(8)の下限値を上回ることで、広角端において、バックフォーカスに対して光学系の全長を短くすることができる。その結果、光学系の全長を短縮することができる。なお、軸上距離は、近軸上の距離である。
条件式(8)の上限値を下回ることで、広角端において、光学系の全長に対してバックフォーカスを短くすることができる。その結果、光学系の全長を短縮することができる。また、光学系内に光学素子を配置する場合に、光学素子を配置するスペースを十分に確保することが可能となる。そのため、変倍域の全域で、高い光学性能を確保し易くなる。
また、本実施形態のズームレンズでは、以下の条件式(9)を満足することが好ましい。
1.9<SPF1<9.0 (9)
ここで、
SPF1=(rF1o+rF1i)/(rF1o−rF1i
F1oは、第1のレンズの物体側面の近軸曲率半径、
F1iは、第1のレンズの像側面の近軸曲率半径、
である。
条件式(9)の下限値を上回ることで、第1のレンズにおいて、物体側面と像側面との曲率差が大きくなりすぎることを抑制できる。その結果、非点収差の発生量を低減することができる。
条件式(9)の上限値を下回ることで、第1のレンズにおいて、物体側面と像側面の曲率差が小さくなりすぎることを抑制できる。この場合、第1のレンズにおいて適切な大きさの屈折力を確保できるので、後群へ入射する光線の高さを低くできる。その結果、後群のレンズ径を小さくすることができる。また、前群の負の屈折力をある程度小さくできるので、物体側面の面頂が物体側に位置することを抑制できる。その結果、光学系の全長を短くするとともに、光学系を小径化することができる。
また、本実施形態のズームレンズでは、前群中のレンズであって、物体側に凸面を向けたメニスカス形状のレンズのうち、少なくとも一つのレンズは、以下の条件式(10−1)を満足する非球面を有することが好ましい。
30°<ASPRθ<75° (10−1)
ここで、
ASPRθは、少なくとも1つのレンズの像側の面の所定の位置における面の傾き、
所定の位置は、少なくとも1つのレンズにおいて有効口径が最大となる位置、
面の傾きは、所定の位置における面の接線と光軸とが交わる角度、
である。
条件式(10−1)の下限値を上回ることで、非点収差と歪曲収差の発生量を低減することができる。条件式(10−1)の上限値を下回ることで、倍率色収差の発生量を低減することができる。
また、本実施形態のズームレンズでは、変倍に際して、前群は移動することが好ましい。
これにより、像面湾曲の発生量を変倍域の全域で低減することができる。
また、本実施形態のズームレンズでは、第2レンズ群、又は、第3レンズ群は、手ぶれ低減レンズユニットを有し、手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することが好ましい。
手ぶれによって、像ぶれが生じる。そこで、手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることで、像ぶれの補正を行う。このようにすることで、手ぶれ低減レンズユニットの倍率を高めることができる。すなわち、手ぶれ低減レンズユニットの移動量に対して、像の移動量をより大きくすることができる。この結果、手ぶれ低減の感度を高めることができる。
また、第2レンズ群は、手ぶれ低減レンズユニットを有し、手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することが好ましい。
上述のように、前群が負の屈折力を有している。そこで、前群の像側に手ぶれ低減ユニットを配置し、手ぶれ低減レンズユニットを有する第2群に正の屈折力を持たせている。この結果、よりいっそう手ぶれ低減の感度を高めることができる。
また、第2レンズ群は、手ぶれ低減レンズユニットであり、手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することが好ましい。
これにより、手ぶれ低減レンズユニット内でのチルト誤差の発生を低減し、より安定した性能を確保することができる。
また、第3レンズ群は、手ぶれ低減レンズユニットを有し、手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することが好ましい。
また、第3レンズ群は、手ぶれ低減レンズユニットであり、手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することが好ましい。
これにより、手ぶれ低減レンズユニット内でのチルト誤差の発生を低減し、より安定した性能を確保することができる。
また、本実施形態のズームレンズでは、手ぶれ低減レンズユニットは、フォーカスレンズ群よりも像側に配置されていることが好ましい。
手ぶれ低減レンズユニットは、より高速で移動できる方が好ましい。また、移動範囲も狭いほうが好ましい。そのためには、手ぶれ低減レンズユニットの径は、できるだけ小さいことが望ましい。すなわち、光束がより細くなっている位置にあるレンズ(レンズユニット)を、手ぶれ低減レンズユニットとすることが望ましい。
フォーカスレンズ群から出射した光束は、開口絞りを通過する。よって、フォーカスレンズ群よりも像側では、光束径が小さくなっている。そこで、ここに手ぶれ低減レンズユニットを配置することで、手ぶれ低減レンズユニットの径を小さくすることができる。その結果、より良好に像ぶれの低減が行える。
また、本実施形態のズームレンズでは、手ぶれ低減レンズユニットは、負の屈折力を有することが好ましい。
これにより、手ぶれ低減レンズユニットが、より光束が細くなった部分に位置することとなる。その結果、手ぶれ低減レンズユニットの径や移動範囲を少なくできる。
また、本実施形態のズームレンズでは、以下の条件式(11)を満足することが好ましい。
−25<DTLw<7 (11)
ここで、
DTLwは、広角端における最大画角でのディストーションであって、DTLw=(IHw1−IHw2)/IHw2×100(%)で表され、
IHw1は、無限物点からの広角端での最大画角が像面に結像する実像高、
IHw2は、無限物点からの広角端での最大画角が像面の結像する近軸像高、
である。
ディストーションの発生量を適切に設定することで、前群の屈折力を大きくして超広画角化と光学系の全長の短縮を図りつつ、光学系を小径化することができる。
条件式(11)の下限値を上回ることで、樽型ディストーションの発生量を低減することができる。その結果、パースペクティブ効果を強めることができる。また、電気的にディストーションを補正した場合、画像周辺部の画像が大きく引き伸ばされることにより画像が劣化することがあるが、この劣化を抑制することができる。
条件式(11)の上限値を下回ることで、前群を小径化することができる。その結果、光学系を小型化することができる。
また、本実施形態のズームレンズは、所定のレンズ群を有し、所定のレンズ群は、フォーカスレンズ群の像側面から像面までの間に位置するレンズ群であって、以下の条件式(12−1)を満足することが好ましい。
−0.40<|MGfob 2×(MGfo 2−1)|<3.0 (12−1)
ここで、
MGfoは、任意の位置でのフォーカスレンズ群の横倍率、
MGfobは、任意の位置と同位置での、所定のレンズ群の横倍率、
である。
条件式(12−1)の下限値を上回ることで、フォーカスレンズ群の移動量を少なくすることができる。その結果、光学系の全長を短縮することができる。条件式(12−1)の上限値を下回ることで、フォーカスレンズ群の位置制御が容易にできる。その結果、正確な合焦をすることができる。
また、本実施形態のズームレンズでは、以下の条件式(13)を満足することが好ましい。
−2.0<fF/(fw×ft1/2<−1.0 (13)
Fは、前群の焦点距離、
wは、広角端におけるズームレンズ全系の焦点距離、
tは、望遠端におけるズームレンズ全系の焦点距離、
である。
条件式(13)は、前群の焦点距離と広角端および望遠端の焦点距離の積との比に関するものである。
条件式(13)の下限値を上回ることで、前群の屈折力が大きくなりすぎることを抑制することができる。その結果、広角端における非点収差と倍率色収差の発生量を低減することができる。
条件式(13)の上限値を下回ることで、前群の屈折力を適度に大きくすることができるので、入射瞳をより物体側に位置させることができる。その結果、前群を小径化することができる。
また、本実施形態のズームレンズでは、以下の条件式(14−1)を満足することが好ましい。
1.5<SPF2<7 (14−1)
ここで、
SPF2=(rF2o+rF2i)/(rF2o−rF2i
F2oは、第2のレンズの物体側面の近軸曲率半径、
