JP2017121504A - 細胞移植用細胞構造体、生体親和性高分子ブロック及びそれらの製造方法 - Google Patents

細胞移植用細胞構造体、生体親和性高分子ブロック及びそれらの製造方法 Download PDF

Info

Publication number
JP2017121504A
JP2017121504A JP2017028860A JP2017028860A JP2017121504A JP 2017121504 A JP2017121504 A JP 2017121504A JP 2017028860 A JP2017028860 A JP 2017028860A JP 2017028860 A JP2017028860 A JP 2017028860A JP 2017121504 A JP2017121504 A JP 2017121504A
Authority
JP
Japan
Prior art keywords
cell
cells
biocompatible polymer
polymer block
cell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017028860A
Other languages
English (en)
Other versions
JP6506326B2 (ja
Inventor
中村 健太郎
Kentaro Nakamura
中村  健太郎
玲子 岩澤
Reiko Iwasawa
玲子 岩澤
隼人 三好
Hayato Miyoshi
隼人 三好
雄大 山口
Takehiro Yamaguchi
雄大 山口
英生 伏見
Hideo Fushimi
英生 伏見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JP2017121504A publication Critical patent/JP2017121504A/ja
Application granted granted Critical
Publication of JP6506326B2 publication Critical patent/JP6506326B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/222Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3608Bone, e.g. demineralised bone matrix [DBM], bone powder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3886Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells comprising two or more cell types
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/64Animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/22Materials or treatment for tissue regeneration for reconstruction of hollow organs, e.g. bladder, esophagus, urether, uterus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Developmental Biology & Embryology (AREA)
  • Hematology (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

【課題】グルタルアルデヒドのような細胞毒性を有する物質を含まずに、構造体中での移植した細胞の壊死が抑制される(即ち、細胞生存率に優れる)細胞移植用細胞構造体の提供。
【解決手段】グルタルアルデヒドを含まない生体親和性高分子ブロックと、少なくとも一種類の細胞とを含み、複数個の細胞間の隙間に複数個の生体親和性高分子ブロックが配置されている、細胞移植用細胞構造体であって、前記生体親和性高分子ブロックのタップ密度が10mg/cm3以上500mg/cm3以下であるか、又は前記高分子ブロックの二次元断面像における断面積の平方根÷周囲長の値が0.01以上0.13以下である、細胞移植用細胞構造体。
【選択図】なし

