JP2017033008A - 交換レンズおよびカメラボディ - Google Patents

交換レンズおよびカメラボディ Download PDF

Info

Publication number
JP2017033008A
JP2017033008A JP2016190995A JP2016190995A JP2017033008A JP 2017033008 A JP2017033008 A JP 2017033008A JP 2016190995 A JP2016190995 A JP 2016190995A JP 2016190995 A JP2016190995 A JP 2016190995A JP 2017033008 A JP2017033008 A JP 2017033008A
Authority
JP
Japan
Prior art keywords
lens
image plane
focus
value
plane movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016190995A
Other languages
English (en)
Other versions
JP6380491B2 (ja
Inventor
富田 博之
Hiroyuki Tomita
博之 富田
前田 敏彰
Toshiaki Maeda
敏彰 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JP2017033008A publication Critical patent/JP2017033008A/ja
Application granted granted Critical
Publication of JP6380491B2 publication Critical patent/JP6380491B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/38Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals measured at different points on the optical axis, e.g. focussing on two or more planes and comparing image data
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/282Autofocusing of zoom lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/285Systems for automatic generation of focusing signals including two or more different focus detection devices, e.g. both an active and a passive focus detecting device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/565Optical accessories, e.g. converters for close-up photography, tele-convertors, wide-angle convertors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2206/00Systems for exchange of information between different pieces of apparatus, e.g. for exchanging trimming information, for photo finishing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Studio Devices (AREA)
  • Automatic Focus Adjustment (AREA)
  • Structure And Mechanism Of Cameras (AREA)
  • Lens Barrels (AREA)
  • Focusing (AREA)

Abstract

【課題】精度よく焦点調節できる交換レンズを提供する。【解決手段】カメラボディ2に取り付けられる交換レンズ3であって、焦点調節レンズ33を含む光学系と、焦点調節レンズ33を光学系の光軸方向に駆動させる駆動部と、焦点調節レンズ33の位置によって変化し、焦点調節レンズ33の移動量に対する像面の移動量に対応する像面移動係数の、焦点調節レンズ33のレンズ位置での第1の値と、駆動部による焦点調節レンズ33の駆動範囲内において、焦点調節レンズ33の移動量に対する像面の移動量が最大になる像面移動係数である第2の値と、駆動部による焦点調節レンズ33の駆動範囲内において、焦点調節レンズ33の移動量に対する像面の移動量が最小になる像面移動係数である第3の値とをカメラボディ2に送信する送信部と、を有する。【選択図】図1

