JP2017103091A - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
JP2017103091A
JP2017103091A JP2015234958A JP2015234958A JP2017103091A JP 2017103091 A JP2017103091 A JP 2017103091A JP 2015234958 A JP2015234958 A JP 2015234958A JP 2015234958 A JP2015234958 A JP 2015234958A JP 2017103091 A JP2017103091 A JP 2017103091A
Authority
JP
Japan
Prior art keywords
lithium ion
ion secondary
secondary battery
separator
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015234958A
Other languages
English (en)
Other versions
JP6622072B2 (ja
Inventor
愛佳 木村
Aika Kimura
愛佳 木村
水田 政智
Masatomo Mizuta
政智 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automotive Energy Supply Corp
Original Assignee
Automotive Energy Supply Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Energy Supply Corp filed Critical Automotive Energy Supply Corp
Priority to JP2015234958A priority Critical patent/JP6622072B2/ja
Priority to CN201610982716.5A priority patent/CN107026281B/zh
Publication of JP2017103091A publication Critical patent/JP2017103091A/ja
Application granted granted Critical
Publication of JP6622072B2 publication Critical patent/JP6622072B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Abstract

【課題】電解液が枯渇しにくく長寿命なリチウムイオン二次電池を提供する。【解決手段】リチウムイオン二次電池1は、正極12及び負極11がセパレータ13を介して積層された発電要素10と、電解液とを、外装体30内に備える。セパレータ13の外周縁部13aは正極12及び負極11の外周縁部よりも外側に位置しており、隣接するセパレータ13の外周縁部13a同士が部分的に接触して、セパレータ13の正極12が配された領域及び/又は負極11が配された領域とセパレータ13の外周縁部13aの外側とを連通する電解液径路15が形成されている。【選択図】図4

Description

本発明はリチウムイオン二次電池に関する。
近年、環境保護運動の高まりを背景として、電気自動車(EV)及びハイブリッド電気自動車(HEV)の開発が進められている。これらの自動車のモータ駆動用電源として、繰り返し充放電可能なリチウムイオン二次電池が注目されている。リチウムイオン二次電池は、シート状の正極と負極とがセパレータを介して積層されてなる発電要素が、電解液とともに絶縁性の外装体に収容されて形成された積層電池である。この外装体は、金属層の両面に絶縁層が積層されてなる絶縁性の積層フィルムが貼り合わされて形成される(特許文献1を参照)。
特開2009−277397号公報
しかしながら、例えば特許文献1に開示の積層型リチウムイオン二次電池は、発電要素の外部から内部へ電解液が流入しにくかった。そのため、発電要素の中心部の電解液が枯渇しやすく、リチウムイオン二次電池の寿命が低下するおそれがあった。
本発明は、電解液が枯渇しにくく長寿命なリチウムイオン二次電池を提供することを課題とする。
本発明の一態様に係るリチウムイオン二次電池は、正極及び負極がセパレータを介して積層された発電要素と、電解液とを、外装体内に備える。セパレータの外周縁部は正極及び負極の外周縁部よりも外側に位置しており、隣接するセパレータの外周縁部同士が部分的に接触している。そして、セパレータの正極が配された領域及び/又は負極が配された領域とセパレータの外周縁部の外側とを連通する電解液径路が形成されていることを特徴とする。
本発明によれば、電解液が枯渇しにくく長寿命なリチウムイオン二次電池を提供することができる。
本発明の一実施形態に係るリチウムイオン二次電池の斜視図である。 図1のリチウムイオン二次電池のII−II断面図である。 部分的に接触したセパレータの外周縁部を示す図である。 セパレータの外周縁部の接触部分と非接触部分とを拡大して示す図である。 セパレータの外周縁部に形成された電解液径路を説明する図である。 リチウムイオン二次電池のサイクル数と容量維持率との相関を示すグラフである。
本発明の一実施形態について詳細に説明する。図1、2に示す本実施形態のリチウムイオン二次電池1は、略矩形のシート状の外観形状を有する積層型電池であり、負極11及び正極12がセパレータ13を介して積層された発電要素10と、図示しない電解液とを、外装体30内に備えている。負極11、正極12、及びセパレータ13はいずれも膜状であるため、発電要素10は平板状をなしている。
