JP2015134905A - 導電性ポリマー用高分子化合物及びその製造方法 - Google Patents

導電性ポリマー用高分子化合物及びその製造方法 Download PDF

Info

Publication number
JP2015134905A
JP2015134905A JP2014238512A JP2014238512A JP2015134905A JP 2015134905 A JP2015134905 A JP 2015134905A JP 2014238512 A JP2014238512 A JP 2014238512A JP 2014238512 A JP2014238512 A JP 2014238512A JP 2015134905 A JP2015134905 A JP 2015134905A
Authority
JP
Japan
Prior art keywords
group
polymer
salt
compound
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014238512A
Other languages
English (en)
Other versions
JP6225100B2 (ja
Inventor
畠山 潤
Jun Hatakeyama
畠山  潤
長谷川 幸士
Koji Hasegawa
幸士 長谷川
賢幸 長澤
Takayuki Nagasawa
賢幸 長澤
正義 提箸
Masayoshi Sagehashi
正義 提箸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2014238512A priority Critical patent/JP6225100B2/ja
Priority to KR1020140182023A priority patent/KR101864919B1/ko
Priority to TW103144514A priority patent/TWI617584B/zh
Publication of JP2015134905A publication Critical patent/JP2015134905A/ja
Application granted granted Critical
Publication of JP6225100B2 publication Critical patent/JP6225100B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F112/16Halogens
    • C08F112/20Fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F112/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/16Halogens
    • C08F12/20Fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/382Esters containing sulfur and containing oxygen, e.g. 2-sulfoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】有機溶剤に可溶で、燃料電池用や導電性材料用のドーパントとして好適に用いられる特定の超強酸のスルホ基を有する導電性ポリマー用高分子化合物の提供。
【解決手段】式(1)で示される繰り返し単位を1種以上含む導電性ポリマー用高分子化合物であって、スルホン酸残基のリチウム塩、ナトリウム塩、カリウム塩、又は窒素化合物塩のイオン交換によって合成されたものであり、重量平均分子量が1,000〜500,000の範囲のものである導電性ポリマー用高分子化合物。
Figure 2015134905

(RはH又はメチル基;Rは単結合、エステル基、又はエーテル基、エステル基の片方或いは両方を有していてもよいC1〜12の直鎖状、分岐状或いは環状の炭化水素基;Zはフェニレン基、ナフチレン基又はエステル基)
【選択図】なし