Description

本発明は、交換レンズおよびカメラボディに関する。
従来より、焦点調節レンズを光軸方向に所定の駆動速度で駆動させながら、光学系によるコントラストに関する評価値を算出することで、光学系の焦点状態を検出する技術が知られている(たとえば、特許文献1参照)。
特開2010−139666号公報
精度よく焦点調節できる交換レンズを提供する。
以下の解決手段によって上記課題を解決する。
第1の態様の交換レンズは、カメラボディに取り付けられる交換レンズであって、焦点調節レンズを含む光学系と、焦点調節レンズを光学系の光軸方向に駆動させる駆動部と、焦点調節レンズの位置によって変化し、焦点調節レンズの移動量に対する像面の移動量に対応する像面移動係数の、焦点調節レンズのレンズ位置での第1の値と、駆動部による焦点調節レンズの駆動範囲内において、焦点調節レンズの移動量に対する像面の移動量が最大になる像面移動係数である第2の値と、駆動部による焦点調節レンズの駆動範囲内において、焦点調節レンズの移動量に対する像面の移動量が最小になる像面移動係数である第3の値とをカメラボディに送信する送信部と、を有する。
精度よく焦点調節できる。
図1は、本実施形態に係るカメラを示すブロック図である。 図2は、図1に示す撮像素子の撮像面を示す正面図である。 図3は、図2のIII部を拡大して焦点検出画素222a,222bの配列を模式的に示す正面図である。 図4(A)は、撮像画素221の一つを拡大して示す正面図、図4(B)は、焦点検出画素222aの一つを拡大して示す正面図、図4(C)は、焦点検出画素222bの一つを拡大して示す正面図、図4(D)は、撮像画素221の一つを拡大して示す断面図、図4(E)は、焦点検出画素222aの一つを拡大して示す断面図、図4(F)は、焦点検出画素222bの一つを拡大して示す断面図である。 図5は、図3のV-V線に沿う断面図である。 図6は、ズームレンズ32のレンズ位置(焦点距離)、およびフォーカスレンズ33のレンズ位置(撮影距離)と、像面移動係数Kとの関係を示すテーブル 図7は、第1実施形態の動作を示すフローチャートである。 図8は、フォーカスレンズ33の駆動伝達機構のガタ量Gを説明するための図である。 図9は、本実施形態に係るスキャン動作およびコントラスト検出方式に基づく合焦駆動を行った際における、フォーカスレンズ位置と焦点評価値との関係、およびフォーカスレンズ位置と時間との関係を示す図である。 図10は、第2実施形態の動作を示すフローチャートである。 図11は、第3実施形態の動作を示すフローチャートである。 図12は、第4実施形態の動作を示すフローチャートである。 図13は、第5実施形態に係るカメラを示すブロック図である。 図14は、第5実施形態の動作を示すフローチャートである。 図15は、第5実施形態における異常判定処理を示すフローチャートである。 図16は、第5実施形態における異常判定処理の具体例を説明するための一場面例を示す図である。 図17は、ズームレンズ32のレンズ位置(焦点距離)と、最大像面移動係数Kmaxとの関係を示すテーブルである。 図18は、第6実施形態における異常判定処理を示すフローチャートである。 図19は、第6実施形態における異常判定処理の具体例を説明するための一場面例を示す図である。
以下、本発明の実施形態を図面に基づいて説明する。
《第1実施形態》
図1は、本実施形態に係るデジタルカメラ1を示す要部構成図である。本実施形態のデジタルカメラ1(以下、単にカメラ1という。)は、カメラ本体2とレンズ鏡筒3から構成され、これらカメラ本体2のマウント部401とレンズ鏡筒3のマウント部402とが着脱可能に結合されている。
レンズ鏡筒3は、カメラ本体2に着脱可能な交換レンズである。図1に示すように、レンズ鏡筒3には、レンズ31,32,33,34および絞り35を含む撮影光学系が内蔵されている。
レンズ33は、フォーカスレンズであり、光軸L1方向に移動することで、撮影光学系の焦点距離を調節可能となっている。フォーカスレンズ33は、レンズ鏡筒3の光軸L1に沿って移動可能に設けられ、フォーカスレンズ用エンコーダ332によってその位置が検出されつつフォーカスレンズ駆動モータ331によってその位置が調節される。
このフォーカスレンズ33の光軸L1に沿う移動機構の具体的構成は特に限定されない。一例を挙げれば、レンズ鏡筒3に固定された固定筒に回転可能に回転筒を挿入し、この回転筒の内周面にヘリコイド溝(螺旋溝)を形成するとともに、フォーカスレンズ33を固定するレンズ枠の端部をヘリコイド溝に嵌合させる。そして、フォーカスレンズ駆動モータ331によって回転筒を回転させることで、レンズ枠に固定されたフォーカスレンズ33が光軸L1に沿って直進移動することになる。