詳述すると、発電要素10は、図2に示すように、リチウムイオンを吸蔵及び放出し得る負極活物質を含有する負極活物質層11B、11Bが負極集電体11Aの両主面上に形成された負極11と、リチウムイオンを吸蔵及び放出し得る正極活物質を含有する正極活物質層12B、12Bが正極集電体12Aの両主面上に形成された正極12とが、セパレータ13を介して交互に複数積層された構造を有している。図2の例では、3枚の負極11と2枚の正極12とが4枚のセパレータ13を介して交互に複数積層された構造を有しているが、負極11、正極12、及びセパレータ13の数は、特に限定されるものではない。
このような発電要素10においては、隣接する負極活物質層11B、セパレータ13、及び正極活物質層12Bが1つの単電池層14を構成する。したがって、本実施形態のリチウムイオン二次電池1は、単電池層14が複数積層されることにより電気的に並列接続された構成を有するものとなる。なお、単電池層14の外周には、隣接する負極集電体11Aや正極集電体12Aの間を絶縁するための絶縁層(図示せず)が設けられていてもよい。
略矩形の外装体30の周縁部の一辺には負極端子21及び正極端子22が設けられており、負極端子21及び正極端子22は、それぞれ外装体30の内部から外部に向かって同一方向に導出されている。負極端子21及び正極端子22の端部のうち外装体30内に配されている端部は、外装体30内に封入された発電要素10の負極集電体11A及び正極集電体12Aにそれぞれ接続されている。なお、本実施形態においては、負極端子21及び正極端子22は外装体30の周縁部の同一の辺上に設けられていたが、異なる辺上に設けてもよい。また、負極端子21及び正極端子22は、同一方向に導出されていたが、反対方向等の異なる方向に導出してもよい。
このような構成の本実施形態のリチウムイオン二次電池1においては、負極11及び正極12よりもセパレータ13を大きく設計しているため、セパレータ13の外周縁部13aは負極11及び正極12の外周縁部よりも外側に位置している。そして、隣接するセパレータ13の外周縁部13a同士が部分的に接触して、セパレータ13の外周縁部13aの内側と外側とを連通する電解液径路15が形成されている。
詳述すると、セパレータ13に電解液を保持、膨潤させることにより、セパレータ13の外周縁部13aを変形させる。セパレータ13の外周縁部13aの変形により、図3に示すように、外周縁部13aが例えば周方向に沿って波打つ波形をなす。すなわち、セパレータ13を側方から見ると、図3に示すように、セパレータ13の端面が波形をなしている。なお、図3の(a)は発電要素10の部分側面図であり、図3の(b)は図3の(a)の破線で囲まれた部分の拡大図であり、図3の(c)は発電要素10の角部を拡大して示した部分斜視図である。図3の(a)、(b)、(c)においては、説明の便宜上、セパレータ13のみを図示してある。
セパレータ13の外周縁部13a同士が部分的に接触するようにセパレータ13の外周縁部13aを変形させる方法としては、セパレータ13を構成する樹脂材料の分子量、空孔率等の各種特性を調整することにより、電解液を膨潤した時のセパレータ13の伸び率を適宜設計する方法があげられる。また、セパレータ13の寸法を適宜設計する方法や、セパレータ13の寸法に対する外装体30の寸法を適宜設計する方法(外装体30によってセパレータ13の伸びを押さえつけて変形させるために、外装体30の寸法を調整する)によっても、セパレータ13の外周縁部13a同士が部分的に接触するようにセパレータ13の外周縁部13aを変形させることができる。これらの方法は、適宜組み合わせて用いてもよい。
隣接する2つのセパレータ13のうち少なくとも一方の外周縁部13aが、周方向に沿って波打つ波形をなしていると、隣接する2つのセパレータ13の外周縁部13aが相互に異なる形状となる。そのため、図3、4に示すように、隣接するセパレータ13の外周縁部13aの全体が面接触している状態とはなりにくく、隣接するセパレータ13の外周縁部13a同士が部分的に接触することとなる。なお、図4の(a)は、図3の(b)のさらなる拡大図であり、図4の(b)は、図4の(a)のA−A断面図である。
隣接するセパレータ13の外周縁部13a同士が部分的に接触した結果、図3、4から分かるように、セパレータ13の外周縁部13aには、隣接するセパレータ13の外周縁部13a同士が接触する接触部分と接触していない非接触部分とが形成されることとなる。この非接触部分は、図5に示すように、セパレータ13の外周縁部13aの内側の負極11が配された領域(発電要素10の内部)と、セパレータ13の外周縁部13aの外側(発電要素10の外部)とを連通する電解液径路15、及び/又は、セパレータ13の外周縁部13aの内側の正極12が配された領域(発電要素10の内部)と、セパレータ13の外周縁部13aの外側(発電要素10の外部)とを連通する電解液径路15を構成するので、発電要素10の内外の電解液は電解液径路15を介して相互に流通可能となっている。なお、図5に示す矢印は、電解液径路15を介して流通する電解液を意味する。
例えば特許文献1に開示のリチウムイオン二次電池は、隣接するセパレータの外周縁部同士が融着されているので、発電要素の外部から内部へ電解液が流入しにくかった。そのため、発電要素の中心部の電解液が枯渇しやすく、リチウムイオン二次電池が短寿命となるおそれがあった。
これに対して上記のような構成の本実施形態のリチウムイオン二次電池1は、発電要素10の外部の電解液が電解液径路15を介して発電要素10の内部に流入可能であり、急速な充放電にも追随できる程度の液流入も可能であるので、発電要素10の内部(特に中心部)の電解液が枯渇しにくい。よって、本実施形態のリチウムイオン二次電池1は、サイクル特性が高く長寿命である。
また、セパレータ13の外周縁部13aが周方向に沿って波打つ波形をなしていることにより、発電要素10の強度が向上する。セパレータ13の外周縁部13aに外力が作用したとしても、波形が維持されやすい。
