JP2017043752A - 導電性ポリマー用高分子化合物及びその製造方法 - Google Patents

導電性ポリマー用高分子化合物及びその製造方法 Download PDF

Info

Publication number
JP2017043752A
JP2017043752A JP2016011215A JP2016011215A JP2017043752A JP 2017043752 A JP2017043752 A JP 2017043752A JP 2016011215 A JP2016011215 A JP 2016011215A JP 2016011215 A JP2016011215 A JP 2016011215A JP 2017043752 A JP2017043752 A JP 2017043752A
Authority
JP
Japan
Prior art keywords
group
polymer
compound
repeating unit
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016011215A
Other languages
English (en)
Other versions
JP6450695B2 (ja
Inventor
畠山 潤
Jun Hatakeyama
畠山  潤
大橋 正樹
Masaki Ohashi
正樹 大橋
賢幸 長澤
Takayuki Nagasawa
賢幸 長澤
長谷川 幸士
Koji Hasegawa
幸士 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to US15/230,684 priority Critical patent/US10125202B2/en
Priority to KR1020160105913A priority patent/KR102020099B1/ko
Priority to TW105127094A priority patent/TWI677567B/zh
Publication of JP2017043752A publication Critical patent/JP2017043752A/ja
Application granted granted Critical
Publication of JP6450695B2 publication Critical patent/JP6450695B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • C08L33/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/026Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising acrylic acid, methacrylic acid or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups
    • C08F8/36Sulfonation; Sulfation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/50Aqueous dispersion, e.g. containing polymers with a glass transition temperature (Tg) above 20°C
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Abstract

【課題】有機溶剤に可溶で、燃料電池用や導電性材料用のドーパントとして好適に用いられる特定の超強酸のスルホ基を有する導電性ポリマー用高分子化合物の提供。【解決手段】式(1)の繰り返し単位aを1種以上含む導電性ポリマー用高分子化合物で、重量平均分子量が1,000〜500,000である導電性ポリマー用高分子化合物。(R1はH又はメチル基;R2は単結合、エステル基、或いはエーテル基、エステル基のいずれか又はこれらの両方を有していてもよいC1〜12の直鎖状、分岐状、環状の炭化水素基)【選択図】なし