上述したようにレンズ鏡筒3に対して回転筒を回転させることによりレンズ枠に固定されたフォーカスレンズ33は光軸L1方向に直進移動するが、その駆動源としてのフォーカスレンズ駆動モータ331がレンズ鏡筒3に設けられている。フォーカスレンズ駆動モータ331と回転筒とは、たとえば複数の歯車からなる変速機で連結され、フォーカスレンズ駆動モータ331の駆動軸を何れか一方向へ回転駆動すると所定のギヤ比で回転筒に伝達され、そして、回転筒が何れか一方向へ回転することで、レンズ枠に固定されたフォーカスレンズ33が光軸L1の何れかの方向へ直進移動することになる。なお、フォーカスレンズ駆動モータ331の駆動軸が逆方向に回転駆動すると、変速機を構成する複数の歯車も逆方向に回転し、フォーカスレンズ33は光軸L1の逆方向へ直進移動することになる。
フォーカスレンズ33の位置はフォーカスレンズ用エンコーダ332によって検出される。既述したとおり、フォーカスレンズ33の光軸L1方向の位置は回転筒の回転角に相関するので、たとえばレンズ鏡筒3に対する回転筒の相対的な回転角を検出すれば求めることができる。
本実施形態のフォーカスレンズ用エンコーダ332としては、回転筒の回転駆動に連結された回転円板の回転をフォトインタラプタなどの光センサで検出して、回転数に応じたパルス信号を出力するものや、固定筒と回転筒の何れか一方に設けられたフレキシブルプリント配線板の表面のエンコーダパターンに、何れか他方に設けられたブラシ接点を接触させ、回転筒の移動量(回転方向でも光軸方向の何れでもよい)に応じた接触位置の変化を検出回路で検出するものなどを用いることができる。
フォーカスレンズ33は、上述した回転筒の回転によってカメラボディ側の端部(至近端ともいう)から被写体側の端部(無限端ともいう)までの間を光軸L1方向に移動することができる。フォーカスレンズ用エンコーダ332はフォーカスレンズ33の現在位置を検出し現在位置情報を出力する。レンズ制御部36は、カメラ制御部21に現在位置情報を送信するように制御する。カメラ制御部21は、現在位置情報を用いて、フォーカスレンズ33の駆動目標位置、フォーカスレンズ33の駆動速度、又は像面移動速度(以下、駆動情報と称する)を演算する。カメラ制御部21は、レンズ制御部36に駆動情報を送信するように制御する。レンズ制御部36は、駆動情報に基づいてフォーカスレンズ駆動モータ331を駆動制御する。
また、レンズ32は、ズームレンズであり、光軸L1方向に移動することで、撮影光学系の撮影倍率を調節可能となっている。ズームレンズ32も、上述したフォーカスレンズ33と同様に、ズームレンズ用エンコーダ322によってその位置が検出されつつズームレンズ駆動モータ321によってその位置が調節される。ズームレンズ32の位置は、操作部28に設けられたズームボタンを操作することにより、あるいは、カメラ鏡筒3に設けられたズーム環(不図示)を操作することにより調節される。なお、ズームレンズ32の光軸L1に沿う移動機構は、上述したフォーカスレンズ31の移動機構と同様とすることができる。また、ズームレンズ用エンコーダ322およびズームレンズ駆動モータ321の構成も、上述したフォーカスレンズ用エンコーダ332およびフォーカスレンズ駆動モータ331と同様とすることができる。
絞り35は、上記撮影光学系を通過して撮像素子22に至る光束の光量を制限するとともにボケ量を調整するために、光軸L1を中心にした開口径が調節可能に構成されている。絞り35による開口径の調節は、たとえば自動露出モードにおいて演算された適切な開口径が、カメラ制御部21からレンズ制御部36を介して送出されることにより行われる。また、カメラ本体2に設けられた操作部28によるマニュアル操作により、設定された開口径がカメラ制御部21からレンズ制御部36に入力される。絞り35の開口径は図示しない絞り開口センサにより検出され、レンズ制御部36で現在の開口径が認識される。
レンズメモリ37は、像面移動係数Kを記憶している。像面移動係数Kとは、フォーカスレンズ33の駆動量と像面の移動量との対応関係を示す値であり、例えば、フォーカスレンズ33の駆動量と像面の移動量との比である。本実施例において、像面移動係数は、例えば、下記式(1)により求められ、像面移動係数Kが大きくなるほど、フォーカスレンズ33の駆動に伴う像面の移動量は大きくなる。
像面移動係数K=(像面の移動量/フォーカスレンズ33の駆動量) ・・・(1)
また、本実施形態のカメラ1においては、フォーカスレンズ33の駆動量が同じ場合であっても、フォーカスレンズ33のレンズ位置によっては、像面の移動量が異なるものとなる。同様に、フォーカスレンズ33の駆動量が同じ場合であっても、ズームレンズ32のレンズ位置によっては、像面の移動量が異なるものとなる。すなわち、像面移動係数は、フォーカスレンズ33の光軸方向におけるレンズ位置、さらには、ズームレンズ32の光軸方向におけるレンズ位置に応じて変化するものであり、本実施形態において、レンズ制御部36は、フォーカスレンズ33のレンズ位置ごと、およびズームレンズ32のレンズ位置ごとに、像面移動係数Kを記憶している。