F2iは、第2のレンズの像側面の近軸曲率半径、
である。
条件式(14−1)の下限値を上回ることで、広角端において、バックフォーカスに対して光学系の全長を短くすることができる。その結果、光学系の全長を短縮することができる。
条件式(14−1)の上限値を下回ることで、広角端において、光学系の全長に対してバックフォーカスを短くすることができる。その結果、光学系の全長を短縮することができる。また、光学系内に光学素子を配置する場合に、光学素子を配置するスペースを十分に確保することが容易になる。そのため、変倍域全域における光学性能を良好にすることができる。
第2レンズ群は、フォーカスレンズ群を有することが好ましい。
第3レンズ群は、フォーカスレンズ群を有することが好ましい。
開口絞りは、第2レンズ群と、第3レンズ群と、の間に配置されていることが好ましい。第2レンズ群は、正の屈折力を有するため、収束光を開口絞り位置に入射させることができる。この結果、開口絞りを小型化することができるため、ズームレンズ全体も小型化することができる。
また、本実施形態のズームレンズでは、以下の条件式(15)を満足することが好ましい。
0.5<SPF4<6.0 (15)
ここで、
SPF4=(rF4o+rF4i)/(rF4o-rF4i
F4oは、第4のレンズの物体側面の近軸曲率半径、
F4iは、第4のレンズの像側面の近軸曲率半径、
である。
条件式(15)の下限値を上回ることで、広角端において、バックフォーカスに対して光学系の全長を短くすることができる。その結果、光学系の全長を更に短縮することができる。
条件式(15)の上限値を下回ることで、広角端において、光学系の全長に対してバックフォーカスを短くすることができる。その結果、光学系の全長を更に短縮することができる。また、光学系内に光学素子を配置する場合に、光学素子を配置するスペースを十分に確保することが容易になる。そのため、変倍域全域における光学性能を良好にすることができる。
また、本実施形態のズームレンズでは、フォーカスレンズ群は、後群の最も物体側に配置されていることが好ましい。
後群は開口絞りを有しているので、周辺光線の高さは、前群内に比べて開口絞りの位置で低くなっている。そこで、フォーカスレンズ群を後群の最も物体側に配置することで、フォーカスレンズ群では、周辺光線の高さが低くなる。
この場合、フォーカスレンズ群が移動しても、前群を通る周辺光線の高さの変動を小さく抑えることができる。これにより、メリディオナル面における像面湾曲の変動も抑えることができる。その結果、近距離物体へのフォーカシングに際しても、光学系の結像性能を高く維持することができる。
また、本実施形態のズームレンズでは、最も像側に位置するレンズ群は正の屈折力を有することが好ましい。
超広画角化、光学系の小型化及び光学系の小径化のためには、前群の屈折力を大きくすることが必要であるが、前群の屈折力を大きくすると、前群で大きな正の像面湾曲が生じる。そこで、最も像側に正の屈折力を有するレンズ群を配置することで、前群で発生する大きな正の像面湾曲を、容易に補正することができる。その結果、変倍域の全域で像面湾曲が良好に補正された状態を確保できる。
また、本実施形態のズームレンズでは、前群は、第1レンズ群からなり、広角端から望遠端への変倍に際して、第1レンズ群は、一体となって移動することが好ましい。
このようにすることで、前群内に、変倍に必要なスペースを設ける必要がない。そのため、前群を小型化することができる。
移動方向や移動量が各レンズで異なると、場合によっては、レンズの移動に必要なスペースを余分に設ける必要が生じる。その結果、前群の全長が変化することがある。これに対して、前群が一体となって移動すると、前群内の全てのレンズが、同じ方向に、同じ量だけ移動する。この場合、前群の全長は変化しない。よって、このようにすることで、前群を小型化することができる。
また、本実施形態のズームレンズでは、前群は、第1レンズ群からなり、後群は、第2レンズ群と、第3レンズ群と、第4レンズ群と、からなり、広角端から望遠端への変倍に際して、各レンズ群の間隔は変化することが好ましい。
このようにすることで、少ないレンズ群で、光学系の小型化と軽量化が十分になされ、かつ、Fナンバーに比べて十分に広い画角を持ちながらも諸収差が十分に低減されたズームレンズを実現することができる。
また、本実施形態のズームレンズでは、以下のようにすることが好ましい。
前群は、負の屈折力を有する4枚のレンズと、正の屈折力を有する1枚のレンズからなることが好ましい。
前群は、物体側から像側に順に、負の屈折力を有し、かつ、物体側に凸面を向けたメニスカス形状の2枚のレンズと、負の屈折力を有する1枚のレンズと、2枚のレンズと、からなることが好ましい。
前群は、物体側から像側に順に、負の屈折力を有し、かつ、物体側に凸面を向けたメニスカス形状の3枚のレンズと、両凹負レンズと、正の屈折力を有し、かつ、物体側面が物体側に凸面を向けたレンズと、からなることが好ましい。
第4レンズ群は、接合レンズを2つ備えることが好ましい。
第4レンズ群は、物体側から像側に順に、正の屈折力を有するレンズと、負の屈折力を有するレンズと正の屈折力を有するレンズとからなる接合レンズと、正の屈折力を有するレンズと、負の屈折力を有するレンズと、正の屈折力を有するレンズと、を有することが好ましい。
第4レンズ群は、物体側から像側に順に、正の屈折力を有し、かつ、物体側面が物体側に凸面を向けたレンズと、負の屈折力を有し、かつ、物体側に凸面を向けたメニスカス形状のレンズと、両凸正レンズと、両凸正レンズと、両凹負レンズと、正の屈折力を有し、かつ、物体側面が物体側に凸面を向けたレンズと、を有することが好ましい。
広角端から望遠端への変倍に際して、前群は、像側に移動することが好ましい。
広角端から望遠端への変倍に際して、第1のサブレンズユニットは、物体側に移動することが好ましい。
広角端から望遠端への変倍に際して、第2のサブレンズユニットは、物体側に移動することが好ましい。
広角端から望遠端への変倍に際して、第4レンズ群は、物体側に移動することが好ましい。
また、本実施形態の撮像装置は、上述のズームレンズと、撮像面を持ち且つズームレンズにより撮像面上に形成された像を電気信号に変換する撮像素子と、を有することを特徴とする。
このようにすることで、超広画角、小型でありながら、画質を劣化させずに高解像の画像を得るのに有利な撮像装置とすることが可能となる。
また、上述の構成は相互に複数を同時に満足することがより好ましい。また、一部の構成を同時に満足するようにしてもよい。例えば、上述のズームレンズや撮像装置の何れかにて上述のズームレンズの何れかを用いるようにしてもよい。
また、条件式については、それぞれの条件式を個別に満足させるようにしても良い。このようにすると、それぞれの効果を得やすくなるので好ましい。
また、各条件式について、以下のように下限値、または上限値を変更しても良い、このようにすることで、各条件式の効果を一層確実にできるので好ましい。
条件式(1)については、以下のようにすることが好ましい。
74<νdFnmax<110
80<νdFnmax<100
条件式(2)については、以下のようにすることが好ましい。
−1.40<FBw/fF<−0.4
−1.35<FBw/fF<−0.6
条件式(2−1)については、以下のようにすることが好ましい。
−1.50<FBw/fF<−0.5
−1.40<FBw/fF<−0.6
条件式(3−3)については、以下のようにすることが好ましい。
−1.77<fw×Fnowmin/fF<−0.8
−1.75<fw×Fnowmin/fF<−1.2
−2.00<fw×Fnowmin/f<−1.0
−1.80<fw×Fnowmin/f<−1.2
条件式(4−1)については、以下のようにすることが好ましい。
1.35<fRw/FBw<3.5
1.45<fRw/FBw<3.0
条件式(5)については、以下のようにすることが好ましい。
1.2<|rF1i/fF|<2.5
1.3<|rF1i/fF|<2.4
条件式(7)については、以下のようにすることが好ましい。
0.015<θgFFn+0.0016×νd−0.6415<0.048
0.025<θgFFn+0.0016×νd−0.6415<0.046
条件式(8)については、以下のようにすることが好ましい。
0.07<FBw/LTLw<0.18
0.08<FBw/LTLw<0.16
条件式(9)については、以下のようにすることが好ましい。
2.2<SPF1<6.5
2.3<SPF1<8.7
2.5<SPF1<5.3
2.6<SPF1<8.5
条件式(10−1)については、以下のようにすることが好ましい。
33°<ASPRθ<72°