Description

本発明は、導電性ポリマー用高分子化合物及びその製造方法に関する。
燃料電池や導電性高分子のドーパントポリマーとしてスルホ基含有ポリマーが用いられている。燃料電池用としては登録商標ナフィオンに代表されるビニルパーフルオロアルキルエーテルスルホン酸、導電性高分子用のドーパントポリマーとしては、ビニルスルホン酸やスチレンスルホン酸の重合体が広く用いられている(特許文献1)。
ビニルパーフルオロアルキルエーテルスルホン酸は化学的には安定性が高く耐久性に優れるがガラス転移点が低く、これを用いた燃料電池が高温にさらされるとポリマーが熱フローを起こしてイオン伝導性が低下してしまう問題がある。イオン伝導性を高めるには、α位がフッ素化されたスルホ基を有する超強酸ポリマーが有効であるが、これに伴ってガラス転移点が高く化学的にも安定な材料は見いだされていない。
また、ポリチオフェン、ポリアニリン、ポリピロール等の共役二重結合を有する導電性高分子は、これ自体は導電性を示さないがスルホン酸などの強酸をドーピングすることによって導電性が発現する。ドーパントとしてはポリスチレンスルホン酸(PSS)が最も良く用いられている。これは、PSSのドーピングによって導電率が最も高くなるためである。
PSSは水溶性樹脂であり、有機溶剤には殆ど溶解しない。従って、PSSをドーパントとしたポリチオフェンも水溶性である。
PSSをドーパントとしたポリチオフェンは高導電性かつ高透明であるためにITO(インジウム−スズ酸化物)に換わる有機EL照明用の導電膜として期待されている。しかしながら有機ELの発光体は、水分によって化学変化し発光しなくなる。つまり、水溶性樹脂の導電膜を有機ELに用いると、樹脂が水を含むために有機ELの発光寿命が短くなってしまうという問題がある。
特開2008−146913号公報
本発明は上記事情に鑑みなされたもので、有機溶剤に可溶であり、燃料電池用や導電性材料用のドーパントとして好適に用いられる特定の超強酸のスルホ基を有する導電性ポリマー用高分子化合物を提供することを目的とする。また、このような導電性ポリマー用高分子化合物の製造方法を提供することを目的とする。
上記課題を達成するために、本発明では、下記一般式(1)で示される繰り返し単位aを1種以上含む導電性ポリマー用高分子化合物であって、重量平均分子量が1,000〜500,000の範囲のものである導電性ポリマー用高分子化合物を提供する。
Figure 2017043752
(式中、Rは水素原子又はメチル基であり、Rは単結合、エステル基、あるいはエーテル基、エステル基のいずれか又はこれらの両方を有していてもよい炭素数1〜12の直鎖状、分岐状、環状の炭化水素基のいずれかである。Zは単結合、フェニレン基、ナフチレン基、エーテル基、エステル基のいずれかである。aは、0<a≦1.0である。)
このような導電性ポリマー用高分子化合物であれば、有機溶剤に可溶であり、燃料電池用や導電性材料用のドーパントとして好適に用いられる特定の超強酸のスルホ基を有する導電性ポリマー用高分子化合物となる。
このとき、前記導電性ポリマー用高分子化合物が、さらに下記一般式(2)で示される繰り返し単位bを有するものであることが好ましい。
Figure 2017043752
(式中、bは、0<b<1.0である。)
前記繰り返し単位aが、ポリスチレンスルホン酸の繰り返し単位bと共重合したものであれば、導電性が高いドーパントポリマーとして用いることができる。
またこのとき、前記一般式(1)で示される繰り返し単位aが、下記一般式(3−1)〜(3−4)で示される繰り返し単位a1〜a4から選ばれる1種以上を含むものであることが好ましい。
Figure 2017043752
(式中、Rは前記と同様である。a1、a2、a3、及びa4は、0≦a1≦1.0、0≦a2≦1.0、0≦a3≦1.0、0≦a4≦1.0、かつ0<a1+a2+a3+a4≦1.0である。)
このような繰り返し単位であれば、燃料電池用や導電性材料用のドーパントとしてさらに好適なものとなる。
さらに、本発明では下記一般式(1)で示される繰り返し単位aを含む導電性ポリマー用高分子化合物の製造方法であって、スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造を有するモノマーを用いて重合反応を行い、重合後、イオン交換によって、前記スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造をスルホ基に変換する導電性ポリマー用高分子化合物の製造方法を提供する。
Figure 2017043752
(式中、Rは水素原子又はメチル基であり、Rは単結合、エステル基、あるいはエーテル基、エステル基のいずれか又はこれらの両方を有していてもよい炭素数1〜12の直鎖状、分岐状、環状の炭化水素基のいずれかである。Zは単結合、フェニレン基、ナフチレン基、エーテル基、エステル基のいずれかである。aは、0<a≦1.0である。)
このような製造方法であれば、上記一般式(1)で示される繰り返し単位aを含む導電性ポリマー用高分子化合物を容易に製造することができる。
またこのとき、前記スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造を有するモノマーを用いて重合反応を行って得られる重合体が、下記一般式(4)で示される繰り返し単位を含むものであることが好ましい。
Figure 2017043752
(式中、R、R、Z、及びaは前記と同様であり、Xはリチウム、ナトリウム、カリウム、又は下記一般式(5)で示される窒素化合物である。)
Figure 2017043752
(式中、R101d、R101e、R101f、R101gは、それぞれ水素原子、もしくは炭素数1〜12の直鎖状、分岐状、又は環状のアルキル基、アルケニル基、オキソアルキル基、又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基によって置換されていてもよい。R101dとR101e、R101dとR101eとR101fとは環を形成してもよく、環を形成する場合には、R101dとR101e及びR101dとR101eとR101fは炭素数3〜10のアルキレン基、又は式中の窒素原子を環の中に有する複素芳香族環を示す。)
このような繰り返し単位であれば、イオン交換によって容易に上記一般式(1)で示される繰り返し単位aに変換される。