ここで、図6に、レンズメモリ37に記憶される、ズームレンズ32のレンズ位置(焦点距離)、およびフォーカスレンズ33のレンズ位置(撮影距離)と、像面移動係数Kとの関係を示すテーブルを示す。図6に示すテーブルにおいては、ズームレンズ32の駆動領域を至近端から無限遠端から順に、「f1」〜「f9」の9つの領域に分けるとともに、フォーカスレンズ33の駆動領域を至近端から無限遠端から順に、「D1」〜「D9」の9つの領域に分けて、各レンズ位置に対応する像面移動係数Kが記憶されている。たとえば、ズームレンズ32のレンズ位置(焦点距離)が「f1」にあり、フォーカスレンズ33のレンズ位置(撮影距離)が「D1」にある場合に、像面移動係数Kは「K11」となる。なお、図6に示すテーブルは、各レンズの駆動領域をそれぞれ9つの領域に分けるような態様を例示したが、その数は特に限定されず、任意に設定することができる。
次に、図6を用いて、最大像面移動係数Kmax及び最小像面移動係数Kminについて説明する。
最大像面移動係数Kmaxとは、像面移動係数Kの最大値に対応する値である。最大像面移動係数Kmaxは、ズームレンズ32の現在のレンズ位置に応じて変化することが好ましい。また、最大像面移動係数Kmaxは、ズームレンズ32の現在のレンズ位置が変化しなければフォーカスレンズ33の現在のレンズ位置が変化しても一定値(固定値)であることが好ましい。つまり、最大像面移動係数Kmaxは、ズームレンズ32のレンズ位置(焦点距離)に応じて定まる固定値(一定値)であって、フォーカスレンズ33のレンズ位置(撮影距離)に依存しない値であることが好ましい。
例えば、図6において、灰色で示した「K11」、「K21」、「K31」、「K41」、「K52」、「K62」、「K72」、「K82」、「K91」は、ズームレンズ32の各レンズ位置(焦点距離)における、像面移動係数Kのうち、最大となる値を示す最大像面移動係数Kmaxである。すなわち、ズームレンズ32のレンズ位置(焦点距離)が「f1」にある場合には、「D1」〜「D9」のうち、フォーカスレンズ33のレンズ位置(撮影距離)が「D1」にある場合の像面移動係数Kである「K11」が、最大の値を示す最大像面移動係数Kmaxとなる。したがって、フォーカスレンズ33のレンズ位置(撮影距離)が「D1」にある場合の像面移動係数Kである「K11」は、レンズ位置(撮影距離)が「D1」〜「D9」にある場合の像面移動係数Kである「K11」〜「K19」の中で、最も大きな値を示すものとなる。また、同様に、ズームレンズ32の各レンズ位置(焦点距離)が「f2」である場合も、フォーカスレンズ33のレンズ位置(撮影距離)が「D1」にある場合の像面移動係数Kである「K21」が、「D1」〜「D9」にある場合の像面移動係数Kである「K21」〜「K29」の中で、最も大きな値を示すものとなる。すなわち、「K21」が最大像面移動係数Kmaxとなる。以下、同様に、ズームレンズ32の各レンズ位置(焦点距離)が「f3」〜「f9」である場合でも、灰色で示した「K31」、「K41」、「K52」、「K62」、「K72」、「K82」、「K91」が、それぞれ最大像面移動係数Kmaxとなる。
同様に、最小像面移動係数Kminとは、像面移動係数Kの最小値に対応する値である。最小像面移動係数Kminは、ズームレンズ32の現在のレンズ位置に応じて変化することが好ましい。また、最小像面移動係数Kminは、ズームレンズ32の現在のレンズ位置が変化しなければフォーカスレンズ33の現在のレンズ位置が変化しても一定値(固定値)であることが好ましい。例えば、図6において、ハッチングを施して示した「K19」、「K29」、「K39」、「K49」、「K59」、「K69」、「K79」、「K89」、「K99」は、ズームレンズ32の各レンズ位置(焦点距離)における、像面移動係数Kのうち、最小となる値を示す最小像面移動係数Kminである。
このように、レンズメモリ37には、図6に示すように、ズームレンズ32のレンズ位置(焦点距離)、およびフォーカスレンズ33のレンズ位置(撮影距離)に対応する像面移動係数K、ズームレンズ32のレンズ位置(焦点距離)ごとに、像面移動係数Kのうち、最大となる値を示す最大像面移動係数Kmax、及び、ズームレンズ32のレンズ位置(焦点距離)ごとに、像面移動係数Kのうち、最小となる値を示す最小像面移動係数Kminが記憶されている。
カメラ本体2のマウント部401の電気接点403とレンズ鏡筒3のマウント部402の電気接点404とが接続されることにより、レンズ制御部36は、レンズ送受信部38及びカメラ送受信部29を介して、カメラ制御部21と電気的に接続される。