Description

本発明は、導電性ポリマー用高分子化合物及びその製造方法に関する。
燃料電池や導電性高分子のドーパントポリマーとしてスルホ基含有ポリマーが用いられている。燃料電池用としては登録商標ナフィオンに代表されるビニルパーフルオロアルキルエーテルスルホン酸、導電性高分子用のドーパントポリマーとしては、ビニルスルホン酸やスチレンスルホン酸の重合体が広く用いられている(特許文献1)。
ビニルパーフルオロアルキルエーテルスルホン酸は化学的には安定性が高く耐久性に優れるがガラス転移点が低く、これを用いた燃料電池が高温にさらされるとポリマーが熱フローを起こしてイオン伝導性が低下してしまう問題がある。イオン伝導性を高めるには、α位がフッ素化されたスルホ基を有する超強酸ポリマーが有効であるが、これに伴ってガラス転移点が高く化学的にも安定な材料は見いだされていない。
また、ポリチオフェン、ポリアニリン、ポリピロール等の共役二重結合を有する導電性高分子は、これ自体は導電性を示さないがスルホン酸などの強酸をドーピングすることによって導電性が発現する。ドーパントとしてはポリスチレンスルホン酸(PSS)が最も良く用いられている。これは、PSSのドーピングによって導電率が最も高くなるためである。
PSSは水溶性樹脂であり、有機溶剤には殆ど溶解しない。従って、PSSをドーパントとしたポリチオフェンも水溶性である。
PSSをドーパントとしたポリチオフェンは高導電性かつ高透明であるためにITO(インジウム−スズ酸化物)に換わる有機EL照明用の導電膜として期待されている。しかしながら有機ELの発光体は、水分によって化学変化し発光しなくなる。つまり、水溶性樹脂の導電膜を有機ELに用いると、樹脂が水を含むために有機ELの発光寿命が短くなってしまうという問題がある。
特開2008−146913号公報
本発明は上記事情に鑑みなされたもので、有機溶剤に可溶であり、燃料電池用や導電性材料用のドーパントとして好適に用いられる特定の超強酸のスルホ基を有する導電性ポリマー用高分子化合物を提供することを目的とする。また、このような導電性ポリマー用高分子化合物の製造方法を提供することを目的とする。
上記課題を解決するために、本発明では、下記一般式(1)で示される繰り返し単位を1種以上含む導電性ポリマー用高分子化合物であって、
スルホン酸残基のリチウム塩、ナトリウム塩、カリウム塩、又は窒素化合物塩のイオン交換によって合成されたものであり、重量平均分子量が1,000〜500,000の範囲のものである導電性ポリマー用高分子化合物を提供する。
Figure 2015134905
(式中、Rは水素原子又はメチル基であり、Rは単結合、エステル基、あるいはエーテル基、エステル基のいずれか又はこれらの両方を有していてもよい炭素数1〜12の直鎖状、分岐状、環状の炭化水素基のいずれかであり、Zはフェニレン基、ナフチレン基、エステル基のいずれかである。)
このような導電性ポリマー用高分子化合物であれば、有機溶剤に可溶であり、燃料電池用や導電性材料用のドーパントとして好適に用いられる特定の超強酸のスルホ基を有する導電性ポリマー用高分子化合物となる。
またこのとき、前記一般式(1)で示される繰り返し単位が、下記一般式(2−1)〜(2−4)で示される繰り返し単位から選ばれるものであることが好ましい。
Figure 2015134905
(式中、Rは前記と同様である。)
このような繰り返し単位であれば、燃料電池用や導電性材料用のドーパントとしてさらに好適なものとなる。
またこのとき、前記スルホン酸残基のリチウム塩、ナトリウム塩、カリウム塩、又は窒素化合物塩は、下記一般式(3)で示される繰り返し単位からなるものであることが好ましい。
Figure 2015134905
(式中、R、R、Zは前記と同様であり、Xはリチウム、ナトリウム、カリウム、又は下記一般式(4)で示される窒素化合物である。)
Figure 2015134905
(式中、R101d、R101e、R101f、R101gは、それぞれ水素原子、もしくは炭素数1〜12の直鎖状、分岐状、又は環状のアルキル基、アルケニル基、オキソアルキル基、又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。R101dとR101e、R101dとR101eとR101fとは環を形成してもよく、環を形成する場合には、R101dとR101e及びR101dとR101eとR101fは炭素数3〜10のアルキレン基、又は式中の窒素原子を環の中に有する複素芳香族環を示す。)
このような繰り返し単位であれば、イオン交換によって容易に上記一般式(1)で示される繰り返し単位に変換される。
さらに、本発明では下記一般式(1)で示される繰り返し単位を含む導電性ポリマー用高分子化合物の製造方法であって、
スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造を有するモノマーを用いて重合反応を行い、重合後、イオン交換によって、前記スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造をスルホ基に変換する導電性ポリマー用高分子化合物の製造方法を提供する。
Figure 2015134905
(式中、Rは水素原子又はメチル基であり、Rは単結合、エステル基、あるいはエーテル基、エステル基のいずれか又はこれらの両方を有していてもよい炭素数1〜12の直鎖状、分岐状、環状の炭化水素基のいずれかであり、Zはフェニレン基、ナフチレン基、エステル基のいずれかである。)
このような製造方法であれば、上記一般式(1)で示される繰り返し単位を含む導電性ポリマー用高分子化合物を容易に製造することができる。
以上のように、本発明の導電性ポリマー用高分子化合物であれば、有機溶剤に可溶であり、燃料電池用や導電性材料用のドーパントとして好適に用いられる特定の超強酸のスルホ基を有する導電性ポリマー用高分子化合物となる。
この導電性ポリマー用高分子化合物を燃料電池に用いることによって、高誘電率な燃料電池用材料を形成することができる。また、共役二重結合ポリマー用のドーパントとして用いることによって、高透明、高導電性で耐久性の高い導電膜を形成することが可能になる。さらに、有機溶剤への溶解性に優れるため、有機EL照明用の導電膜に用いることで、有機EL素子の劣化を防止することができる。
また、本発明の製造方法であれば、このような本発明の導電性ポリマー用高分子化合物を容易に製造することができる。
上述のように、有機溶剤に可溶であり、燃料電池用や導電性材料用のドーパントとして好適に用いられる特定の超強酸のスルホ基を有する導電性ポリマー用高分子化合物の開発が求められていた。
本発明者らは、有機ELの素子の劣化を招く水を含有する水溶性の導電性ポリマーを、水分含有率が極めて少ない有機溶剤可溶型にして素子劣化を防止するために、水溶性で有機溶剤への溶解性に乏しいドーパントであるポリスチレンスルホン酸から、有機溶剤への溶解性が高いドーパント用のポリマーの開発を試みた。有機溶剤への溶解性を上げるには長鎖アルキル基やフッ素導入が効果的であることからフッ素の導入を検討し、特にα位がフッ素化されたスルホ基を有する繰り返し単位からなる高分子化合物であれば上述の課題を達成できることを見出し、本発明を完成させた。
即ち、本発明は、下記一般式(1)で示される繰り返し単位を1種以上含む導電性ポリマー用高分子化合物であって、
スルホン酸残基のリチウム塩、ナトリウム塩、カリウム塩、又は窒素化合物塩のイオン交換によって合成されたものであり、重量平均分子量が1,000〜500,000の範囲のものである導電性ポリマー用高分子化合物である。
Figure 2015134905