Description

本発明は、細胞移植用細胞構造体、生体親和性高分子ブロック、並びにそれらの製造方法に関する。詳しくは、本発明は、移植後に細胞の壊死が抑制された細胞移植用細胞構造体、その製造に用いる生体親和性高分子ブロック、並びにそれらの製造方法に関する。
現在、機能障害や機能不全に陥った生体組織・臓器の再生を図る再生医療の実用化が進められている。再生医療は、生体が持っている自然治癒能力だけでは回復できなくなった生体組織を、細胞、足場及び成長因子の三因子を使って元の組織と同じような形態や機能を再び作り出す新たな医療技術である。近年では、細胞を使った治療が徐々に実現されつつある。例えば、自家細胞を用いた培養表皮、自家軟骨細胞を用いた軟骨治療、間葉系幹細胞を用いた骨再生治療、筋芽細胞を用いた心筋細胞シート治療、角膜上皮シートによる角膜再生治療、及び神経再生治療などが挙げられる。これら新たな治療は、従来の人工物による代替医療(例えば、人工骨補填剤やヒアルロン酸注射など)とは異なり、生体組織の修復・再生を図るものであり、高い治療効果を得られる。実際、自家細胞を用いた培養表皮や培養軟骨などの製品が市販されてきた。
例えば、細胞シートを用いた心筋の再生においては、厚みのある組織を再生するには、細胞シートの多層構造体が必要であると考えられる。近年、岡野らは温度応答性培養皿を用いた細胞シートを開発した。細胞シートはトリプシンのような酵素処理が必要でないため、細胞と細胞との結合および接着蛋白が保持される。(非特許文献1から6)。このような細胞シート製造技術は、心筋組織の再生に有用であると期待される(非特許文献7)。また岡野らは、細胞シートに血管網を形成すべく、血管内皮細胞を一緒に導入した細胞シートの開発を行っている(非特許文献8)。
さらに、特許文献1には、生体親和性を有する高分子ブロックと細胞とをモザイク状に3次元配置することによって製造される細胞3次元構造体が記載されている。この細胞3次元構造体においては、外部から細胞3次元構造体の内部への栄養送達が可能であり、十分な厚みを有するとともに、構造体中で細胞が均一に存在している。また、特許文献1の実施例においては、リコンビナントゼラチンや天然ゼラチン素材からなる高分子ブロックを用いて高い細胞生存活性が実証されている。
国際公開WO2011/108517号公報
Shimizu, T. et al., Circ. Res. 90, e40-48 (2002) Kushida, A. et al., J. Biomed. Mater. Res. 51, 216-223 (2000) Kushida, A. et al., J. Biomed. Mater. Res. 45, 355-362 (1999) Shimizu, T., Yamato, M., Kikuchi, A. & Okano, T., Tissue Eng.7, 141-151 (2001) Shimizu, T et al., J. Biomed. Mater. Res. 60,110-117(2002) Harimoto, M. et al., J. Biomed. Mater. Res. 62, 464-470 (2002) Shimizu, T., Yamato, M., Kikuchi, A. & Okano, T., Biomaterials 24, 2309-2316 (2003) Inflammation and Regeneration vol.25 No.3 2005, p158-159. 第26回 日本炎症・再生医学会 ―炎症学と再生医学の融合を目指して― 岡野光夫
特許文献1の実施例に記載されている細胞構造体の高分子ブロックにおいては、高分子の架橋のために人体に対する毒性が強いグルタルアルデヒドが使用されている。このようなグルタルアルデヒドを用いて製造した細胞構造体は、人体に対する毒性が懸念されるために細胞移植治療のためには使用することができない。そこで、グルタルアルデヒドのような人体毒性を有する物質を含まず、かつ移植した細胞の壊死を抑制することができる細胞構造体は未だ提供されておらず、これらの条件を満たす、細胞移植治療用途に適した細胞構造体が望まれていた。
本発明は、グルタルアルデヒドのような細胞毒性を有する物質を含まずに、構造体中での移植した細胞の壊死が抑制される(即ち、細胞生存率に優れる)細胞移植用細胞構造体を提供することを課題とした。更に本発明は、上記した細胞移植用細胞構造体を製造するのに適した生体親和性高分子ブロックを提供することを課題とした。更に本発明は、上記細胞移植用細胞構造体の製造方法、並びに上記生体親和性高分子ブロックの製造方法を提供することを解決すべき課題とした。
本発明者らは上記課題を解決するために鋭意検討した結果、グルタルアルデヒドを含まない生体親和性高分子ブロックと、少なくとも一種類の細胞とを使用して、複数個の細胞間の隙間に複数個の生体親和性高分子ブロックを配置することによって細胞移植用細胞構造体を製造する際に、タップ密度が10mg/cm3以上500mg/cm3以下であるか、又は二次元断面像における断面積の平方根÷周囲長の値が0.01以上0.13以下である生体親和性高分子ブロックを使用することによって、上記課題を解決した細胞移植用細胞構造体を提供できることを見出し、本発明を完成するに至った。
即ち、本発明によれば、グルタルアルデヒドを含まない生体親和性高分子ブロックと、少なくとも一種類の細胞とを含み、複数個の細胞間の隙間に複数個の生体親和性高分子ブロックが配置されている、細胞移植用細胞構造体であって、前記生体親和性高分子ブロックのタップ密度が10mg/cm3以上500mg/cm3以下であるか、又は前記高分子ブロックの二次元断面像における断面積の平方根÷周囲長の値が0.01以上0.13以下である、細胞移植用細胞構造体が提供される。
さらに本発明によれば、グルタルアルデヒドを含まない生体親和性高分子ブロックであって、タップ密度が10mg/cm3以上500mg/cm3以下であるか、又は二次元断面像における断面積の平方根÷周囲長の値が0.01以上0.13以下である、生体親和性高分子ブロックが提供される。
好ましくは、生体親和性高分子ブロック一つの大きさが20μm以上200μm以下である。
好ましくは、生体親和性高分子ブロック一つの大きさが50μm以上120μm以下である。
好ましくは、生体親和性高分子が熱、紫外線又は酵素により架橋されている。
好ましくは、生体親和性高分子ブロックの架橋度が6以上であり、かつ前記生体親和性高分子ブロックの吸水率が300%以上である。
好ましくは、生体親和性高分子ブロックが、生体親和性高分子の多孔質体を粉砕することにより得られる生体親和性高分子ブロックである。
好ましくは、生体親和性高分子の多孔質体が、
(a)生体親和性高分子の溶液を、溶液内で最も液温の高い部分の液温(内部最高液温)が未凍結状態で「溶媒融点−3℃」以下となる凍結処理により凍結する工程;及び
(b)前記工程(a)で得られた凍結した生体親和性高分子を凍結乾燥する工程:
を含む方法により製造されたものである。
好ましくは、工程(a)において、溶液内で最も液温の高い部分の液温(内部最高液温)が未凍結状態で「溶媒融点−7℃」以下となる凍結処理により凍結する。
好ましくは、生体親和性高分子の多孔質体が以下の(a)及び(b)に記載の特性を有する。
(a)81%以上99.99%以下の空孔率を有する。
(b)サイズが20〜200μmである空孔が占める空間占有率が85%以上である。
好ましくは、細胞移植用細胞構造体は、厚さ又は直径が400μm以上3cm以下である。
好ましくは、細胞移植用細胞構造体は、細胞1個当り0.0000001μg以上1μg以下の生体親和性高分子ブロックを含む。
好ましくは、生体親和性高分子が、ゼラチン、コラーゲン、エラスチン、フィブロネクチン、プロネクチン、ラミニン、テネイシン、フィブリン、フィブロイン、エンタクチン、トロンボスポンジン、レトロネクチン、ポリ乳酸、ポリグリコール酸、乳酸・グリコール酸コポリマー、ヒアルロン酸、グリコサミノグリカン、プロテオグリカン、コンドロイチン、セルロース、アガロース、カルボキシメチルセルロース、キチン、又はキトサンである。
好ましくは、生体親和性高分子が、リコンビナントゼラチンである。
好ましくは、リコンビナントゼラチンが、
式:A−[(Gly−X−Y)n]m−B
(式中、Aは任意のアミノ酸又はアミノ酸配列を示し、Bは任意のアミノ酸又はアミノ酸配列を示し、n個のXはそれぞれ独立にアミノ酸の何れかを示し、n個のYはそれぞれ独立にアミノ酸の何れかを示し、nは3〜100の整数を示し、mは2〜10の整数を示す。なお、n個のGly-X-Yはそれぞれ同一でも異なっていてもよい。)で示される。
好ましくは、リコンビナントゼラチンが、(1)配列番号1に記載のアミノ酸配列、又は(2)配列番号1に記載のアミノ酸配列と80%以上の相同性を有し、生体親和性を有するアミノ酸配列を有する。
好ましくは、細胞移植用細胞構造体は、血管新生因子を含む。
好ましくは、細胞は、万能細胞、体性幹細胞、前駆細胞および成熟細胞からなる群から選択される細胞である。
好ましくは、細胞は、非血管系の細胞のみである。
好ましくは、細胞は、非血管系の細胞および血管系の細胞の両方を含む。
好ましくは、細胞移植用細胞構造体は、細胞構造体において、中心部の血管系の細胞の面積が、周辺部の血管系の細胞の面積より多い領域を有する。
好ましくは、細胞移植用細胞構造体は、中心部の血管系の細胞の割合が、血管系の細胞の全面積に対し、60%〜100%である領域を有する。
好ましくは、細胞移植用細胞構造体は、細胞構造体の、中心部の血管系の細胞密度が、1.0×10-4cells/μm3以上である領域を有する。
好ましくは、細胞移植用細胞構造体の内部において血管形成されている。
本発明の生体親和性高分子ブロックは、好ましくは、本発明の細胞移植用細胞構造体を製造するために使用する。
本発明によればさらに、本発明の生体親和性高分子ブロックを含む、本発明の細胞移植用細胞構造体を製造するための試薬が提供される。
本発明によればさらに、本発明の生体親和性高分子ブロックと、少なくとも一種類の細胞とを混合することを含む、本発明の細胞移植用細胞構造体を製造する方法が提供される。
本発明によればさらに、
(a)生体親和性高分子の溶液を、溶液内で最も液温の高い部分の液温(内部最高液温)が未凍結状態で「溶媒融点−3℃」以下となる凍結処理により凍結する工程;及び
(b)前記工程(a)で得られた凍結した生体親和性高分子を凍結乾燥する工程:
を含む、生体親和性高分子の多孔質体を製造する方法が提供される。
好ましくは、工程(a)において、溶液内で最も液温の高い部分の液温(内部最高液温)が未凍結状態で「溶媒融点−7℃」以下となる凍結処理により凍結する。
本発明の細胞移植用細胞構造体は、グルタルアルデヒドのような細胞毒性を有する物質を含まないことにより細胞移植治療のために使用できるとともに、構造体中での移植した細胞の壊死が抑制され、細胞生存率に優れている。
図1は、in vitro ATPアッセイにおけるブロックによる違いを示す。 図2は、本発明のブロック又は比較用ブロックを用いたhMSCモザイク細胞塊中での細胞の生存状態の違い(2週間後)を示す。 図3は、本発明のブロック群内間での移植細胞の生存状態を示す。hMSCモザイク細胞塊中の生存とブロックサイズによる差を示す。 図4は、移植2週間後のhMSCモザイク細胞塊における血管形成を示す。 図5は、移植2週間後のhMSC+hECFCモザイク細胞塊における血管形成を示す。 図6は、多孔質体における各空孔サイズの空間占有率を示す。 図7は、CBE3多孔質体のHE断面画像及びポア形状と内部最高液温を示す。 図8は、棚板温度−40℃(硝子板2.2mm)での内部最高液温の時間変化を示す。
以下、本発明の実施の形態について詳細に説明する。
本発明の細胞移植用細胞構造体は、グルタルアルデヒドを含まない生体親和性高分子ブロックと、少なくとも一種類の細胞とを含み、複数個の細胞間の隙間に複数個の生体親和性高分子ブロックが配置されている、細胞移植用細胞構造体であって、前記生体親和性高分子ブロックのタップ密度が10mg/cm3以上500mg/cm3以下であるか、又は前記高分子ブロックの二次元断面像における断面積の平方根÷周囲長の値が0.01以上0.13以下である、細胞移植用細胞構造体である。
(1)生体親和性高分子ブロック
(1−1)生体性親和性高分子
本発明で用いる生体親和性高分子は、生体に親和性を有するものであれば、生体内で分解されるか否かは特に限定されないが、生分解性材料で構成されることが好ましい。非生分解性材料として具体的には、ポリテトラフルオロエチレン(PTFE)、ポリウレタン、ポリプロピレン、ポリエステル、塩化ビニル、ポリカーボネート、アクリル、ステンレス、チタン、シリコーン、および、MPC(2-メタクリロイルオキシエチルホスホリルコリン)の群から選択される少なくとも1つの材料である。生分解性材料としては、具体的にはポリペプチド(例えば、以下に説明するゼラチン等)、ポリ乳酸、ポリグリコール酸、乳酸・グリコール酸コポリマー(PLGA)、ヒアルロン酸、グリコサミノグリカン、プロテオグリカン、コンドロイチン、セルロース、アガロース、カルボキシメチルセルロース、キチン、および、キトサンの群から選択される少なくとも1つの材料である。上記の中でも、ポリペプチドが特に好ましい。尚、これら高分子材料には細胞接着性を高める工夫がなされていてもよく、具体的な方法としては1.「基材表面に対する細胞接着基質(フィブロネクチン、ビトロネクチン、ラミニン)や細胞接着配列(アミノ酸一文字表記で現わされる、RGD配列、LDV配列、REDV配列、YIGSR配列、PDSGR配列、RYVVLPR配列、LGTIPG配列、RNIAEIIKDI配列、IKVAV配列、LRE配列、DGEA配列、及びHAV配列)ペプチドによるコーティング」、2.「基材表面のアミノ化、カチオン化」、3.「基材表面のプラズマ処理、コロナ放電による親水性処理」といった方法が利用され得る。
ポリペプチドの種類は生体親和性を有するものであれば特に限定されないが、例えば、ゼラチン、コラーゲン、エラスチン、フィブロネクチン、プロネクチン、ラミニン、テネイシン、フィブリン、フィブロイン、エンタクチン、トロンボスポンジン、レトロネクチンが好ましく、最も好ましくはゼラチン、コラーゲン、アテロコラーゲンである。本発明で用いるためのゼラチンとしては、天然ゼラチン、又はリコンビナントゼラチンが好ましい。さらに好ましくは、リコンビナントゼラチンである。ここでいう天然ゼラチンとは天然由来のコラーゲンより作られたゼラチンを意味する。リコンビナントゼラチンについては、本明細書中後記する。
本発明で用いる生体親和性高分子の親水性値「1/IOB」値は、0から1.0が好ましい。より好ましくは、0から0.6であり、さらに好ましくは0から0.4である。IOBとは、藤田穆により提案された有機化合物の極性/非極性を表す有機概念図に基く、親疎水性の指標であり、その詳細は、例えば、"Pharmaceutical Bulletin", vol.2, 2, pp.163-173(1954)、「化学の領域」vol.11, 10, pp.719-725(1957)、「フレグランスジャーナル」, vol.50, pp.79-82(1981)等で説明されている。簡潔に言えば、全ての有機化合物の根源をメタン(CH4)とし、他の化合物はすべてメタンの誘導体とみなして、その炭素数、置換基、変態部、環等にそれぞれ一定の数値を設定し、そのスコアを加算して有機性値(OV)、無機性値(IV)を求め、この値を、有機性値をX軸、無機性値をY軸にとった図上にプロットしていくものである。有機概念図におけるIOBとは、有機概念図における有機性値(OV)に対する無機性値(IV)の比、すなわち「無機性値(IV)/有機性値(OV)」をいう。有機概念図の詳細については、「新版有機概念図−基礎と応用−」(甲田善生等著、三共出版、2008)を参照されたい。本明細書中では、IOBの逆数をとった「1/IOB」値で親疎水性を表している。「1/IOB」値が小さい(0に近づく)程、親水性であることを表す表記である。
本発明で用いる高分子の「1/IOB」値を上記範囲とすることにより、親水性が高く、かつ、吸水性が高くなることから、栄養成分の保持に有効に作用し、結果として、本発明の細胞3次元構造体(モザイク細胞塊)における細胞の安定化・生存しやすさに寄与するものと推定される。
本発明で用いる生体親和性高分子がポリペプチドである場合は、Grand average of hydropathicity(GRAVY)値で表される親疎水性指標において、0.3以下、マイナス9.0以上であることが好ましく、0.0以下、マイナス7.0以上であることがさらに好ましい。Grand average of hydropathicity(GRAVY)値は、『Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A.;Protein Identification and Analysis Tools on the ExPASy Server;(In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press (2005). pp. 571-607』及び『Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R.D., Bairoch A.; ExPASy: the proteomics server for in-depth protein knowledge and analysis.; Nucleic Acids Res. 31:3784-3788(2003).』の方法により得ることができる。
本発明で用いる高分子のGRAVY値を上記範囲とすることにより、親水性が高く、かつ、吸水性が高くなることから、栄養成分の保持に有効に作用し、結果として、本発明の細胞3次元構造体(モザイク細胞塊;モザイク状になっている細胞塊)における細胞の安定化・生存しやすさに寄与するものと推定される。
(1−2)架橋
本発明で用いる生体親和性高分子は、架橋されているものでもよいし、架橋されていないものでもよいが、架橋されているものが好ましい。一般的な架橋方法としては、熱架橋、アルデヒド類(例えば、ホルムアルデヒド、グルタルアルデヒドなど)による架橋、縮合剤(カルボジイミド、シアナミドなど)による架橋、酵素架橋、光架橋、紫外線架橋、疎水性相互作用、水素結合、イオン性相互作用などが知られているが、本発明ではグルタルアルデヒドを使用しない架橋方法を使用する。本発明では好ましくは、アルデヒド類又は縮合剤を使用しない架橋方法を使用する。本発明で使用する架橋方法としては、さらに好ましくは熱架橋、紫外線架橋、又は酵素架橋であり、特に好ましくは熱架橋である。
酵素による架橋を行う場合、酵素としては、高分子材料間の架橋作用を有するものであれば特に限定されないが、好ましくはトランスグルタミナーゼおよびラッカーゼ、最も好ましくはトランスグルタミナーゼを用いて架橋を行うことができる。トランスグルタミナーゼで酵素架橋するタンパク質の具体例としては、リジン残基およびグルタミン残基を有するタンパク質であれば特に制限されない。トランスグルタミナーゼは、哺乳類由来のものであっても、微生物由来のものであってもよく、具体的には、味の素(株)製アクティバシリーズ、試薬として発売されている哺乳類由来のトランスグルタミナーゼ、例えば、オリエンタル酵母工業(株)製、Upstate USA Inc.製、Biodesign International製などのモルモット肝臓由来トランスグルタミナーゼ、ヤギ由来トランスグルタミナーゼ、ウサギ由来トランスグルタミナーゼなど、ヒト由来の血液凝固因子(Factor XIIIa、Haematologic Technologies, Inc.社)などが挙げられる。
架橋剤を使用しない架橋(例えば、熱架橋)を行う際の反応温度は、架橋ができる限り特に限定されないが、好ましくは、−100℃〜500℃であり、より好ましくは0℃〜300℃であり、更に好ましくは50℃〜300℃であり、更に好ましくは100℃〜250℃であり、更に好ましくは120℃〜200℃である。
(1−3)リコンビナントゼラチン