以上のように、本発明の導電性ポリマー用高分子化合物であれば、有機溶剤に可溶であり、燃料電池用や導電性材料用のドーパントとして好適に用いられる特定の超強酸のスルホ基を有する導電性ポリマー用高分子化合物となる。
この導電性ポリマー用高分子化合物を燃料電池に用いることによって、高誘電率な燃料電池用材料を形成することができる。また、共役二重結合ポリマー用のドーパントとして用いることによって、高透明、高導電性で耐久性の高い導電膜を形成することが可能になる。本発明の導電性ポリマー用高分子化合物は、β位にトリフルオロメチル基を有する超強酸のスルホン酸構造を有しているため、強いイオン結合によってドーパントとしての能力が高く、また、イオンとしての安定性の高いものとなる。そのため、これを導電性材料として用いた場合に高い導電性と安定性を示す。さらに、有機溶剤への溶解性に優れるため、有機EL照明用の導電膜に用いることで、有機EL素子の劣化を防止することができる。
また、本発明の製造方法であれば、このような本発明の導電性ポリマー用高分子化合物を容易に製造することができる。
上述のように、有機溶剤に可溶であり、燃料電池用や導電性材料用のドーパントとして好適に用いられる特定の超強酸のスルホ基を有する導電性ポリマー用高分子化合物の開発が求められていた。
本発明者らは、有機ELの素子の劣化を招く水を含有する水溶性の導電性ポリマーを、水分含有率が極めて少ない有機溶剤可溶型にして素子劣化を防止するために、水溶性で有機溶剤への溶解性に乏しいドーパントであるポリスチレンスルホン酸から、有機溶剤への溶解性が高いドーパント用のポリマーの開発を試みた。有機溶剤への溶解性を上げるには長鎖アルキル基やフッ素導入が効果的であることからフッ素の導入を検討し、特にβ位にトリフルオロメチル基を有するスルホ基を含む繰り返し単位からなる高分子化合物であれば上述の課題を達成できることを見出し、本発明を完成させた。
即ち、本発明は、下記一般式(1)で示される繰り返し単位aを1種以上含む導電性ポリマー用高分子化合物であって、重量平均分子量が1,000〜500,000の範囲のものである導電性ポリマー用高分子化合物である。
Figure 2017043752
(式中、Rは水素原子又はメチル基であり、Rは単結合、エステル基、あるいはエーテル基、エステル基のいずれか又はこれらの両方を有していてもよい炭素数1〜12の直鎖状、分岐状、環状の炭化水素基のいずれかである。Zは単結合、フェニレン基、ナフチレン基、エーテル基、エステル基のいずれかである。aは、0<a≦1.0である。)
以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
本発明の導電性ポリマー用高分子化合物は、下記一般式(1)で示される繰り返し単位aを1種以上含むポリマーである。本発明の導電性ポリマー用高分子化合物は、一般式(1)で示される繰り返し単位aを含有することで、特に透明性が高いものとなる。
Figure 2017043752
(式中、Rは水素原子又はメチル基であり、Rは単結合、エステル基、あるいはエーテル基、エステル基のいずれか又はこれらの両方を有していてもよい炭素数1〜12の直鎖状、分岐状、環状の炭化水素基のいずれかである。Zは単結合、フェニレン基、ナフチレン基、エーテル基、エステル基のいずれかである。aは、0<a≦1.0である。)
一般式(1)中、Rは水素原子又はメチル基である。
は単結合、エステル基、あるいはエーテル基、エステル基のいずれか又はこれらの両方を有していてもよい炭素数1〜12の直鎖状、分岐状、環状の炭化水素基のいずれかであり、炭化水素基としては、例えばアルキレン基、アリーレン基(例えば、フェニレン基、ナフチレン基など)、アルケニレン基等が挙げられる。
Zは単結合、フェニレン基、ナフチレン基、エーテル基、エステル基のいずれかである。
aは、0<a≦1.0である。
また、上記一般式(1)で示される繰り返し単位aが、下記一般式(3−1)〜(3−4)で示される繰り返し単位a1〜a4から選ばれる1種以上を含むものであることが好ましい。
Figure 2017043752
(式中、Rは前記と同様である。a1、a2、a3、及びa4は、0≦a1≦1.0、0≦a2≦1.0、0≦a3≦1.0、0≦a4≦1.0、かつ0<a1+a2+a3+a4≦1.0である。)
このような繰り返し単位であれば、燃料電池用や導電性材料用のドーパントとしてさらに好適なものとなる。
また、本発明の導電性ポリマー用高分子化合物は、さらに下記一般式(2)で示される繰り返し単位bを有するものであることが好ましい。前記繰り返し単位aが、ポリスチレンスルホン酸の繰り返し単位bと共重合したものであれば、導電性が高いドーパントポリマーとして用いることができる。
Figure 2017043752
(式中、bは、0<b<1.0である。)
また、後述のように、本発明の導電性ポリマー用高分子化合物は、繰り返し単位a、繰り返し単位b以外の繰り返し単位cを有していてもよい。
また、本発明の導電性ポリマー用高分子化合物は、重量平均分子量が1,000〜500,000、好ましくは2,000〜200,000の範囲のものである。重量平均分子量が1,000未満では、耐熱性に劣るものとなる。一方、重量平均分子量が500,000を超えると、粘度が上昇し、作業性が悪化し、有機溶剤や水への溶解性が低下する。
なお、重量平均分子量(Mw)は、溶剤として水、ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)を用いたゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算測定値である。
上述のような本発明の導電性ポリマー用高分子化合物であれば、有機溶剤に可溶であり、燃料電池用や導電性材料用のドーパントとして好適に用いられる特定の超強酸のスルホ基を有する導電性ポリマー用高分子化合物となる。
また、本発明ではこのような本発明の導電性ポリマー用高分子化合物を製造する方法を提供する。
即ち、本発明の製造方法は、下記一般式(1)で示される繰り返し単位aを含む導電性ポリマー用高分子化合物の製造方法であって、スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造を有するモノマーを用いて重合反応を行い、重合後、イオン交換によって、前記スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造をスルホ基に変換する導電性ポリマー用高分子化合物の製造方法である。