35°<ASPRθ<68°
条件式(11)については、以下のようにすることが好ましい。
−23<DTLw<6
−20<DTLw<5
条件式(12−1)については、以下のようにすることが好ましい。
−0.30<|MGfob 2×(MGfo 2−1)|<2.0
−0.20<|MGfob 2×(MGfo 2−1)|<1.2
条件式(13)については、以下のようにすることが好ましい。
−1.9<fF/(fw×ft1/2<−1.1
−1.8<fF/(fw×ft1/2<−1.2
条件式(14−1)については、以下のようにすることが好ましい。
1.7<SPF2<5.5
1.8<SPF2<5.8
1.9<SPF2<5.5
条件式(15)については、以下のようにすることが好ましい。
0.9<SPF4<5.0
1.0<SPF4<4.0
条件式(16)については、以下のようにすることが好ましい。
2.8<f3/fF<13
3.2<f3/fF<11
条件式(17)については、以下のようにすることが好ましい。
−20<f3/fw<−5.5
−17<f3/fw<−6.0
以下に、本発明に係る撮像装置に用いられるズームレンズの実施例を、図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
各実施例では、広角側で発生する樽型の歪曲収差を電気的に補正したうえで画像の記録や表示を行っている。本実施例のズームレンズでは、矩形の光電変換面上に像が形成される。ここで、広角端では、樽型の歪曲収差が発生する。一方、中間焦点距離状態付近や望遠端では、歪曲収差の発生が抑えられている。
この歪曲収差を電気的に補正するために、広角端では樽型形状となり、中間焦点距離状態や望遠端では矩形の形状となるように、有効撮像領域を設定している。そして、あらかじめ設定した有効撮像領域内の画像情報を画像処理により画像変換し、歪みを低減させた矩形の画像情報に変換する。
本実施例のズームレンズでは、広角端での最大像高は、中間焦点距離状態での最大像や望遠端での最大像高よりも小さくなるようにしている。
以下、ズームレンズの実施例1〜6について説明する。実施例1〜6のレンズ断面図を、それぞれ図1〜図6に示す。図中、(a)は、広角端におけるレンズ断面図、(b)は、中間焦点距離状態におけるレンズ断面図、(c)は、望遠端におけるレンズ断面図である。なお、(a)〜(c)は、いずれも、無限遠物体合焦時のレンズ断面図である。
また、第1レンズ群はG1、第2レンズ群はG2、第3レンズ群はG3、第4レンズ群はG4、第5レンズ群はG5、第6レンズ群はG6、フォーカスレンズ群はGfo、開口絞り(明るさ絞り)はS、像面(撮像面)はIで示してある。また、フォーカスの際に移動するレンズ群をF、手ぶれ補正の際に移動するレンズをWで示している。
なお、最も像側に位置するレンズ群と像面Iとの間に、ローパスフィルタを構成する平行平板や、電子撮像素子のカバーガラスを配置しても良い。この場合、平行平板の表面に、赤外光を制限する波長域制限コートを施しても良い。また、カバーガラスの表面に波長域制限用の多層膜を施してもよい。また、そのカバーガラスにローパスフィルタ作用を持たせるようにしてもよい。
実施例1のズームレンズは、図1に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。正屈折力のフォーカスレンズ群Gfoを有する。フォーカスレンズ群Gfoは、開口絞りSよりも物体側に位置している。
より具体的には、ズームレンズは、物体側から順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、負屈折力の第3レンズ群G3と、正屈折力の第4レンズ群G4と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凹負レンズL4と、両凸正レンズL5と、で構成されている。
第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL6と、両凸正レンズL7と、で構成されている。ここで、負メニスカスレンズL6と両凸正レンズL7とが接合されている。
第3レンズ群G3は、両凸正レンズL8と、両凹負レンズL9と、像側に凸面を向けた正メニスカスレンズL10と、像側に凸面を向けた負メニスカスレンズL11と、で構成されている。
第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた負メニスカスレンズL13と、両凸正レンズL14と、両凸正レンズL15と、両凹負レンズL16と、物体側に凸面を向けた正メニスカスレンズL17と、で構成されている。ここで、負メニスカスレンズL13と両凸正レンズL14とが接合されている。また、両凹負レンズL16と正メニスカスレンズL17とが接合されている。
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動する。第2レンズ群G2は物体側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。開口絞りSは、第3レンズ群G3と共に物体側に移動する。
フォーカシング時、第2レンズ群G2が光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第2レンズ群G2が像側に移動する。手ぶれ補正時、第3レンズ群G3の両凸正レンズL8が光軸と直交する方向に移動する。
非球面は、負メニスカスレンズL2の両面と、負メニスカスレンズL3の両面と、正メニスカスレンズL17の像側面との、合計5面に設けられている。
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4で構成されている。フォーカスレンズ群Gfoは、第2レンズ群G2で構成されている。
実施例2のズームレンズは、図2に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、正屈折力のフォーカスレンズ群Gfoを有する。フォーカスレンズ群Gfoは、開口絞りSよりも物体側に位置している。
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、負屈折力の第3レンズ群G3と、正屈折力の第4レンズ群G4と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凹負レンズL4と、物体側に凸面を向けた正メニスカスレンズL5と、で構成されている。
第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL6と、両凸正レンズL7と、で構成されている。ここで、負メニスカスレンズL6と両凸正レンズL7とが接合されている。
第3レンズ群G3は、像側に凸面を向けた正メニスカスレンズL8と、両凹負レンズL9と、両凸正レンズL10と、像側に凸面を向けた負メニスカスレンズL11と、で構成されている。
第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた負メニスカスレンズL13と、両凸正レンズL14と、両凸正レンズL15と、両凹負レンズL16と、両凸正レンズL17と、像側に凸面を向けた負メニスカスレンズL18と、で構成されている。ここで、負メニスカスレンズL13と両凸正レンズL14とが接合されている。また、両凹負レンズL16と両凸正レンズL17とが接合されている。
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動する。第2レンズ群G2は像側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。開口絞りSは、第3レンズ群G3と共に物体側に移動する。
フォーカシング時、第2レンズ群G2が光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第2レンズ群G2が像側に移動する。
非球面は、負メニスカスレンズL2の両面と、正メニスカスレンズL12の両面と、負メニスカスレンズL18の像側面との、合計5面に設けられている。
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4で構成されている。第1のレンズユニットLU1は、第2レンズ群G2と、第3レンズ群G3と、で構成されている。フォーカスレンズ群Gfoは、第2レンズ群G2で構成されている。
実施例3のズームレンズは、図3に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、正屈折力のフォーカスレンズ群Gfoを有する。フォーカスレンズ群Gfoは、開口絞りSよりも物体側に位置している。
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、負屈折力の第3レンズ群G3と、正屈折力の第4レンズ群G4と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凹負レンズL3と、物体側に凸面を向けた正メニスカスレンズL4と、で構成されている。
第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL5で構成されている。
第3レンズ群G3は、両凹負レンズL6と、両凸正レンズL7と、像側に凸面を向けた負メニスカスレンズL8と、で構成されている。
第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL9と、物体側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、両凸正レンズL12と、両凹負レンズL13と、両凸正レンズL14と、像側に凸面を向けた負メニスカスレンズL15と、で構成されている。ここで、負メニスカスレンズL10と両凸正レンズL11とが接合されている。また、両凹負レンズL13、両凸正レンズL14及び負メニスカスレンズL15が接合されている。
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動する。第2レンズ群G2は像側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。開口絞りSは、第3レンズ群G3と共に物体側に移動する。
フォーカシング時、第2レンズ群G2が光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第2レンズ群G2が像側に移動する。手ぶれ補正時、第3レンズ群G3が光軸と直交する方向に移動する。
非球面は、負メニスカスレンズL2の両面と、正メニスカスレンズL5の両面と、正メニスカスレンズL9の両面と、負メニスカスレンズL15の像側面との、合計7面に設けられている。
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4で構成されている。フォーカスレンズ群Gfoは、第2レンズ群G2で構成されている。
実施例4のズームレンズは、図4に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、正屈折力のフォーカスレンズ群Gfoを有する。フォーカスレンズ群Gfoは、開口絞りSよりも物体側に位置している。
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、負屈折力の第3レンズ群G3と、正屈折力の第4レンズ群G4と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凹負レンズL4と、両凸正レンズL5と、で構成されている。
第2レンズ群G2は、両凸正レンズL6と、物体側に凸面を向けた負メニスカスレンズL7と、物体側に凸面を向けた正メニスカスレンズL8と、で構成されている。ここで、負メニスカスレンズL7と正メニスカスレンズL8とが接合されている。
第3レンズ群G3は、像側に凸面を向けた正メニスカスレンズL9と、両凹負レンズL10と、両凸正レンズL11と、両凹負レンズL12と、で構成されている。
第4レンズ群G4は、両凸正レンズL13と、物体側に凸面を向けた負メニスカスレンズL14と、両凸正レンズL15と、両凸正レンズL16と、両凹負レンズL17と、両凸正レンズL18と、両凹負レンズL19と、で構成されている。ここで、負メニスカスレンズL14と両凸正レンズL15とが接合されている。また、両凹負レンズL17と両凸正レンズL18とが接合されている。
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動する。第2レンズ群G2は物体側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。開口絞りSは、第3レンズ群G3と共に物体側に移動する。
フォーカシング時、第2レンズ群G2の両凸正レンズL6が光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第2レンズ群G2の両凸正レンズL6が像側に移動する。手ぶれ補正時、第2レンズ群G2の負メニスカスレンズL7と正メニスカスレンズL8とが光軸と直交する方向に移動する。
非球面は、負メニスカスレンズL2の両面と、負メニスカスレンズL3の両面と、両凸正レンズL6の像側面と、両凸正レンズL13の両面と、両凹負レンズL19の像側面との、合計8面に設けられている。
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4で構成されている。フォーカスレンズ群Gfoは、第2レンズ群G2で構成されている。
実施例5のズームレンズは、図5に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、正屈折力のフォーカスレンズ群Gfoを有する。フォーカスレンズ群Gfoは、開口絞りSよりも像側に位置している。
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、負屈折力の第3レンズ群G3と、正屈折力の第4レンズ群G4と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凹負レンズL4と、両凸正レンズL5と、で構成されている。
第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL6と、両凸正レンズL7と、で構成されている。ここで、負メニスカスレンズL6と両凸正レンズL7とが接合されている。
第3レンズ群G3は、両凸正レンズL8と、両凹負レンズL9と、両凸正レンズL10と、両凹負レンズL11と、で構成されている。
第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた負メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14と、両凸正レンズL15と、両凹負レンズL16と、両凸正レンズL17と、像側に凸面を向けた負メニスカスレンズL18と、で構成されている。ここで、負メニスカスレンズL13と正メニスカスレンズL14とが接合されている。また、両凹負レンズL16と両凸正レンズL17とが接合されている。
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動する。第2レンズ群G2は物体側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。開口絞りSは、第2レンズ群G2と共に物体側に移動する。
合焦時、第3レンズ群G3が光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第3レンズ群G3が物体側に移動する。また、手ぶれ補正時、第2レンズ群G2が光軸と直交する方向に移動する。
非球面は、負メニスカスレンズL2の両面と、正メニスカスレンズL12の両面と、負メニスカスレンズL18の像側面との、合計5面に設けられている。
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4で構成されている。フォーカスレンズ群Gfoは、第3レンズ群G3で構成されている。
実施例6のズームレンズは、図6に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、正屈折力のフォーカスレンズ群Gfoを有する。フォーカスレンズ群Gfoは、開口絞りSよりも像側に位置している。
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、負屈折力の第3レンズ群G3と、正屈折力の第4レンズ群G4と、負屈折力の第5レンズ群G5と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凹負レンズL4と、両凸正レンズL5と、で構成されている。
第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL6と、両凸正レンズL7と、で構成されている。ここで、負メニスカスレンズL6と両凸正レンズL7とが接合されている。
第3レンズ群G3は、両凸正レンズL8と、両凸正レンズL9と、両凹負レンズL10と、で構成されている。
第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、両凸正レンズL13と、両凸正レンズL14と、で構成されている。ここで、負メニスカスレンズL12と両凸正レンズL13とが接合されている。
第5レンズ群G5は、両凹負レンズL15と、両凸正レンズL16と、で構成されている。ここで、両凹負レンズL15と両凸正レンズL16とが接合されている。
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動する。第2レンズ群G2は物体側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。第5レンズ群G5は物体側に移動する。開口絞りSは、第3レンズ群G3と共に物体側に移動する。
合焦時、第3レンズ群G3の両凸正レンズL8が光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第3レンズ群G3の両凸正レンズL8が物体側に移動する。また、手ぶれ補正時、第3レンズ群G3の両凸正レンズL9と両凹負レンズL10とが光軸と直交する方向に移動する。
非球面は、負メニスカスレンズL2の両面と、負メニスカスレンズL3の像側面と、両凸正レンズL16の像側面との、合計4面に設けられている。
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5で構成されている。フォーカスレンズ群Gfoは、第3レンズ群G3の両凸正レンズL8で構成されている。
以下に、上記各実施例の数値データを示す。記号は上記の外、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、ndは各レンズのd線の屈折率、νdは各レンズのアッベ数、*印は非球面である。また、fは全系の焦点距離、FNO.はFナンバー、ωは半画角、IHは像高、FBはバックフォーカス、全長は、ズームレンズの最も物体側のレンズ面から最も像側のレンズ面までの距離にFB(バックフォーカス)を加えたもの、f1、f2…は各レンズ群の焦点距離である。なお、FBは、レンズ最終面から近軸像面までの距離を空気換算して表したものである。また、広角は広角端、中間は中間焦点距離状態、望遠は望遠端を表している。
また、非球面形状は、光軸方向をz、光軸に直交する方向をyにとり、円錐係数をk、非球面係数をA4、A6、A8、A10としたとき、次の式で表される。
z=(y2/r)/[1+{1−(1+k)(y/r)21/2
+A4y4+A6y6+A8y8+A10y10
また、非球面係数において、「e−n」(nは整数)は、「10-n」を示している。なお、これら諸元値の記号は後述の実施例の数値データにおいても共通である。
数値実施例1
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 40.634 2.50 1.72916 54.68
2 24.500 6.78
3* 20.723 2.80 1.49700 81.54
4* 7.797 11.49
5* 21.833 1.50 1.74320 49.29
6* 11.236 9.01
7 -26.226 1.15 1.69680 55.53
8 36.386 0.10
9 33.087 5.30 1.90366 31.32
10 -45.561 可変
11 21.441 0.70 1.91082 35.25
12 10.376 4.52 1.72047 34.71
13 -411.361 可変
14(絞り) ∞ 1.10
15 27.062 2.95 1.43875 94.93
16 -22.315 1.79
17 -37.733 0.70 2.00069 25.46
18 164.295 0.45
19 -71.871 2.61 1.49700 81.54
20 -12.386 0.21
21 -13.127 0.70 1.91082 35.25
22 -265.826 可変
23 14.849 2.36 1.49700 81.54
24 40.527 0.10
25 17.708 0.70 1.91082 35.25
26 10.257 4.79 1.43875 94.93
27 -158.216 0.72
28 18.186 4.47 1.84666 23.78
29 -26.928 0.10
30 -28.151 0.70 1.91082 35.25
31 10.500 4.01 1.69350 53.18
32* 239.421 可変
像面 ∞