本発明にかかるリコンビナントゼラチンとは遺伝子組み換え技術により作られたゼラチン類似のアミノ酸配列を有するポリペプチドもしくは蛋白様物質を意味する。本発明で用いることができるリコンビナントゼラチンは、コラーゲンに特徴的なGly−X−Yで示される配列(X及びYはそれぞれ独立にアミノ酸の何れかを示す)の繰り返しを有するものが好ましい(複数個のGly−X−Yはそれぞれ同一でも異なっていてもよい)。好ましくは、細胞接着シグナルを一分子中に2配列以上含まれている。本発明で用いるリコンビナントゼラチンとしては、コラーゲンの部分アミノ酸配列に由来するアミノ酸配列を有するリコンビナントゼラチンを用いることができ、例えばEP1014176、US6992172、WO2004/85473、WO2008/103041等に記載のものを用いることができるが、これらに限定されるものではない。本発明で用いるリコンビナントゼラチンとして好ましいものは、以下の態様のリコンビナントゼラチンである。
本発明で用いるリコンビナントゼラチンは天然のゼラチン本来の性能から、生体適合性に優れ、且つ天然由来ではないことで牛海綿状脳症(BSE)などの懸念がなく、非感染性に優れている。また、本発明で用いるリコンビナントゼラチンは天然のものに比して均一であり、配列が決定されているので、強度、分解性においても後述の架橋等によってブレを少なく精密に設計することが可能である。
リコンビナントゼラチンの分子量は2kDa以上100kDa以下であることが好ましい。より好ましくは2.5kDa以上95kDa以下である。より好ましくは5kDa以上90kDa以下である。最も好ましくは、10kDa以上90kDa以下である。
リコンビナントゼラチンは、コラーゲンに特徴的なGly−X−Yで示される配列の繰り返しを有する。ここで、複数個のGly−X−Yはそれぞれ同一でも異なっていてもよい。Gly−X−Y において、Glyはグリシン、X及びYは、任意のアミノ酸(好ましくは、グリシン以外の任意のアミノ酸)を表す。コラーゲンに特徴的なGXY配列とは、ゼラチン・コラーゲンのアミノ酸組成および配列における、他のタンパク質と比較して非常に特異的な部分構造である。この部分においてはグリシンが全体の約3分の1を占め、アミノ酸配列では3個に1個の繰り返しとなっている。グリシンは最も簡単なアミノ酸であり、分子鎖の配置への束縛も少なく、ゲル化に際してのヘリックス構造の再生に大きく寄与している。X,Yであらわされるアミノ酸はイミノ酸(プロリン、オキシプロリン)が多く含まれ、全体の10%〜45%を占めることが好ましい。好ましくはその配列の80%以上、更に好ましくは95%以上、最も好ましくは99%以上のアミノ酸がGXYの繰り返し構造であることが好ましい。
一般的なゼラチンは極性アミノ酸のうち、電荷を持つものと無電荷のものが1:1で存在する。ここで、極性アミノ酸とは具体的にシステイン、アスパラギン酸、グルタミン酸、ヒスチジン、リジン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、アルギニンを指し、このうち極性無電荷アミノ酸とはシステイン、アスパラギン、グルタミン、セリン、スレオニン、チロシンを指す。本発明で用いるリコンビナントペプチドにおいては、構成する全アミノ酸のうち、極性アミノ酸の割合が10〜40%であり、好ましくは20〜30%である。且つ該極性アミノ酸中の無電荷アミノ酸の割合が5%以上20%未満、好ましくは10%未満であることが好ましい。さらに、セリン、スレオニン、アスパラギン、チロシン、システインのうちいずれか1アミノ酸、好ましくは2以上のアミノ酸を配列上に含まないことが好ましい。
一般にポリペプチドにおいて、細胞接着シグナルとして働く最小アミノ酸配列が知られている(例えば、株式会社永井出版発行「病態生理」Vol.9、No.7(1990年)527頁)。本発明で用いるリコンビナントゼラチンは、これらの細胞接着シグナルを一分子中に2以上有することが好ましい。具体的な配列としては、接着する細胞の種類が多いという点で、アミノ酸一文字表記で現わされる、RGD配列、LDV配列、REDV配列、YIGSR配列、PDSGR配列、RYVVLPR配列、LGTIPG配列、RNIAEIIKDI配列、IKVAV配列、LRE配列、DGEA配列、及びHAV配列の配列が好ましく、さらに好ましくはRGD配列、YIGSR配列、PDSGR配列、LGTIPG配列、IKVAV配列及びHAV配列、特に好ましくはRGD配列である。RGD配列のうち、好ましくはERGD配列である。細胞接着シグナルを有するリコンビナントゼラチンを用いることにより、細胞の基質産生量を向上させることができる。例えば、細胞として、間葉系幹細胞を用いた軟骨分化の場合には、グリコサミノグリカン(GAG)の産生を向上させることができる。
本発明で用いるリコンビナントゼラチンにおけるRGD配列の配置として、RGD間のアミノ酸数が0〜100の間、好ましくは25〜60の間で均一でないことが好ましい。
この最小アミノ酸配列の含有量は、細胞接着・増殖性の観点から、タンパク質1分子中3〜50個が好ましく、さらに好ましくは4〜30個、特に好ましくは5〜20個である。最も好ましくは12個である。
本発明で用いるリコンビナントゼラチンにおいて、アミノ酸総数に対するRGDモチーフの割合は少なくとも0.4%であることが好ましく、リコンビナントゼラチンが350以上のアミノ酸を含む場合に、350のアミノ酸の各ストレッチが少なくとも1つのRGDモチーフを含むことが好ましい。アミノ酸総数に対するRGDモチーフの割合は、更に好ましくは少なくとも0.6%であり、更に好ましくは少なくとも0.8%であり、更に好ましくは少なくとも1.0%であり、更に好ましくは少なくとも1.2%であり、最も好ましくは少なくとも1.5%である。リコンビナントペプチド内のRGDモチーフの数は、250のアミノ酸あたり、好ましくは少なくとも4、更に好ましくは6、更に好ましくは8、更に好ましくは12以上16以下である。RGDモチーフの0.4%という割合は、250のアミノ酸あたり、少なくとも1つのRGD配列に対応する。RGDモチーフの数は整数であるので、0.4%の特徴を満たすには、251のアミノ酸からなるゼラチンは、少なくとも2つのRGD配列を含まなければならない。好ましくは、本発明のリコンビナントゼラチンは、250のアミノ酸あたり、少なくとも2つのRGD配列を含み、より好ましくは250のアミノ酸あたり、少なくとも3つのRGD配列を含み、さらに好ましくは250のアミノ酸あたり、少なくとも4つのRGD配列を含む。本発明のリコンビナントゼラチンのさらなる態様としては、少なくとも4つのRGDモチーフ、好ましくは6つ、より好ましくは8つ、さらに好ましくは12以上16以下のRGDモチーフを含む。
また、リコンビナントゼラチンは部分的に加水分解されていてもよい。
好ましくは、本発明で用いるリコンビナントゼラチンは、式:A−[(Gly−X−Y)nm−Bで示されるものである。n個のXはそれぞれ独立にアミノ酸の何れかを示し、n個のYはそれぞれ独立にアミノ酸の何れかを示す。mとして好ましくは2〜10、好ましくは3〜5である。nは3〜100が好ましく、15〜70がさらに好ましく、50〜65が最も好ましい。Aは任意のアミノ酸又はアミノ酸配列を示し、Bは任意のアミノ酸又はアミノ酸配列を示し、n個のXはそれぞれ独立にアミノ酸の何れかを示し、n個のYはそれぞれ独立にアミノ酸の何れかを示す。
より好ましくは、本発明で用いるリコンビナントゼラチンは、 式:Gly−Ala−Pro−[(Gly−X−Y)633−Gly(式中、63個のXはそれぞれ独立にアミノ酸の何れかを示し、63個のYはそれぞれ独立にアミノ酸の何れかを示す。なお、63個のGly−X−Yはそれぞれ同一でも異なっていてもよい。)で示されるものである。
繰り返し単位には天然に存在するコラーゲンの配列単位を複数結合することが好ましい。ここで言う天然に存在するコラーゲンとは天然に存在するものであればいずれであっても構わないが、好ましくはI型、II型、III型、IV型、およびV型である。より好ましくは、I型、II型、III型である。別の形態によると、該コラーゲンの由来は好ましくは、ヒト、ウシ、ブタ、マウス、ラットである。より好ましくはヒトである。
本発明で用いるリコンビナントゼラチンの等電点は、好ましくは5〜10であり、より好ましくは6〜10であり、さらに好ましくは7〜9.5である。
好ましくは、リコンビナントゼラチンは脱アミン化されていない。
好ましくは、リコンビナントゼラチンはテロペプタイドを有さない。
好ましくは、リコンビナントゼラチンは天然コラーゲンをコードする核酸により調製された実質的に純粋なコラーゲン用材料である。
本発明で用いるリコンビナントゼラチンとして特に好ましくは、
(1)配列番号1に記載のアミノ酸配列;又は
(2)配列番号1に記載のアミノ酸配列と80%以上(さらに好ましくは90%以上、最も好ましくは95%以上)の相同性を有し、生体親和性を有するアミノ酸配列;
を有するリコンビナントゼラチンである。
本発明で用いるリコンビナントゼラチンは、当業者に公知の遺伝子組み換え技術によって製造することができ、例えばEP1014176A2、US6992172、WO2004-85473、WO2008/103041等に記載の方法に準じて製造することができる。具体的には、所定のリコンビナントゼラチンのアミノ酸配列をコードする遺伝子を取得し、これを発現ベクターに組み込んで、組み換え発現ベクターを作製し、これを適当な宿主に導入して形質転換体を作製する。得られた形質転換体を適当な培地で培養することにより、リコンビナントゼラチンが産生されるので、培養物から産生されたリコンビナントゼラチンを回収することにより、本発明で用いるリコンビナントゼラチンを調製することができる。
(1−4)生体親和性高分子ブロック
本発明では、上記した生体親和性高分子を含有するブロック(塊)を使用する。
本発明における生体親和性高分子ブロックの形状は特に限定されるものではないが、タップ密度が10mg/cm3以上500mg/cm3以下であること、又は前記生体親和性高分子ブロックの二次元断面像における断面積の平方根÷周囲長の値が0.01以上0.13以下であることの何れか1以上の条件を充足するものである。
本発明における生体親和性高分子ブロックのタップ密度は、10mg/cm3以上500mg/cm3以下であり、好ましくは、20mg/cm3以上400mg/cm3以下、より好ましくは40mg/cm3以上220mg/cm3以下、更に好ましくは50mg/cm3以上150mg/cm3以下である。
タップ密度は、ある体積にどれくらいのブロックを密に充填できるかを表す値であり、値が小さいほど、密に充填できない、すなわちブロックの構造が複雑であることが分かる。生体親和性高分子ブロックのタップ密度とは、生体親和性高分子ブロックの表面構造の複雑性、及び生体親和性高分子ブロックを集合体として集めた場合に形成される空隙の量を表していると考えられる。タップ密度が小さい程、高分子ブロック間の空隙が多くなり、細胞の生着領域が多くなる。また、小さ過ぎないことで、細胞同士の間に適度に生体親和性高分子ブロックが存在出来、細胞移植用細胞構造体とした場合に同構造体内部への栄養分送達を可能とすることから、上記の範囲に収まることが好適であると考えられる。
本明細書でいうタップ密度は、以下のように測定できる。測定のために(直径6mm、長さ21.8mmの円筒状:容量0.616cm3)の容器(以下、キャップと記載する)を用意する。まず、キャップのみの質量を測定する。その後、キャップにロートを付け、ブロックがキャップに溜まるようにロートから流し込む。十分量のブロックを入れた後、キャップ部分を200回机などの硬いところにたたきつけ、ロートをはずし、スパチュラですりきりにする。このキャップにすりきり一杯入った状態で質量を測定する。キャップのみの質量との差からブロックのみの質量を算出し、キャップの体積で割ることで、タップ密度を求めることができる。
本発明における生体親和性高分子ブロック一つの大きさは、20μm以上200μm以下であることが好ましい。より好ましくは20μm以上120μm以下であり、さらに好ましくは50μm以上120μm以下である。
好ましくは、生体親和性高分子ブロックのタップ密度が10mg/cm3以上400mg/cm3以下であり、かつ高分子ブロック一つの大きさが20μm以上120μm以下である。
本発明における生体親和性高分子ブロックの「断面積の平方根÷周囲長」は、0.01以上0.13以下であり、好ましくは、0.02以上0.12以下、より好ましくは0.03以上0.115以下、更に好ましくは0.05以上0.09以下である。
生体親和性高分子ブロックの「断面積の平方根÷周囲長」とは、タップ密度と同様に、生体親和性高分子ブロックの表面構造の複雑性、及び高分子ブロックを集合体として集めた場合に形成される空隙の量を表していると考えられる。「断面積の平方根÷周囲長」が小さい程、生体親和性高分子ブロック間の空隙が多くなり、細胞の生着領域が多くなる。また、小さ過ぎないことで、細胞同士の間に適度に生体親和性高分子ブロックが存在出来、細胞移植用細胞構造体とした場合に同構造体内部への栄養分送達を可能とすることから、上記の範囲に収まることが好適であると考えられる。
生体親和性高分子ブロックの、二次元断面像における「面積の平方根÷周囲長」とは、生体親和性高分子ブロックの断面標本を作製し、断面構造を確認することによって求めることができる。例えば、まず、生体親和性高分子ブロックの断面構造を薄切標本(例えばHE染色標本)として用意する。この際、生体親和性高分子ブロックだけでも構わないし、生体親和性高分子ブロックと細胞を含む細胞構造体として断面構造を観察することでも構わない。一つの生体親和性高分子ブロックについて、その断面積及び周囲長を求め、その後、「断面積の平方根÷周囲長」を算出する。それを10か所以上の複数個にわたって計測し、それらの平均値として「断面積の平方根÷周囲長」を得ることができる。
本発明における生体親和性高分子ブロック一つの大きさは、特に限定されないが、好ましくは20μm以上200μm以下であり、より好ましくは50μm以上120μm以下である。生体親和性高分子ブロック一つの大きさを上記の範囲内にすることにより、より優れた細胞生存率を達成することができる。なお、生体親和性高分子ブロック一つの大きさとは、複数個の生体親和性高分子ブロックの大きさの平均値が上記範囲にあることを意味するものではなく、複数個の生体親和性高分子ブロックを篩にかけて得られる、一つ一つの生体親和性高分子ブロックのサイズを意味するものである。
本発明における生体親和性高分子ブロックの架橋度は、特に限定されないが、好ましくは6以上であり、さらに好ましくは6以上30以下であり、さらに好ましくは6以上25以下であり、特に好ましくは8以上22以下である。
高分子ブロックの架橋度(1分子当たりの架橋数)の測定方法は、特に限定されないが、例えば、後記実施例に記載のTNBS(2,4,6-トリニトロベンゼンスルホン酸)法で測定することができる。具体的には、高分子ブロック、NaHCO3水溶液及びTNBS水溶液を混合して37℃で3時間反応させた後に反応停止したサンプルと、高分子ブロック、NaHCO3水溶液及びTNBS水溶液を混合した直後に反応停止させたブランクとをそれぞれ調製し、純水で希釈したサンプル及びブランクの吸光度(345nm)を測定し、以下の(式1)、及び(式2)から架橋度(1分子当たりの架橋数)を算出することができる。
(式1) (As-Ab)/14600×V/w
(式1)は、高分子ブロック1g当たりのリジン量(モル等量)を示す。
(式中、Asはサンプル吸光度、Abはブランク吸光度、Vは反応液量(g)、wは高分子ブロック質量(mg)を示す。)
(式2) 1−(サンプル(式1)/未架橋の高分子(式1))×34
(式2)は、1分子あたりの架橋数を示す。
本発明における生体親和性高分子ブロックの吸水率は、特に限定されないが、好ましくは300%以上、より好ましくは400%以上、さらに好ましくは500%以上、特に好ましくは700%以上、最も好ましくは800%以上である。なお吸水率の上限は特に限定されないが、一般的には4000%以下、又は2000%以下である。
生体親和性高分子ブロックの吸水率の測定方法は、特に限定されないが、例えば、後記実施例に記載の方法により測定することができる。具体的には、25℃において3cm×3cmのナイロンメッシュ製の袋の中に、生体親和性高分子ブロックを約15mgを充填し、2時間イオン交換水中で膨潤させた後、10分風乾させ、それぞれの段階において質量を測定し、(式3)に従って吸水率を求めることができる。
(式3)
吸水率=(w2−w1−w0)/w0
(式中、w0は、吸水前の材料の質量、w1は吸水後の空袋の質量、w2は吸水後の材料を含む袋全体の質量を示す。)
(1−5)生体親和性高分子ブロックの製造方法
生体親和性高分子ブロックの製造方法は、上記(1−4)に記載した条件を満たす生体親和性高分子ブロックが得られる限りは特に限定されないが、例えば、生体親和性高分子の多孔質体を粉砕機(ニューパワーミルなど)を用いて粉砕することにより、上記(1−4)に記載した条件を満たす生体親和性高分子ブロックを得ることができる。
本発明における「多孔質体」としては好ましくは、1mm角の材料として用意した場合に、本体内部に複数の「10μm以上500μm以下の空孔」を有する材料で、かつその本体中で空孔の占める体積が50%以上の材料を使用することができる。これらの材料において、前述した内部の空孔は、互いに連通していてもよく、一部もしくは全部の空孔が材料表面に開口していてもよい。
生体親和性高分子の多孔質体を製造する際に、溶液内で最も液温の高い部分の液温(内部最高液温)が、未凍結状態で「溶媒融点−3℃」以下となる凍結工程を含めることによって、形成される氷は球状となる。この工程を経て、当該氷が乾燥されることで、球状の等方的な空孔(球孔)を持つ多孔質体が得られる。溶液内で最も液温の高い部分の液温(内部最高液温)が、未凍結状態で「溶媒融点−3℃」以上となる凍結工程を含まずに、凍結されることで、形成される氷は柱/平板状となる。この工程を経て、当該氷が乾燥されると、一軸あるいは二軸上に長い、柱状あるいは平板状の空孔(柱/平板孔)を持つ多孔質体が得られる。
本発明においては、多孔質体の有する空孔の形状は、柱/平板孔であるよりも、球孔であることが好ましく、また、空孔のうち球孔の占める割合が50%以上であることがさらに好ましい。
本発明では好ましくは、
(a)生体親和性高分子の溶液を、溶液内で最も液温の高い部分の液温(内部最高液温)が未凍結状態で「溶媒融点−3℃」以下となる凍結処理により凍結する工程;及び
(b)前記工程(a)で得られた凍結した生体親和性高分子を凍結乾燥する工程:
を含む方法により、生体親和性高分子の多孔質体を製造することができる。上記工程によれば、空孔の内、球孔の占める割合が50%以上とすることができるからである。
より好ましくは、上記工程(a)において、溶液内で最も液温の高い部分の液温(内部最高液温)が未凍結状態で「溶媒融点−7℃」以下となる凍結処理により凍結することができる。この工程によれば、空孔の内、球孔の占める割合が80%以上とすることができるからである。
多孔質体の有する空孔の平均空孔サイズは、当該多孔質体の断面構造観察から得られる。まず、多孔質体の断面構造を薄切標本(例えばHE染色標本)として用意する。その後、高分子で形成されている壁の内、明瞭な突起部については、最接突起部と繋ぎ、空孔を明瞭化させる。そうして得られた区切られた個々の空孔面積を計測し、その後、当該面積を円換算した場合の円直径を算出する。得られた円直径を空孔サイズとし、20個以上の平均値を平均空孔サイズとすることができる。
本明細書中における、ある空孔サイズの空間占有率とは、ある空孔サイズを有す空孔が多孔質体中で、どれくらいの体積を占めているかという割合のことをいう。具体的には、二次元断面画像から、ある空孔サイズの空孔が占める面積を全面積で除することにより、割合として求めることができる。また、用いる断面画像としては、実寸1.5mm大についての断面画像を利用することができる。
多孔質体の空孔サイズ20μm〜200μmが占める空間占有率は、好ましくは83%以上100%以下であり、より好ましくは85%以上100%以下、さらに好ましくは90%以上100%以下、特に好ましくは95%以上100%以下である。