さらに、電解液径路15が複数存在するため、発電要素10の内部の電解液が一部の電解液径路15を介して外部に流出したとしても、それに伴って他の電解液径路15を介して電解液が発電要素10の内部に流入する。よって、本実施形態のリチウムイオン二次電池1は、発電要素10の内部(特に中心部)の電解液が枯渇しにくい。
さらに、例えば自動車用途のリチウムイオン二次電池などは振動に曝されることが多いが、セパレータの外周縁部が平坦状である場合よりも波形をなしていた場合の方が、リチウムイオン二次電池が振動に曝された際に発電要素の外部の電解液に流れが生じやすい。よって、本実施形態のリチウムイオン二次電池1は、振動に曝された際に、発電要素10の外部の電解液が電解液径路15を介して発電要素10の内部に流入しやすい。
なお、電解液径路15は、セパレータ13の外周縁部13aの全周にわたって形成されていてもよいし、セパレータ13の外周縁部13aの周方向の一部分に形成されていてもよい。例えば、セパレータ13の外周縁部13aの1辺、2辺、又は3辺のみに形成されていてもよい。ただし、発電要素10の内部への電解液の流入が多く且つ円滑に生じやすいことから、電解液径路15が形成されている部分は大きい方が好ましい。
このような本実施形態のリチウムイオン二次電池1は、種々の用途に使用可能である。例えば、電気自動車、ハイブリッド車(原動機として内燃機関と電動機を併用する自動車)、自動二輪車、電動アシスト自転車、鉄道車両等の各種車両に使用可能である。また、航空機、船舶、農業機械、建設機械、運搬用機械、電動工具、医療機器、福祉用機器、ロボット、蓄電装置等にも使用可能である。さらに、ノート型パーソナルコンピュータ、デジタルカメラ、携帯電話端末、携帯型ゲーム機端末等の携帯機器にも使用可能である。
特に、電気自動車やハイブリッド車に搭載されるリチウムイオン二次電池や蓄電用途のリチウムイオン二次電池は、使用期間が長く充放電を頻繁に行う為に長寿命(高サイクル数)が要求される。且つ大容量であるために負極及び正極の面積が大きいので、発電要素の中心部にまで電解液が流入しにくく、電解液が枯渇しやすい。そのため、電気自動車やハイブリッド車に搭載されるリチウムイオン二次電池や蓄電用途のリチウムイオン二次電池は、短寿命となりやすい。
しかしながら、本実施形態のリチウムイオン二次電池1は、負極11及び正極12の面積が大きい場合であっても、電解液が電解液径路15を介して発電要素10の内部に流入しやすいので、電気自動車やハイブリッド車に搭載されるリチウムイオン二次電池や蓄電用途のリチウムイオン二次電池として特に好適である。電気自動車やハイブリッド車に搭載する場合には、リチウムイオン二次電池1の発電要素10の容量を5Ah以上70Ah以下とすることが好ましい。
以下に、本実施形態のリチウムイオン二次電池1を構成する各構成要素について、さらに詳細に説明する。
1.負極端子21及び正極端子22について
負極端子21及び正極端子22は、例えば導電性金属箔により構成される。金属箔の具体例としては、アルミニウム、銅、チタン、ニッケル等の単一金属からなる金属箔や、アルミニウム合金、ステンレス鋼等の合金からなる金属箔があげられる。なお、負極端子21の材質と正極端子22の材質は同一でもよいし、異なっていてもよい。また、本実施形態のように、別途準備した負極端子21及び正極端子22を、負極集電体11A及び正極集電体12Aにそれぞれ接続してもよいし、負極集電体11A及び正極集電体12Aをそれぞれ延長することによって、負極端子21及び正極端子22を形成してもよい。
2.負極11について
負極11は、負極集電体11Aの両方の主面上に負極活物質層11B、11Bが形成された構造を有する。負極活物質層11Bは、例えば、負極活物質と導電助剤と結着剤(バインダー)とを含有する。導電助剤は、負極活物質層11B中に分散された状態で含まれている。また、負極11における結着剤の含有率を所定の好ましい範囲とすることにより、結着剤が負極活物質の粒子の少なくとも一部を被覆した状態で、負極活物質同士を結着している。
2−1 負極集電体11Aについて
負極集電体11Aの材質としては、例えば、銅、ニッケル、チタン等の金属や、これらの金属を1種以上含有する合金(例えばステンレス鋼)を用いることができる。
2−2 負極活物質について
負極活物質としては、例えば、黒鉛等の結晶性炭素材料を用いることができる。黒鉛の具体例としては、天然黒鉛や、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の人造黒鉛や、MCF(メソカーボンファイバ)があげられる。これらの結晶性炭素材料は、1種を単独で用いてもよいし、2種以上を併用してもよい。
2−3 導電助剤について
導電助剤としては、例えば、カーボンブラック等の非晶性炭素材料や黒鉛等の結晶性炭素材料を用いることができる。カーボンブラックの具体例としては、ケッチェンブラック、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラックがあげられる。黒鉛の具体例は、2−2項において示したものと同様である。これらの炭素材料は、1種を単独で用いてもよいし、2種以上を併用してもよい。
2−4 結着剤について
結着剤としては、負極活物質の粒子と導電助剤の粒子とを結着可能なものであれば特に限定されるものではないが、例えばフッ素樹脂を用いることができる。フッ素樹脂の具体例としては、ポリフッ化ビニリデンや、フッ化ビニリデンと他のフッ素系モノマーとを共重合させたフッ化ビニリデン系重合体があげられる。なお、結着剤は、電解液が浸透しうるものであれば、フッ素樹脂のみからなるものでもよいし、フッ素樹脂と他の成分の混合物からなるものでもよい。
3.正極12について
正極12は、正極集電体12Aの両方の主面上に正極活物質層12B、12Bが形成された構造を有する。正極活物質層12Bは、例えば、正極活物質と、必要に応じて添加される導電助剤及び結着剤とを含有する。導電助剤や結着剤としては、従来のリチウムイオン二次電池に一般的に用いることができるもの(例えば2−3項、2−4項において示したもの)を適宜選択して用いることができる。