非球面データ
第3面
k=-0.598
A4=-4.50810e-05,A6=4.11017e-09,A8=3.12183e-10,A10=-7.26913e-13,A12=6.17099e-16
第4面
k=-0.783
A4=-1.72282e-05,A6=-4.55398e-07,A8=-2.39031e-09,A10=1.37566e-11,A12=-2.54458e-14
第5面
k=-0.374
A4=-1.57511e-04,A6=1.64162e-07,A8=2.33326e-09,A10=-9.26640e-12,A12=1.11652e-14
第6面
k=-4.577
A4=1.53644e-04,A6=-3.33764e-06,A8=4.53775e-08,A10=-2.85248e-10,A12=8.14436e-13
第32面
k=0.000
A4=1.14461e-04,A6=3.01737e-07,A8=-3.58794e-09,A10=5.26034e-11,A12=-4.61218e-13

ズームデータ
ズーム比 1.92
広角 中間 望遠
f 6.12 8.75 11.76
FNO. 2.88 2.88 2.88
2ω 122.43 106.21 87.52
IH 10.09 11.15 11.15
FB(in air) 14.82 20.20 26.19
全長(in air) 118.73 109.70 107.10

d10 20.36 8.03 1.27
d13 5.10 5.28 4.85
d22 4.15 1.88 0.50
d32 14.82 20.20 26.19

近距離物体合焦時
広角 中間 望遠
d10 21.45 8.86 2.07
d13 4.01 4.45 4.04
d22 4.15 1.88 0.50
d32 14.82 20.20 26.19

各群焦点距離
f1=-11.56 f2=38.41 f3=-43.30 f4=18.64
数値実施例2
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 37.000 2.70 1.72916 54.68
2 23.294 4.61
3* 15.303 3.00 1.49700 81.61
4* 7.040 7.74
5 29.056 1.50 1.77250 49.60
6 13.182 6.86
7 -80.091 1.15 1.49700 81.61
8 43.856 0.15
9 23.035 2.69 1.90366 31.32
10 51.336 可変
11 48.901 0.70 1.91082 35.25
12 18.590 3.75 1.59551 39.24
13 -39.293 可変
14(絞り) ∞ 1.10
15 -130.484 1.97 1.49700 81.61
16 -19.063 0.15
17 -50.921 0.70 1.90366 31.32
18 56.454 0.10
19 30.992 2.00 1.80810 22.76
20 -250.664 1.04
21 -24.263 0.95 1.88300 40.76
22 -143.209 可変
23* 17.086 2.28 1.49700 81.61
24* 40.405 0.15
25 17.368 0.70 1.78590 44.20
26 10.435 5.51 1.49700 81.54
27 -312.041 0.58
28 22.554 5.30 1.49700 81.54
29 -18.597 0.15
30 -50.357 0.70 1.69680 55.53
31 10.500 7.30 1.49700 81.61
32 -17.212 0.00
33 -17.212 1.00 1.58913 61.15
34* -97.678 可変
像面 ∞

非球面データ
第3面
k=-5.713
A4=-1.53844e-05,A6=1.54000e-07,A8=-5.67341e-10,A10=1.06505e-12,A12=-8.31170e-16
第4面
k=-1.609
A4=4.52714e-05,A6=4.84524e-07,A8=-4.37664e-09,A10=1.81465e-11,A12=-4.19363e-14
第23面
k=0.000
A4=8.17540e-05,A6=6.49637e-07,A8=7.35251e-10,A10=1.30349e-11
第24面
k=0.000
A4=1.47109e-04,A6=7.88511e-07,A8=5.65940e-09,A10=-1.38973e-11
第34面
k=0.000
A4=9.13377e-05,A6=6.10520e-07,A8=-9.20991e-09,A10=1.55621e-10,A12=-8.73252e-13

ズームデータ
ズーム比 1.92
広角 中間 望遠
f 7.14 9.90 13.72
FNO. 2.88 2.88 2.88
2ω 114.69 98.26 78.13
IH 10.21 11.15 11.15
FB(in air) 15.35 19.87 25.66
全長(in air) 109.60 101.21 97.51

d10 11.72 5.03 1.35
d13 9.70 6.81 3.48
d22 6.30 2.98 0.50
d34 15.35 19.87 25.66

近距離物体合焦時
広角 中間 望遠
d10 12.87 6.14 2.53
d13 8.55 5.69 2.30
d22 6.30 2.98 0.50
d34 15.35 19.87 25.66

各群焦点距離
f1=-12.29 f2=59.63 f3=-88.78 f4=19.83
数値実施例3
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 36.700 2.70 1.72916 54.68
2 20.150 4.10
3* 14.942 3.00 1.80610 40.88
4* 8.200 10.91
5 -227.722 1.15 1.43700 95.10
6 15.631 4.26
7 19.849 2.50 1.90366 31.32
8 27.152 可変
9* 29.117 3.90 1.59201 67.02
10* 210.150 可変
11(絞り) ∞ 1.30
12 -35.000 0.70 1.90366 31.32
13 737.351 0.70
14 72.356 2.58 1.80810 22.76
15 -21.327 0.10
16 -26.277 0.70 2.00069 25.46
17 -159.667 可変
18* 16.485 3.07 1.49700 81.61
19* 85.137 0.56
20 21.018 0.88 1.80400 46.58
21 11.640 7.60 1.43700 95.10
22 -469.436 1.64
23 19.119 5.65 1.43700 95.10
24 -23.719 0.16
25 -91.441 0.85 1.76200 40.10
26 16.671 4.89 1.43700 95.10
27 -25.734 1.00 1.69350 53.18
28* -48.831 可変
像面 ∞

非球面データ
第3面
k=-0.870
A4=-4.22008e-05,A6=1.06985e-08,A8=1.45621e-10,A10=-2.92798e-13,A12=8.89833e-17
第4面
k=-0.993
A4=-9.91460e-06,A6=-1.95061e-07,A8=4.81517e-10,A10=1.77213e-12,A12=-1.17350e-14
第9面
k=0.000
A4=7.27856e-05,A6=2.56753e-07,A8=3.06925e-09,A10=2.16181e-11
第10面
k=0.000
A4=8.86512e-05,A6=4.41810e-07,A8=2.62029e-09,A10=7.10308e-11
第18面
k=0.000
A4=1.48528e-05,A6=1.33867e-07,A8=-4.05494e-09,A10=8.36545e-11
第19面
k=0.000
A4=5.16313e-05,A6=3.27973e-07,A8=-8.59119e-09,A10=1.30893e-10
第28面
k=0.000
A4=7.70411e-05,A6=2.71596e-07,A8=1.75599e-09,A10=-1.87686e-11,A12=1.80787e-13

ズームデータ
ズーム比 1.65
広角 中間 望遠
f 7.14 9.90 11.77
FNO. 2.88 2.88 2.88
2ω 115.10 98.57 87.37
IH 10.20 11.15 11.15
FB(in air) 14.64 19.13 21.93
全長(in air) 111.80 100.66 97.35

d8 13.83 5.61 3.17
d10 10.90 6.95 5.30
d17 7.52 4.04 2.03
d28 14.64 19.13 21.93

近距離物体合焦時
広角 中間 望遠
d8 14.96 6.81 4.40
d10 9.77 5.76 4.07
d17 7.52 4.04 2.03
d28 14.64 19.13 21.93

各群焦点距離
f1=-12.89 f2=56.64 f3=-110.20 f4=22.22
数値実施例4
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 33.425 3.00 1.72916 54.68
2 26.306 7.50
3* 17.448 2.85 1.49700 81.61
4* 7.561 13.70
5* 21.729 1.50 1.49700 81.61
6* 12.893 5.57
7 -51.538 1.15 1.80400 46.57
8 20.865 1.70
9 27.197 3.69 1.90366 31.32
10 -733.544 可変
11 253.308 2.07 1.61772 49.81
12* -42.589 1.00
13 44.082 0.78 1.75520 27.51
14 12.857 4.04 1.63980 34.46
15 378.385 可変
16(絞り) ∞ 1.10
17 -58.439 1.82 1.49700 81.54
18 -16.206 1.44
19 -21.309 0.70 1.91082 35.25
20 78.965 0.01
21 31.783 2.99 1.84666 23.78
22 -19.176 0.12
23 -17.598 0.70 1.90366 31.32
24 195.353 可変
25* 16.026 2.90 1.49700 81.54
26* -139.738 0.10
27 71.053 0.72 1.83481 42.71
28 15.246 4.42 1.49700 81.61
29 -36.260 0.10
30 36.717 5.50 1.43875 94.93
31 -13.883 0.10
32 -28.774 0.71 1.51823 58.90
33 13.805 5.16 1.49700 81.54
34 -31.841 0.30
35 -39.432 1.01 1.69350 53.18
36* 111.173 可変
像面 ∞