(式中、Rは水素原子又はメチル基であり、Rは単結合、エステル基、あるいはエーテル基、エステル基のいずれか又はこれらの両方を有していてもよい炭素数1〜12の直鎖状、分岐状、環状の炭化水素基のいずれかであり、Zはフェニレン基、ナフチレン基、エステル基のいずれかである。)
以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
本発明の導電性ポリマー用高分子化合物は、上記一般式(1)で示される繰り返し単位を1種以上含むポリマーである。一般式(1)で示される繰り返し単位のみからなるホモポリマーであることで、特に透明性が高いものとなる。
一般式(1)中、Rは水素原子又はメチル基である。
は単結合、エステル基、あるいはエーテル基、エステル基のいずれか又はこれらの両方を有していてもよい炭素数1〜12の直鎖状、分岐状、環状の炭化水素基のいずれかであり、炭化水素基としては、例えばアルキレン基、アリーレン基、アルケニレン基等が挙げられる。
Zはフェニレン基、ナフチレン基、エステル基のいずれかである。
またこのとき、上記一般式(1)で示される繰り返し単位が、下記一般式(2−1)〜(2−4)で示される繰り返し単位から選ばれるものであることが好ましい。
Figure 2015134905
(式中、Rは前記と同様である。)
このような繰り返し単位であれば、燃料電池用や導電性材料用のドーパントとしてさらに好適なものとなる。
また、本発明の導電性ポリマー用高分子化合物はスルホン酸残基のリチウム塩、ナトリウム塩、カリウム塩、又は窒素化合物塩のイオン交換によって合成されたものである。
このスルホン酸残基のリチウム塩、ナトリウム塩、カリウム塩、又は窒素化合物塩は、下記一般式(3)で示される繰り返し単位からなるものであることが好ましい。
Figure 2015134905
(式中、R、R、Zは前記と同様であり、Xはリチウム、ナトリウム、カリウム、又は下記一般式(4)で示される窒素化合物である。)
Figure 2015134905
(式中、R101d、R101e、R101f、R101gは、それぞれ水素原子、もしくは炭素数1〜12の直鎖状、分岐状、又は環状のアルキル基、アルケニル基、オキソアルキル基、又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。R101dとR101e、R101dとR101eとR101fとは環を形成してもよく、環を形成する場合には、R101dとR101e及びR101dとR101eとR101fは炭素数3〜10のアルキレン基、又は式中の窒素原子を環の中に有する複素芳香族環を示す。)
このような繰り返し単位であれば、イオン交換によって容易に上記一般式(1)で示される繰り返し単位に変換されるため、好ましい。
また、本発明の導電性ポリマー用高分子化合物は、重量平均分子量が1,000〜500,000、好ましくは2,000〜200,000の範囲のものである。重量平均分子量が1,000未満では、耐熱性に劣るものとなる。一方、重量平均分子量が500,000を超えると、粘度が上昇し、作業性が悪化し、有機溶剤や水への溶解性が低下する。
なお、重量平均分子量(Mw)は、溶剤として水、ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)を用いたゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算測定値である。
上述のような本発明の導電性ポリマー用高分子化合物であれば、有機溶剤に可溶であり、燃料電池用や導電性材料用のドーパントとして好適に用いられる特定の超強酸のスルホ基を有する導電性ポリマー用高分子化合物となる。
また、本発明ではこのような本発明の導電性ポリマー用高分子化合物を製造する方法を提供する。
即ち、本発明の製造方法は、下記一般式(1)で示される繰り返し単位を含む導電性ポリマー用高分子化合物の製造方法であって、
スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造を有するモノマーを用いて重合反応を行い、重合後、イオン交換によって、前記スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造をスルホ基に変換する導電性ポリマー用高分子化合物の製造方法である。
Figure 2015134905
(式中、Rは水素原子又はメチル基であり、Rは単結合、エステル基、あるいはエーテル基、エステル基のいずれか又はこれらの両方を有していてもよい炭素数1〜12の直鎖状、分岐状、環状の炭化水素基のいずれかであり、Zはフェニレン基、ナフチレン基、エステル基のいずれかである。)
本発明の製造方法に用いられるスルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造を有するモノマーとしては、具体的には下記のものを例示することができる。
Figure 2015134905
Figure 2015134905
Figure 2015134905
(式中、Rは前記と同様であり、Xはリチウム、ナトリウム、カリウム、又は窒素化合物である。)
Xが窒素化合物の場合、上述の一般式(4)で示される窒素化合物であることが好ましい。
本発明の導電性ポリマー用高分子化合物を合成する方法としては、例えば上述のモノマーのうち所望のモノマーを、有機溶剤中、ラジカル重合開始剤を加えて加熱重合を行い、共重合体の高分子化合物を得ることができる。
重合時に使用する有機溶剤としてはトルエン、ベンゼン、テトラヒドロフラン、ジエチルエーテル、ジオキサン、シクロヘキサン、シクロペンタン、メチルエチルケトン、γ−ブチロラクトン等が例示できる。
ラジカル重合開始剤としては、2,2’−アゾビスイソブチロニトリル(AIBN)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル2,2−アゾビス(2−メチルプロピオネート)、ベンゾイルパーオキシド、ラウロイルパーオキシド等が例示できる。
反応温度は、好ましくは50〜80℃であり、反応時間は好ましくは2〜100時間、より好ましくは5〜20時間である。
本発明の導電性ポリマー用高分子化合物において、一般式(1)で示される繰り返し単位となるモノマーは1種類でも2種類以上の組み合わせでもよいが、重合性を高めるにはメタクリルタイプとスチレンタイプのモノマーを組み合わせることが好ましい。また、繰り返し単位を形成する2種類以上のモノマーそれぞれがブロックで共重合されていてもよい。ブロック共重合ポリマーを導電膜とした場合は、2種類以上の繰り返し単位からなる繰り返し単位部分同士が凝集して海島構造を形成することによって導電性が向上するメリットが期待される。
ラジカル重合でランダム共重合を行う場合は、共重合を行うモノマーやラジカル重合開始剤を混合して加熱によって重合を行う方法が一般的である。第1のモノマーとラジカル重合開始剤存在下重合を開始し、後に第2のモノマーを添加した場合は、ポリマー分子の片側が第1のモノマーが重合した構造で、もう一方が第2のモノマーが重合した構造となる。しかしながらこの場合、中間部分には第1と第2のモノマーの繰り返し単位が混在しており、ブロックコポリマーとは形態が異なる。ラジカル重合でブロックコポリマーを形成するには、リビングラジカル重合が好ましく用いられる。
RAFT重合(Reversible Addition Fragmentation chain Transfer polymerization)と呼ばれるリビングラジカルの重合方法は、ポリマー末端のラジカルが常に生きているので、第1のモノマーで重合を開始し、これらが消費された段階で第2のモノマーを添加することによって第1と第2の繰り返し単位によるブロックコポリマーを形成することが可能である。また、第1のモノマーで重合を開始し、これが消費された時点で第2のモノマーを添加し、次いで第3のモノマーを添加した場合はトリブロックコポリマーを形成することもできる。