3−1 正極集電体12Aについて
正極集電体12Aの材質としては、例えば、アルミニウム、ニッケル、チタン等の金属や、これらの金属を1種以上含有する合金(例えばステンレス鋼)を用いることができる。
3−2 正極活物質について
正極活物質としては、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、ニッケルコバルトマンガン酸リチウム(NCM)等のリチウム含有酸化物を用いることができる。これらの正極活物質は、1種を単独で用いてもよいし、2種以上を併用してもよい。
4.セパレータ13について
セパレータ13は、多数の微細な孔を有する微多孔性膜であり、その孔内に電解液を収容することにより、外装体30内に封入された電解液を保持する。本実施形態においては、隣接する2つのセパレータ13のうち少なくとも一方に電解液を保持、膨潤させることにより、外周縁部13aを変形させている。電解液を膨潤した時のセパレータ13の伸び率は、0.3%以上としてもよい。そうすれば、セパレータ13の外周縁部13aの変形が大きくなるため、電解液径路15が形成されやすい。
電解液径路15がより確実に形成されるためには、隣接する2つのセパレータ13のうち少なくとも一方について、電解液を膨潤した時の伸び率を0.5%以上とすることが好ましい。一方、電解液を膨潤した時のセパレータ13の伸び率は、2%以下としてもよく、1%以下とすることが好ましい。
また、電解液を膨潤した時の伸び率が0.3%以上のセパレータと、0.3%未満のセパレータとを隣接させれば、電解液径路15が形成されやすい。よって、電解液を膨潤した時の伸び率が0.3%以上のセパレータと、0.3%未満のセパレータとを交互に配することが好ましい。
セパレータ13の材質は、電気絶縁性を有し、電気化学的に安定で且つ電解液に対して安定であれば特に限定されるものではないが、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンや、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素樹脂や、ポリエチレンテレフタレート等のポリエステルや、脂肪族ポリアミド、芳香族ポリアミド(アラミド)等のポリアミドからなる微多孔性膜があげられる。
また、セパレータ13の材質として、上記の樹脂とフィラーとを含有する樹脂組成物を用いることもできる。フィラーの種類は、電気化学的に安定で且つ電解液に対して安定であれば特に限定されるものではないが、例えば、無機粒子や有機粒子があげられる。無機粒子の具体例としては、酸化鉄、アルミナ、シリカ、二酸化チタン、ジルコニア等の金属酸化物や、窒化アルミニウム、窒化ケイ素等のセラミックの微粒子があげられる。有機粒子の具体例としては、架橋ポリメタクリル酸メチル、架橋ポリスチレン等の樹脂の微粒子があげられる。
さらに、セパレータ13は、樹脂製の基材の表面に耐熱層を被覆したものでもよい。耐熱層を有することにより、セパレータ13の耐熱性や機械特性が向上する。耐熱層はセラミック粒子で構成され、セラミックの種類は特に限定されるものでがないが、アルミナ、シリカ、二酸化チタン、ジルコニア、窒化アルミニウム、窒化ケイ素、炭化ケイ素等があげられる。
また、基材と樹脂層とでは、電解液と接触し膨潤することによる伸び率が異なるため、樹脂製の基材の表面に耐熱層を被覆したセパレータ13は、変形が生じやすく、その結果、電解液径路15が形成されやすい。
樹脂製の基材の表面に耐熱層を被覆したセパレータと全体が樹脂製のセパレータとを隣接させれば、電解液径路15が形成されやすい。よって、樹脂製の基材の表面に耐熱層を被覆したセパレータと全体が樹脂製のセパレータとを交互に配することが好ましい。
耐熱層は電解液を吸収しやすいため、例えば、耐熱層中のセラミック粒子と電解液が接触すると電解液は分解されガスが発生する場合がある。しかしながら、発電要素10の内部において発生したガスは、電解液径路15を介して発電要素10の外部に排出されやすいので、発電要素10の内部にガスが溜まることによるリチウムイオン二次電池1の性能低下が生じにくい。
5.電解液について
電解液としては、例えば、電解質であるリチウム塩を非水溶媒(有機溶媒)に溶解した溶液を用いることができる。電解液は、液状に限らずゲル状であってもよい。電解液は慣用の添加剤をさらに含有していてもよい。
リチウム塩の種類は、非水溶媒中で解離してリチウムイオンを生成するものであれば特に限定されるものではないが、具体例としては、六フッ化リン酸リチウム(LiPF)、六フッ化ヒ酸リチウム(LiAsF)、四塩化アルミニウムリチウム(LiAlCl)、過塩素酸リチウム(LiClO)、四フッ化ホウ素酸リチウム(LiBF)、六フッ化アンチモン酸リチウム(LiSbF)、LiPOF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)があげられる。これらのリチウム塩の中でも、特に、六フッ化リン酸リチウム、四フッ化ホウ素酸リチウムを用いることが好ましい。これらのリチウム塩は、1種を単独で用いてもよいし、2種以上を併用してもよい。
非水溶媒としては、例えば、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ−ラクトン類、環状エーテル類、鎖状エーテル類、及びこれらのフッ化誘導体からなる群より選ばれる少なくとも1種の有機溶媒があげられる。
環状カーボネート類の具体例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、及びこれらのフッ化誘導体等があげられる。鎖状カーボネート類の具体例としては、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート、及びこれらのフッ化誘導体等があげられる。