本実施形態において、カメラ制御部21及びレンズ制御部36は、定常通信及び後述する非定常通信を行う。定常通信において、カメラ制御部21は、カメラ送受信部29およびレンズ送受信部38を介して、所定間隔(例えば、数十ミリ秒〜数百ミリ秒間隔)で、レンズ情報を要求する第1要求信号をレンズ制御部36に繰り返し送信する。例えば、定常通信を開始したら電源がOFFされるまで所定間隔の定常通信を継続することが好ましい。
また、カメラ制御部21は、定常通信において、ズームレンズ32の駆動、フォーカスレンズ33の駆動、絞り35による開口径の調節などを行うための指令をレンズ制御部36に送信する。
レンズ制御部36は、定常通信において、開口径の調節などを行うための指令を受信し受信した指令に基づいて制御を行う。レンズ制御部36は、定常通信において、第1要求信号を受信したとき、レンズ情報をカメラ制御部21に繰り返し送信する。レンズ情報とは、例えば、ズームレンズ32の位置、フォーカスレンズ33の位置、絞り35の開口径などの情報、及び、現在位置像面移動係数Kcur等が挙げられる。現在位置像面移動係数Kcurとは、現在のズームレンズの位置(焦点距離)及び現在のフォーカスレンズの位置(撮影距離)に対応した像面移動係数Kである。
本実施形態において、レンズ制御部36は、レンズ位置(ズームレンズの位置及びフォーカスレンズの位置)と像面移動係数Kとの関係を示すレンズメモリ37に記憶されたテーブルを参照することで、ズームレンズ32の現在のレンズ位置およびフォーカスレンズ33の現在のレンズ位置に対応する現在位置像面移動係数Kcurを求める。
また、カメラ制御部21は、上記定常通信とは異なる非定常通信で、最大像面移動係数Kmax及び最小像面移動係数Kminの送信を要求するための第2要求信号を送信する。上記非定常通信は、定常通信に割り込み可能な通信であることが好ましい。レンズ制御部36は、非定常通信において、第2要求信号を受信したとき、最大像面移動係数Kmax及び最小像面移動係数Kminを、カメラ制御部21に送信する。
最大像面移動係数Kmaxは非定常通信の第2要求信号を受信したときに送信されるものであって、定常通信の第1要求信号を受信したときに送信される現在位置像面移動係数Kcurとは異なるものである。
図6を用いて説明すると、たとえば、ズームレンズ32のレンズ位置(焦点距離)が「f1」にあり、フォーカスレンズ33のレンズ位置(撮影距離)が「D4」にある場合において、レンズ制御部36は、カメラ制御部21から定常通信の第1要求信号を受信したとき、現在位置像面移動係数Kcurとして「K14」をカメラ制御部21に送信し、カメラ制御部21から非定常通信の第2要求信号を受信したとき、最大像面移動係数Kmax「K11」及び最小像面移動係数Kmin「K19」をカメラ制御部21に送信する。
一方、カメラ本体2には、上記撮影光学系からの光束L1を受光する撮像素子22が、撮影光学系の予定焦点面に設けられ、その前面にシャッター23が設けられている。撮像素子22はCCDやCMOSなどのデバイスから構成され、受光した光信号を電気信号に変換してカメラ制御部21に送出する。カメラ制御部21に送出された撮影画像情報は、逐次、液晶駆動回路25に送出されて観察光学系の電子ビューファインダ(EVF)26に表示されるとともに、操作部28に備えられたレリーズボタン(不図示)が全押しされた場合には、その撮影画像情報が、記録媒体であるカメラメモリ24に記録される。なお、カメラメモリ24は着脱可能なカード型メモリや内蔵型メモリの何れをも用いることができる。撮像素子22の構造の詳細は後述する。
カメラ本体2には、撮像素子22で撮像される像を観察するための観察光学系が設けられている。本実施形態の観察光学系は、液晶表示素子からなる電子ビューファインダ(EVF)26と、これを駆動する液晶駆動回路25と、接眼レンズ27とを備えている。液晶駆動回路25は、撮像素子22で撮像され、カメラ制御部21へ送出された撮影画像情報を読み込み、これに基づいて電子ビューファインダ26を駆動する。これにより、撮影者は、接眼レンズ27を通して現在の撮影画像を観察することができる。なお、光軸L2による上記観察光学系に代えて、または、これに加えて、液晶ディスプレイをカメラ本体2の背面等に設け、この液晶ディスプレイに撮影画像を表示させることもできる。
カメラ本体2には、カメラ制御部21が設けられている。カメラ制御部21は、レンズ送受信部38及びカメラ送受信部29を介してレンズ制御部36と電気的に接続され、上述したように、数十ミリ秒〜数百ミリ秒間隔で、レンズ制御部36に定常通信の第1要求信号を送信し現在位置像面移動係数Kcur等のレンズ情報を受信する。また、カメラ制御部21は、レンズ制御部36に開口径の調節などを行うための指令を送信する。