非球面データ
第3面
k=-0.955
A4=-3.79095e-05,A6=-3.24438e-08,A8=2.92944e-10,A10=-4.82184e-13,A12=3.02433e-16
第4面
k=-0.894
A4=3.55903e-05,A6=-1.76440e-07,A8=-2.11083e-09,A10=2.68243e-12,A12=7.63340e-15
第5面
k=-1.557
A4=-1.79704e-04,A6=2.92287e-07,A8=2.35566e-09,A10=-1.03630e-11,A12=1.25767e-14
第6面
k=-6.619
A4=8.04992e-05,A6=-3.19281e-06,A8=4.40368e-08,A10=-2.60172e-10,A12=6.62983e-13
第12面
k=0.000
A4=8.26189e-07,A6=2.20076e-08,A8=1.74523e-11,A10=2.88681e-13
第25面
k=0.000
A4=-3.70907e-05,A6=7.55536e-07,A8=1.28139e-09,A10=9.42729e-11
第26面
k=0.000
A4=6.11474e-05,A6=1.03197e-06,A8=3.75171e-09,A10=1.52568e-10
第36面
k=0.000
A4=8.86652e-05,A6=3.19556e-07,A8=-2.15373e-09,A10=7.25268e-11,A12=-4.18521e-13

ズームデータ
ズーム比 1.92
広角 中間 望遠
f 6.11 8.73 11.73
FNO. 2.88 2.88 2.88
2ω 122.55 105.50 86.83
IH 10.19 11.15 11.15
FB(in air) 14.60 19.60 24.84
全長(in air) 120.73 110.91 107.57

d10 15.55 5.73 1.00
d12 1.00 1.00 1.00
d15 5.76 4.35 2.79
d24 6.37 2.80 0.50
d36 14.60 19.60 24.84

近距離物体合焦時
広角 中間 望遠
d10 16.20 6.44 1.77
d12 0.35 0.29 0.23
d15 5.76 4.35 2.79
d24 6.37 2.80 0.50
d36 14.60 19.60 24.84

各群焦点距離
f1=-11.20 f2=42.56 f3=-62.81 f14=19.30
数値実施例5
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 37.362 2.700 1.72916 54.68
2 23.000 5.579
3* 18.657 3.000 1.69350 53.18
4* 8.746 7.312
5 25.098 1.500 1.83481 42.73
6 13.500 8.125
7 -32.995 1.150 1.43700 95.10
8 38.632 0.150
9 28.275 4.956 1.88300 40.76
10 -193.097 可変
11 31.624 0.700 1.91082 35.25
12 12.969 3.594 1.64769 33.79
13 -133.506 1.500
14(絞り) ∞ 可変
15 101.290 2.592 1.60300 65.44
16 -23.885 0.150
17 -48.621 0.700 1.90366 31.32
18 37.619 0.100
19 30.861 2.000 1.80810 22.76
20 -579.945 0.484
21 -68.856 0.764 1.91082 35.25
22 43.330 可変
23* 15.720 2.968 1.55332 71.68
24* 120.947 0.711
25 18.070 1.000 1.78800 47.37
26 10.300 4.564 1.49700 81.61
27 60.640 0.257
28 23.341 4.348 1.43700 95.10
29 -16.478 0.481
30 -43.048 1.245 1.69350 53.21
31 17.204 4.243 1.43700 95.10
32 -17.826 0.000
33 -17.826 1.000 1.58313 59.38
34* -61.648 可変
像面 ∞

非球面データ
第3面
k=-0.7542
A4=-3.0409e-005,A6=1.3575e-007,A8=-5.0553e-010,A10=1.0318e-012,A12=-9.4843e-016
第4面
k=-0.8734
A4=-1.4228e-005,A6=2.2343e-007,A8=-1.4788e-009,A10=5.7129e-012,A12=-2.2319e-014
第23面
k=0.0000
A4=2.7188e-006,A6=1.9412e-007,A8=1.2265e-009,A10=3.5889e-011,A12=-4.4041e-014
第24面
k=0.0000
A4=5.5623e-005,A6=3.5115e-007,A8=2.6658e-009,A10=4.0641e-011
第34面
k=0.0000
A4=1.1607e-004,A6=5.7905e-007,A8=-3.1882e-009,A10=9.8985e-011,A12=-7.9302e-013

ズームデータ
ズーム比 1.92
広角 中間 望遠
f 7.140 9.900 13.724
FNO. 2.876 2.858 2.880
2ω 114.7 96.8 76.9
IH 10.25 11.11 11.15
FB(in air) 16.070 20.102 25.549
全長(in air) 114.08384 103.11103 98.05480
LU1 4015.66658 18719.1528 -4014.1441

d10 21.767 8.443 1.000
d14 4.660 3.785 2.433
d22 3.713 2.907 1.200
d34 16.070 20.102 25.549

近距離物体合焦時
広角 中間 望遠
物体距離 135.916 146.889 151.945
d10 21.76728 8.44282 1.000
d14 3.599 2.713 1.299
d22 4.774 3.980 2.334

各群焦点距離
f1=-16.01256 f2=74.43324 f3=-60.06540 f4=18.93592
fRw=23.7823
数値実施例6
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 39.821 1.750 1.81600 46.62
2 23.000 10.201
3* 24.848 2.000 1.49700 81.54
4* 8.532 9.584
5 113.233 1.400 1.49700 81.54
6* 26.615 6.852
7 -54.245 1.150 1.91082 35.25
8 49.559 2.580
9 46.316 3.072 2.00069 25.46
10 -164.939 可変
11 23.814 0.500 1.92286 18.90
12 11.718 3.136 1.78472 25.68
13 -534.088 可変
14(絞り) ∞ 1.750
15 29.472 1.851 1.43875 94.93
16 -50.433 3.858
17 116.067 2.500 1.49700 81.54
18 -13.561 0.344
19 -12.586 0.500 1.83481 42.71
20 31.332 可変
21 42.650 1.098 1.84666 23.78
22 34.310 0.100
23 13.565 0.650 1.74000 28.30
24 9.557 3.598 1.43875 94.93
25 -182.982 0.100
26 24.499 2.893 1.80518 25.42
27 -20.831 可変
28 -26.280 0.500 1.85026 32.27
29 10.500 3.934 1.55332 71.68
30* -25.080 可変
像面 ∞

非球面データ
第3面
k=0.0000
A4=8.1667e-006,A6=-2.0226e-007,A8=6.5181e-010,A10=-6.7600e-013
第4面
k=-0.7827
A4=3.4137e-006,A6=1.1615e-007,A8=-1.0435e-008,A10=4.6445e-011,A12=-6.5411e-014
第6面
k=-27.7162
A4=2.2285e-004,A6=-2.5634e-006,A8=4.3176e-008,A10=-3.2839e-010,A12=1.2321e-012
第30面
k=6.3450
A4=1.4825e-004,A6=2.8156e-007,A8=1.2370e-008,A10=-3.2638e-011

ズームデータ
ズーム比 1.92
広角 中間 望遠
f 6.120 8.850 11.760
FNO. 2.880 2.880 2.880
2ω 122.4 103.7 86.0
IH 10.30 11.15 11.15
FB(in air) 14.590 19.430 24.101
全長(in air) 108.79193 97.51027 94.15618
LU1 41.9479 45.7916 46.1259

d10 22.329 8.022 1.000
d13 2.143 1.571 1.523
d14 1.750 1.750 1.750
d16 3.858 3.858 3.858
d20 3.206 1.695 0.500
d27 0.623 0.890 1.130
d30 14.590 19.430 24.101

近距離物体合焦時
広角 中間 望遠
物体距離 160.769 165.416 168.0119
d10 22.329 8.022 1.000
d13 2.143 1.571 1.523
d14 1.498 1.177 0.646
d16 4.111 4.4310 4.963
d20 3.206 1.6950 0.500
d27 0.623 0.890 1.130

各群焦点距離
f1=-11.76214 f2=35.12776 f3=-54.14121 f4=11.94382 f5=-28.38881
fRw=24.5811
以上の実施例において、前群は、複数のレンズ群を有し、広角端から望遠端への変倍に際して、前群内の複数のレンズ群間の間隔が変化してもよい。
例えば、本願実施例6における数値データにおいて、以下の変形例の数値データであっても、上記実施例と同様の作用効果を奏する。
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 39.821 1.750 1.81600 46.62
2 23.000 10.201
3* 24.848 2.000 1.49700 81.54
4* 8.532 9.584
5 113.233 1.400 1.49700 81.54
6* 26.615 6.852
7 -54.245 1.150 1.91082 35.25
8 49.559 可変
9 46.316 3.072 2.00069 25.46
10 -164.939 可変
11 23.814 0.500 1.92286 18.90
12 11.718 3.136 1.78472 25.68
13 -534.088 可変
14(絞り) ∞ 可変
15 29.472 1.851 1.43875 94.93
16 -50.433 可変
17 116.067 2.500 1.49700 81.54
18 -13.561 0.344
19 -12.586 0.500 1.83481 42.71
20 31.332 可変
21 42.650 1.098 1.84666 23.78
22 34.310 0.100
23 13.565 0.650 1.74000 28.30
24 9.557 3.598 1.43875 94.93
25 -182.982 0.100
26 24.499 2.893 1.80518 25.42
27 -20.831 可変
28 -26.280 0.500 1.85026 32.27
29 10.500 3.934 1.55332 71.68
30* -25.080 可変
像面 ∞