Figure 2017043752
(式中、Rは水素原子又はメチル基であり、Rは単結合、エステル基、あるいはエーテル基、エステル基のいずれか又はこれらの両方を有していてもよい炭素数1〜12の直鎖状、分岐状、環状の炭化水素基のいずれかである。Zは単結合、フェニレン基、ナフチレン基、エーテル基、エステル基のいずれかである。aは、0<a≦1.0である。)
ここで、スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造を有するモノマーを用いて重合反応を行って得られる重合体は、下記一般式(4)で示される繰り返し単位を含むものであることが好ましい。
Figure 2017043752
(式中、R、R、Z、aは前記と同様であり、Xはリチウム、ナトリウム、カリウム、又は下記一般式(5)で示される窒素化合物である。)
Figure 2017043752
(式中、R101d、R101e、R101f、R101gは、それぞれ水素原子、もしくは炭素数1〜12の直鎖状、分岐状、又は環状のアルキル基、アルケニル基、オキソアルキル基、又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基によって置換されていてもよい。R101dとR101e、R101dとR101eとR101fとは環を形成してもよく、環を形成する場合には、R101dとR101e及びR101dとR101eとR101fは炭素数3〜10のアルキレン基、又は式中の窒素原子を環の中に有する複素芳香族環を示す。)
このような繰り返し単位であれば、イオン交換によって容易に上記一般式(1)で示される繰り返し単位aに変換されるため、好ましい。
本発明の製造方法に用いられるスルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造を有し、繰り返し単位aを得るためのモノマーとしては、具体的には下記のものを例示することができる。
Figure 2017043752
Figure 2017043752
Figure 2017043752
(式中、Rは前記と同様であり、Xはリチウム、ナトリウム、カリウム、又は窒素化合物である。)
また、上述のように一般式(1)で示される繰り返し単位aとしては、上述の一般式(3−1)〜(3−4)で示される繰り返し単位a1〜a4から選ばれる1種以上を含むことが好ましい。即ち、上記例示したモノマーのうち、繰り返し単位a1〜a4を得るためのモノマーが特に好ましい。
また、上述のように、本発明の導電性ポリマー用高分子化合物としては、一般式(2)で示される繰り返し単位bを有するものが好ましく、このような繰り返し単位bを得るためのモノマーとしては、具体的には下記のものを例示することができる。
Figure 2017043752
(式中、Xは水素原子、リチウム、ナトリウム、カリウム、窒素化合物、又はスルホニウム化合物である。)
上記Xが窒素化合物の場合の例としては、下記一般式(5)で示される化合物を挙げることができる。
Figure 2017043752
(式中、R101d、R101e、R101f、R101gは、それぞれ水素原子、もしくは炭素数1〜12の直鎖状、分岐状、又は環状のアルキル基、アルケニル基、オキソアルキル基、又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基によって置換されていてもよい。R101dとR101e、R101dとR101eとR101fとは環を形成してもよく、環を形成する場合には、R101dとR101e及びR101dとR101eとR101fは炭素数3〜10のアルキレン基、又は式中の窒素原子を環の中に有する複素芳香族環を示す。)
また、上述のように、本発明の導電性ポリマー用高分子化合物は、繰り返し単位a、繰り返し単位b以外の繰り返し単位cを有していてもよく、この繰り返し単位cとしては、スチレン系、ビニルナフタレン系、ビニルシラン系、アセナフチレン、インデン、ベンゾフラン、ベンゾチオフェン、(メタ)アクリル、ビニルカルバゾールなどを挙げることができる。
繰り返し単位cを得るためのモノマーとしては、具体的には下記のものを例示することができる。
Figure 2017043752
Figure 2017043752
Figure 2017043752
Figure 2017043752
Figure 2017043752
Figure 2017043752
Figure 2017043752
本発明の導電性ポリマー用高分子化合物を合成する方法としては、例えば上述のモノマーのうち所望のモノマーを、溶剤中、ラジカル重合開始剤を加えて加熱重合を行うことで、共重合体の高分子化合物を得る方法が挙げられる。
重合時に使用する溶剤としては水、メタノール、エタノール、n−プロパノール、イソプロピルアルコール、メトキシエタノール、エトキシエタノール、n−ブタノール、エチレングリコール、プロピレングリコール、グリセリン、ジエチレングリコール、ジメチルスルホアミド、ジメチルアセトアミド、アセトン、ジメチルスルホキシド、N−メチルピロリドン、トルエン、ベンゼン、テトラヒドロフラン、ジエチルエーテル、ジオキサン、シクロヘキサン、シクロペンタン、メチルエチルケトン、γ−ブチロラクトン等を例示できる。
ラジカル重合開始剤としては、ジ−t−ブチルパーオキシド、ジクミルパーオキシド、t−ブチルクミルパーオキシド、ベンゾイルパーオキシド、ジラウリルパーオキシド、クメンハイドロパーオキシド、t−ブチルハイドロパーオキシド、t−ブチルパーオキシイソブチレート、過硫酸カリウム、過硫酸アンモニウム、過酸化水素水、2,2’−アゾビスイソブチロニトリル(AIBN)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル2,2−アゾビス(2−メチルプロピオネート)、ラウロイルパーオキシド、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、又は4,4’−アゾビス(4−シアノ吉草酸)のアルカリ金属塩又はアンモニウム塩等を例示できる。