多孔質体の空孔サイズ30μm〜150μmが占める空間占有率は、好ましくは60%以上100%以下であり、より好ましくは70%以上100%以下、さらに好ましくは80%以上100%以下、特に好ましくは90%以上100%以下である。
多孔質体の空孔サイズ20μm〜200μmが占める空間占有率、及び多孔質体の空孔サイズ30μm〜150μmが占める空間占有率とは、多孔質体中における空孔サイズ分布が所定の範囲に収まることを表している。つまり、当該多孔質体を粉砕することで得た高分子ブロックにおいて、サイズ20μm〜200μm大の高分子ブロックとした際、当該空孔サイズは、一つの高分子ブロックサイズと近いサイズであり、結果的に当該空孔サイズの割合が多い多孔質体では、粉砕後の高分子ブロックの構造が複雑となり、結果的にタップ密度や、「断面積の平方根÷周囲長」を小さくすることに繋がる。
空孔の形状については、個々の空孔について、長軸と短軸を求め、そこから「長軸÷短軸」を算出。それら「長軸÷短軸」が1以上2以下の場合を球孔、3以上の場合を柱/平板孔とした。
本発明における多孔質体の空孔率は、嵩密度(ρ)と真密度(ρc)を用いて、空孔率(P) = 1−ρ/ρc (%)により求めることができる。嵩密度(ρ)は、乾燥質量と体積から算出し、真密度(ρc)は、ハバード型形の比重瓶法により求めることができる。本発明における高分子多孔質体の空孔率は、好ましくは81%以上99.99%以下であり、より好ましくは95.01%以上99.9%以下である。
(1−6)生体親和性高分子ブロックの用途
本明細書中後記の通り、本発明の生体親和性高分子ブロックと、少なくとも一種類の細胞とを混合することによって、本発明の細胞移植用細胞構造体を製造することができる。即ち、本発明の生体親和性高分子ブロックは、本発明の細胞移植用細胞構造体を製造するための試薬として有用である。
(2)細胞
本発明で用いる細胞は、本発明の細胞構造体の目的である、細胞移植を行えるものであれば任意の細胞を使用することができ、その種類は特に限定されない。また、使用する細胞は1種でもよいし、複数種の細胞を組合せて用いてもよい。また、使用する細胞として、好ましくは、動物細胞であり、より好ましくは脊椎動物由来細胞、特に好ましくはヒト由来細胞である。脊椎動物由来細胞(特に、ヒト由来細胞)の種類は、万能細胞、体性幹細胞、前駆細胞、又は成熟細胞の何れでもよい。万能細胞としては、例えば、ES細胞、GS細胞、又はiPS細胞を使用することができる。体性幹細胞としては、例えば、間葉系幹細胞(MSC)、造血幹細胞、羊膜細胞、臍帯血細胞、骨髄由来細胞、心筋幹細胞、脂肪由来幹細胞、又は神経幹細胞を使用することができる。前駆細胞及び成熟細胞としては、例えば、皮膚、真皮、表皮、筋肉、心筋、神経、骨、軟骨、内皮、脳、上皮、心臓、腎臓、肝臓、膵臓、脾臓、口腔内、角膜、骨髄、臍帯血、羊膜、又は毛に由来する細胞を使用することができる。ヒト由来細胞としては、例えば、ES細胞、iPS細胞、MSC、軟骨細胞、骨芽細胞、骨芽前駆細胞、間充織細胞、筋芽細胞、心筋細胞、心筋芽細胞、神経細胞、肝細胞、ベータ細胞、線維芽細胞、角膜内皮細胞、血管内皮細胞、角膜上皮細胞、羊膜細胞、臍帯血細胞、骨髄由来細胞、又は造血幹細胞を使用することができる。また、細胞の由来は、自家細胞又は他家細胞の何れでも構わない。
例えば、重症心不全、重度心筋梗塞等の心臓疾患においては、自家および他家から摘出した心筋細胞、平滑筋細胞、線維芽細胞、骨格筋由来細胞(特にサテライト細胞)、骨髄細胞(特に心筋様細胞に分化させた骨髄細胞)などを好適に使用することができる。更に、他の臓器においても、適宜移植細胞を選択することができる。例えば、脳虚血・脳梗塞部位への神経前駆細胞または、神経細胞に分化可能な細胞の移植、心筋梗塞部位・骨格筋虚血部位への血管内皮細胞または血管内皮細胞に分化可能な細胞の移植などを挙げることができる。
また、糖尿病性の臓器障害に対する細胞移植に使用される細胞が挙げられる。例えば、腎臓、膵臓、末梢神経、眼、四肢の血行障害などの疾患に対して、種々検討されている細胞移植治療法用の細胞が挙げられる。即ち、インスリン分泌能が低下した膵臓にインスリン分泌細胞を移植する試みや、四肢の血行障害に対する骨髄由来細胞の移植などが検討されており、このような細胞を使用することができる。
また本明細書中後述する通り、本発明においては、血管系の細胞を使用することもできる。本明細書において、血管系の細胞とは、血管形成に関連する細胞を意味し、血管および血液を構成する細胞、およびその細胞に分化することができる前駆細胞、体性幹細胞である。ここで、血管系の細胞には、ES細胞、GS細胞、又はiPS細胞等の万能細胞や、間葉系幹細胞(MSC)のような、血管および血液を構成する細胞に、自然には分化しないものは含まれない。血管系の細胞として、好ましくは血管を構成する細胞である。脊椎動物由来細胞(特に、ヒト由来細胞)では、血管を構成する細胞は、血管内皮細胞および血管平滑筋細胞を好適に挙げることができる。血管内皮細胞は、静脈内皮細胞および動脈内皮細胞どちらも含む。血管内皮細胞の前駆細胞としては、血管内皮前駆細胞を使用することができる。好ましくは血管内皮細胞および血管内皮前駆細胞である。血液を構成する細胞は、血球細胞が使用でき、リンパ球や好中球などの白血球細胞、単球細胞、それらの幹細胞である造血幹細胞を使用できる。
本明細書において、非血管系の細胞とは、上記の血管系以外の細胞を意味する。例えば、ES細胞、iPS細胞、間葉系幹細胞(MSC)、心筋幹細胞、心筋細胞、線維芽細胞、筋芽細胞、軟骨細胞、筋芽細胞、肝細胞または神経細胞を使用することができる。好ましくは、間葉系幹細胞(MSC)、軟骨細胞、筋芽細胞、心筋幹細胞、心筋細胞、肝細胞またはiPS細胞を使用することができる。より好ましくは、間葉系幹細胞(MSC)、心筋幹細胞、心筋細胞または筋芽細胞である。
(3)細胞構造体
本発明においては、上記した生体親和性高分子ブロックと上記した細胞とを用いて、複数個の細胞間の隙間に複数個の該高分子ブロックをモザイク状に3次元的に配置させることによって細胞移植のために適した厚みを有することが可能であり、かつ、生体親和性高分子ブロックと細胞とがモザイク状に3次元配置されることにより、構造体中で細胞が均一に存在する細胞3次元構造体を形成され、外部から細胞3次元構造体の内部への栄養送達を可能となる。これにより、本発明の細胞移植用細胞構造体を用いて、細胞移植を行うと、移植された細胞の壊死を抑制し、移植が可能となる。なお、ここでいう「壊死の抑制」とは、本発明の細胞構造体とせず、細胞のみを移植した場合と比較して、壊死の程度が低いことを意味する。
本発明の細胞移植用細胞構造体は、複数個の細胞間の隙間に複数個の高分子ブロックが配置されているが、ここで、「細胞間の隙間」とは、構成される細胞により、閉じられた空間である必要はなく、細胞により挟まれていればよい。なお、すべての細胞間に隙間がある必要はなく、細胞同士が接触している箇所があってもよい。高分子ブロックを介した細胞間の隙間の距離、即ち、ある細胞とその細胞から最短距離に存在する細胞を選択した際の隙間距離は特に制限されるものではないが、高分子ブロックの大きさであることが好ましく、好適な距離も高分子ブロックの好適な大きさの範囲である。
また、本発明にかかる高分子ブロックは、細胞により挟まれた構成となるが、すべての高分子ブロック間に細胞がある必要はなく、高分子ブロック同士が接触している箇所があってもよい。細胞を介した高分子ブロック間の距離、即ち、高分子ブロックとその高分子ブロックから最短距離に存在する高分子ブロックを選択した際の距離は特に制限されるものではないが、使用される細胞が1〜数個集まった際の細胞の塊の大きさであることが好ましく、例えば、10μm以上1000μm以下であり、好ましくは10μm以上100μm以下であり、より好ましくは10μm以上50μm以下である。
なお、本明細書中、「構造体中で細胞が均一に存在する細胞3次元構造体」等、「均一に存在する」との表現を使用しているが、完全な均一を意味するものではなく、本発明の作用効果である、外部から細胞3次元構造体の内部への栄養送達を可能とすること、移植された細胞の壊死を防止することを意味するものである。
本発明の細胞移植用細胞構造体の厚さ又は直径は、所望の厚さとすることができるが、下限としては、215μm以上であることが好ましく、400μm以上がさらに好ましく、730μm以上であることが最も好ましい。厚さ又は直径の上限は特に限定されないが、使用上の一般的な範囲としては3cm以下が好ましく、2cm以下がより好ましく、1cm以下であることが更に好ましい。また、細胞構造体の厚さ又は直径の範囲として、好ましくは、400μm以上3cm以下、より好ましくは500μm以上2cm以下、更に好ましくは720μm以上1cm以下である。
本発明の細胞移植用細胞構造体は、好ましくは、高分子ブロックからなる領域と細胞からなる領域がモザイク状に配置されている。尚、本明細書中における「細胞構造体の厚さ又は直径」とは、以下のことを示すものとする。細胞構造体中のある一点Aを選択した際に、その点Aを通る直線の内で、細胞構造体外界からの距離が最短になるように細胞構造体を分断する線分の長さを線分Aとする。細胞構造体中でその線分Aが最長となる点Aを選択し、その際の線分Aの長さのことを「細胞構造体の厚さ又は直径」とする。
また、後述する本発明の細胞移植用細胞構造体の製造方法での融合前の細胞構造体、または第二の高分子ブロック添加前の細胞構造体として、本発明の細胞構造体を使用する場合には、細胞構造体の厚さ又は直径の範囲として、好ましくは、10μm以上1cm以下、より好ましくは10μm以上2000μm以下、更に好ましくは15μm以上1500μm以下、最も好ましくは、20μm以上1300μm以下である。
本発明の細胞移植用細胞構造体は、細胞と高分子ブロックの比率は特に限定されないが、好ましくは細胞1個当りの高分子ブロックの比率が0.0000001μg以上1μg以下であることが好ましく、さらに好ましくは0.000001μg以上0.1μg以下、より好ましくは0.00001μg以上0.01μg以下、最も好ましくは0.00002μg以上0.006μg以下である。上記範囲とするこのより、より細胞を均一に存在させることができる。また、下限を上記範囲とすることにより、上記用途に使用した際に細胞の効果を発揮することができ、上限を上記範囲とすることにより、任意で存在する高分子ブロック中の成分を細胞に供給できる。ここで、高分子ブロック中の成分は特に制限されないが、後述する培地に含まれる成分が挙げられる。
また、本発明の細胞移植用細胞構造体は、血管新生因子を含んでいてもよい。ここで、血管新生因子としては、塩基性繊維芽細胞増殖因子(bFGF)、血管内皮増殖因子(VEGF)、肝細胞増殖因子(HGF)などを好適に挙げることができる。血管新生因子を含む細胞移植用細胞構造体の製造方法は、特に制限されないが、例えば、血管新生因子を含浸させた高分子ブロックを使用することにより、製造することができる。血管新生を促進する観点からは、本発明の細胞移植用細胞構造体は、血管新生因子を含むことが好ましい。
本発明の細胞移植用細胞集合体の一例としては、非血管系細胞と血管系細胞で構成される細胞移植用細胞集合体であって、
(a)細胞集合体の中心部の血管系の細胞の面積が、周辺部の血管系の細胞の面積より多い領域を有すること、および
(b)中心部の血管系の細胞密度が、1.0×10-4cells/μm3以上である領域を有すること、
のうち少なくとも一方の要件を満たすものである。
本発明の細胞移植用細胞集合体は、前記(a)および(b)の両方の要件を満たすことが好ましく、前記中心部の血管系の細胞の割合が、血管系の細胞の全面積に対し、60%〜100%である領域を有することも好ましい。
本発明の細胞移植用細胞構造体は、非血管系の細胞を含むものも好適に使用することができる。また、本発明の細胞移植用細胞構造体を構成する細胞が、非血管系の細胞のみであるものも好適に使用することができる。細胞として非血管系の細胞のみを含む本発明の細胞移植用細胞構造体により、移植後、移植部位に、血管を形成することができる。また、本発明の細胞移植用細胞構造体を構成する細胞が二種類以上であり、非血管系の細胞および血管系の細胞の両方を含む場合には、非血管系の細胞のみで構成されている場合と比較して、より血管形成することが可能となり、好ましい。
更にまた、本発明の細胞移植用細胞構造体を構成する細胞が二種類以上であり、細胞構造体の中心部の血管系の細胞の面積が、周辺部の血管系の細胞の面積より多い領域を有する場合、更に血管形成することが可能となり、更に好ましい。ここで、細胞構造体の中心部の血管系の細胞の面積が、周辺部の血管系の細胞の面積より多い領域を有するとは、具体的には、任意の2μmの薄切標本を作製したときに、上記となる領域を有する標本が存在することを言う。ここで、細胞構造体の中心部とは、中心から、細胞構造体の表面までの距離のうち、中心から80%までの距離のエリアをいい、細胞構造体の周辺部とは、中心から80%の場所から構造体表面までのエリアをいう。なお、細胞構造体の中心部は、以下のように定める。
細胞構造体の中心を通る任意の断面において、当該断面の外延に沿って、半径Xの円の中心を一周動かし、動かした円と断面の重複部分を除いた部分の面積が、前記断面の断面積の64%となるような半径Xを求める。当該半径Xの円の中心を一周動かし、動かした円と断面の重複部分を除いた部分を細胞構造体の中心部とする。このとき、断面積が一番大きくなる断面が最も好ましい。なお、細胞構造体の中心とは、断面積が最大となる断面において、当該断面の外延に沿って、半径Yの円の中心を一周動かし、動かした円と断面の重複部分を除いた部分が、一点に決まるような半径Yを求める。当該半径Yの円の中心を一周動かし、動かした円と断面の重複部分を除いた一点を細胞構造体の中心とする。一点に決まらず線分になる場合、またはその線分が複数個存在する場合は、それぞれの線分について、その長さを二等分する点を中心とする。
具体的には、中心部の血管系の細胞の割合が、血管系の細胞の全面積に対し、60%〜100%である領域を有することが好ましく、65%〜100%がより好ましく、80%〜100%が更に好ましく、90%〜100%が更に好ましい。なお、ここで、中心部の血管系の細胞の割合が、血管系の細胞の全面積に対し、60%〜100%である領域を有するとは、具体的には、任意の2μmの薄切標本を作製したときに、当該割合の領域を有する標本が存在することを言う。当該範囲とすることにより、血管形成をより促すことができる。
なお、中心部の血管系の細胞の割合は、例えば、薄切標本を作製したときに、測定対象の血管系の細胞を染色し、画像処理ソフトImageJを用い、中心部の色の濃さ(強度)の平均値を求め、中心部の面積×強度を算出し、更に、全体の色の濃さ(強度)の平均値を求め、全体の面積×強度を算出し、全体の面積×強度に対する、中心部の面積×強度の割合を求めることによって算出することもできる。ここで、血管系の細胞を染色する方法は、適宜、公知の染色方法を使用することができ、例えば、細胞として、ヒト血管内皮前駆細胞(hECFC)を使用する場合には、CD31抗体を使用することができる。
また、細胞構造体の、中心部の血管系の細胞密度が1.0×10-4cells/μm3以上である領域を有することが好ましく、細胞構造体の中心部全体で前記細胞密度となることが、より好ましい。なお、ここで、1.0×10-4cells/μm3以上である領域を有するとは、具体的には、任意の2μmの薄切標本を作製したときに、当該密度の領域を有する標本が存在することを言う。前記細胞密度は、より好ましくは1.0×10-4〜1.0×10-3cells/μm3、更に好ましくは1.0×10-4〜2.0×10-4cells/μm3、更に好ましくは1.1×10-4〜1.8×10-4cells/μm3、更に好ましくは1.4×10-4〜1.8×10-4cells/μm3である。当該範囲とすることにより、血管形成をより促すことができる。
ここで、中心部の血管系の細胞密度は、実際に薄切標本の細胞数を数え、細胞数を体積で割って求めることができる。ここでの中心部とは、以下のように定める。前述の中心部に垂直方向に、薄切標本の厚みの分を切り取った部分とする。細胞密度の求め方は、例えば、上記の測定対象の血管系の細胞を染色した薄切標本と、細胞核を染色した薄切標本を重ね合わせ、重なった細胞核の数をカウントすることで、中心部の血管系の細胞数を算出することができ、体積は、ImageJを用いて中心部の面積を求め、その薄切標本の厚みをかけることで求められる。
なお、本発明の細胞移植用細胞構造体には、細胞が二種類以上であり、非血管系の細胞および血管系の細胞の両方を含む本発明の細胞移植用細胞構造体を用いて、血管形成されたものも含む。また、ここで、「細胞が二種類以上であり、非血管系の細胞および血管系の細胞の両方を含む本発明の細胞移植用細胞構造体」の好適な範囲は上記と同様である。血管を構築する方法は、例えば、血管部分をトンネル状にくりぬいたゲル材料に、血管系細胞を混合した細胞シートを貼り付け、トンネルに培養液を流しながら培養する方法があげられる。また、細胞シートの間に血管系細胞をサンドイッチ状にはさむことでも、血管を構築できる。
(4)細胞移植用細胞構造体の製造方法
本発明の細胞移植用細胞構造体は、本発明の生体親和性高分子ブロックと、少なくとも一種類の細胞とを混合することによって製造することができる。より具体的には、本発明の細胞構造体は、生体親和性高分子ブロック(生体親和性高分子からなる塊)と、細胞とを交互に配置することにより製造できる。製造方法は特に限定されないが、好ましくは高分子ブロックを形成したのち、細胞を播種する方法である。具体的には、生体親和性高分子ブロックと細胞含有培養液との混合物をインキュベートすることによって、本発明の細胞構造体を製造することができる。例えば、容器中、容器に保持される液体中で、細胞と、予め作製した生体親和性高分子ブロックをモザイク状に配置する。配置の手段としては、自然凝集、自然落下、遠心、攪拌を用いることで、細胞と生体親和性基材からなるモザイク状の配列形成を、促進、制御することが好ましい。
用いられる容器としては、細胞低接着性材料、細胞非接着性材料からなる容器が好ましく、より好ましくはポリスチレン、ポリプロピレン、ポリエチレン、ガラス、ポリカーボネート、ポリエチレンテレフタレートからなる容器である。容器底面の形状は平底型、U字型、V字型であることが好ましい。
上記の方法で得られたモザイク状細胞構造体は、例えば、
(a)別々に調整したモザイク状細胞塊同士を融合させる、又は
(b)分化培地又は増殖培地下でボリュームアップさせる、
などの方法により所望の大きさの細胞構造体を製造することができる。融合の方法、ボリュームアップの方法は特に限定されない。
例えば、生体親和性高分子ブロックと細胞含有培養液との混合物をインキュベートする工程において、培地を分化培地又は増殖培地に交換することによって、細胞構造体をボリュームアップさせることができる。好ましくは、生体親和性高分子ブロックと細胞含有培養液との混合物をインキュベートする工程において、生体親和性高分子ブロックをさらに添加することによって、所望の大きさの細胞構造体であって、細胞構造体中に細胞が均一に存在する細胞構造体を製造することができる。
前記別々に調整したモザイク状細胞塊同士を融合させる方法とは、具体的には、複数個の生体親和性高分子ブロックと、複数個の細胞とを含み、前記複数の細胞により形成される複数個の隙間の一部または全部に、一または複数個の前記生体親和性高分子ブロックが配置されている細胞構造体を複数個融合させる工程を含む、細胞構造体の製造方法である。
本発明の細胞構造体の製造方法にかかる「生体親和性高分子ブロック(種類、大きさ等)」、「細胞」、「細胞間の隙間」、「得られる細胞構造体(大きさ等)」、「細胞と高分子ブロックの比率」等の好適な範囲は、本明細書中前記と同様である。
また、前記融合前の各細胞構造体の厚さ又は直径が10μm以上1cm以下であり、前記融合後の厚さ又は直径が400μm以上3cm以下であることが好ましい。ここで、前記融合前の各細胞構造体の厚さ又は直径として、より好ましくは10μm以上2000μm以下、更に好ましくは15μm以上1500μm以下、最も好ましくは、20μm以上1300μm以下であり、また、記融合後の厚さ又は直径の範囲として、より好ましくは500μm以上2cm以下、更に好ましくは720μm以上1cm以下である。