RAFT重合を行った場合は分子量分布(分散度)が狭い狭分散ポリマーが形成される特徴があり、特にモノマーを一度に添加してRAFT重合を行った場合は、より分子量分布が狭いポリマーを形成することができる。
なお、本発明の導電性ポリマー用高分子化合物においては、分子量分布(Mw/Mn)は1.0〜2.0、特に1.0〜1.5と狭分散であることが好ましい。狭分散であれば、高分子化合物を用いて合成した導電性ポリマーの導電率が不均一になるのを防ぐことができる。
RAFT重合を行うには連鎖移動剤が必要であり、具体的には2−シアノ−2−プロピルベンゾチオエート、4−シアノ−4−フェニルカルボノチオイルチオペンタン酸、2−シアノ−2−プロピルドデシルトリチオカルボネート、4−シアノ−4−[(ドデシルスルファニルチオカルボニル)スルファニル]ペンタン酸、2−(ドデシルチオカルボノチオイルチオ)−2−メチルプロパン酸、シアノメチルドデシルチオカルボネート、シアノメチルメチル(フェニル)カルバモチオエート、ビス(チオベンゾイル)ジスルフィド、ビス(ドデシルスルファニルチオカルボニル)ジスルフィドを挙げることができる。これらの中では、特に2−シアノ−2−プロピルベンゾチオエートが好ましい。
本発明の導電性ポリマー用高分子化合物の製造方法では、上述のようにしてモノマーを重合させた後、イオン交換によって、スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造をスルホ基に変換する。
このとき、イオン交換は、例えばイオン交換樹脂を用いて行えばよい。
上述のような方法で、上記一般式(1)で示される繰り返し単位を含む導電性ポリマー用高分子化合物を容易に製造することができる。
以上のように、本発明の導電性ポリマー用高分子化合物であれば、有機溶剤に可溶であり、燃料電池用や導電性材料用のドーパントとして好適に用いられる特定の超強酸のスルホ基を有する導電性ポリマー用高分子化合物となる。
この導電性ポリマー用高分子化合物を燃料電池に用いることによって、高誘電率な燃料電池用材料を形成することができる。また、共役二重結合ポリマー用のドーパントとして用いることによって、高透明、高導電性で耐久性の高い導電膜を形成することが可能になる。さらに、有機溶剤への溶解性に優れるため、有機EL照明用の導電膜に用いることで、有機EL素子の劣化を防止することができる。
また、本発明の製造方法であれば、このような本発明の導電性ポリマー用高分子化合物を容易に製造することができる。
以下、実施例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
以下に実施例の合成で用いたモノマーを示す。
Figure 2015134905
Figure 2015134905
モノマー1:ナトリウム 1,1,3,3,3−ペンタフルオロ−2−(メタクリロイルオキシ)プロパン−1−スルホネート
モノマー2:リチウム 1,1,3,3,3−ペンタフルオロ−2−(メタクリロイルオキシ)プロパン−1−スルホネート
モノマー3:ベンジルトリメチルアンモニウム 1,1,3,3,3−ペンタフルオロ−2−(メタクリロイルオキシ)プロパン−1−スルホネート
モノマー4:ベンジルトリメチルアンモニウム 1,1,3,3,3−ペンタフルオロ−2−(3−メタクリロイルオキシ−アダマンタン−1−カルボニルオキシ)−プロパン−1−スルホネート
モノマー5:ベンジルトリメチルアンモニウム 1,1,3,3,3−ペンタフルオロ−2−(3−メタクリロイルオキシ−ベンゼン−4−カルボニルオキシ)−プロパン−1−スルホネート
モノマー6:ベンジルトリメチルアンモニウム 2−(4−ビニルベンゾイルオキシ)−1,1,3,3,3−ペンタフルオロプロパン−1−スルホネート
モノマー7:トリブチルアンモニウム 2−(4−ビニルベンゾイルオキシ)−1,1,3,3,3−ペンタフルオロプロパン−1−スルホネート
モノマー8:ピリジニウム 2−(4−ビニルベンゾイルオキシ)−1,1,3,3,3−ペンタフルオロプロパン−1−スルホネート
モノマー9:イミダゾリニウム 2−(4−ビニルベンゾイルオキシ)−1,1,3,3,3−ペンタフルオロプロパン−1−スルホネート
モノマー10:モルホリニウム 2−(4−ビニルベンゾイルオキシ)−1,1,3,3,3−ペンタフルオロプロパン−1−スルホネート
モノマー11:1,2−ジメチル−3−プロピルイミダゾリウム 2−(4−ビニルベンゾイルオキシ)−1,1,3,3,3−ペンタフルオロプロパン−1−スルホネート
モノマー12:テトラブチルアンモニウム 1,1,3,3,3−ペンタフルオロ−2−(アクリロイルオキシ)プロパン−1−スルホネート
モノマー13:ベンジルトリメチルアンモニウム 1,1,3,3,3−ペンタフルオロ−2−(4−メタクリロイルオキシ−4−メチルアダマンタン−1−カルボニルオキシ)−プロパン−1−スルホネート
モノマー14:ベンジルトリメチルアンモニウム 1,1,3,3,3−ペンタフルオロ−2−(4−アクリロイルオキシ−4−メチルアダマンタン−1−カルボニルオキシ)−プロパン−1−スルホネート
モノマー15:ベンジルトリメチルアンモニウム 1,1,3,3,3−ペンタフルオロ−2−(4−アクリロイルオキシ−4−メチルシクロヘキサン−1−カルボニルオキシ)−プロパン−1−スルホネート
[実施例1]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー1の22.8gと2,2’−アゾビス(イソ酪酸)ジメチル5.13gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体18.2gを得た。
得られた白色重合体を純水912gに溶解し、イオン交換樹脂を用いてナトリウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=43,000
分子量分布(Mw/Mn)=1.93
この高分子化合物を(ポリマー1)とする。
Figure 2015134905
[実施例2]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー2の22.0gと2,2’−アゾビス(イソ酪酸)ジメチル5.13gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体19.3gを得た。
得られた白色重合体を純水912gに溶解し、イオン交換樹脂を用いてリチウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=61,000
分子量分布(Mw/Mn)=1.79
この高分子化合物を(ポリマー2)とする。
Figure 2015134905
[実施例3]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー3の44.7gと2,2’−アゾビス(イソ酪酸)ジメチル5.13gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体35.8gを得た。
得られた白色重合体を純水912gに溶解し、イオン交換樹脂を用いてベンジルトリメチルアンモニウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=41,000
分子量分布(Mw/Mn)=1.88
この高分子化合物を(ポリマー3)とする。
Figure 2015134905