反応温度は、好ましくは50〜80℃であり、反応時間は好ましくは2〜100時間、より好ましくは5〜20時間である。
本発明の導電性ポリマー用高分子化合物において、一般式(1)で示される繰り返し単位aとなるモノマーは1種類でも2種類以上の組み合わせでもよいが、重合性を高めるにはメタクリルタイプとスチレンタイプのモノマーを組み合わせることが好ましい。
また、繰り返し単位aを形成する2種類以上のモノマーがランダムに共重合されていても、それぞれがブロックで共重合されていてもよい。ブロック共重合ポリマー(ブロックコポリマー)を導電膜とした場合は、2種類以上の繰り返し単位aからなる繰り返し単位部分同士が凝集して海島構造を形成することによって導電性が向上するメリットが期待される。
また、繰り返し単位a〜cを得るためのモノマーがランダムに共重合されていても、それぞれがブロックで共重合されていてもよい。この場合も、上述の繰り返し単位aの場合と同様、ブロックコポリマーとすることで導電率が向上するメリットが期待される。
ラジカル重合でランダム共重合を行う場合は、共重合を行うモノマーやラジカル重合開始剤を混合して加熱によって重合を行う方法が一般的である。第1のモノマーとラジカル重合開始剤存在下で重合を開始し、後に第2のモノマーを添加した場合は、ポリマー分子の片側が第1のモノマーが重合した構造で、もう一方が第2のモノマーが重合した構造となる。しかしながらこの場合、中間部分には第1と第2のモノマーの繰り返し単位が混在しており、ブロックコポリマーとは形態が異なる。ラジカル重合でブロックコポリマーを形成するには、リビングラジカル重合が好ましく用いられる。
RAFT重合(Reversible Addition Fragmentation chain Transfer polymerization)と呼ばれるリビングラジカルの重合方法は、ポリマー末端のラジカルが常に生きているので、第1のモノマーで重合を開始し、これらが消費された段階で第2のモノマーを添加することによって第1と第2の繰り返し単位によるブロックコポリマーを形成することが可能である。また、第1のモノマーで重合を開始し、これが消費された時点で第2のモノマーを添加し、次いで第3のモノマーを添加した場合はトリブロックコポリマーを形成することもできる。
RAFT重合を行った場合は分子量分布(分散度)が狭い狭分散ポリマーが形成される特徴があり、特にモノマーを一度に添加してRAFT重合を行った場合は、より分子量分布が狭いポリマーを形成することができる。
なお、本発明の導電性ポリマー用高分子化合物においては、分子量分布(Mw/Mn)は1.0〜2.0であることが好ましく、特に1.0〜1.5と狭分散であることが好ましい。狭分散であれば、高分子化合物を用いて合成した導電性ポリマーの導電率が不均一になるのを防ぐことができる。
RAFT重合を行うには連鎖移動剤が必要であり、具体的には2−シアノ−2−プロピルベンゾチオエート、4−シアノ−4−フェニルカルボノチオイルチオペンタン酸、2−シアノ−2−プロピルドデシルトリチオカルボネート、4−シアノ−4−[(ドデシルスルファニルチオカルボニル)スルファニル]ペンタン酸、2−(ドデシルチオカルボノチオイルチオ)−2−メチルプロパン酸、シアノメチルドデシルチオカルボネート、シアノメチルメチル(フェニル)カルバモチオエート、ビス(チオベンゾイル)ジスルフィド、ビス(ドデシルスルファニルチオカルボニル)ジスルフィドを挙げることができる。これらの中では、特に2−シアノ−2−プロピルベンゾチオエートが好ましい。
ここで、繰り返し単位a〜cの割合は、0<a≦1.0、0≦b<1.0、0≦c<1.0であり、好ましくは0.1≦a≦0.9、0.1≦b≦0.9、0≦c≦0.8であり、より好ましくは0.2≦a≦0.8、0.2≦b≦0.8、0≦c≦0.5である。
なお、a+b+c=1であることが好ましい。
また、繰り返し単位aが上述のように繰り返し単位a1〜a4から選ばれる1種以上を含むものである場合、0≦a1≦1.0、0≦a2≦1.0、0≦a3≦1.0、0≦a4≦1.0、かつ0<a1+a2+a3+a4≦1.0であることが好ましく、より好ましくは0≦a1≦0.9、0≦a2≦0.9、0≦a3≦0.9、0≦a4≦0.9、かつ0.1≦a1+a2+a3+a4≦0.9であり、さらに好ましくは0≦a1≦0.8、0≦a2≦0.8、0≦a3≦0.8、0≦a4≦0.8、かつ0.2≦a1+a2+a3+a4≦0.8である。
本発明の導電性ポリマー用高分子化合物の製造方法では、上述のようにしてモノマーを重合させた後、イオン交換によって、スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造をスルホ基に変換する。
このとき、イオン交換は、例えばイオン交換樹脂を用いて行えばよい。
上述のような方法で、上記一般式(1)で示される繰り返し単位aを含む導電性ポリマー用高分子化合物を容易に製造することができる。
以上のように、本発明の導電性ポリマー用高分子化合物であれば、有機溶剤に可溶であり、燃料電池用や導電性材料用のドーパントとして好適に用いられる特定の超強酸のスルホ基を有する導電性ポリマー用高分子化合物となる。
この導電性ポリマー用高分子化合物を燃料電池に用いることによって、高誘電率な燃料電池用材料を形成することができる。また、共役二重結合ポリマー用のドーパントとして用いることによって、高透明、高導電性で耐久性の高い導電膜を形成することが可能になる。本発明の導電性ポリマー用高分子化合物は、β位にトリフルオロメチル基を有する超強酸のスルホン酸構造を有しているため、強いイオン結合によってドーパントとしての能力が高く、また、イオンとしての安定性の高いものとなる。そのため、これを導電性材料として用いた場合に高い導電性と安定性を示す。さらに、有機溶剤への溶解性に優れるため、有機EL照明用の導電膜に用いることで、有機EL素子の劣化を防止することができる。
また、本発明の製造方法であれば、このような本発明の導電性ポリマー用高分子化合物を容易に製造することができる。
以下、実施例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
以下に実施例の合成で用いたモノマーを示す。
Figure 2017043752
モノマー1:
ベンジルトリメチルアンモニウム=3,3,3−トリフルオロ−2−メタクリロイルオキシ−2−トリフルオロメチルプロパン−1−スルホネート