さらに、カメラ制御部21は、上述したように撮像素子22から画素出力を読み出すとともに、読み出した画素出力について、必要に応じて所定の情報処理を施すことにより画像情報を生成し、生成した画像情報を、電子ビューファインダ26の液晶駆動回路25やメモリ24に出力する。また、カメラ制御部21は、撮像素子22からの画像情報の補正やレンズ鏡筒3の焦点調節状態、絞り調節状態などを検出するなど、カメラ1全体の制御を司る。
また、カメラ制御部21は、上記に加えて、撮像素子22から読み出した画素データに基づき、位相検出方式による撮影光学系の焦点調節状態の検出、およびコントラスト検出方式による撮影光学系の焦点調節状態の検出を行う。なお、具体的な焦点調節状態の検出方法については、後述する。
操作部28は、シャッターレリーズボタンや、動画撮影開始スイッチなどの撮影者がカメラ1の各種動作モードを設定するための入力スイッチであり、オートフォーカスモード/マニュアルフォーカスモードの切換や、静止画撮影モード/動画撮影モードの切換が行えるようになっている。この操作部28により設定された各種モードはカメラ制御部21へ送出され、当該カメラ制御部21によりカメラ1全体の動作が制御される。また、シャッターレリーズボタンは、ボタンの半押しでONとなる第1スイッチSW1と、ボタンの全押しでONとなる第2スイッチSW2とを含む。
次に、本実施形態に係る撮像素子22について説明する。
図2は、撮像素子22の撮像面を示す正面図、図3は、図2のIII部分を拡大して焦点検出画素222a,222bの配列を模式的に示す正面図である。
本実施形態の撮像素子22は、図3に示すように、複数の撮像画素221が、撮像面の平面上に二次元的に配列され、緑色の波長領域を透過するカラーフィルタを有する緑画素Gと、赤色の波長領域を透過するカラーフィルタを有する赤画素Rと、青色の波長領域を透過するカラーフィルタを有する青画素Bがいわゆるベイヤー配列(Bayer Arrangement)されたものである。すなわち、隣接する4つの画素群223(稠密正方格子配列)において一方の対角線上に2つの緑画素が配列され、他方の対角線上に赤画素と青画素が1つずつ配列されている。このベイヤー配列された画素群223を単位として、当該画素群223を撮像素子22の撮像面に二次元状に繰り返し配列することで撮像素子22が構成されている。
なお、単位画素群223の配列は、図示する稠密正方格子以外にも、たとえば稠密六方格子配列にすることもできる。また、カラーフィルタの構成や配列はこれに限定されることはなく、補色フィルタ(緑:G、イエロー:Ye、マゼンタ:Mg,シアン:Cy)の配列を採用することもできる。
図4(A)は、撮像画素221の一つを拡大して示す正面図、図4(D)は断面図である。一つの撮像画素221は、マイクロレンズ2211と、光電変換部2212と、図示しないカラーフィルタから構成され、図4(D)の断面図に示すように、撮像素子22の半導体回路基板2213の表面に光電変換部2212が造り込まれ、その表面にマイクロレンズ2211が形成されている。光電変換部2212は、マイクロレンズ2211により撮影光学系の射出瞳(たとえばF1.0)を通過する撮像光束を受光する形状とされ、撮像光束を受光する。
また、撮像素子22の撮像面の中心、ならびに中心から左右対称位置の3箇所には、上述した撮像画素221に代えて焦点検出画素222a,222bが配列された焦点検出画素列22a,22b,22cが設けられている。そして、図3に示すように、一つの焦点検出画素列は、複数の焦点検出画素222aおよび222bが、互いに隣接して交互に、横一列(22a,22c,22c)に配列されて構成されている。本実施形態においては、焦点検出画素222aおよび222bは、ベイヤー配列された撮像画素221の緑画素Gと青画素Bとの位置にギャップを設けることなく密に配列されている。
なお、図2に示す焦点検出画素列22a〜22cの位置は図示する位置にのみ限定されず、何れか一箇所、二箇所にすることもでき、また、四箇所以上の位置に配置することもできる。また、実際の焦点検出に際しては、複数配置された焦点検出画素列22a〜22cの中から、撮影者が操作部28を手動操作することにより所望の焦点検出画素列を、焦点検出エリアとして選択することもできる。
図4(B)は、焦点検出画素222aの一つを拡大して示す正面図、図4(E)は、焦点検出画素222aの断面図である。また、図4(C)は、焦点検出画素222bの一つを拡大して示す正面図、図4(F)は、焦点検出画素222bの断面図である。焦点検出画素222aは、図4(B)に示すように、マイクロレンズ2221aと、半円形状の光電変換部2222aとから構成され、図4(E)の断面図に示すように、撮像素子22の半導体回路基板2213の表面に光電変換部2222aが造り込まれ、その表面にマイクロレンズ2221aが形成されている。また、焦点検出画素222bは、図4(C)に示すように、マイクロレンズ2221bと、光電変換部2222bとから構成され、図4(F)の断面図に示すように、撮像素子22の半導体回路基板2213の表面に光電変換部2222bが造り込まれ、その表面にマイクロレンズ2221bが形成されている。そして、これら焦点検出画素222aおよび222bは、図3に示すように、互いに隣接して交互に、横一列に配列されることにより、図2に示す焦点検出画素列22a〜22cを構成する。