非球面データ
第3面
k=0.0000
A4=8.1667e-006,A6=-2.0226e-007,A8=6.5181e-010,A10=-6.7600e-013
第4面
k=-0.7827
A4=3.4137e-006,A6=1.1615e-007,A8=-1.0435e-008,A10=4.6445e-011,A12=-6.5411e-014
第6面
k=-27.7162
A4=2.2285e-004,A6=-2.5634e-006,A8=4.3176e-008,A10=-3.2839e-010,A12=1.2321e-012
第30面
k=6.3450
A4=1.4825e-004,A6=2.8156e-007,A8=1.2370e-008,A10=-3.2638e-011

ズームデータ
ズーム比 1.92
広角 中間 望遠
f 6.124 8.880 11.760
F -11.64 -11.70 -11.76214
FNO. 2.880 2.880 2.880
2ω 122.4 103.7 86.0
IH 10.30 11.15 11.15
FB(in air) 14.732 19.579 24.101
全長(in air) 108.93419 97.65972 94.15618

d8 2.380 2.480 2.580
d10 22.529 8.122 1.000
d13 2.143 1.571 1.523
d14 1.750 1.750 1.750
d16 3.858 3.858 3.858
d20 3.206 1.695 0.500
d27 0.623 0.890 1.130
d30 14.732 19.579 24.101

近距離物体合焦時
広角 中間 望遠
物体距離 160.769 165.416 168.0119
d8 2.380 2.480 2.580
d10 22.529 8.122 1.000
d13 2.143 1.571 1.523
d14 1.498 1.177 0.646
d16 4.111 4.4310 4.963
d20 3.206 1.6950 0.500
d27 0.623 0.890 1.130

各群焦点距離
f1=-6.1683 f2=36.4011 f3=35.12776 f4=-54.14121
f5=11.94382 f6=-28.38881
fRw=24.5811
また、以上の実施例において、第2レンズ群と第3レンズ群との間、第3レンズ群と第4レンズ群との間、第4レンズ群と第5レンズ群との間、第5レンズ群と第6レンズ群との間、の少なくとも一つ以上の間に、一以上のレンズ群を配置しても良い。
以上の実施例1〜6の収差図を、それぞれ図7〜図18に示す。一つの実施例に対して収差図は2つあり、無限遠物体合焦時における収差図、近距離物体合焦時における収差図の順に示している。また、各図中、”FIY”は最大像高を示す。
これらの収差図において、(a)、(b)、(c)、(d)は、それぞれ、広角端における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
また、(e)、(f)、(g)、(h)は、それぞれ、中間焦点距離状態2における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
また、(i)、(j)、(k)、(l)は、それぞれ、望遠端における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
次に、各実施例における条件式(1)〜(15)の値を掲げる。なお、条件式(12−1)については、広角端における値を上段に、望遠端における値を下段に記載している。
実施例1 実施例2 実施例3 実施例4
(1)νdFnmax 81.54 81.61 95.1 81.61
(2)FBw/fF -1.28 -1.25 -1.14 -1.30
(3-3)fw×Fnowmin/fF -1.52 -1.67 -1.60 -1.57
(4-1)fRw/FBw 1.77 1.58 1.82 1.73
(5)|rF1i/fF| 2.12 1.89 1.56 2.35
(6)θgFFn 0.5375 0.5388 0.5334 0.5388
(7)θgFFn+0.0016 0.0265 0.0279 0.0441 0.0279
×νd-0.6415
(8)FBw/LTLw 0.12 0.14 0.13 0.12
(9)SPF1 4.04 4.40 3.44 8.39
(10-1)ASPRθ 53 53.4 51.1 53.9
(11)DTLw -9.45 -8.35 -9.18 -8.65
(12-1)|MGfob 2×(MGfo 2-1)| 0.22 0.30 0.28 0.28
1.03 0.93 0.64 0.80
(13)fF/(fw×ft)1/2 -1.36 -1.24 -1.41 -1.32
(14-1)SPF2 2.21 2.70 3.43 2.53
(15)SPF4 3.12 2.66 0.87 3.92
(16)f3/fF 3.75 7.22 8.55 5.61
(17)f3/fW -7.08 -12.43 -15.43 -10.28

実施例5 実施例6
(1)νdFnmax 95.1 81.54
(2)FBw/fF -1.00 -1.24
(3-3)fw×Fnowmin/fF -1.28 -1.50
(4-1)fRw/FBw 1.48 1.68
(5)|rF1i/fF| 1.44 1.96
(6)θgFFn 0.5334 0.5375
(7)θgFFn+0.0016 0.04406 0.026512
×νd-0.6415
(8)FBw/LTLw 0.14 0.13
(9)SPF1 4.20 3.73
(10-1)ASPRθ 55.7 66.1
(11)DTLw 7.92 7.88
(12-1)|MGfob 2×(MGfo 2-1)| 0.30 -0.10
0.95 0.42
(13)fF/(fw×ft)1/2 -1.62 -1.39
(14-1)SPF2 2.77 2.05
(15)SPF4 3.33 1.61
(16)f3/fF 3.75 4.60
(17)f3/fW -8.41 -8.85
図19は、電子撮像装置としての一眼ミラーレスカメラの断面図である。図19において、一眼ミラーレスカメラ1の鏡筒内には撮影光学系2が配置される。マウント部3は、撮影レンズ系2を一眼ミラーレスカメラ1のボディに着脱可能とする。マウント部3としては、スクリュータイプのマウントやバヨネットタイプのマウント等が用いられる。この例では、バヨネットタイプのマウントを用いている。また、一眼ミラーレスカメラ1のボディには、撮像素子面4、バックモニタ5が配置されている。なお、撮像素子としては、小型のCCD又はCMOS等が用いられている。
そして、一眼ミラーレスカメラ1の撮影光学系2として、例えば上記実施例1〜6に示したズームレンズが用いられる。
図20、図21は、実施例1〜6に示したズームレンズを有する撮像装置の構成の概念図を示す。図20は撮像装置としてのデジタルカメラ40の外観を示す前方斜視図、図21は同後方斜視図である。このデジタルカメラ40の撮影光学系41に、本実施例のズームレンズが用いられている。
この実施形態のデジタルカメラ40は、撮影用光路42上に位置する撮影光学系41、シャッターボタン45、液晶表示モニター47等を含み、デジタルカメラ40の上部に配置されたシャッターボタン45を押圧すると、それに連動して撮影光学系41、例えば実施例1のズームレンズを通して撮影が行われる。撮影光学系41によって形成された物体像が、結像面近傍に設けられた撮像素子(光電変換面)上に形成される。この撮像素子で受光された物体像は、処理手段によって電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、撮影された電子画像は記録手段に記録することができる。
図22は、デジタルカメラ40の主要部の内部回路を示すブロック図である。なお、以下の説明では、前述した処理手段は、例えばCDS/ADC部24、一時記憶メモリ17、画像処理部18等で構成され、記憶手段は、記憶媒体部19等で構成される。
図22に示すように、デジタルカメラ40は、操作部12と、この操作部12に接続された制御部13と、この制御部13の制御信号出力ポートにバス14及び15を介して接続された撮像駆動回路16並びに一時記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21を備えている。
上記の一時記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21は、バス22を介して相互にデータの入力、出力が可能とされている。また、撮像駆動回路16には、CCD49とCDS/ADC部24が接続されている。
操作部12は、各種の入力ボタンやスイッチを備え、これらを介して外部(カメラ使用者)から入力されるイベント情報を制御部13に通知する。制御部13は、例えばCPUなどからなる中央演算処理装置であって、不図示のプログラムメモリを内蔵し、プログラムメモリに格納されているプログラムにしたがって、デジタルカメラ40全体を制御する。
CCD49は、撮像駆動回路16により駆動制御され、撮像光学系41を介して形成された物体像の画素ごとの光量を電気信号に変換し、CDS/ADC部24に出力する撮像素子である。
CDS/ADC部24は、CCD49から入力する電気信号を増幅し、かつ、アナログ/デジタル変換を行って、この増幅とデジタル変換を行っただけの映像生データ(ベイヤーデータ、以下RAWデータという。)を一時記憶メモリ17に出力する回路である。
一時記憶メモリ17は、例えばSDRAM等からなるバッファであり、CDS/ADC部24から出力されるRAWデータを一時的に記憶するメモリ装置である。画像処理部18は、一時記憶メモリ17に記憶されたRAWデータ又は記憶媒体部19に記憶されているRAWデータを読み出して、制御部13にて指定された画質パラメータに基づいて歪曲収差補正を含む各種画像処理を電気的に行う回路である。
記憶媒体部19は、例えばフラッシュメモリ等からなるカード型又はスティック型の記録媒体を着脱自在に装着して、これらのフラッシュメモリに、一時記憶メモリ17から転送されるRAWデータや画像処理部18で画像処理された画像データを記録して保持する。
表示部20は、液晶表示モニター47などにて構成され、撮影したRAWデータ、画像データや操作メニューなどを表示する。設定情報記憶メモリ部21には、予め各種の画質パラメータが格納されているROM部と、操作部12の入力操作によってROM部から読み出された画質パラメータを記憶するRAM部が備えられている。
このように構成されたデジタルカメラ40は、撮影光学系41として本実施例のズームレンズを採用することで、超広画角、小型でありながら、画質を劣化させずに高解像の画像を得るのに有利な撮像装置とすることが可能となる。
以上のように、本発明は、光学系の小型化と軽量化が十分になされ、かつ、Fナンバーに比べて十分に広い画角を持ちながらも諸収差が十分に低減されたズームレンズ及びそれを有する撮像装置に適している。
GF 前群
FR 後群
Gfo フォーカスレンズ群
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
G6 第6レンズ群
LU1 第1レンズユニット
LU2 第2レンズユニット
S 開口絞り
I 像面
1 一眼ミラーレスカメラ
2 撮影レンズ系
3 鏡筒のマウント部
4 撮像素子面
5 バックモニタ
12 操作部
13 制御部
14、15 バス
16 撮像駆動回路
17 一時記憶メモリ
18 画像処理部
19 記憶媒体部
20 表示部
21 設定情報記憶メモリ部
22 バス
24 CDS/ADC部
40 デジタルカメラ
41 撮影光学系
42 撮影用光路
45 シャッターボタン
47 液晶表示モニター
49 CCD