モノマー2:
ベンジルトリメチルアンモニウム=3,3,3−トリフルオロ−2−(3−メタクリロイルオキシ−1−アダマンタンカルボニルオキシ)−2−トリフルオロメチルプロパン−1−スルホネート
モノマー3:
ベンジルトリメチルアンモニウム=3,3,3−トリフルオロ−2−トリフルオロメチル−2−(4−ビニルベンゾイルオキシ)プロパン−1−スルホネート
モノマー4:
テトラブチルアンモニウム=3,3,3−トリフルオロ−2−(4−メタクリロイルオキシ−1−ベンゾイルオキシ)−2−トリフルオロメチルプロパン−1−スルホネート
[実施例1]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー1の48.1gと2,2’−アゾビス(イソ酪酸)ジメチル5.13gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体26.2gを得た。
得られた白色重合体を純水912gに溶解し、イオン交換樹脂を用いてアンモニウム塩をスルホ基に変換した。得られた重合体を19F−NMR、H−NMR、及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=42,000
分子量分布(Mw/Mn)=1.61
この高分子化合物を(ポリマー1)とする。
Figure 2017043752
[実施例2]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー1の24.0gとスチレンスルホン酸リチウム9.5gと2,2’−アゾビス(イソ酪酸)ジメチル5.13gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して白色重合体41.5gを得た。
得られた白色重合体を純水912gに溶解し、イオン交換樹脂を用いてアンモニウム塩とリチウム塩をスルホ基に変換した。得られた重合体を19F−NMR、H−NMR、及びGPC測定したところ、以下の分析結果となった。
共重合組成比(モル比) モノマー1:スチレンスルホン酸=1:1
重量平均分子量(Mw)=46,000
分子量分布(Mw/Mn)=1.76
この高分子化合物を(ポリマー2)とする。
Figure 2017043752
[実施例3]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー2の32.8gとスチレンスルホン酸リチウム9.5gと2,2’−アゾビス(イソ酪酸)ジメチル5.13gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して白色重合体46.2gを得た。
得られた白色重合体を純水912gに溶解し、イオン交換樹脂を用いてアンモニウム塩とリチウム塩をスルホ基に変換した。得られた重合体を19F−NMR、H−NMR、及びGPC測定したところ、以下の分析結果となった。
共重合組成比(モル比) モノマー2:スチレンスルホン酸=1:1
重量平均分子量(Mw)=46,000
分子量分布(Mw/Mn)=1.52
この高分子化合物を(ポリマー3)とする。
Figure 2017043752
[実施例4]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー3の27.0gとスチレンスルホン酸リチウム9.5gと2,2’−アゾビス(イソ酪酸)ジメチル2.82gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して白色重合体47.3gを得た。
得られた白色重合体をメタノール421gに溶解し、イオン交換樹脂を用いてアンモニウム塩とリチウム塩をスルホ基に変換した。得られた重合体を19F−NMR、H−NMR、及びGPC測定したところ、以下の分析結果となった。
共重合組成比(モル比) モノマー3:スチレンスルホン酸=1:1
重量平均分子量(Mw)=55,000
分子量分布(Mw/Mn)=1.81
この高分子化合物を(ポリマー4)とする。
Figure 2017043752
[実施例5]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー4の34.6gとスチレンスルホン酸リチウム9.5gと2,2’−アゾビス(イソ酪酸)ジメチル2.82gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して白色重合体50.2gを得た。
得られた白色重合体をメタノール421gに溶解し、イオン交換樹脂を用いてアンモニウム塩とリチウム塩をスルホ基に変換した。得られた重合体を19F−NMR、H−NMR、及びGPC測定したところ、以下の分析結果となった。
共重合組成比(モル比) モノマー4:スチレンスルホン酸=1:1
重量平均分子量(Mw)=56,000
分子量分布(Mw/Mn)=1.68
この高分子化合物を(ポリマー5)とする。
Figure 2017043752
[実施例6]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー2の52.5gと4−(1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール)スチレン7.0gと2,2’−アゾビス(イソ酪酸)ジメチル5.13gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して白色重合体43.2gを得た。
得られた白色重合体を純水912gに溶解し、イオン交換樹脂を用いてアンモニウム塩をスルホ基に変換した。得られた重合体を19F−NMR、H−NMR、及びGPC測定したところ、以下の分析結果となった。
共重合組成比(モル比) モノマー2:4−(1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール)スチレン=4:1
重量平均分子量(Mw)=41,000
分子量分布(Mw/Mn)=1.64
この高分子化合物を(ポリマー6)とする。
Figure 2017043752