なお、焦点検出画素222a,222bの光電変換部2222a,2222bは、マイクロレンズ2221a,2221bにより撮影光学系の射出瞳の所定の領域(たとえばF2.8)を通過する光束を受光するような形状とされる。また、焦点検出画素222a,222bにはカラーフィルタは設けられておらず、その分光特性は、光電変換を行うフォトダイオードの分光特性と、図示しない赤外カットフィルタの分光特性を総合したものとなっている。ただし、撮像画素221と同じカラーフィルタのうちの一つ、たとえば緑フィルタを備えるように構成することもできる。
また、図4(B)、図4(C)に示す焦点検出画素222a,222bの光電変換部2222a,2222bは半円形状としたが、光電変換部2222a,2222bの形状はこれに限定されず、他の形状、たとえば、楕円形状、矩形状、多角形状とすることもできる。
ここで、上述した焦点検出画素222a,222bの画素出力に基づいて撮影光学系の焦点調節状態を検出する、いわゆる位相差検出方式について説明する。
図5は、図3のV-V線に沿う断面図であり、撮影光軸L1近傍に配置され、互いに隣接する焦点検出画素222a−1,222b−1,222a−2,222b−2が、射出瞳350の測距瞳351,352から照射される光束AB1−1,AB2−1,AB1−2,AB2−2をそれぞれ受光していることを示している。なお、図5においては、複数の焦点検出画素222a,222bのうち、撮影光軸L1近傍に位置するもののみを例示して示したが、図5に示す焦点検出画素以外のその他の焦点検出画素についても、同様に、一対の測距瞳351,352から照射される光束をそれぞれ受光するように構成されている。
ここで、射出瞳350とは、撮影光学系の予定焦点面に配置された焦点検出画素222a,222bのマイクロレンズ2221a,2221bの前方の距離Dの位置に設定された像である。距離Dは、マイクロレンズの曲率、屈折率、マイクロレンズと光電変換部との距離などに応じて一義的に決まる値であって、この距離Dを測距瞳距離と称する。また、測距瞳351,352とは、焦点検出画素222a,222bのマイクロレンズ2221a,2221bにより、それぞれ投影された光電変換部2222a,2222bの像をいう。
なお、図5において焦点検出画素222a−1,222b−1,222a−2,222b−2の配列方向は一対の測距瞳351,352の並び方向と一致している。
また、図5に示すように、焦点検出画素222a−1,222b−1,222a−2,222b−2のマイクロレンズ2221a−1,2221b−1,2221a−2,2221b−2は、撮影光学系の予定焦点面近傍に配置されている。そして、マイクロレンズ2221a−1,2221b−1,2221a−2,2221b−2の背後に配置された各光電変換部2222a−1,2222b−1,2222a−2,2222b−2の形状が、各マイクロレンズ2221a−1,2221b−1,2221a−2,2221b−2から測距距離Dだけ離れた射出瞳350上に投影され、その投影形状は測距瞳351,352を形成する。
すなわち、測距距離Dにある射出瞳350上で、各焦点検出画素の光電変換部の投影形状(測距瞳351,352)が一致するように、各焦点検出画素におけるマイクロレンズと光電変換部の相対的位置関係が定められ、それにより各焦点検出画素における光電変換部の投影方向が決定されている。
図5に示すように、焦点検出画素222a−1の光電変換部2222a−1は、測距瞳351を通過し、マイクロレンズ2221a−1に向う光束AB1−1によりマイクロレンズ2221a−1上に形成される像の強度に対応した信号を出力する。同様に、焦点検出画素222a−2の光電変換部2222a−2は測距瞳351を通過し、マイクロレンズ2221a−2に向う光束AB1−2によりマイクロレンズ2221a−2上に形成される像の強度に対応した信号を出力する。
また、焦点検出画素222b−1の光電変換部2222b−1は測距瞳352を通過し、マイクロレンズ2221b−1に向う光束AB2−1によりマイクロレンズ2221b−1上に形成される像の強度に対応した信号を出力する。同様に、焦点検出画素222b−2の光電変換部2222b−2は測距瞳352を通過し、マイクロレンズ2221b−2に向う光束AB2−2によりマイクロレンズ2221b−2上に形成される像の強度に対応した信号を出力する。