前述した生体親和性高分子ブロックをさらに添加することによって、所望の大きさの細胞構造体を製造する方法とは、具体的には、複数個の第一の生体親和性高分子ブロックと、複数個の細胞とを含み、該複数の細胞により形成される複数個の隙間の一部または全部に、一または複数個の前記生体親和性高分子ブロックが配置されている細胞構造体に、更に、第二の生体親和性高分子ブロックを添加しインキュベートする工程を含む細胞構造体の製造方法である。ここで、「生体親和性高分子ブロック(種類、大きさ等)」、「細胞」、「細胞間の隙間」、「得られる細胞構造体(大きさ等)」、「細胞と高分子ブロックの比率」等の好適な範囲は、本明細書中前記と同様である。
ここで、融合させたい細胞構造体同士は、0以上50μm以下の距離に設置することが好ましく、より好ましくは、0以上20μm以下、更に好ましくは0以上5μm以下の距離である。細胞構造体同士を融合させる際、細胞の増殖・伸展によって細胞あるいは細胞が産生する基質が接着剤の役割を果たし、接合させることが考えられ、上記範囲とすることにより、細胞構造体同士の接着が容易となる。
本発明の細胞構造体の製造方法により得られる細胞構造体の厚さ又は直径の範囲として、好ましくは、400μm以上3cm以下、より好ましくは500μm以上2cm以下、更に好ましくは720μm以上1cm以下である。
細胞構造体に、更に、第二の生体親和性高分子ブロックを添加しインキュベートする際の、第二の生体親和性高分子ブロックの添加するペースは、使用する細胞の増殖の速度に合わせて、適宜、選択することが好ましい。具体的には、第二の生体親和性高分子ブロックを添加するペースが早いと細胞が細胞構造体の外側へと移動し、細胞の均一性が低くなり、添加のペースが遅いと、細胞の割合が多くなる箇所ができ、細胞の均一性が低くなるため、使用する細胞の増殖速度を考慮し、選択する。
非血管系の細胞および血管系の細胞の両方を含む場合の細胞構造体の製造方法として、例えば、下記(a)〜(c)の製造方法を好適に挙げることができる。
(a)は非血管系の細胞を用いて前述の方法で細胞構造体を形成した後、血管系の細胞および生体親和性高分子ブロックを加える工程を有する製造方法である。ここで、「血管系の細胞および高生体親和性分子ブロックを加える工程」とは、前述した、調整したモザイク状細胞塊同士を融合させる方法、および、分化培地又は増殖培地下でボリュームアップさせる方法、いずれも含むものである。この方法により、(i)細胞構造体の中心部では、血管系の細胞と比較して、非血管系の細胞の面積が多く、周辺部では、非血管系の細胞と比較して、血管系の細胞の面積が多い細胞構造体、(ii)細胞構造体の、中心部の非血管系の細胞の面積が、周辺部の非血管系の細胞の面積より多い細胞移植用細胞構造体、(iii) 細胞構造体の、中心部の血管系の細胞の面積が、周辺部の血管系の細胞の面積より少ない細胞移植用細胞構造体、を製造することが可能となる。
(b)は血管系の細胞を用いて前述の方法で細胞構造体を形成した後、非血管系の細胞および生体親和性高分子ブロックを加える工程を有する製造方法である。ここで、「非血管系の細胞および生体親和性高分子ブロックを加える工程」とは、前述した、調整したモザイク状細胞塊同士を融合させる方法、および、分化培地又は増殖培地下でボリュームアップさせる方法、いずれも含むものである。この方法により、(i)細胞構造体の中心部では、非血管系の細胞と比較して、管系の細胞の面積が多く、周辺部では、血管系の細胞と比較して、非血管系の細胞の面積が多い細胞構造体、(ii)細胞構造体の、中心部の血管系の細胞の面積が、周辺部の血管系の細胞の面積より多い細胞移植用細胞構造体、(iii) 細胞構造体の、中心部の非血管系の細胞の面積が、周辺部の非血管系の細胞の面積より少ない細胞移植用細胞構造体、を製造することが可能となる。
(c)は、非血管系の細胞および血管系の細胞を実質的に同時に使用し、前述の方法で細胞構造体を形成させる製造方法である。この方法では、細胞構造体のいずれの部位も、非血管系の細胞および血管系の細胞のいずれかが、大きく偏在することのない細胞構造体を製造することが可能となる。
移植後、移植部位に血管を形成する観点では、細胞構造体の中心部では、非血管系の細胞と比較して、血管系の細胞の面積が多く、周辺部では、血管系の細胞と比較して、非血管系の細胞の面積が多い細胞構造体や、中心部の血管系の細胞の面積が、周辺部の血管系の細胞の面積より多い、細胞移植用細胞構造体であることが好ましく、当該細胞構造体とすることにより、血管形成をより促進することができる。更に、当該細胞構造体において、中心部に存在する細胞数が多い方が、血管形成をより促進することができる。
同様の理由で、血管系の細胞により細胞構造体を形成した後、非血管系の細胞および生体親和性高分子ブロックを加える工程を有する製造方法が好ましい。そして、血管系の細胞数を多くすることがさらに好ましい。
(5)細胞移植用細胞構造体の用途
本発明の細胞移植用細胞構造体は、例えば、重症心不全、重度心筋梗塞等の心臓疾患、脳虚血・脳梗塞といった疾患部位に細胞移植の目的で使用できる。また、糖尿病性の腎臓、膵臓、末梢神経、眼、四肢の血行障害などの疾患に対しても用いることが出来る。移植方法としては、切開、注射、内視鏡といったものが使用可能である。本発明の細胞構造体は、細胞シートといった細胞移植物とは異なり、構造体のサイズを小さくすることができるため、注射による移植といった低侵襲の移植方法が可能となる。
また、本発明によれば細胞移植方法が提供される。本発明の細胞移植方法は、前記した本発明の細胞移植用細胞構造体を用いることを特徴とするものである。細胞移植用細胞構造体の好適な範囲は前述と同様である。
以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。
[実施例1]リコンビナントペプチド(リコンビナントゼラチン)
リコンビナントペプチド(リコンビナントゼラチン)として以下記載のCBEを用意した(WO2008-103041に記載)。
CBE3
分子量:51.6kD
構造: GAP[(GXY)63]3G
アミノ酸数:571個
RGD配列:12個
イミノ酸含量:33%
ほぼ100%のアミノ酸がGXYの繰り返し構造である。CBE3のアミノ酸配列には、セリン、スレオニン、アスパラギン、チロシン及びシステインは含まれていない。CBE3はERGD配列を有している。
等電点:9.34、GRAVY値:-0.682、1/IOB値:0.323
アミノ酸配列(配列表の配列番号1)(WO2008/103041号公報の配列番号3と同じ。但し末尾のXは「P」に修正)
GAP(GAPGLQGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGPAGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPP)3G
[実施例2] リコンビナントペプチド多孔質体(高分子多孔質体)の作製
厚さ1mm、直径47mmのアルミ製円筒カップ状容器を用意した。円筒カップは曲面を側面としたとき、側面は1mmのアルミで閉鎖されており、底面(平板の円形状)も1mmのアルミで閉鎖されている。一方、上面は開放された形をしている。また、側面の内部にのみ、肉厚1mmのテフロン(登録商標)を均一に敷き詰め、結果として円筒カップの内径は45mmになっている。以後、この容器のことを円筒形容器と呼称する。
CBE3水溶液を調製し、このCBE3水溶液を円筒形容器に流し込んだ。冷凍庫内で冷却棚板を用いて底面からCBE3水溶液を冷却した。この際、冷却棚板の温度、及び棚板と円筒形容器の間に挟む断熱板(硝子板)の厚さ、入れるCBE3水溶液の最終濃度、及び水溶液量を以下に記載の通り用意した。
「ア」 棚板温度-40℃、硝子板の厚さ2.2mm、CBE3水溶液の最終濃度12%、水溶液量4mL。
「イ」 棚板温度-60℃、硝子板の厚さ2.2mm、CBE3水溶液の最終濃度7.5%、水溶液量4mL。
「ウ」 棚板温度-40℃、硝子板の厚さ2.2mm、CBE3水溶液の最終濃度4.0%、水溶液量4mL。
このようにして得た凍結CBE3ブロックを凍結乾燥して、CBE3多孔質体を得た。
[比較例1] リコンビナントペプチド単純凍結多孔質体の作製
50℃で、2000mgのCBE3を18mLの超純水に溶解し、終濃度10%のCBE3溶液を20mL作製する。そのCBE3溶液を薄く伸ばして4mm厚程度の薄い板状のゲルを作製した。容器については、白い板に、シリコン枠(5cm×10cm程度)をつけて、空気の隙間がないようにしっかりとシリコン枠を押し付けてから、その枠内へ上記のCBE3溶液(50℃)を流し込んだ。液を流し込んだら、4℃へ移して約1時間ゲル化させ、固まっていることを確認した後、−80℃へ移して、ゲルを3時間凍結させた。凍結後、凍結乾燥機(EYELA、FDU−1000)で凍結乾燥を行った。尚、この時に得られた凍結乾燥体は多孔質体ではあり、平均ポアサイズが57.35μmとなっていた。以後、これを単純凍結多孔質体と呼称する。
[実施例3]リコンビナントペプチド多孔質体の空孔サイズと空間占有率の評価
実施例2で得られたCBE3多孔質体および比較例1で得られた単純凍結多孔質体について、多孔質の空孔サイズと空間占有率の評価を実施した。得られた多孔質体を160℃で20時間の熱架橋を施し、不溶化したのち、十分時間、生理食塩水で膨潤した。その後、ミクロトームで凍結組織切片を作製し、HE(ヘマトキシリン・エオシン)染色標本を作製した。 標本から実スケール1.5mm大の断面像を用意し、個々の空孔面積を計測し、その後、当該面積を円換算した場合の円直径を算出し、空孔サイズとした。この空孔の20ヶ以上の平均値を平均空孔サイズとした。その結果、「ア」は66.39μm、「イ」は63.17μm、「ウ」は56.36μmであった。
算出した空孔サイズを元に、上記で用いた二次元断面画像から、ある空孔サイズの空孔が占める面積を全面積で除することにより、割合として求めた。その結果、実施例2で得られたCBE多孔質体では20μm〜200μmの空孔の空間占有率は、「ア」は100%、「イ」は99.9%、「ウ」は99.9%であった。30μm〜150μmの空孔の空間占有率は、「ア」は94.2%、「イ」は97.9%、「ウ」は99.3%であった。
一方、比較例1で得られた単純凍結多孔質体では、空孔のサイズに大きくばらつきがあり、大きいサイズの集まった箇所と小さいサイズの集まった箇所が存在した。大きいサイズの箇所では、20μm〜200μmの空孔の空間占有率は、74.3%、30μm〜150μmの空孔の空間占有率は、55.8%であった。小さいサイズの集まった箇所では、20μm〜200μmの空孔の空間占有率は、82.8%、30μm〜150μmの空孔の空間占有率は、57.2%であった。大きいサイズの箇所と小さいサイズの箇所が半分ずつ混在することから、20μm〜200μmの空孔の空間占有率は、78.6%、30μm〜150μmの空孔の空間占有率は、56.5%となる(図6)。
[実施例4] リコンビナントペプチド多孔質体の空孔率測定
実施例2で得られたCBE3多孔質体について、空孔率を測定した。測定に当たっては、嵩密度(ρ)と真密度(ρc)を測定し、空孔率(P = 1−ρ/ρc(%))を求めた。CBE3多孔質体の嵩密度(ρ)は、乾燥質量と体積から算出した。真密度(ρc)は、ハバード型形の比重瓶法により求めた。サンプル数(N)=4の結果として、「ウ」の多孔質体では嵩密度が0.05g/cm3、真密度が1.23g/cm3、空孔率96%(CV値は8%)であることが明らかになった。また、「ア」、「イ」ではそれぞれ空孔率が87%(CV値は10%)、92%(CV値は7%)であることが分かった。
[実施例5] リコンビナントペプチドブロックの作製(多孔質体の粉砕と架橋)
実施例2で得られた「ア」、「イ」、「ウ」のCBE3多孔質体をニューパワーミル(大阪ケミカル、ニューパワーミルPM−2005)で粉砕した。粉砕は、最大回転数で1分間×5回、計5分間の粉砕で行った。得られた粉砕物について、ステンレス製ふるいでサイズ分けし、25〜53μm、53〜106μm、106μm〜180μmのCBE3ブロックを得た。 その後、減圧下160℃で熱架橋(架橋時間は24時間、48時間、56時間、60時間、72時間、84時間、96時間、120時間、288時間の9種類を実施した)を施して、試料を得た。以下、「ア」の53〜106μmを「12%中」、「イ」の25〜53μmを「7.5%小」、「イ」の53〜106μmを「7.5%中」、「イ」の106〜180μmを「7.5%大」、「ウ」の53〜106μmを「4%中」と呼ぶ。
[比較例2]リコンビナントペプチドのGA(グルタルアルデヒド)架橋μブロックの作製
特許文献1に記載されているグルタルアルデヒドを使用する比較例として、基材としてリコンビナントペプチドCBE3を用いて、不定形のGA架橋μブロックを作製した。1000mgのCBE3を9448μLの超純水に溶解し、1N HClを152μL添加後、終濃度1.0%となるように、25%グルタルアルデヒドを400μL添加し、50℃で3時間反応させ、架橋ゲルを作製した。この架橋ゲルを、1Lの0.2Mグリシン溶液へ浸漬し、40℃2時間振とうさせた。その後、架橋ゲルを、5Lの超純水中で1時間振とう洗浄、超純水を新しい物へ置換し、再び洗浄1時間、を繰り返し、計6回洗浄した。洗浄後の架橋ゲルを、−80℃で5時間凍結させた後、凍結乾燥機(EYELA、FDU−1000)で凍結乾燥を行った。得られた凍結乾燥体を、ニューパワーミル(大阪ケミカル、ニューパワーミルPM−2005)で粉砕した。粉砕は、最大回転数で1分間×5回、計5分間の粉砕で行った。得られた粉砕物について、ステンレス製ふるいでサイズ分けし、25〜53μmのCBE3・GA架橋μブロックを得た。
[比較例3] 比較用リコンビナントペプチドブロックの作製
比較例として、従来技術(特許文献1)から類推されるグルタルアルデヒドを含まない工程で作製した場合にできる比較用リコンビナントペプチドブロックを、以下に記載の通り作製した。基材としてリコンビナントペプチドCBE3を用いてブロックを作製した。比較例1で得られた単純凍結多孔質体を、ニューパワーミル(大阪ケミカル、ニューパワーミルPM−2005)で粉砕した。粉砕は、最大回転数で1分間×5回、計5分間の粉砕で行った。得られた粉砕物について、ステンレス製ふるいでサイズ分けし、25〜53μmのCBE3ブロックを得た。それを160℃のオーブンに入れ、72時間熱架橋した。
[実施例6]リコンビナントペプチブロックのタップ密度測定
タップ密度は、ある体積にどれくらいのブロックを密に充填できるかを表す値であり、値が小さいほど、密に充填できない、すなわちブロックの構造が複雑であると言える。 タップ密度は、以下のように測定した。まず、ロートの先にキャップ(直径6mm、長さ21.8mmの円筒状:容量0.616cm3)が付いたものを用意し、キャップのみの質量を測定した。その後、ロートにキャップを付け、ブロックがキャップに溜まるようにロートから流し込んだ。十分量のブロックを入れた後、キャップ部分を200回、机などの硬いところにたたきつけ、ロートをはずし、スパチュラですりきりにした。このキャップにすりきり一杯入った状態で質量を測定した。キャップのみの質量との差からブロックのみの質量を算出し、キャップの体積で割ることで、タップ密度を求めた。
その結果、比較例3のブロックは524mg/cm3であった。
一方、実施例5のブロックは「12%中」が372mg/cm3、「7.5%小」が213mg/cm3、「7.5%中」が189mg/cm3、「7.5%大」が163mg/cm3、「4%中」が98mg/cm3であった。実施例5のブロックでは、構造の複雑性に由来して、比較例3のブロックに対して、タップ密度は小さくなることが分かった。
[実施例7] リコンビナントペプチドブロックの二次元断面画像における「面積の平方根÷周囲長」の算出
ブロックの複雑性を示す指標として、ブロックの「面積の平方根」と「周囲長」の関係を求めた。すなわち、ブロックの「面積の平方根÷周囲長」の値が小さい方がより複雑であると言える。この値は、画像解析ソフトを用いて算出した。まず、ブロックの形が分かる画像を用意した。具体的に、本実施例では、水で良く膨潤させたブロック群を、ミクロトームで凍結切片にし、HE(ヘマトキシリン・エオシン))染色した標本を用いた。ブロック以外に細胞などが存在する場合は、photoshopで、自動選択ツールで製剤のみを抽出し、画像上にブロックのみとなるようにする。その画像を、Imagejを用いて、ブロックの面積と周囲長を求め、「面積の平方根÷周囲長」の値を算出した。ただし、10μm以下のブロックは除いた。
その結果、比較例3のブロックは0.139となった。
一方、実施例5のブロックは、「12%中」が0.112、「7.5%小」が0.083、「7.5%中」が0.082、「7.5%大」が0.071、「4%中」が0.061であった。実施例5のブロックでは、構造の複雑性に由来して、比較例3のブロックに対して、「面積の平方根÷周囲長」の値は小さくなり、また、タップ密度と相関があることも分かった。
[実施例8] リコンビナントペプチドブロックの架橋度測定
実施例5および比較例3で架橋したブロックの架橋度(1分子当たりの架橋数)を算出した。測定はTNBS(2,4,6-トリニトロベンゼンスルホン酸)法を用いた。
<サンプル調製>
ガラスバイアルにサンプルを約10mg、4%NaHCO3水溶液を1mL、1%のTNBS水溶液を2mL添加し、37℃で3時間振とうさせた。その後、10mLの37%塩酸及び5mLの純水を加えた後、37℃で16時間以上静置し、サンプルとした。
<ブランク調整>
ガラスバイアルにサンプルを約10mg、4%NaHCO3水溶液を1mL、1%TNBS水溶液を2mL添加し、直後に37%塩酸3mLを加え、37℃で3時間振とうさせた。その後、7mLの37%塩酸及び5mLの純水を加えた後、37℃で16時間以上静置し、ブランクとした。
純水で10倍希釈したサンプル、及び、ブランクの吸光度(345nm)を測定し、以下の(式1)、及び(式2)から架橋度(1分子当たりの架橋数)を算出した。
(式1) (As-Ab)/14600×V/w
(式1)は、リコンビナントペプチド1g当たりのリジン量(モル等量)を示す。
(式中、Asはサンプル吸光度、Abはブランク吸光度、Vは反応液量(g)、wはリコンビナントペプチド質量(mg)を示す。)
(式2) 1−(サンプル(式1)/未架橋リコンビナントペプチド(式1))×34
(式2)は、1分子あたりの架橋数を示す。
その結果、実施例5のブロックは、「12%中」が48時間架橋で架橋度12、「7.5%小」と「7.5%中」と「7.5%大」は24時間架橋で架橋度8、「4%中」が48時間架橋で架橋度9であった。また、「7.5%中」で288時間架橋した場合は22であった。一方、比較例3のブロックは72時間架橋で16であった。
[実施例9] リコンビナントペプチドブロックの吸水率測定
実施例5および比較例3で作製したブロックの吸水率を算出した。
25℃において、3cm×3cmのナイロンメッシュ製の袋の中に、ブロックを約15mgを充填し、2時間イオン交換水中で膨潤させた後、10分風乾させた。それぞれの段階において質量を測定し、(式3)に従って、吸水率を求めた。
(式3)
吸水率=(w2−w1−w0)/w0
(式中、w0は、吸水前の材料の質量、w1は吸水後の空袋の質量、w2は吸水後の材料を含む袋全体の質量を示す。)
その結果、実施例5のブロックは、「12%中」が304%、「7.5%小」が819%、「7.5%中」が892%、「7.5%大」が892%、「4%中」が901%であった。一方、比較例3のブロックは280%であった。
[実施例10] リコンビナントペプチドブロックを用いたモザイク細胞塊の作製(hMSC)
ヒト骨髄由来間葉系幹細胞(hMSC)を増殖培地(タカラバイオ:MSCGM BulletKitTM)にて10万cells/mLに調整し、実施例5で作製したCBE3ブロックを0.1mg/mLとなるように加えた後、200μLをスミロンセルタイトX96Uプレート(住友ベークライト、底がU字型)に播種し、卓上プレート遠心機で遠心(600g、5分)し、24時間静置し、直径1mm程度の球状の、CBE3ブロックとhMSC細胞からなるモザイク細胞塊を作製した(細胞1個当たり0.001μgのブロック)。なお、U字型のプレート中で作製したため、本モザイク細胞塊は球状であった。また、これは「12%中」、「7.5%小」、「7.5%中」、「7.5%大」、「4%中」のいずれも上記と同様に作成できた。