[実施例7]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー2の52.5gとメタクリル酸−ビス3,5−(2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)シクロヘキシル13.1gと2,2’−アゾビス(イソ酪酸)ジメチル5.13gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して白色重合体61.2gを得た。
得られた白色重合体を純水912gに溶解し、イオン交換樹脂を用いてアンモニウム塩をスルホ基に変換した。得られた重合体を19F−NMR、H−NMR、及びGPC測定したところ、以下の分析結果となった。
共重合組成比(モル比) モノマー2:メタクリル酸−ビス3,5−(2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)シクロヘキシル=4:1
重量平均分子量(Mw)=23,000
分子量分布(Mw/Mn)=1.61
この高分子化合物を(ポリマー7)とする。
Figure 2017043752
上述のようにして合成したポリマー1〜7は、水、メタノール、エタノール、イソプロピルアルコール、プロピレングリコールモノメチルエーテル、テトラヒドロフラン、ジメチルホルムアミドに可溶であった。
このように本発明の製造方法であれば、有機溶剤に可溶であり、特定の超強酸のスルホ基を有する本発明の導電性ポリマー用高分子化合物を容易に製造することができる。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1. 下記一般式(1)で示される繰り返し単位aを1種以上含む導電性ポリマー用高分子化合物であって、重量平均分子量が1,000〜500,000の範囲のものであることを特徴とする導電性ポリマー用高分子化合物。
    Figure 2017043752
    (式中、Rは水素原子又はメチル基であり、Rは単結合、エステル基、あるいはエーテル基、エステル基のいずれか又はこれらの両方を有していてもよい炭素数1〜12の直鎖状、分岐状、環状の炭化水素基のいずれかである。Zは単結合、フェニレン基、ナフチレン基、エーテル基、エステル基のいずれかである。aは、0<a≦1.0である。)
  2. 前記導電性ポリマー用高分子化合物が、さらに下記一般式(2)で示される繰り返し単位bを有するものであることを特徴とする請求項1に記載の導電性ポリマー用高分子化合物。
    Figure 2017043752
    (式中、bは、0<b<1.0である。)
  3. 前記一般式(1)で示される繰り返し単位aが、下記一般式(3−1)〜(3−4)で示される繰り返し単位a1〜a4から選ばれる1種以上を含むものであることを特徴とする請求項1又は請求項2に記載の導電性ポリマー用高分子化合物。
    Figure 2017043752
    (式中、Rは前記と同様である。a1、a2、a3、及びa4は、0≦a1≦1.0、0≦a2≦1.0、0≦a3≦1.0、0≦a4≦1.0、かつ0<a1+a2+a3+a4≦1.0である。)
  4. 下記一般式(1)で示される繰り返し単位aを含む導電性ポリマー用高分子化合物の製造方法であって、
    スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造を有するモノマーを用いて重合反応を行い、重合後、イオン交換によって、前記スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造をスルホ基に変換することを特徴とする導電性ポリマー用高分子化合物の製造方法。
    Figure 2017043752
    (式中、Rは水素原子又はメチル基であり、Rは単結合、エステル基、あるいはエーテル基、エステル基のいずれか又はこれらの両方を有していてもよい炭素数1〜12の直鎖状、分岐状、環状の炭化水素基のいずれかである。Zは単結合、フェニレン基、ナフチレン基、エーテル基、エステル基のいずれかである。aは、0<a≦1.0である。)
  5. 前記スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造を有するモノマーを用いて重合反応を行って得られる重合体が、下記一般式(4)で示される繰り返し単位を含むものであることを特徴とする請求項4に記載の導電性ポリマー用高分子化合物の製造方法。
    Figure 2017043752
    (式中、R、R、Z、及びaは前記と同様であり、Xはリチウム、ナトリウム、カリウム、又は下記一般式(5)で示される窒素化合物である。)
    Figure 2017043752
    (式中、R101d、R101e、R101f、R101gは、それぞれ水素原子、もしくは炭素数1〜12の直鎖状、分岐状、又は環状のアルキル基、アルケニル基、オキソアルキル基、又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基によって置換されていてもよい。R101dとR101e、R101dとR101eとR101fとは環を形成してもよく、環を形成する場合には、R101dとR101e及びR101dとR101eとR101fは炭素数3〜10のアルキレン基、又は式中の窒素原子を環の中に有する複素芳香族環を示す。)
JP2016011215A 2015-08-25 2016-01-25 導電性ポリマー用高分子化合物及びその製造方法 Active JP6450695B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/230,684 US10125202B2 (en) 2015-08-25 2016-08-08 Polymer compound for a conductive polymer and method for producing same
KR1020160105913A KR102020099B1 (ko) 2015-08-25 2016-08-22 도전성 중합체용 고분자 화합물 및 그의 제조 방법
TW105127094A TWI677567B (zh) 2015-08-25 2016-08-24 導電性聚合物用高分子化合物及其製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015165938 2015-08-25
JP2015165938 2015-08-25