Claims (39)

  1. 物体側から像側に順に、
    負の屈折力を有する前群と、
    開口絞りを含み正の屈折力を有する後群と、からなり、
    前記前群は、負の屈折力を有する第1のレンズと、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、を含み、
    前記第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
    前記第2のレンズは前記第1のレンズよりも像側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
    前記後群は、物体側から像側に順に、
    正の屈折力を有し、開口絞りより物体側に位置する第2レンズ群と、
    負の屈折力を有する第3レンズ群と、
    正の屈折力を有する第4レンズ群と、を有し、
    前記第2レンズ群又は前記第3レンズ群は、フォーカスレンズ群を有し、
    広角端から望遠端への変倍に際して、
    各レンズ群の間隔は変化し、かつ、
    前記前群と前記後群との間隔は狭くなり、
    以下の条件式を満足することを特徴とするズームレンズ。
    72<νdFnmax<110
    −1.45<FBw/fF<−0.3
    ここで、
    νdFnmaxは、前記前群に含まれる負の屈折力を有するレンズのアッベ数のうち、最大となるアッベ数、
    FBwは、広角端におけるバックフォーカス、
    Fは、前記前群の焦点距離、
    である。
  2. 物体側から像側に順に、
    負の屈折力を有する前群と、
    開口絞りを含み正の屈折力を有する後群と、からなり、
    前記前群は、負の屈折力を有する第1のレンズと、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、を含み、
    前記第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
    前記第2のレンズは前記第1のレンズよりも像側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
    前記後群は、物体側から像側に順に、
    正の屈折力を有し、開口絞りより物体側に位置する第2レンズ群と、
    負の屈折力を有する第3レンズ群と、
    正の屈折力を有する第4レンズ群と、を有し、
    前記第2レンズ群又は前記第3レンズ群は、フォーカスレンズ群を有し、
    広角端から望遠端への変倍に際して、
    各レンズ群の間隔は変化し、かつ、
    前記前群と前記後群との間隔は狭くなり、
    以下の条件式を満足することを特徴とするズームレンズ。
    72<νdFnmax<110
    1.2<fRw/FBw<5
    ここで、
    νdFnmaxは、前記前群に含まれる負の屈折力を有するレンズのアッベ数のうち、最大となるアッベ数、
    Rwは、広角端における前記後群の焦点距離、
    FBwは、広角端におけるバックフォーカス、
    である。
  3. 物体側から像側に順に、
    負の屈折力を有する前群と、
    開口絞りを含み正の屈折力を有する後群と、からなり、
    前記前群は、負の屈折力を有する第1のレンズと、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、を含み、
    前記第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
    前記第2のレンズは前記第1のレンズよりも像側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
    前記後群は、物体側から像側に順に、
    正の屈折力を有し、開口絞りより物体側に位置する第2レンズ群と、
    負の屈折力を有する第3レンズ群と、
    正の屈折力を有する第4レンズ群と、を有し、
    前記第2レンズ群又は前記第3レンズ群は、フォーカスレンズ群を有し、
    広角端から望遠端への変倍に際して、
    各レンズ群の間隔は変化し、かつ、
    前記前群と前記後群との間隔は狭くなり、
    以下の条件式を満足することを特徴とするズームレンズ。
    72<νdFnmax<110
    −1.8<fw×Fnowmin/fF<−0.5
    ここで、
    νdFnmaxは、前記前群に含まれる負の屈折力を有するレンズのアッベ数のうち、最大となるアッベ数、
    wは、広角端における前記ズームレンズ全系の焦点距離、
    Fnowminは、広角端におけるFナンバーのうち、最小となるFナンバー、
    Fは、前記前群の焦点距離、
    である。
  4. 物体側から像側に順に、
    負の屈折力を有する前群と、
    開口絞りを含み正の屈折力を有する後群と、からなり、
    前記前群は、負の屈折力を有する第1のレンズと、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、を含み、
    前記第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
    前記第2のレンズは前記第1のレンズよりも像側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
    前記後群は、物体側から像側に順に、
    正の屈折力を有し、開口絞りより物体側に位置する第2レンズ群と、
    負の屈折力を有する第3レンズ群と、
    正の屈折力を有する第4レンズ群と、を有し、
    前記第2レンズ群又は前記第3レンズ群は、フォーカスレンズ群を有し、
    広角端から望遠端への変倍に際して、
    各レンズ群の間隔は変化し、かつ、
    前記前群と前記後群との間隔は狭くなり、
    以下の条件式を満足することを特徴とするズームレンズ。
    2.6<f3/fF<15
    ここで、
    3は、前記第3レンズ群の焦点距離、
    Fは、前記前群の焦点距離、
    である。
  5. 物体側から像側に順に、
    負の屈折力を有する前群と、
    開口絞りを含み正の屈折力を有する後群と、からなり、
    前記前群は、負の屈折力を有する第1のレンズと、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、を含み、
    前記第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
    前記第2のレンズは前記第1のレンズよりも像側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、
    前記後群は、物体側から像側に順に、
    正の屈折力を有し、開口絞りより物体側に位置する第2レンズ群と、
    負の屈折力を有する第3レンズ群と、
    正の屈折力を有する第4レンズ群と、を有し、
    前記第2レンズ群又は前記第3レンズ群は、フォーカスレンズ群を有し、
    広角端から望遠端への変倍に際して、
    各レンズ群の間隔は変化し、かつ、
    前記前群と前記後群との間隔は狭くなり、
    以下の条件式を満足することを特徴とするズームレンズ。
    −25<f3/fw<−4
    ここで、
    3は、前記第3レンズ群の焦点距離、
    wは、広角端における前記ズームレンズ全系の焦点距離、
    である。
  6. 以下の条件式を満足することを特徴とする請求項1から5のいずれか一項に記載のズームレンズ。
    72<νdFnmax<110
    ここで、
    νdFnmaxは、前記前群に含まれる負の屈折力を有するレンズのアッベ数のうち、最大となるアッベ数、
    である。
  7. 以下の条件式を満足することを特徴とする請求項1から6のいずれか一項に記載のズームレンズ。
    −1.45<FBw/fF<−0.3
    ここで、
    FBwは、広角端におけるバックフォーカス、
    Fは、前記前群の焦点距離、
    である。
  8. 以下の条件式を満足することを特徴とする請求項1から7のいずれか一項に記載のズームレンズ。
    1.2<fRw/FBw<5
    ここで、
    Rwは、広角端における前記後群の焦点距離、
    FBwは、広角端におけるバックフォーカス、
    である。
  9. 以下の条件式を満足することを特徴とする請求項1から8のいずれか一項に記載のズームレンズ。
    −1.8<fw×Fnowmin/fF<−0.5
    ここで、
    Fは、前記前群の焦点距離、
    wは、広角端における前記ズームレンズ全系の焦点距離、
    Fnowminは、広角端におけるFナンバーのうち、最小となるFナンバー、
    である。
  10. 以下の条件式を満足することを特徴とする請求項1から9のいずれか一項に記載のズームレンズ。
    2.6<f3/fF<15
    ここで、
    3は、前記第3レンズ群の焦点距離、
    Fは、前記前群の焦点距離、
    である。
  11. 以下の条件式を満足することを特徴とする請求項1から10のいずれか一項に記載のズームレンズ。
    −25<f3/fw<−4
    ここで、
    3は、前記第3レンズ群の焦点距離、
    wは、広角端における前記ズームレンズ全系の焦点距離、
    である。
  12. 以下の条件式を満足することを特徴とする請求項1から11のいずれか一項に記載のズームレンズ。
    −25<DTLw<7
    ここで、
    DTLwは、広角端における最大画角でのディストーションであって、DTLw=(IHw1−IHw2)/IHw2×100(%)で表され、
    IHw1は、無限物点からの広角端での最大画角が像面に結像する実像高、
    IHw2は、無限物点からの広角端での最大画角が像面の結像する近軸像高、
    である。
  13. 前記前群は、更に、負の屈折力を有する第4のレンズを含むことを特徴とする請求項1から13のいずれか一項に記載のズームレンズ。
  14. 前記前群は、更に、負の屈折力を有する第4のレンズを含み、
    前記第4のレンズの形状はメニスカス形状であることを特徴とする請求項1から13のいずれか一項に記載のズームレンズ。
  15. 前記前群は、更に、負の屈折力を有する第4のレンズを含み、
    前記第4のレンズの形状は、物体側に凸面を向けたメニスカス形状であることを特徴とする請求項1から13のいずれか一項に記載のズームレンズ。
  16. 前記第4のレンズは、前記第2のレンズよりも像側に配置されていることを特徴とする請求項13から15のいずれか一項に記載のズームレンズ。
  17. 以下の条件式を満足することを特徴とする請求項1から16のいずれか一項に記載のズームレンズ。
    1.1<|rF1i/fF|<3
    ここで、
    F1iは、前記第1のレンズの像側面の近軸曲率半径、
    Fは、前記前群の焦点距離、
    である。
  18. 以下の条件式を満足することを特徴とする請求項1から17のいずれか一項に記載のズームレンズ。
    0.53<θgFFn<0.55
    ここで、
    θgFFnは、前記前群に含まれる負の屈折力を有するレンズのうち、アッベ数の値が最も大きいレンズにおける部分分散比であって、θgFFn=(ng−nF)/(nF−nc)で表され、
    ng、nF、ncは、それぞれ、前記アッベ数の値が最も大きいレンズのg線、F線、C線での屈折率、
    である。
  19. 以下の条件式を満足することを特徴とする請求項1から18のいずれか一項に記載のズームレンズ。
    0.01<θgFFn+0.0016×νd−0.6415<0.054
    ここで、
    θgFFnは、前記前群に含まれる負の屈折力を有するレンズのうち、アッベ数の値が最も大きいレンズにおける部分分散比であって、θgFFn=(ng−nF)/(nF−nc)で表され、
    ng、nF、ncは、それぞれ、前記アッベ数の値が最も大きいレンズのg線、F線、C線での屈折率、
    νdは、前記アッベ数の値が最も大きいレンズのアッベ数、
    である。
  20. 以下の条件式を満足することを特徴とする請求項1から19のいずれか一項に記載のズームレンズ。
    0.06<FBw/LTLw<0.20
    ここで、
    FBwは、広角端におけるバックフォーカス、
    LTLwは、広角端における前記ズームレンズの最も物体側の面から像面までの軸上距離、である。
  21. 以下の条件式を満足することを特徴とする請求項1から20のいずれか一項に記載のズームレンズ。
    1.9<SPF1<9.0
    ここで、
    SPF1=(rF1o+rF1i)/(rF1o−rF1i
    F1oは、前記第1のレンズの物体側面の近軸曲率半径、
    F1iは、前記第1のレンズの像側面の近軸曲率半径、
    である。
  22. 以下の条件式を満足することを特徴とする請求項1から21のいずれか一項に記載のズームレンズ。
    1.5<SPF2<7
    ここで、
    SPF2=(rF2o+rF2i)/(rF2o−rF2i
    F2oは、前記第2のレンズの物体側面の近軸曲率半径、
    F2iは、前記第2のレンズの像側面の近軸曲率半径、
    である。
  23. 前記第2レンズ群は、フォーカスレンズ群を有することを特徴とする請求項1から22のいずれか一項に記載のズームレンズ。
  24. 前記第3レンズ群は、フォーカスレンズ群を有することを特徴とする請求項1から23のいずれか一項に記載のズームレンズ。
  25. 変倍に際して、前記前群は移動することを特徴とする請求項1から24のいずれか一項に記載のズームレンズ。
  26. 前記開口絞りは、前記第2レンズ群と、前記第3レンズ群と、の間に配置されている請求項1から25のいずれか一項に記載のズームレンズ。
  27. 前記第2レンズ群、又は、前記第3レンズ群は、手ぶれ低減レンズユニットを有し、
    前記手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することを特徴とする請求項1から26のいずれか一項に記載のズームレンズ。
  28. 前記第2レンズ群は、手ぶれ低減レンズユニットを有し、
    前記手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することを特徴とする請求項27に記載のズームレンズ。
  29. 前記第2レンズ群は、手ぶれ低減レンズユニットであり、
    前記手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することを特徴とする請求項28に記載のズームレンズ。
  30. 前記第3レンズ群は、手ぶれ低減レンズユニットを有し、
    前記手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することを特徴とする請求項27に記載のズームレンズ。
  31. 前記第3レンズ群は、手ぶれ低減レンズユニットであり、
    前記手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することを特徴とする請求項30に記載のズームレンズ。
  32. 最も像側に位置するレンズ群は正の屈折力を有することを特徴とする請求項1から31のいずれか一項に記載のズームレンズ。
  33. 前記前群中のレンズであって、物体側に凸面を向けたメニスカス形状のレンズのうち、少なくとも一つのレンズは、以下の条件式を満足する非球面を有することを特徴とする請求項1から32のいずれか一項に記載のズームレンズ。
    30°<ASPRθ<75°
    ここで、
    ASPRθは、前記少なくとも1つのレンズの像側の面の所定の位置における面の傾き、
    前記所定の位置は、前記少なくとも1つのレンズにおいて有効口径が最大となる位置、
    前記面の傾きは、前記所定の位置における面の接線と光軸とが交わる角度、
    である。
  34. 所定のレンズ群を有し、
    前記所定のレンズ群は、前記フォーカスレンズ群の像側面から像面までの間に位置するレンズ群であって、
    以下の条件式を満足することを特徴とする請求項1から33のいずれか一項に記載のズームレンズ。
    −0.40<|MGfob 2×(MGfo 2−1)|<3.0
    ここで、
    MGfoは、任意の位置での前記フォーカスレンズ群の横倍率、
    MGfobは、前記任意の位置と同位置での、前記所定のレンズ群の横倍率、
    である。
  35. 以下の条件式を満足することを特徴とする請求項1から34のいずれか一項に記載のズームレンズ。
    −2.0<fF/(fw×ft1/2<−1.0
    Fは、前記前群の焦点距離、
    wは、広角端における前記ズームレンズ全系の焦点距離、
    tは、望遠端における前記ズームレンズ全系の焦点距離、
    である。
  36. 以下の条件式を満足することを特徴とする請求項13から16のいずれか一項に記載のズームレンズ。
    0.5<SPF4<6.0
    ここで、
    SPF4=(rF4o+rF4i)/(rF4o-rF4i
    F4oは、前記第4のレンズの物体側面の近軸曲率半径、
    F4iは、前記第4のレンズの像側面の近軸曲率半径、
    である。
  37. 前記前群は、第1レンズ群からなり、
    広角端から望遠端への変倍に際して、
    前記第1レンズ群は、一体となって移動することを特徴とする請求項1から36のいずれか一項に記載のズームレンズ。
  38. 前記前群は、第1レンズ群からなり、
    前記後群は、前記第2レンズ群と、前記第3レンズ群と、前記第4レンズ群と、からり、
    広角端から望遠端への変倍に際して、各レンズ群の間隔は変化することを特徴とする請求項1から37のいずれか一項に記載のズームレンズ。
  39. 請求項1から38のいずれか一項に記載のズームレンズと、
    撮像面を持ち且つ前記ズームレンズにより前記撮像面上に形成された像を電気信号に変換する撮像素子と、を有することを特徴とする撮像装置。
JP2014117156A 2014-05-19 2014-06-06 ズームレンズ及びそれを有する撮像装置 Pending JP2017122747A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014117156A JP2017122747A (ja) 2014-06-06 2014-06-06 ズームレンズ及びそれを有する撮像装置
PCT/JP2015/059053 WO2015178095A1 (ja) 2014-05-19 2015-03-25 ズームレンズ及びそれを有する撮像装置
US15/355,951 US9958656B2 (en) 2014-05-19 2016-11-18 Zoom lens and image pickup apparatus using the same
US15/927,152 US10768396B2 (en) 2014-05-19 2018-03-21 Zoom lens and image pickup apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014117156A JP2017122747A (ja) 2014-06-06 2014-06-06 ズームレンズ及びそれを有する撮像装置