[比較例4] 比較用リコンビナントペプチドブロックを用いたモザイク細胞塊の作製(hMSC)
ヒト骨髄由来間葉系幹細胞(hMSC)を増殖培地(タカラバイオ:MSCGM BulletKitTM)にて10万cells/mLに調整し、比較例3で作製したCBE3ブロックを0.1mg/mLとなるように加えた後、200μLをスミロンセルタイトX96Uプレート(住友ベークライト、底がU字型)に播種し、卓上プレート遠心機で遠心(600g、5分)し、24時間静置し、直径1mm程度の球状の、CBE3ブロックとhMSC細胞からなるモザイク細胞塊を作製した(細胞1個当たり0.001μgのブロック)。なお、U字型のプレート中で作製したため、本モザイク細胞塊は、球状であった。
[比較例5] リコンビナントペプチドGA架橋μブロックを用いたモザイク細胞塊の作製(hMSC)
比較用のグルタルアルデヒドを含むモザイク細胞塊を以下の通り作成した。ヒト骨髄由来間葉系幹細胞(hMSC)を増殖培地(タカラバイオ:MSCGM BulletKitTM)にて10万cells/mLに調整し、比較例2で作製したGA架橋μブロックを0.1mg/mLとなるように加えた後、200μLをスミロンセルタイトX96Uプレート(住友ベークライト、底がU字型)に播種し、卓上プレート遠心機で遠心(600g、5分)し、24時間静置し、直径1mm程度の球状の、GA架橋μブロックとhMSC細胞からなるモザイク細胞塊を作製した(細胞1個当たり0.001μgのブロック)。なお、U字型のプレート中で作製したため、本モザイク細胞塊は、球状であった。
[実施例11] リコンビナントペプチドブロックを用いたモザイク細胞塊の作製(hMSC+hECFC)
ヒト血管内皮前駆細胞(hECFC)を増殖培地(Lonza:EGM−2+ECFC serum supplement)にて10万cells/mLに調整し、実施例5で作製したCBE3ブロックを0.05mg/mLとなるように加えた後、200μLをスミロンセルタイトX96Uプレートに播種し、卓上プレート遠心機で遠心(600g、5分)し、24時間静置し、扁平状の、ECFCとCBE3ブロックからなるモザイク細胞塊を作製した。その後、培地を除去し、ヒト骨髄由来間葉系幹細胞(hMSC)を増殖培地(タカラバイオ:MSCGM BulletKitTM)にて10万cells/mLに調整し、実施例5で作製したCBE3ブロックを0.1mg/mLとなるように加えた後、hECFCモザイク細胞塊がある200μLをスミロンセルタイトX96Uプレートに播種し、卓上プレート遠心機で遠心(600g、5分)し、24時間静置し、直径1mm程度の球状の、hMSCとhECFCとCBE3ブロックからなるモザイク細胞塊を作製した。また、これは「12%中」、「7.5%小」、「7.5%中」、「7.5%大」、「4%中」のいずれも上記と同様に作成できた。
[実施例12] リコンビナントペプチドブロックを用いたモザイク細胞塊(hMSC)の融合
実施例10で作製した2日目のモザイク細胞塊(本発明のCBE3ブロックを使用)5個をスミロンセルタイトX96Uプレート中で並べ、24時間培養を行った。その結果、モザイク細胞塊同士の間を、外周部に配された細胞が結合させることで、モザイク細胞塊が自然に融合することが明らかになった。また、これは「12%中」、「7.5%小」、「7.5%中」、「7.5%大」、「4%中」のいずれも上記と同様に作成できた。
[実施例13] リコンビナントペプチドブロックを用いたモザイク細胞塊(hMSC+hECFC)の融合
実施例11で作製した2日目のモザイク細胞塊(本発明のCBE3ブロックを使用)5個をスミロンセルタイトX96Uプレート中で並べ、24時間培養を行った。その結果、モザイク細胞塊同士の間を、外周部に配された細胞が結合させることで、モザイク細胞塊が自然に融合することが明らかになった。また、これは「12%中」、「7.5%小」、「7.5%中」、「7.5%大」、「4%中」のいずれも上記と同様に作成できた。
[比較例6] 比較用リコンビナントペプチドブロックを用いたモザイク細胞塊(hMSC)の融合
比較例4で作製した2日目のモザイク細胞塊(比較用のCBE3ブロック由来)5個をスミロンセルタイトX96Uプレート中で並べ、24時間培養を行った。その結果、モザイク細胞塊同士の間を、外周部に配された細胞が結合させることで、モザイク細胞塊が自然に融合することが明らかになった。
[比較例7] リコンビナントペプチドGA架橋μブロックを用いたモザイク細胞塊(hMSC)の融合
比較例5で作製した2日目のモザイク細胞塊(GA架橋μブロック由来)5個をスミロンセルタイトX96Uプレート中で並べ、24時間培養を行った。その結果、モザイク細胞塊同士の間を、外周部に配された細胞が結合させることで、モザイク細胞塊が自然に融合することが明らかになった。
[実施例14] in vitro ATP アッセイ
各モザイク細胞塊中の細胞が産生・保持しているATP(アデノシン三リン酸)量を定量した。ATPは生物全般のエネルギー源として知られ、ATP合成量・保持量を定量することで、細胞の代謝活性の状態、活動状態を知ることができる。測定には、CellTiter−Glo(Promega社)を用いた。実施例10および比較例4、比較例5で作製したモザイク細胞塊について、ともにDay7のもので、CellTiter−Gloを用いて、各モザイク細胞塊中のATP量を定量した。その結果、GA架橋μブロックを用いたモザイク細胞塊に比べ、比較用のCBE3ブロックを用いたモザイク細胞塊では、ATP量が少ない結果となった。一方、本発明のCBE3ブロックを用いたモザイク細胞塊は、GA架橋μブロックを用いたモザイク細胞塊よりもATP量が多いことが分かった。これは本発明のCBE3ブロックが、「12%中」、「7.5%小」、「7.5%中」、「7.5%大」、「4%中」いずれの場合においても、同様に、GA架橋μブロックを用いたモザイク細胞塊よりも多くのATPを産生している結果となった(図1)。つまり、複雑な構造を持つ本発明のCBE3ブロックを用いたモザイク細胞塊の方が、内部の細胞の生存状態が良好であることが明らかになった。
[実施例15] リコンビナントペプチドブロックを用いた巨大モザイク細胞塊の作製
実施例12のように1mmのモザイク細胞塊を融合して、巨大なモザイク細胞塊を作製することは可能であるが、一度に巨大なモザイク細胞塊を作製できる方が、操作を簡便化できる。ここで、細胞の接着しない加工を施したスミロンセルタイトの9cmシャーレに、を増殖培地(タカラバイオ:MSCGM BulletKitTM)で1.5%アガロース(Agarose S)溶液を50mL入れた。その際、1cm四方の棒状にしたシリコンを5mm程度アガロース溶液中に浸るように固定し、アガロースが固まった後、シリコンを取り除き、アガロース中に1cm四方の窪みができた容器を作成した。そこに増殖培地を適量入れ、ゲルが乾かないように保存した。培地を取り除き、実施例5で作製したブロックの内、代表的な「7.5%中」16mgと、250万cellsのヒト骨髄由来間葉系幹細胞(hMSC)の懸濁物を窪みに入れ、その後静かに25mLの増殖培地を添加した。1日培養後、1cm四方、厚さ2−3mmの巨大モザイク細胞塊を作製できた。これを、25mLの増殖培地を入れたスミロンセルタイトの9cmシャーレに移し、さらに2日培養後、25mLの増殖培地を入れたスピナーフラスコに移して攪拌培養し、培養7日後のモザイク細胞塊の断面のHE染色標本を作製した。その結果、培養7日後でも内部の細胞が生存していることを確認した。このように、細胞とブロックを混合し、型に流して培養することで、巨大なモザイク細胞塊を作製可能であることが明らかになった。また、この方法は、GA架橋μブロック、比較用ブロック及び本発明のブロックの何れでも可能であり、ブロックの種類に依存しない。
[実施例16]リコンビナントペプチドブロックを用いたモザイク細胞塊の移植
マウスはNOD/SCID(チャールズリバー)のオス、4〜6週齢のものを用いた。麻酔下でマウス腹部の体毛を除去し、上腹部の皮下に切れ込みを入れ、切れ込みからはさみを差し込み、皮膚を筋肉からはがした後、実施例12、実施例13、比較例6、及び比較例7で作成したモザイク細胞塊をピンセットですくい、切れ込みから1.5cmほど下腹部寄りの皮下に移植し、皮膚の切れ込み部を縫合した。
[実施例17] リコンビナントペプチドブロックを用いたモザイク細胞塊の採取
解剖は移植から1週後及び2週後に行った。腹部の皮膚をはがし、モザイク細胞塊が付着した皮膚を、約1平方cmの正方形の大きさに切り取った。モザイク細胞塊が腹部の筋肉にも付着している場合は、筋肉と共に採取した。
[実施例18] 標本解析
モザイク細胞塊が付着した皮膚片および、移植前のモザイク細胞塊について組織切片を作製した。皮膚を4%パラホルムアルデヒドに浸漬し、ホルマリン固定を行った。その後、パラフィンで包埋し、モザイク細胞塊を含む皮膚の組織切片を作製した。切片はHE染色(ヘマトキシリン・エオシン染色)を行った。
実施例12の「7.5%中」、比較例6および比較例7を移植した2週間後のHE標本を図2に示す。図2に記載の生存率は、全細胞数(生細胞数+死細胞数)中の生細胞数の割合を示す。
比較例7のGA架橋μブロックを用いたモザイク細胞塊(図2のA:生細胞数100個:生存率80%)に比べ、比較例6のブロックを用いたモザイク細胞塊(図2のB:生細胞数37個:生存率45%)では、生細胞が少ないことが分かる。一方、実施例12の本発明のブロック(「7.5%中」)を用いたモザイク細胞塊(図2のC:生細胞数116個:生存率84%)は、比較例6のブロックを用いたモザイク細胞塊(図2のB:生細胞数37個:生存率45%)に比べて、生細胞が多く、生存が良好であることが分かった。この結果は、実施例14でのin vitroアッセイの結果とも一致し、本発明のブロックを採用することによって、移植した細胞の生存を良くすることが可能であることが分かった。
また、本発明のブロック群内間での移植細胞の生存状態を図3に示す。図3に記載の生存率は、全細胞数(生細胞数+死細胞数)中の生細胞数の割合を示す。
106〜180μmサイズの「7.5%大」の生存率は57%であり、「7.5%小」の生存率は62%であり、「7.5%中」の生存率は84%であり、「4%中」の生存率は82%であった。即ち、本発明のブロック群内間では、106〜180μmサイズの「7.5%大」よりも、「7.5%小」、「7.5%中」、「4%中」が更に細胞の生存が良くなることが分かった(図3)。また、最上の移植結果をもたらすものとしては、「7.5%中」と「4%中」が、「7.5%小」よりも、移植細胞の生存が良いことも分かった(図3)。即ち、高分子ブロックのタップ密度又は高分子ブロックの二次元断面像における断面積の平方根÷周囲長の値が所定の範囲内となるような構造を有することが重要であり、中でも、「53〜106μm」>「25〜53μm」>「106〜180μm」という順で移植後の細胞生存が良くなることも分かった。
また、この53〜106μmの大きさの本発明のブロックを用いた実施例12のモザイク細胞塊を移植した場合における移植2週間後のHE標本を図4に示す。また、図4中の血管数を計測した結果、63本/mm2であった。図4に示す通り、モザイク細胞塊内部に血管が誘引されていることも分かった。
さらに、実施例13の内、代表的な「7.5%中」を用いた物について、血管系の細胞を入れたモザイク細胞塊を移植した場合における移植2週間後のHE標本を図5に示す。図5中の血管数を計測した結果、180本/mm2であった。実施例12を移植した場合に比べ、図5に示す通り、実施例13の血管系の細胞を入れたモザイク細胞塊を移植した場合には、モザイク細胞塊内部により多くの血管が形成されていることが明らかになった。
[実施例19] hMSC+hECFCモザイク細胞塊中のECFCの割合と濃度の算出
実施例11の内、代表的な「7.5%中」を用いたモザイク細胞塊は、切片をhECFC染色用にCD31抗体(EPT Anti CD31/PECAM-1)にDAB発色を用いたキット(ダコLSAB2キット ユニバーサル K0673 ダコLSAB2キット/HRP(DAB) ウサギ・マウス一次抗体両用)による免疫染色を行った。画像処理ソフトImageJ、CD31抗体による染色方法を使用し、中心部のhECFC(血管系の細胞)の面積の割合を求めた。なお、ここでいう「中心部」とは前記定義したものである。
その結果、実施例11の代表的な「7.5%中」モザイク細胞塊の中心部のhECFC(血管系の細胞)の面積の割合は99%であった。
さらに実施例11の代表的な「7.5%中」モザイク細胞塊について、上記のCD31抗体による染色と、HE染色(ヘマトキシリン・エオシン染色)を重ね合わせることで、中心部に存在するhECFCの細胞密度を算出した。中心部の血管系の細胞密度は、実際に薄切標本の細胞数を数え、細胞数を体積で割って求めることができる。まず、Photoshopを用いて、上記2枚の画像を重ね合わせ、CD31抗体による染色と重なったHE染色の細胞核の数をカウントして細胞数を算出した。一方、体積は、ImageJを用いて中心部の面積を求め、その薄切標本の厚みの2μmをかけることで求められた。
その結果、実施例11の代表的な「7.5%中」モザイク細胞塊の中心部のhECFC(血管系の細胞)の細胞数は2.58×10-4cells/μm3であった。
[実施例20] リコンビナントペプチド多孔質体(高分子多孔質体)の作製
厚さ1mm、直径47mmのアルミ製円筒カップ状容器を用意した。円筒カップは曲面を側面としたとき、側面は1mmのアルミで閉鎖されており、底面(平板の円形状)も1mmのアルミで閉鎖されている。一方、上面は開放された形をしている。また、側面の内部にのみ、肉厚1mmのテフロン(登録商標)を均一に敷き詰め、結果として円筒カップの内径は45mmになっている。以後、この容器のことを円筒形容器と呼称する。
CBE3を最終濃度7.5質量%としてリコンビナントペプチド水溶液を調製し、このリコンビナントペプチド水溶液を円筒形容器に流し込んだ。冷凍庫内で冷却棚板を用いて底面からリコンビナントペプチド水溶液を冷却した。この際、冷却棚板の温度、及び棚板と円筒形容器の間に挟む断熱板(硝子板)の厚さ、入れるリコンビナントペプチド水溶液量を変えることにより、液温の冷却過程を変えた。棚板温度は−40℃と−60℃と−80℃、硝子板は0.7mmと1.1mmと2.2mm、リコンビナントペプチド水溶液量は4mLと12mLと16mL、それらの組合せを実施した。
また、それぞれの水溶液は、底面から冷却される為、円中心部の水表面温度が最も冷却されにくい。従って、その部分が、溶液内で最も温度の高い液温となるため、その部分の液温を測定した(以後、当該部分の液温のことを内部最高液温と呼称する)。
その結果、棚板温度−40℃で硝子板2.2mmの場合には、内部最高液温が−9.2℃となるまで、温度上昇が始まらず、内部最高液温が未凍結状態で「溶媒融点−3℃」以下の液温をとった状態である(図8)。この状態を経た後、−9.2℃で温度上昇がはじまり、凝固熱が発生したことがわかる(図8)。また、そのタイミングで実際に氷形成が始まっていることも確認出来た。その後、温度は0℃付近を一定時間経過していく。ここでは、水と氷の混合物が存在する状態となっていた。最後0℃から再び温度降下が始まるが、この時、液体部分はなくなり氷となっている(図8)。測定している温度は氷内部の固体温度となる。つまり液温ではなくなる。 このように、凝固熱が発生する瞬間の内部最高液温を見れば、内部最高液温が未凍結状態で「溶媒融点−3℃」を経た後に凍結したかどうかが分かる。
この凝固熱が発生する瞬間の未凍結状態での内部最高液温を組合せの6種類について、測定すると、以下のようになった。
A 棚板温度-40℃で硝子板2.2mm、液量4mLは、−9.2℃
B 棚板温度-40℃で硝子板1.1mm、液量4mLは、−8.3℃
C 棚板温度-40℃で硝子板0.7mm、液量4mLは、−2.2℃
D 棚板温度-60℃で硝子板2.2mm、液量4mLは、−7.2℃
尚、ここでいうDが実施例2でいうところの「イ」である。
E 棚板温度-80℃で硝子板2.2mm、液量4mLは、−3.9℃
F 棚板温度-80℃で硝子板1.1mm、液量4mLは、−3.1℃
G 棚板温度-80℃で硝子板0.7mm、液量4mLは、 5.8℃
H 棚板温度-40℃で硝子板2.2mm、液量12mLは、−6.5℃
I 棚板温度-40℃で硝子板2.2mm、液量16mLは、−2.4℃
このことから、A,B,D,E,F,Hが、未凍結状態で内部最高液温が「溶媒融点−3℃」以下の液温をとる凍結工程による製造法である。(内部最高液温≦「溶媒融点−3℃」の凍結リコンビナントペプチドブロック)
また、C,G,Iが未凍結状態で内部最高液温が「溶媒融点−3℃」以下の液温をとらない凍結工程による製造法である。(内部最高液温>「溶媒融点−3℃」の凍結リコンビナントペプチドブロック)
このようにして得た凍結リコンビナントペプチドブロックを凍結乾燥して、CBE3多孔質体を得た。A,B,D,E,F,H由来を『内部最高液温≦「溶媒融点−3℃」のCBE3多孔質体』、C,G,I由来を『内部最高液温≦「溶媒融点−3℃」のCBE3多孔質体』と呼ぶ。
[実施例21]
実施例20で得られたCBE3多孔質体について、多孔質の空孔サイズと空孔形状の評価を実施した。得られた多孔質体を160℃、20時間の熱架橋を施し、不溶化したのち、十分時間、生理食塩水で膨潤。その後、ミクロトームで凍結組織切片を作製し、HE(ヘマトキシリン・エオシン))染色標本を作製した。
得られた標本の中心部分の画像を図7(内部最高液温>「溶媒融点−3℃」、と、内部最高液温≦「溶媒融点−3℃」)に示した。その結果、内部最高液温>「溶媒融点−3℃」(C,G,I)では、空孔は80%以上が柱/平板孔となり、球孔は20%以下であった。一方、内部最高液温≦「溶媒融点−3℃」(A,B,D,E,F,H)では、空孔は50%以上が球孔となっていた。また、この内部最高液温≦「溶媒融点−7℃」(A,B,D)では、空孔は80%以上が球孔となっており、ほぼ全てが球孔で構成されていた。これにより、多孔質体の空孔形状を球孔にするには、未凍結状態で内部最高液温が「溶媒融点−3℃」以下となることが重要で、更に「溶媒融点−7℃」以下とすることで、空孔の形状をほぼ全て球孔にすることができることが分かった。
A〜Iについての空孔形状及び平均ポアサイズは、以下の通りである。
A:球孔100%、62.74μm
B:球孔100%、65.36μm
C:柱/平板孔90%、79.19μm
D:球孔100%、63.17μm
E:球孔70%、69.44μm
F:球孔50%、53.98μm
G:柱/平板孔90%、79.48μm
H:球孔80%、76.58μm
I:柱/平板孔90%、79.65μm
[実施例22] リコンビナントペプチドブロックの作製(多孔質体の粉砕と架橋)
実施例21で得られたCBE3多孔質体をニューパワーミル(大阪ケミカル、ニューパワーミルPM−2005)で粉砕した。粉砕は、最大回転数で1分間×5回、計5分間の粉砕で行った。得られた粉砕物について、ステンレス製ふるいでサイズ分けし、25〜53μm及び53〜106μmのリコンビナントペプチドブロックを得た。その後、減圧下160℃で72時間、熱架橋を施して、試料を得た。これらの試料は、タップ密度が10mg/cm3以上500mg/cm3以下であること、又は前記高分子ブロックの二次元断面像における断面積の平方根÷周囲長の値が0.01以上0.13以下であることを充足するものであった。これらの試料を使用して実施例10及び実施例12と同じようにして作製したモザイク細胞塊ではA〜Iによらず、実施例14と同じin vitroアッセイ、並びに実施例16〜18と同じ評価による動物への移植結果において、いずれも、比較用ブロックよりも高い性能(細胞の高い生存率)を示した。ただ、これらのA〜Iの中で性能差を見ると僅かな差が生じており、A、B、Dが最も性能が高く、ついでE、F、H、その後にC、G、Iがくるという順番になっていた。つまり、これは多孔質体の空孔形状によって、性能差を生じうることを示している。実施例18では、代表的な結果としてD(実施例2でいうところの「イ」)について詳細に記述している。