Publications (2)

Publication Number Publication Date
JP2017043752A true JP2017043752A (ja) 2017-03-02
JP6450695B2 JP6450695B2 (ja) 2019-01-09

Family

ID=58212056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016011215A Active JP6450695B2 (ja) 2015-08-25 2016-01-25 導電性ポリマー用高分子化合物及びその製造方法

Country Status (3)

Country Link
JP (1) JP6450695B2 (ja)
KR (1) KR102020099B1 (ja)
TW (1) TWI677567B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111499500A (zh) * 2019-01-31 2020-08-07 信越化学工业株式会社 聚合性单体、导电聚合物用高分子化合物及其制备方法
JP2022000505A (ja) * 2017-12-07 2022-01-04 信越化学工業株式会社 導電性高分子組成物、被覆品、及びパターン形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216133A (ja) * 1988-05-06 1990-01-19 Dow Chem Co:The フルオロアルキルスルホン酸塩を含む有機組成物
JP2011213823A (ja) * 2010-03-31 2011-10-27 Tosoh Corp 分子量分布の狭いポリスチレンスルホン酸類又はその塩の製造方法
JP2015134905A (ja) * 2013-12-20 2015-07-27 信越化学工業株式会社 導電性ポリマー用高分子化合物及びその製造方法
JP2015143335A (ja) * 2013-12-25 2015-08-06 信越化学工業株式会社 高分子化合物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008146913A (ja) 2006-12-07 2008-06-26 Shin Etsu Polymer Co Ltd 導電性高分子溶液及び導電性塗膜
JP5368270B2 (ja) * 2009-02-19 2013-12-18 信越化学工業株式会社 新規スルホン酸塩及びその誘導体、光酸発生剤並びにこれを用いたレジスト材料及びパターン形成方法
JP6037689B2 (ja) * 2012-07-10 2016-12-07 東京応化工業株式会社 アンモニウム塩化合物の製造方法、及び酸発生剤の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216133A (ja) * 1988-05-06 1990-01-19 Dow Chem Co:The フルオロアルキルスルホン酸塩を含む有機組成物
JP2011213823A (ja) * 2010-03-31 2011-10-27 Tosoh Corp 分子量分布の狭いポリスチレンスルホン酸類又はその塩の製造方法
JP2015134905A (ja) * 2013-12-20 2015-07-27 信越化学工業株式会社 導電性ポリマー用高分子化合物及びその製造方法
JP2015143335A (ja) * 2013-12-25 2015-08-06 信越化学工業株式会社 高分子化合物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022000505A (ja) * 2017-12-07 2022-01-04 信越化学工業株式会社 導電性高分子組成物、被覆品、及びパターン形成方法
JP7143494B2 (ja) 2017-12-07 2022-09-28 信越化学工業株式会社 導電性高分子組成物、被覆品、及びパターン形成方法
CN111499500A (zh) * 2019-01-31 2020-08-07 信越化学工业株式会社 聚合性单体、导电聚合物用高分子化合物及其制备方法
JP2020125458A (ja) * 2019-01-31 2020-08-20 信越化学工業株式会社 重合性モノマー、導電性ポリマー用高分子化合物及びその製造方法
JP7229149B2 (ja) 2019-01-31 2023-02-27 信越化学工業株式会社 導電性ポリマー用高分子化合物及びその製造方法
CN111499500B (zh) * 2019-01-31 2024-04-23 信越化学工业株式会社 聚合性单体、导电聚合物用高分子化合物及其制备方法

Also Published As

Publication number Publication date
TW201726878A (zh) 2017-08-01
JP6450695B2 (ja) 2019-01-09
KR20170024548A (ko) 2017-03-07
TWI677567B (zh) 2019-11-21
KR102020099B1 (ko) 2019-09-09

Similar Documents

Publication Publication Date Title
JP6209157B2 (ja) 高分子化合物
JP6225100B2 (ja) 導電性ポリマー用高分子化合物の製造方法
JP6765988B2 (ja) 導電性ポリマー用高分子化合物及びその製造方法
JP6366550B2 (ja) 導電性ポリマー用高分子化合物及びその製造方法
JP6195811B2 (ja) 導電性ポリマー用高分子化合物の製造方法
JP6450695B2 (ja) 導電性ポリマー用高分子化合物及びその製造方法
JP6271378B2 (ja) 導電性ポリマー用高分子化合物及びその製造方法
JP6209136B2 (ja) 導電性ポリマー用高分子化合物及びその製造方法
KR101864919B1 (ko) 도전성 중합체용 고분자 화합물 및 그의 제조 방법
KR101856812B1 (ko) 고분자 화합물

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181210

R150 Certificate of patent or registration of utility model

Ref document number: 6450695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150