脂肪族カルボン酸エステル類の具体例としては、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸エチル、及びこれらのフッ化誘導体があげられる。γ−ラクトン類の具体例としては、γ−ブチロラクトンやこのフッ化誘導体等があげられる。環状エーテル類の具体例としては、ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフラン等があげられる。鎖状エーテル類の具体例としては、1,2−エトキシエタン、エトキシメトキシエタン、ジエチルエーテル、及びこれらのフッ化誘導体等があげられる。
その他の非水溶媒の具体例としては、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアルデヒド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、スルホラン、メチルスルホラン、1,3−ジメチル−2−イルエーテル、1,3−プロパンスルトン、アニソール、N−メチル−2−ピロリドン、フッ素化カルボン酸エステル等があげられる。これらの非水溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよい。
6.外装体30について
外装体30は、例えば、熱融着層と金属層と保護層との積層体からなる可撓性のラミネートフィルムにより形成したラミネート外装体であってもよいし、金属、樹脂等からなる角形、円筒形等の容器により形成した外装体であってもよい。
ラミネート外装体は、軽量化と、電池エネルギー密度の向上という観点から好ましい。また、外装体30としてラミネート外装体を用いたラミネート型リチウムイオン二次電池は、放熱性にも優れる。
さらに、ラミネート型リチウムイオン二次電池は、大気圧により発電要素10に外力が作用するため、セパレータ13の外周縁部13aが平坦状であると、隣接する2つのセパレータ13の外周縁部13aの全体が面接触して、電解液径路15が形成されないおそれがある。しかしながら、本実施形態のリチウムイオン二次電池1は、セパレータ13の外周縁部13aが波形をなしている。したがって、大気圧により発電要素10に外力が作用しても、隣接する2つのセパレータ13の外周縁部13aが部分的に接触し波形状を形成しているために、電解液径路15が十分に保持、確保される。したがって、本発明は、ラミネート型リチウムイオン二次電池により好適である。
金属層は、例えば金属箔(例えばアルミニウム箔、SUS箔)からなり、その内側面を覆う熱融着層は、熱融着が可能な樹脂(例えばポリエチレン、ポリプロピレン)からなり、金属層の外側面を覆う保護層は、耐久性に優れた樹脂(例えばポリエチレンテレフタレート、ナイロン)からなる。なお、さらに多数の層を有するラミネートフィルムを用いることもできる。
図1、2に示すリチウムイオン二次電池1の外装体30は、発電要素10の下面側に配置される1枚のラミネートフィルムと上面側に配置される他の1枚のラミネートフィルムとの2枚構造をなし、発電要素10を積層方向の上下から包んでいる。そして、これら2枚のラミネートフィルムの周縁部の4辺を重ね合わせ、互いに熱融着することにより、端部同士が接合された接合部を有する袋状をなしている。
ただし、外装体30は、このような2枚構造に限らず、下記のような1枚構造としてもよい。すなわち、外装体30は、1枚の比較的大きなラミネートフィルムを折り曲げた(二つ折りにした)状態で、内側に発電要素10が配置され(二つ折りにしたラミネートフィルムの間に発電要素10が挟まれ)、周縁部の3辺を重ね合わせ、互いに熱融着することにより、端部同士が接合された接合部を有する袋状をなしていてもよい。
外装体30の接合部は、発電要素10の積層方向中央(積層方向略中央でもよい)に位置していることが好ましい。外装体30の接合部が発電要素10の積層方向中央よりも積層方向端部側に位置していると、外装体30の内面によりセパレータ13の外周縁部13aが押圧されて、電解液径路15が閉塞するおそれがあるが、外装体30の接合部が発電要素10の積層方向中央に位置していれば、外装体30の内面によりセパレータ13の外周縁部13aが押圧されにくい。
また、外装体30は発電要素10よりも大きい方が好ましい。例えば、外装体30の内面とセパレータ13の外周縁部13aの最外端部との間に隙間が形成されていることが好ましい。このような構成であれば、外装体30の内面によりセパレータ13の外周縁部13aが押圧されにくい。
7.リチウムイオン二次電池1の製造方法について
本実施形態のリチウムイオン二次電池1の製造方法の一例について説明する。
負極活物質としての黒鉛と導電助剤としてのカーボンブラックと結着剤としてのフッ素樹脂とを、所定の配合量でN−メチル−2−ピロリドン等の溶剤中に分散させて、スラリーを得る。このスラリーを銅箔等の負極集電体11Aに塗布し、乾燥させ、負極活物質層11Bを形成することによって、負極11を作製する。得られた負極11は、ロールプレス等の方法により圧縮して適当な密度に調整してもよい。
また、正極活物質としてのリチウムマンガン複合酸化物と導電助剤と結着剤とを、所定の配合量でN−メチル−2−ピロリドン等の溶剤中に分散させて、スラリーを得る。このスラリーをホットプレート上にてドクターブレード等を用いてアルミニウム箔等の正極集電体12Aに塗布し、乾燥させ、正極活物質層12Bを形成することによって、正極12を作製する。得られた正極12は、ロールプレス等の方法により圧縮して適当な密度に調整してもよい。
次いで、負極11、セパレータ13、及び正極12を積層して発電要素10を形成した後に、負極11に負極端子21を取り付けるとともに、正極12に正極端子22を取り付ける。そして、発電要素10を一対のラミネートフィルムで挟み、負極端子21及び正極端子22の先端がそれぞれラミネートフィルムの外部に突出するようにしつつ、一対のラミネートフィルムの一辺を除く周縁部同士を熱融着して、開口部を有する袋状の外装体30とする。