Publications (1)

Publication Number Publication Date
JP2017122747A true JP2017122747A (ja) 2017-07-13

Family

ID=59306255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014117156A Pending JP2017122747A (ja) 2014-05-19 2014-06-06 ズームレンズ及びそれを有する撮像装置

Country Status (1)

Country Link
JP (1) JP2017122747A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074633A (ja) * 2017-10-16 2019-05-16 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2019174510A (ja) * 2018-03-27 2019-10-10 キヤノン株式会社 ズームレンズ及び撮像装置
JP2019184733A (ja) * 2018-04-05 2019-10-24 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JPWO2021117563A1 (ja) * 2019-12-10 2021-06-17
JP7483520B2 (ja) 2020-06-11 2024-05-15 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074633A (ja) * 2017-10-16 2019-05-16 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP7013194B2 (ja) 2017-10-16 2022-01-31 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2019174510A (ja) * 2018-03-27 2019-10-10 キヤノン株式会社 ズームレンズ及び撮像装置
JP7140522B2 (ja) 2018-03-27 2022-09-21 キヤノン株式会社 ズームレンズ及び撮像装置
JP2019184733A (ja) * 2018-04-05 2019-10-24 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JPWO2021117563A1 (ja) * 2019-12-10 2021-06-17
CN114787682A (zh) * 2019-12-10 2022-07-22 株式会社尼康 变倍光学系统、光学设备以及变倍光学系统的制造方法
CN114787682B (zh) * 2019-12-10 2024-01-02 株式会社尼康 变倍光学系统以及光学设备
JP7435622B2 (ja) 2019-12-10 2024-02-21 株式会社ニコン 変倍光学系および光学機器
JP7483520B2 (ja) 2020-06-11 2024-05-15 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Similar Documents

Publication Publication Date Title
JP6172918B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP5675575B2 (ja) インナーフォーカスレンズ系及びそれを備えた撮像装置
WO2015178095A1 (ja) ズームレンズ及びそれを有する撮像装置
JP6518039B2 (ja) ズームレンズ及びそれを有する撮像装置
JP6300507B2 (ja) ズームレンズ及びそれを有するズームレンズ装置
JP2017122745A (ja) ズームレンズ及びそれを有する撮像装置
JP5592925B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP6491319B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP2015001550A (ja) ズームレンズ及びそれを有する撮像装置
JP6266165B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP5781244B2 (ja) ズームレンズ及びそれを有する撮像装置
JP2014235190A (ja) ズームレンズ及びそれを有する撮像装置
JP2014095754A (ja) ズームレンズ及びそれを用いた撮像装置
JP5977888B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP2015004880A (ja) ズームレンズ及びそれを有する撮像装置
JP2017122747A (ja) ズームレンズ及びそれを有する撮像装置
JP2018013685A (ja) ズームレンズ及びそれを有する撮像装置
JP2016224210A (ja) ズームレンズ及びそれを備えた撮像装置
JP6518040B2 (ja) ズームレンズ及びそれを有する撮像装置
WO2017175306A1 (ja) ズームレンズ及びそれを備えた撮像装置
JP6406660B2 (ja) ズームレンズ及びそれを有する撮像装置
JP5881846B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP5695433B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP7063640B2 (ja) 変倍光学系及びそれを備えた撮像装置
JP2012159579A (ja) ズームレンズ及びそれを備えた撮像装置