Claims (21)

  1. グルタルアルデヒドを含まない生体親和性高分子ブロックと、少なくとも一種類の細胞とを含み、複数個の細胞間の隙間に複数個の生体親和性高分子ブロックが配置されている、細胞移植用細胞構造体であって、前記生体親和性高分子ブロックのタップ密度が10mg/cm3以上500mg/cm3以下であるか、又は前記高分子ブロックの二次元断面像における断面積の平方根÷周囲長の値が0.01以上0.13以下であり、前記生体親和性高分子が、ゼラチン、コラーゲン、エラスチン、フィブロネクチン、プロネクチン、ラミニン、テネイシン、フィブリン、フィブロイン、エンタクチン、トロンボスポンジン、レトロネクチン、ポリ乳酸、ポリグリコール酸、乳酸・グリコール酸コポリマー、ヒアルロン酸、グリコサミノグリカン、プロテオグリカン、コンドロイチン、セルロース、アガロース、カルボキシメチルセルロース、キチン、又はキトサンであり、前記生体親和性高分子ブロック一つの大きさが20μm以上200μm以下であり、前記生体親和性高分子ブロックにおいて、生体親和性高分子が熱、紫外線又は酵素により架橋されている、細胞移植用細胞構造体。
  2. 前記生体親和性高分子ブロック一つの大きさが50μm以上120μm以下である、請求項1に記載の細胞移植用細胞構造体。
  3. 前記生体親和性高分子ブロックの架橋度が6以上であり、かつ前記生体親和性高分子ブロックの吸水率が300%以上である、請求項1又は2に記載の細胞移植用細胞構造体。
  4. 厚さ又は直径が400μm以上3cm以下である、請求項1から3の何れか1項に記載の細胞移植用細胞構造体。
  5. 細胞1個当り0.0000001μg以上1μg以下の生体親和性高分子ブロックを含む、請求項1から4の何れか1項に記載の細胞移植用細胞構造体。
  6. 血管新生因子を含む、請求項1から5の何れか1項に記載の細胞移植用細胞構造体。
  7. 前記細胞が、万能細胞、体性幹細胞、前駆細胞および成熟細胞からなる群から選択される細胞である、請求項1から6の何れか1項に記載の細胞移植用細胞構造体。
  8. 前記細胞が、非血管系の細胞のみである、請求項1から7の何れか1項に記載の細胞移植用細胞構造体。
  9. 前記細胞が、非血管系の細胞および血管系の細胞の両方を含む、請求項1から7の何れか1項に記載の細胞移植用細胞構造体。
  10. 細胞構造体において、中心部の血管系の細胞の面積が、周辺部の血管系の細胞の面積より多い領域を有する、請求項9に記載の細胞移植用細胞構造体。
  11. 前記中心部の血管系の細胞の割合が、血管系の細胞の全面積に対し、60%〜100%である領域を有する請求項10に記載の細胞移植用細胞構造体。
  12. 細胞構造体の、中心部の血管系の細胞密度が、1.0×10-4cells/μm3以上である領域を有する、請求項9から11の何れか1項に記載の細胞移植用細胞構造体。
  13. 細胞移植用細胞構造体の内部において血管形成されている、請求項9から12の何れか1項に記載の細胞移植用細胞構造体。
  14. グルタルアルデヒドを含まない生体親和性高分子ブロックであって、タップ密度が10mg/cm3以上500mg/cm3以下であるか、又は二次元断面像における断面積の平方根÷周囲長の値が0.01以上0.13以下であり、前記生体親和性高分子が、ゼラチン、コラーゲン、エラスチン、フィブロネクチン、プロネクチン、ラミニン、テネイシン、フィブリン、フィブロイン、エンタクチン、トロンボスポンジン、レトロネクチン、ポリ乳酸、ポリグリコール酸、乳酸・グリコール酸コポリマー、ヒアルロン酸、グリコサミノグリカン、プロテオグリカン、コンドロイチン、セルロース、アガロース、カルボキシメチルセルロース、キチン、又はキトサンであり、前記生体親和性高分子ブロック一つの大きさが20μm以上200μm以下であり、生体親和性高分子が熱、紫外線又は酵素により架橋されている、生体親和性高分子ブロック。
  15. 前記生体親和性高分子ブロック一つの大きさが50μm以上120μm以下である、請求項14に記載の生体親和性高分子ブロック。
  16. 架橋度が6以上であり、かつ吸水率が300%以上である、請求項14又は15に記載の生体親和性高分子ブロック。
  17. 請求項1から13の何れか1項に記載の細胞移植用細胞構造体を製造するために使用する、請求項14から16の何れか1項に記載の生体親和性高分子ブロック。
  18. 請求項14から17の何れか1項に記載の生体親和性高分子ブロックを含む、請求項1から13の何れか1項に記載の細胞移植用細胞構造体を製造するための試薬。
  19. 請求項14から17の何れか1項に記載の生体親和性高分子ブロックと、少なくとも一種類の細胞とを混合することを含む、請求項1から13の何れか1項に記載の細胞移植用細胞構造体を製造する方法。
  20. (a)生体親和性高分子の溶液を、溶液内で最も液温の高い部分の液温(内部最高液温)が未凍結状態で「溶媒融点−3℃」以下となる凍結処理により凍結する工程;及び
    (b)前記工程(a)で得られた凍結した生体親和性高分子を凍結乾燥する工程:
    を含む、生体親和性高分子の多孔質体を製造する方法。
  21. 前記工程(a)において、溶液内で最も液温の高い部分の液温(内部最高液温)が未凍結状態で「溶媒融点−7℃」以下となる凍結処理により凍結する、請求項20に記載の方法。
JP2017028860A 2013-02-27 2017-02-20 細胞移植用細胞構造体、生体親和性高分子ブロック及びそれらの製造方法 Active JP6506326B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013036942 2013-02-27
JP2013036942 2013-02-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015503020A Division JP6130903B2 (ja) 2013-02-27 2014-02-27 細胞移植用細胞構造体、生体親和性高分子ブロック及びそれらの製造方法