次に、六フッ化リン酸リチウム等のリチウム塩とエチレンカーボネート等の有機溶媒とを含有する電解液を、外装体30の開口部から内部に注液し、発電要素10に電解液を接触させ、真空処理等により発電要素10に電解液を含浸させる。電解液との接触により、セパレータ13の外周縁部13aが変形して波形をなし、電解液径路15が形成される。電解液を注液し終えたら、外装体30の開口部を熱融着し、外装体30を密閉状態とする。これにより、ラミネート型のリチウムイオン二次電池1が完成する。
この時、リチウムイオン二次電池1の組み立て後の最初の充電では、活物質と電解液が接触すること等により発電要素10の内部でガスが発生するが、この発生したガスは電解液径路15を介して発電要素10の外部に排出されやすい。よって、発電要素10の内部にガスが溜まり充放電反応の不均一を生じさせることを抑制できるので、リチウムイオン二次電池1の性能低下が生じにくい。
ただし、本実施形態のリチウムイオン二次電池1の製造方法においては、発電要素10を収容した外装体30内に電解液を注液することにより発電要素10に電解液を接触させたが、この方法に限らず、外装体30の外部で発電要素10に電解液を接触させた後、電解液を接触させた発電要素10を外装体30内に収容する方法によっても、リチウムイオン二次電池1を製造することができる。例えば、外装体30の外部でセパレータ13にゲル状の電解液を塗布し、このゲル状の電解液を塗布したセパレータ13を介して負極11、正極12を積層して発電要素10を製造してもよい。
なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。例えば、本実施形態のリチウムイオン二次電池1においては、セパレータ13の外周縁部13aが電解液と接触し膨潤することにより変形し電解液径路15が形成されたが、外周縁部13aを波形に形成したセパレータ13を用いてもよい。すなわち、電解液と接触する以前から外周縁部13aが波形であるセパレータ13を用いてもよい。
また、本実施形態のリチウムイオン二次電池1は、略矩形のシート状の外観形状を有する積層型電池であったが、円筒状の外観形状を有する捲回型電池とすることもできる。ただし、捲回型電池よりも積層型電池の方がセパレータ13の外周縁部13aが多いので、形成される電解液径路15の数が多くなりやすい。よって、電解液が電解液径路15を介して発電要素10の内部に流入しやすいので、発電要素10の内部の電解液がより枯渇しにくい。
〔実施例〕
以下に実施例を示し、本発明をさらに具体的に説明する。図1〜5に示すリチウムイオン二次電池と同様の構成のリチウムイオン二次電池(実施例)と、隣接するセパレータの外周縁部が平坦状で外周縁部のほぼ全体が面接触していて電解液径路が十分に形成されていないリチウムイオン二次電池(比較例)とを作製した。そして、充放電を繰り返し容量を測定するサイクル試験を行って、リチウムイオン二次電池の寿命を評価した。以下に、両リチウムイオン二次電池の各素材と製造方法について説明する。
<負極の作製>
負極活物質として非晶質性炭素で被覆された球状天然黒鉛粉末(平均粒子径:20μm)と、結着剤としてポリフッ化ビニリデンと、導電助剤としてカーボンブラックとを、固形分質量比で96.5:3:0.5の割合で、溶媒であるN−メチル−2−ピロリドン(NMP)に添加し攪拌することにより、これらの材料をNMP中に均一に分散させてスラリーを作製した。得られたスラリーを、負極集電体となる厚さ10μmの銅箔上に塗布した。次いで、125℃にて10分間、スラリーを加熱し、NMPを蒸発させることにより負極活物質層を形成した。さらに、負極活物質層をプレスすることによって、負極集電体の片面上に負極活物質層を塗布した負極を作製した。
<正極の作製>
正極活物質としてスピネル構造を有するLi1.1Mn1.9粉末(BET比表面積0.25m/g)及びリチウム・ニッケル・コバルト・マンガン酸リチウム(Ni/Liモル比0.7、BET比表面積0.5m/g)と、結着剤としてポリフッ化ビニリデンと、導電助剤としてカーボンブラックとを、固形分質量比で69:23:4:4の割合で、溶媒であるNMP中に添加した。
さらに、この混合物に、有機系水分捕捉剤として蓚酸無水和物(分子量126)を、上記混合物からNMPを除いた固形分100質量部に対して0.03質量部添加した上で攪拌することにより、これらの材料を均一に分散させてスラリーを作製した。得られたスラリーを、正極集電体となる厚さ20μmのアルミニウム箔上に塗布した。次いで、125℃にて10分間、スラリーを加熱し、NMPを蒸発させることにより正極活物質層を形成した。さらに、正極活物質層をプレスすることによって、正極集電体の片面上に正極活物質層を塗布した正極を作製した。
<リチウムイオン二次電池の作製>
上記のように作製した正極を幅20cm、長さ21cmの長方形に、負極を幅21cm、長さ22cmの長方形に切り出した。その周縁部のうち一辺の5cm×1cmの部分は、端子を接続するための活物質未塗布部であって、活物質層は、正極では残部の20cm×20cmの部分に、負極では残部の21cm×21cmの部分に形成されている。幅5cm、長さ3cm、厚さ0.2mmのアルミニウム製の正極端子のうち端部である長さ1cmの部分を、正極の活物質未塗布部に超音波溶接した。同様に、正極端子と同サイズのニッケル製の負極端子のうち端部である長さ1cmの部分を、負極の活物質未塗布部に超音波溶接した。
一辺22cmの正方形状のポリエチレン及びポリプロピレンからなるセパレータの両面上に、それぞれの活物質層同士がセパレータを隔てて対向するように負極と正極とを配置して、発電要素を得た。ただし、実施例のリチウムイオン二次電池に使用したセパレータは、電解液を膨潤した時の伸び率が0.54%であり、比較例のリチウムイオン二次電池に使用したセパレータは、電解液を膨潤した時の伸び率が0.26%である。