[実施例4]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー4の62.5gと2,2’−アゾビス(イソ酪酸)ジメチル2.82gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体50.3gを得た。
得られた白色重合体をメタノール421gに溶解し、イオン交換樹脂を用いてベンジルトリメチルアンモニウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=43,000
分子量分布(Mw/Mn)=1.77
この高分子化合物を(ポリマー4)とする。
Figure 2015134905
[実施例5]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー5の56.7gと2,2’−アゾビス(イソ酪酸)ジメチル3.04gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体46.5gを得た。
得られた白色重合体をメタノール424gに溶解し、イオン交換樹脂を用いてベンジルトリメチルアンモニウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=29,000
分子量分布(Mw/Mn)=1.81
この高分子化合物を(ポリマー5)とする。
Figure 2015134905
[実施例6]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー6の50.9gと2,2’−アゾビス(イソ酪酸)ジメチル4.19gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体44.0gを得た。
得られた白色重合体をメタノール396gに溶解し、イオン交換樹脂を用いてベンジルトリメチルアンモニウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=29,300
分子量分布(Mw/Mn)=1.96
この高分子化合物を(ポリマー6)とする。
Figure 2015134905
[実施例7]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー7の54.5gと2,2’−アゾビス(イソ酪酸)ジメチル4.19gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体43.6gを得た。
得られた白色重合体をメタノール396gに溶解し、イオン交換樹脂を用いてトリブチルアンモニウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=24,400
分子量分布(Mw/Mn)=1.94
この高分子化合物を(ポリマー7)とする。
Figure 2015134905
[実施例8]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー8の43.9gと2,2’−アゾビス(イソ酪酸)ジメチル4.19gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体35.1gを得た。
得られた白色重合体をメタノール396gに溶解し、イオン交換樹脂を用いてピリジニウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=26,100
分子量分布(Mw/Mn)=1.91
この高分子化合物を(ポリマー8)とする。
Figure 2015134905
[実施例9]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー9の42.8gと2,2’−アゾビス(イソ酪酸)ジメチル4.19gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体34.2gを得た。
得られた白色重合体をメタノール396gに溶解し、イオン交換樹脂を用いてイミダゾリニウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=21,100
分子量分布(Mw/Mn)=1.82
この高分子化合物を(ポリマー9)とする。
Figure 2015134905
[実施例10]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー10の44.7gと2,2’−アゾビス(イソ酪酸)ジメチル4.19gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体35.8gを得た。
得られた白色重合体をメタノール396gに溶解し、イオン交換樹脂を用いてモルフォリン塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=23,400
分子量分布(Mw/Mn)=1.79
この高分子化合物を(ポリマー10)とする。
Figure 2015134905
[実施例11]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー11の49.8gと2,2’−アゾビス(イソ酪酸)ジメチル4.19gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体39.8gを得た。
得られた白色重合体をメタノール396gに溶解し、イオン交換樹脂を用いて1,2−ジメチル−3−プロピルイミダゾリウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=22,100
分子量分布(Mw/Mn)=1.88
この高分子化合物を(ポリマー11)とする。
Figure 2015134905
[実施例12]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー3の22.3gとモノマー6の25.4gと2,2’−アゾビス(イソ酪酸)ジメチル4.19gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体38.2gを得た。
得られた白色重合体をメタノール396gに溶解し、イオン交換樹脂を用いてベンジルトリメチルアンモニウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
共重合組成比(モル比) モノマー3:モノマー6=1:1
重量平均分子量(Mw)=19,400
分子量分布(Mw/Mn)=1.69
この高分子化合物を(ポリマー12)とする。
Figure 2015134905
[実施例13]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー7の54.5gと2,2’−アゾビス(イソ酪酸)ジメチル2.00gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体44.0gを得た。
得られた白色重合体をメタノール396gに溶解し、イオン交換樹脂を用いてトリブチルアンモニウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=44,400
分子量分布(Mw/Mn)=2.02
この高分子化合物を(ポリマー13)とする。
Figure 2015134905
[実施例14]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー4の12.6gとモノマー8の35.1gと2,2’−アゾビス(イソ酪酸)ジメチル4.19gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体38.2gを得た。