Publications (2)

Publication Number Publication Date
JP2017121504A true JP2017121504A (ja) 2017-07-13
JP6506326B2 JP6506326B2 (ja) 2019-04-24

Family

ID=51428340

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015503020A Active JP6130903B2 (ja) 2013-02-27 2014-02-27 細胞移植用細胞構造体、生体親和性高分子ブロック及びそれらの製造方法
JP2017028860A Active JP6506326B2 (ja) 2013-02-27 2017-02-20 細胞移植用細胞構造体、生体親和性高分子ブロック及びそれらの製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015503020A Active JP6130903B2 (ja) 2013-02-27 2014-02-27 細胞移植用細胞構造体、生体親和性高分子ブロック及びそれらの製造方法

Country Status (5)

Country Link
US (2) US20150352252A1 (ja)
EP (1) EP2962703B1 (ja)
JP (2) JP6130903B2 (ja)
CN (2) CN107033383B (ja)
WO (1) WO2014133081A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US7959666B2 (en) * 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
DE102005003632A1 (de) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Katheter für die transvaskuläre Implantation von Herzklappenprothesen
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
WO2011104269A1 (en) 2008-02-26 2011-09-01 Jenavalve Technology Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
JP2013526388A (ja) 2010-05-25 2013-06-24 イエナバルブ テクノロジー インク 人工心臓弁、及び人工心臓弁とステントを備える経カテーテル搬送体内プロテーゼ
JP5876787B2 (ja) * 2011-08-31 2016-03-02 富士フイルム株式会社 細胞移植用細胞構造体および細胞移植用細胞集合体
CN105025941B (zh) 2013-03-12 2017-07-28 富士胶片株式会社 组织修复材料
JP6563394B2 (ja) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド 人工弁のための径方向に折り畳み自在のフレーム及び当該フレームを製造するための方法
CN105611950A (zh) * 2013-09-25 2016-05-25 富士胶片株式会社 生物相容性高分子多孔体的制造方法、生物相容性高分子多孔体、生物相容性高分子块体及细胞构建体
JP6330039B2 (ja) * 2014-06-10 2018-05-23 富士フイルム株式会社 細胞構造体及び細胞構造体の製造方法
WO2015194494A1 (ja) 2014-06-16 2015-12-23 富士フイルム株式会社 脳損傷治療用細胞構造体、その製造方法、及び脳損傷治療剤
EP3213776B1 (en) 2014-10-31 2020-06-17 FUJIFILM Corporation Tubular structure, device for producing tubular structure, and method for producing tubular structure
JP6534269B2 (ja) * 2015-03-18 2019-06-26 富士フイルム株式会社 管状構造物、細胞構造体の製造方法、及び管状構造物の製造方法
CN107427609A (zh) 2015-03-18 2017-12-01 富士胶片株式会社 软骨再生材料
WO2016148246A1 (ja) * 2015-03-18 2016-09-22 富士フイルム株式会社 軟骨再生材料及びその製造方法
EP3632378B1 (en) 2015-05-01 2024-05-29 JenaValve Technology, Inc. Device with reduced pacemaker rate in heart valve replacement
CN107835697A (zh) * 2015-07-10 2018-03-23 富士胶片株式会社 细胞结构体及细胞结构体的制造方法
EP3332814A4 (en) * 2015-08-03 2018-07-25 FUJIFILM Corporation Cell structure, non-human model animal, method for producing non-human model animal, and method for evaluating test substance
EP3438246B1 (en) * 2016-03-29 2020-08-26 FUJIFILM Corporation Laminate containing cell sheet, agent for treating cardiac diseases, and film for being laminated on cell sheet
CN109475419B (zh) 2016-05-13 2021-11-09 耶拿阀门科技股份有限公司 用于通过引导鞘和装载系统来递送心脏瓣膜假体的心脏瓣膜假体递送系统和方法
CN106554410B (zh) * 2016-06-02 2019-11-26 陕西东大生化科技有限责任公司 一种重组人源胶原蛋白及其编码基因和制备方法
JP7094965B2 (ja) 2017-01-27 2022-07-04 イエナバルブ テクノロジー インク 心臓弁模倣
JP6964313B2 (ja) * 2017-03-17 2021-11-10 富士フイルム株式会社 細胞構造体の製造方法
US20180356398A1 (en) * 2017-06-09 2018-12-13 Fujifilm Corporation Living tissue model device, vascular wall model, vascular wall model device and method of evaluating test substance
JP6854904B2 (ja) * 2017-08-30 2021-04-07 富士フイルム株式会社 血管新生剤およびその製造方法
EP3677287B1 (en) * 2017-08-30 2024-05-29 FUJIFILM Corporation Cell transplantation device and method for manufacturing same
WO2020209273A1 (ja) 2019-04-09 2020-10-15 富士フイルム株式会社 マイクロカプセルの製造方法およびコート液
KR20220038364A (ko) * 2019-07-04 2022-03-28 닛산 가가쿠 가부시키가이샤 접착성 세포를 부유 배양하기 위한 배지 조성물의 제조 방법
EP4019025A4 (en) 2019-08-23 2022-11-30 FUJIFILM Corporation COMPOSITION COMPRISING A MICROCAPSULE AND A CELLULAR STRUCTURE
JP7426484B2 (ja) 2020-06-16 2024-02-01 富士フイルム株式会社 高分子水溶液凍結体の製造方法及び高分子多孔質体の製造方法
JPWO2022210204A1 (ja) 2021-03-31 2022-10-06

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226230A (ja) * 1985-07-25 1987-02-04 Koken:Kk 架橋化医用品
JP2010083788A (ja) * 2008-09-30 2010-04-15 Jellice Co Ltd 架橋ゼラチン、塞栓剤および架橋ゼラチンの製造方法
WO2011108517A1 (ja) * 2010-03-01 2011-09-09 富士フイルム株式会社 生体親和性を有する高分子ブロックと細胞からなる細胞構造体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014176B1 (en) 1998-12-23 2009-04-29 FUJIFILM Manufacturing Europe B.V. Silver halide emulsions containing recombinant gelatin-like proteins
US6992172B1 (en) 1999-11-12 2006-01-31 Fibrogen, Inc. Recombinant gelatins
EP2112163A3 (en) 2003-03-28 2010-01-20 Fujifilm Manufacturing Europe B.V. RGD-enriched gelatine-like proteins with enhanced cell binding
DE102004024635A1 (de) * 2004-05-12 2005-12-08 Deutsche Gelatine-Fabriken Stoess Ag Verfahren zur Herstellung von Formkörpern auf Basis von vernetzter Gelatine
WO2008103041A1 (en) 2007-02-21 2008-08-28 Fujifilm Manufacturing Europe B.V. Recombinant gelatins
AU2010235520B2 (en) * 2009-04-06 2015-08-06 Hitachi Chemical Company, Ltd. Method for producing porous silk fibroin material
US9101686B2 (en) * 2010-03-02 2015-08-11 Fujifilm Corporation Cell support and bone regeneration material
CN102091349B (zh) * 2011-01-27 2013-06-19 苏州大学 一种高强度生物支架材料及其制备方法
US20120263681A1 (en) * 2011-04-12 2012-10-18 Fujifilm Corporation Composition comprising cell and biocompatible polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226230A (ja) * 1985-07-25 1987-02-04 Koken:Kk 架橋化医用品
JP2010083788A (ja) * 2008-09-30 2010-04-15 Jellice Co Ltd 架橋ゼラチン、塞栓剤および架橋ゼラチンの製造方法
WO2011108517A1 (ja) * 2010-03-01 2011-09-09 富士フイルム株式会社 生体親和性を有する高分子ブロックと細胞からなる細胞構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
人工臓器, vol. 22, no. 2, JPN6016019301, 1993, pages 364 - 369, ISSN: 0003888937 *

Also Published As

Publication number Publication date
CN105025940A (zh) 2015-11-04
WO2014133081A1 (ja) 2014-09-04
CN107033383B (zh) 2020-07-24
EP2962703B1 (en) 2020-08-19
US20150352252A1 (en) 2015-12-10
CN107033383A (zh) 2017-08-11
JPWO2014133081A1 (ja) 2017-02-02
JP6506326B2 (ja) 2019-04-24
EP2962703A1 (en) 2016-01-06
EP2962703A4 (en) 2016-02-24
CN105025940B (zh) 2017-07-11
US20180361020A1 (en) 2018-12-20
JP6130903B2 (ja) 2017-05-17

Similar Documents

Publication Publication Date Title
JP6130903B2 (ja) 細胞移植用細胞構造体、生体親和性高分子ブロック及びそれらの製造方法
JP6330042B2 (ja) 脳損傷治療用細胞構造体、その製造方法、及び脳損傷治療剤
JP5876787B2 (ja) 細胞移植用細胞構造体および細胞移植用細胞集合体
JP6535072B2 (ja) 生体親和性高分子多孔質体の製造方法、生体親和性高分子多孔質体、生体親和性高分子ブロック並びに細胞構造体
JPWO2011108517A1 (ja) 生体親和性を有する高分子ブロックと細胞からなる細胞構造体
JP6466464B2 (ja) 組成物、細胞構造体、膵島移植キット、膵島細胞移植治療剤及び血糖低下剤、膵島を含む組成物、膵島を含むキット、並びに膵島移植治療剤及び血糖低下剤
JP6510663B2 (ja) シート状細胞構造体の製造方法及びシート状細胞構造体
JP5990298B2 (ja) 細胞移植用細胞構造体および細胞移植用細胞集合体
JP6330039B2 (ja) 細胞構造体及び細胞構造体の製造方法
JP6586160B2 (ja) 軟骨再生材料
US10898612B2 (en) Cell structure and method for producing cell structure
JP7078939B2 (ja) 間葉系幹細胞からインスリン産生細胞を製造する方法、インスリン産生細胞、細胞構造体および医薬組成物
JP6903295B2 (ja) ライソゾーム病処置剤
JP6964313B2 (ja) 細胞構造体の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190328

R150 Certificate of patent or registration of utility model

Ref document number: 6506326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250