次に、幅24cm、長さ25cmの長方形状のアルミニウムラミネートフィルムを2枚用意し、その一方の長辺を除いた三辺の幅5mmの部分を熱融着によりにて接着して、開口部を有する袋状のラミネート外装体を作製した。そして、ラミネート外装体の一方の短辺と発電要素の端部との間に1cmの隙間が形成されるように、ラミネート外装体内に発電要素を挿入した。
ラミネート外装体内に注液する電解液は、以下のようにして調製した。エチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=30:70(体積比)の割合で混合した非水溶媒に、電解質としての六フッ化リン酸リチウムを濃度が1.0モル/Lとなるように溶解させた。そして、この溶液に対して、添加剤として鎖状ジスルホン酸エステルを濃度が0.5質量%となるように溶解させて、電解液を調製した。
この電解液をラミネート外装体内に注液し、真空処理をすることにより発電要素の負極と正極とセパレータに電解液を含浸させた。実施例のリチウムイオン二次電池は、電解液の含浸によりセパレータの外周縁部が変形し波形をなし、多数の電解液径路が形成された。一方、比較例のリチウムイオン二次電池は、電解液が含浸してもセパレータの外周縁部はほとんど変形せず、電解液径路はほとんど形成されなかった。そして、減圧下にて熱融着を行い、ラミネート外装体の開口部を幅5mmで封止することによって、実施例及び比較例のリチウムイオン二次電池を得た。これらのリチウムイオン二次電池の容量は約30Ahである。
このようにして得られた実施例及び比較例のリチウムイオン二次電池について、充放電を繰り返し容量を測定するサイクル試験を行って、リチウムイオン二次電池の寿命を評価した。サイクル試験の条件は以下の通りである。
容量0%から容量100%まで1時間で充電する電流での定電流定電圧充電と、容量100%から容量0%まで1時間で放電する電流での定電流放電とを、25℃環境下で1000サイクル繰り返した。容量100%時のリチウムイオン二次電池の電圧は4.15Vである。この充放電による容量維持率を、(各サイクル後の電池容量)/(初期電池容量)なる計算式で算出した。結果を図6のグラフに示す。
図6のグラフから分かるように、実施例のリチウムイオン二次電池は比較例のリチウムイオン二次電池に比べて容量維持率が優れており、長寿命であった。例えば、サイクル数700回の時点での容量維持率は、実施例のリチウムイオン二次電池は88%であり、比較例のリチウムイオン二次電池は86%であった。この結果から、セパレータの外周縁部に電解液径路が十分に形成されていると、リチウムイオン二次電池が長寿命であることが分かる。
1 リチウムイオン二次電池
10 発電要素
11 負極
12 正極
13 セパレータ
13a 外周縁部
15 電解液径路
30 外装体

Claims (8)

  1. 正極及び負極がセパレータを介して積層された発電要素と、電解液とを、外装体内に備えるリチウムイオン二次電池であって、
    前記セパレータの外周縁部は前記正極及び前記負極の外周縁部よりも外側に位置しており、隣接する前記セパレータの外周縁部同士が部分的に接触して、前記セパレータの前記正極が配された領域及び/又は前記負極が配された領域と前記セパレータの外周縁部の外側とを連通する電解液径路が形成されているリチウムイオン二次電池。
  2. 隣接する2つの前記セパレータのうち少なくとも一方の外周縁部が、周方向に沿って波打つ波形をなしている請求項1に記載のリチウムイオン二次電池。
  3. 隣接する2つの前記セパレータのうち少なくとも一方は、前記電解液を膨潤した時の伸び率が0.3%以上である請求項1又は請求項2に記載のリチウムイオン二次電池。
  4. 前記セパレータのうち少なくとも一つは、樹脂製の基材の表面に耐熱層を被覆したものである請求項1〜3のいずれか一項に記載のリチウムイオン二次電池。
  5. 前記発電要素が平板状である請求項1〜4のいずれか一項に記載のリチウムイオン二次電池。
  6. 前記発電要素の容量が5Ah以上70Ah以下である請求項1〜5のいずれか一項に記載のリチウムイオン二次電池。
  7. 前記外装体は、前記発電要素を積層方向の上下から包み、端部同士が接合された接合部を有する袋状をなしており、前記接合部が前記発電要素の積層方向中央に位置している請求項1〜6のいずれか一項に記載のリチウムイオン二次電池。
  8. 前記外装体がラミネートフィルムで構成された請求項1〜7のいずれか一項に記載のリチウムイオン二次電池。
JP2015234958A 2015-12-01 2015-12-01 リチウムイオン二次電池 Active JP6622072B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015234958A JP6622072B2 (ja) 2015-12-01 2015-12-01 リチウムイオン二次電池
CN201610982716.5A CN107026281B (zh) 2015-12-01 2016-11-08 锂离子二次电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015234958A JP6622072B2 (ja) 2015-12-01 2015-12-01 リチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JP2017103091A true JP2017103091A (ja) 2017-06-08
JP6622072B2 JP6622072B2 (ja) 2019-12-18

Family

ID=59018128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015234958A Active JP6622072B2 (ja) 2015-12-01 2015-12-01 リチウムイオン二次電池

Country Status (2)

Country Link
JP (1) JP6622072B2 (ja)