得られた白色重合体をメタノール396gに溶解し、イオン交換樹脂を用いてベンジルトリメチルアンモニウム塩とピリジニウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
共重合組成比(モル比) モノマー4:モノマー8=1:4
重量平均分子量(Mw)=32,400
分子量分布(Mw/Mn)=1.92
この高分子化合物を(ポリマー14)とする。
Figure 2015134905
[実施例15]
下記RAFT重合によって狭分散ポリマーを合成した。
窒素雰囲気下、2−シアノ−2−プロピルベンゾジチオエート0.52g、2,2’−アゾビスイソブチロニトリル0.13gをメタノール37.5gに溶解させ、その溶液を窒素雰囲気下64℃で3時間撹拌した。その溶液にモノマー6の25.4gとモノマー2の11.0gをメタノール112.5gに溶解させた溶液を4時間で滴下した。滴下終了後、64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、赤色重合体30.9gを得た。
得られた赤色重合体をメタノール369gに溶解し、イオン交換樹脂を用いてベンジルトリメチルアンモニウム塩とリチウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
共重合組成比(モル比) モノマー6:モノマー2=1:1
重量平均分子量(Mw)=23,000
分子量分布(Mw/Mn)=1.22
この高分子化合物を(ポリマー15)とする。
Figure 2015134905
[実施例16]
下記RAFT重合によってジブロックコポリマーを合成した。
窒素雰囲気下、2−シアノ−2−プロピルベンゾジチオエート0.42g、2,2’−アゾビスイソブチロニトリル0.10gをメタノール37.5gに溶解させ、その溶液を窒素雰囲気下64℃で3時間撹拌した。その溶液にモノマー6の25.4gをメタノール64.3gに溶解させた溶液を2時間で滴下した。続いてその溶液にモノマー2の11.0gをメタノール48.2gに溶解させた溶液を2時間で滴下した。滴下終了後、64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、赤色重合体29.1gを得た。
得られた赤色重合体をメタノール306gに溶解し、イオン交換樹脂を用いてベンジルトリメチルアンモニウム塩とリチウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
共重合組成比(モル比) モノマー6:モノマー2=1:1
重量平均分子量(Mw)=22,000
分子量分布(Mw/Mn)=1.31
この高分子化合物を(ポリマー16)とする。
Figure 2015134905
[実施例17]
下記RAFT重合によってトリブロックコポリマーを合成した。
窒素雰囲気下、2−シアノ−2−プロピルベンゾジチオエート0.42g、2,2’−アゾビスイソブチロニトリル0.10gをメタノール37.5gに溶解させ、その溶液を窒素雰囲気下64℃で3時間撹拌した。その溶液にモノマー6の12.7gをメタノール32.2gに溶解させた溶液を2時間で滴下した。続いてその溶液にモノマー2の11.0gをメタノール48.2gに溶解させた溶液を2時間で滴下した。続いてその溶液にモノマー6の12.7gをメタノール32.2gに溶解させた溶液を2時間で滴下した。滴下終了後、64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、赤色重合体18.9gを得た。
得られた赤色重合体をメタノール306gに溶解し、イオン交換樹脂を用いてベンジルトリメチルアンモニウム塩とリチウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
共重合組成比(モル比) モノマー6:モノマー2=1:1
重量平均分子量(Mw)=25,000
分子量分布(Mw/Mn)=1.36
この高分子化合物を(ポリマー17)とする。
Figure 2015134905
[実施例18]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー12の52.5gと2,2’−アゾビス(イソ酪酸)ジメチル2.82gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体47.3gを得た。
得られた白色重合体をメタノール421gに溶解し、イオン交換樹脂を用いてテトラブチルアンモニウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=38,000
分子量分布(Mw/Mn)=1.64
この高分子化合物を(ポリマー18)とする。
Figure 2015134905
[実施例19]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー13の63.9gと2,2’−アゾビス(イソ酪酸)ジメチル2.82gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体57.5gを得た。
得られた白色重合体をメタノール421gに溶解し、イオン交換樹脂を用いてベンジルトリメチルアンモニウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=43,400
分子量分布(Mw/Mn)=1.98
この高分子化合物を(ポリマー19)とする。
Figure 2015134905
[実施例20]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー14の62.5gと2,2’−アゾビス(イソ酪酸)ジメチル2.82gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体53.5gを得た。
得られた白色重合体をメタノール421gに溶解し、イオン交換樹脂を用いてベンジルトリメチルアンモニウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=31,400
分子量分布(Mw/Mn)=1.63
この高分子化合物を(ポリマー20)とする。
Figure 2015134905
[実施例21]
窒素雰囲気下、64℃で撹拌したメタノール37.5gに、モノマー15の57.5gと2,2’−アゾビス(イソ酪酸)ジメチル2.82gをメタノール112.5gに溶かした溶液を4時間かけて滴下した。さらに64℃で4時間撹拌した。室温まで冷却した後、1,000gの酢酸エチルに激しく撹拌しながら滴下した。生じた固形物を濾過して取り、50℃で15時間真空乾燥して、白色重合体53.5gを得た。
得られた白色重合体をメタノール421gに溶解し、イオン交換樹脂を用いてベンジルトリメチルアンモニウム塩をスルホ基に変換した。得られた重合体を19F,H−NMR及びGPC測定したところ、以下の分析結果となった。
重量平均分子量(Mw)=30,900
分子量分布(Mw/Mn)=1.84
この高分子化合物を(ポリマー21)とする。
Figure 2015134905
上述のようにして合成したポリマー1〜21は、水、メタノール、エタノール、イソプロピルアルコール、プロピレングリコールモノメチルエーテル、テトラヒドロフラン、ジメチルホルムアミドに可溶であった。
このように本発明の製造方法であれば、有機溶剤に可溶であり、特定の超強酸のスルホ基を有する本発明の導電性ポリマー用高分子化合物を容易に製造することができる。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (4)

  1. 下記一般式(1)で示される繰り返し単位を1種以上含む導電性ポリマー用高分子化合物であって、
    スルホン酸残基のリチウム塩、ナトリウム塩、カリウム塩、又は窒素化合物塩のイオン交換によって合成されたものであり、重量平均分子量が1,000〜500,000の範囲のものであることを特徴とする導電性ポリマー用高分子化合物。
    Figure 2015134905
    (式中、Rは水素原子又はメチル基であり、Rは単結合、エステル基、あるいはエーテル基、エステル基のいずれか又はこれらの両方を有していてもよい炭素数1〜12の直鎖状、分岐状、環状の炭化水素基のいずれかであり、Zはフェニレン基、ナフチレン基、エステル基のいずれかである。)
  2. 前記一般式(1)で示される繰り返し単位が、下記一般式(2−1)〜(2−4)で示される繰り返し単位から選ばれるものであることを特徴とする請求項1に記載の導電性ポリマー用高分子化合物。
    Figure 2015134905
    (式中、Rは前記と同様である。)
  3. 前記スルホン酸残基のリチウム塩、ナトリウム塩、カリウム塩、又は窒素化合物塩は、下記一般式(3)で示される繰り返し単位からなるものであることを特徴とする請求項1又は請求項2に記載の導電性ポリマー用高分子化合物。
    Figure 2015134905
    (式中、R、R、Zは前記と同様であり、Xはリチウム、ナトリウム、カリウム、又は下記一般式(4)で示される窒素化合物である。)
    Figure 2015134905
    (式中、R101d、R101e、R101f、R101gは、それぞれ水素原子、もしくは炭素数1〜12の直鎖状、分岐状、又は環状のアルキル基、アルケニル基、オキソアルキル基、又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。R101dとR101e、R101dとR101eとR101fとは環を形成してもよく、環を形成する場合には、R101dとR101e及びR101dとR101eとR101fは炭素数3〜10のアルキレン基、又は式中の窒素原子を環の中に有する複素芳香族環を示す。)
  4. 下記一般式(1)で示される繰り返し単位を含む導電性ポリマー用高分子化合物の製造方法であって、
    スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造を有するモノマーを用いて重合反応を行い、重合後、イオン交換によって、前記スルホン酸残基とリチウム、ナトリウム、カリウム、又は窒素化合物からなる塩の構造をスルホ基に変換することを特徴とする導電性ポリマー用高分子化合物の製造方法。
    Figure 2015134905
    (式中、Rは水素原子又はメチル基であり、Rは単結合、エステル基、あるいはエーテル基、エステル基のいずれか又はこれらの両方を有していてもよい炭素数1〜12の直鎖状、分岐状、環状の炭化水素基のいずれかであり、Zはフェニレン基、ナフチレン基、エステル基のいずれかである。)
JP2014238512A 2013-12-20 2014-11-26 導電性ポリマー用高分子化合物の製造方法 Active JP6225100B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014238512A JP6225100B2 (ja) 2013-12-20 2014-11-26 導電性ポリマー用高分子化合物の製造方法
KR1020140182023A KR101864919B1 (ko) 2013-12-20 2014-12-17 도전성 중합체용 고분자 화합물 및 그의 제조 방법
TW103144514A TWI617584B (zh) 2013-12-20 2014-12-19 導電性聚合物用高分子化合物及其製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013264247 2013-12-20
JP2013264247 2013-12-20
JP2014238512A JP6225100B2 (ja) 2013-12-20 2014-11-26 導電性ポリマー用高分子化合物の製造方法