CN (1) CN107026281B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6923401B2 (ja) * 2017-09-14 2021-08-18 株式会社エンビジョンAescジャパン 積層型電池および電池モジュール
EP3902032A4 (en) * 2018-12-18 2022-08-31 NGK Insulators, Ltd. SECONDARY LITHIUM BATTERY
EP4068474A1 (en) * 2019-11-27 2022-10-05 Kyocera Corporation Electrochemical cell
JP2022153742A (ja) * 2021-03-30 2022-10-13 本田技研工業株式会社 電池セル及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042891A (ja) * 2000-07-27 2002-02-08 Toshiba Battery Co Ltd 薄型リチウム二次電池
JP2008251226A (ja) * 2007-03-29 2008-10-16 Sharp Corp 非水電解液二次電池およびその製造方法
JP2011222388A (ja) * 2010-04-13 2011-11-04 Sharp Corp 積層型二次電池
JP2013084387A (ja) * 2011-10-06 2013-05-09 Nissan Motor Co Ltd 電気デバイス
WO2013151144A1 (ja) * 2012-04-05 2013-10-10 日本ゼオン株式会社 二次電池用セパレータ
JP2015060788A (ja) * 2013-09-20 2015-03-30 三菱自動車工業株式会社 二次電池
JP2015210848A (ja) * 2014-04-23 2015-11-24 オートモーティブエナジーサプライ株式会社 非水電解質二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042891A (ja) * 2000-07-27 2002-02-08 Toshiba Battery Co Ltd 薄型リチウム二次電池
JP2008251226A (ja) * 2007-03-29 2008-10-16 Sharp Corp 非水電解液二次電池およびその製造方法
JP2011222388A (ja) * 2010-04-13 2011-11-04 Sharp Corp 積層型二次電池
JP2013084387A (ja) * 2011-10-06 2013-05-09 Nissan Motor Co Ltd 電気デバイス
WO2013151144A1 (ja) * 2012-04-05 2013-10-10 日本ゼオン株式会社 二次電池用セパレータ
JP2015060788A (ja) * 2013-09-20 2015-03-30 三菱自動車工業株式会社 二次電池
JP2015210848A (ja) * 2014-04-23 2015-11-24 オートモーティブエナジーサプライ株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
CN107026281A (zh) 2017-08-08
CN107026281B (zh) 2020-06-05
JP6622072B2 (ja) 2019-12-18

Similar Documents

Publication Publication Date Title
JP6399380B2 (ja) 蓄電素子、蓄電システム、及びその製造方法
KR20120019459A (ko) 쌍극형 2차 전지
JP5541957B2 (ja) 積層型二次電池
WO2013146285A1 (ja) リチウムイオン二次電池
CN111095613B (zh) 电极、非水电解质电池及电池包
JP6479984B2 (ja) 非水電解質電池及び電池パック
WO2015159145A1 (en) Nonaqueous electrolyte secondary battery
JP7476936B2 (ja) フィルム外装電池、組電池および前記フィルム外装電池の製造方法
JP6622072B2 (ja) リチウムイオン二次電池
JP4887634B2 (ja) 電池およびその封止方法
JP6697323B2 (ja) リチウムイオン二次電池
KR102083712B1 (ko) 편평형 이차 전지
JP5509561B2 (ja) 非水電解質二次電池
JP2008293982A (ja) 非水電解質二次電池
JP7003775B2 (ja) リチウムイオン二次電池
JP2004087325A (ja) 非水電解質電池
WO2022070565A1 (ja) 二次電池
CN115440947A (zh) 层状阳极材料
JP6633419B2 (ja) リチウムイオン二次電池
JP6778396B2 (ja) 非水電解質二次電池
JP6595000B2 (ja) リチウムイオン二次電池の製造方法
JP4649698B2 (ja) 二次電池
CA3114636A1 (en) Lithium-ion secondary battery
JP6540476B2 (ja) 電極体を有する二次電池
JP2023034053A (ja) パウチ型非水電解質二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191121

R150 Certificate of patent or registration of utility model

Ref document number: 6622072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250