Publications (2)

Publication Number Publication Date
JP2015134905A true JP2015134905A (ja) 2015-07-27
JP6225100B2 JP6225100B2 (ja) 2017-11-01

Family

ID=53399306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014238512A Active JP6225100B2 (ja) 2013-12-20 2014-11-26 導電性ポリマー用高分子化合物の製造方法

Country Status (3)

Country Link
US (1) US9657115B2 (ja)
JP (1) JP6225100B2 (ja)
TW (1) TWI617584B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050302A (ja) * 2014-08-28 2016-04-11 信越化学工業株式会社 導電性ポリマー複合体及び基板
JP2016188350A (ja) * 2014-05-20 2016-11-04 信越化学工業株式会社 導電性ポリマー複合体及び基板
JP2017043752A (ja) * 2015-08-25 2017-03-02 信越化学工業株式会社 導電性ポリマー用高分子化合物及びその製造方法
JP2017052886A (ja) * 2015-09-10 2017-03-16 信越化学工業株式会社 導電性ポリマー複合体及び基板
US11071485B2 (en) 2016-12-21 2021-07-27 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6438348B2 (ja) * 2014-08-28 2018-12-12 信越化学工業株式会社 導電性ポリマー複合体及び基板
JP6499535B2 (ja) * 2015-07-09 2019-04-10 信越化学工業株式会社 被覆品、及びパターン形成方法
JP6538630B2 (ja) * 2015-11-09 2019-07-03 信越化学工業株式会社 導電性材料及び基板
JP6600286B2 (ja) * 2015-11-09 2019-10-30 信越化学工業株式会社 導電性材料及び基板
JP6839107B2 (ja) * 2018-01-09 2021-03-03 信越化学工業株式会社 生体電極組成物、生体電極、及び生体電極の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133448A (ja) * 2006-10-27 2008-06-12 Shin Etsu Chem Co Ltd 重合性アニオンを有するスルホニウム塩及び高分子化合物、レジスト材料及びパターン形成方法
JP2008546900A (ja) * 2005-06-27 2008-12-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性ポリマー組成物
WO2009119806A1 (ja) * 2008-03-28 2009-10-01 旭化成ファインケム株式会社 ビニルスルホン酸、その重合体及びその製造方法
JP2011157313A (ja) * 2010-02-02 2011-08-18 Shin-Etsu Chemical Co Ltd 新規スルホニウム塩、高分子化合物、高分子化合物の製造方法、レジスト材料及びパターン形成方法
JP2013140268A (ja) * 2012-01-05 2013-07-18 Shin Etsu Chem Co Ltd パターン形成方法
JP2013145256A (ja) * 2012-01-13 2013-07-25 Shin Etsu Chem Co Ltd パターン形成方法及びレジスト材料
JP2013173855A (ja) * 2012-02-27 2013-09-05 Shin-Etsu Chemical Co Ltd 高分子化合物の製造方法、該製造方法によって製造された高分子化合物及びそれを含んだレジスト材料並びにパターン形成方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI303832B (en) 2004-08-30 2008-12-01 Shinetsu Polymer Co Conductive composition and conductive cross-linked product, capacitor and production method thereof, and antistatic coating material, antistatic coating, antistatic film, optical filter, bnd optical information recording medium
JP5323478B2 (ja) 2005-06-27 2013-10-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性ポリマー組成物
US8057708B2 (en) 2006-06-30 2011-11-15 E. I. Du Pont De Nemours And Company Stabilized compositions of conductive polymers and partially fluorinated acid polymers
US7569326B2 (en) * 2006-10-27 2009-08-04 Shin-Etsu Chemical Co., Ltd. Sulfonium salt having polymerizable anion, polymer, resist composition, and patterning process
JP2008146913A (ja) 2006-12-07 2008-06-26 Shin Etsu Polymer Co Ltd 導電性高分子溶液及び導電性塗膜
JP5201363B2 (ja) * 2008-08-28 2013-06-05 信越化学工業株式会社 重合性アニオンを有するスルホニウム塩及び高分子化合物、レジスト材料及びパターン形成方法
JP5292377B2 (ja) * 2010-10-05 2013-09-18 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、並びに、それを用いた感活性光線性又は感放射線性膜及びパターン形成方法
JP5521996B2 (ja) 2010-11-19 2014-06-18 信越化学工業株式会社 スルホニウム塩を含む高分子化合物、レジスト材料及びパターン形成方法、並びにスルホニウム塩単量体及びその製造方法
JP5708518B2 (ja) * 2011-02-09 2015-04-30 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
JP5668710B2 (ja) 2012-02-27 2015-02-12 信越化学工業株式会社 高分子化合物及びそれを含んだレジスト材料並びにパターン形成方法、該高分子化合物の製造方法
JP5741518B2 (ja) 2012-04-24 2015-07-01 信越化学工業株式会社 レジスト下層膜材料及びパターン形成方法
JP6020347B2 (ja) 2012-06-04 2016-11-02 信越化学工業株式会社 高分子化合物、レジスト材料及びパターン形成方法
JP6307290B2 (ja) 2013-03-06 2018-04-04 東京応化工業株式会社 レジスト組成物、レジストパターン形成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546900A (ja) * 2005-06-27 2008-12-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性ポリマー組成物
JP2008133448A (ja) * 2006-10-27 2008-06-12 Shin Etsu Chem Co Ltd 重合性アニオンを有するスルホニウム塩及び高分子化合物、レジスト材料及びパターン形成方法
WO2009119806A1 (ja) * 2008-03-28 2009-10-01 旭化成ファインケム株式会社 ビニルスルホン酸、その重合体及びその製造方法
JP2011157313A (ja) * 2010-02-02 2011-08-18 Shin-Etsu Chemical Co Ltd 新規スルホニウム塩、高分子化合物、高分子化合物の製造方法、レジスト材料及びパターン形成方法
JP2013140268A (ja) * 2012-01-05 2013-07-18 Shin Etsu Chem Co Ltd パターン形成方法
JP2013145256A (ja) * 2012-01-13 2013-07-25 Shin Etsu Chem Co Ltd パターン形成方法及びレジスト材料
JP2013173855A (ja) * 2012-02-27 2013-09-05 Shin-Etsu Chemical Co Ltd 高分子化合物の製造方法、該製造方法によって製造された高分子化合物及びそれを含んだレジスト材料並びにパターン形成方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188350A (ja) * 2014-05-20 2016-11-04 信越化学工業株式会社 導電性ポリマー複合体及び基板
JP2016050302A (ja) * 2014-08-28 2016-04-11 信越化学工業株式会社 導電性ポリマー複合体及び基板
JP2017043752A (ja) * 2015-08-25 2017-03-02 信越化学工業株式会社 導電性ポリマー用高分子化合物及びその製造方法
TWI677567B (zh) * 2015-08-25 2019-11-21 日商信越化學工業股份有限公司 導電性聚合物用高分子化合物及其製造方法
JP2017052886A (ja) * 2015-09-10 2017-03-16 信越化学工業株式会社 導電性ポリマー複合体及び基板
US11071485B2 (en) 2016-12-21 2021-07-27 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode

Also Published As

Publication number Publication date
TW201538531A (zh) 2015-10-16
TWI617584B (zh) 2018-03-11
US20150175722A1 (en) 2015-06-25
US9657115B2 (en) 2017-05-23
JP6225100B2 (ja) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6225100B2 (ja) 導電性ポリマー用高分子化合物の製造方法
JP6209157B2 (ja) 高分子化合物
JP6765988B2 (ja) 導電性ポリマー用高分子化合物及びその製造方法
JP6366550B2 (ja) 導電性ポリマー用高分子化合物及びその製造方法
JP6195811B2 (ja) 導電性ポリマー用高分子化合物の製造方法
JP6271378B2 (ja) 導電性ポリマー用高分子化合物及びその製造方法
JP6450695B2 (ja) 導電性ポリマー用高分子化合物及びその製造方法
JP6209136B2 (ja) 導電性ポリマー用高分子化合物及びその製造方法
KR101864919B1 (ko) 도전성 중합체용 고분자 화합물 및 그의 제조 방법
KR101856812B1 (ko) 고분자 화합물

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171006

R150 Certificate of patent or registration of utility model

Ref document number: 6225100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150