そして、上述した2種類の焦点検出画素222a,222bを、図3に示すように直線状に複数配置し、各焦点検出画素222a,222bの光電変換部2222a,2222bの出力を、測距瞳351と測距瞳352とのそれぞれに対応した出力グループにまとめることにより、測距瞳351と測距瞳352とのそれぞれを通過する焦点検出光束が焦点検出画素列上に形成する一対の像の強度分布に関するデータが得られる。そして、この強度分布データに対し、相関演算処理または位相差検出処理などの像ズレ検出演算処理を施すことにより、いわゆる位相差検出方式による像ズレ量を検出することができる。
そして、得られた像ズレ量に一対の測距瞳の重心間隔に応じた変換演算を施すことにより、予定焦点面に対する現在の焦点面(予定焦点面上のマイクロレンズアレイの位置に対応した焦点検出エリアにおける焦点面をいう。)の偏差、すなわちデフォーカス量を求めることができる。
なお、これら位相差検出方式による像ズレ量の演算と、これに基づくデフォーカス量の演算は、カメラ制御部21により実行される。
また、カメラ制御部21は、撮像素子22の撮像画素221の出力を読み出し、読み出した画素出力に基づき、焦点評価値の演算を行う。この焦点評価値は、たとえば撮像素子22の撮像画素221からの画像出力の高周波成分を、高周波透過フィルタを用いて抽出することで求めることができる。また、遮断周波数が異なる2つの高周波透過フィルタを用いて高周波成分を抽出することでも求めることができる。
そして、カメラ制御部21は、レンズ制御部36に駆動信号を送出してフォーカスレンズ33を所定のサンプリング間隔(距離)で駆動させ、それぞれの位置における焦点評価値を求め、該焦点評価値が最大となるフォーカスレンズ33の位置を合焦位置として求める、コントラスト検出方式による焦点検出を実行する。なお、この合焦位置は、たとえば、フォーカスレンズ33を駆動させながら焦点評価値を算出した場合に、焦点評価値が、2回上昇した後、さらに、2回下降して推移した場合に、これらの焦点評価値を用いて、内挿法などの演算を行うことで求めることができる。
次いで、図7を参照して、本実施形態に係るカメラ1の動作例を説明する。図7は、本実施形態に係るカメラ1の動作を示すフローチャートである。なお、以下の動作は、カメラ1の電源がオンされることにより開始される。
まず、ステップS101では、カメラ制御部21により、位相差検出方式によるデフォーカス量の算出が開始される。本実施形態では、位相差検出方式によるデフォーカス量の算出処理は、次のように行なわれる。すなわち、まず、カメラ制御部21により、撮像素子22の3つの焦点検出画素列22a〜22cを構成する各焦点検出画素222a,222bから一対の像に対応した一対の像データの読み出しが行なわれる。この場合、使用者の手動操作により、特定の焦点検出位置が選択されているときは、その焦点検出位置に対応する焦点検出画素からのデータのみを読み出すような構成としてもよい。そして、カメラ制御部21は、読み出された一対の像データに基づいて像ズレ検出演算処理(相関演算処理)を実行し、3つの焦点検出画素列22a〜22cに対応する焦点検出位置における像ズレ量を演算し、さらに像ズレ量をデフォーカス量に変換する。また、カメラ制御部21は、算出したデフォーカス量の信頼性の評価を行う。なお、デフォーカス量の信頼性の評価は、たとえば、一対の像データの一致度やコントラストなどに基づいて行なわれる。そして、このような位相差検出方式によるデフォーカス量の算出処理は、所定の間隔で繰り返し実行される。
ステップS102では、カメラ制御部21により、コントラスト検出方式による焦点評価値の算出処理が開始される。本実施形態では、焦点評価値の算出処理は、撮像素子22の撮像画素221の画素出力を読み出し、読み出した画素出力の高周波成分を、高周波透過フィルタを用いて抽出し、これを積算することにより行われる。また、撮影者の手動操作により特定の焦点検出位置が選択されているときには、選択された焦点検出位置に対応する撮像画素221の画素出力のみを読み出して、焦点評価値を算出するような構成としてもよい。なお、焦点評価値の算出処理は、所定の間隔で繰り返し実行される。
また、本実施形態では、ステップS101において、位相差検出方式によるデフォーカス量の算出が開始されたタイミング、または、コントラスト検出方式による焦点評価値の算出処理が開始されたタイミング、あるいは、これらが開始された後に、カメラ制御部21とレンズ制御部36との間での定常通信が開始され、ズームレンズ32の現在のレンズ位置およびフォーカスレンズ33の現在のレンズ位置に対応する現在位置像面移動係数Kcurを含むレンズ情報を、レンズ制御部36からカメラ制御部21に送信する処理が、所定の間隔で繰り返し実行される。
ステップS103では、カメラ制御部21により、操作部28に備えられたシャッターレリーズボタンの半押し(第1スイッチSW1のオン)がされたか否かの判断が行なわれる。第1スイッチSW1がオンした場合は、ステップS104に進み、一方、第1スイッチSW1がオンしていない場合は、ステップS103で待機し、第1スイッチSW1がオンされるまで、デフォーカス量の算出および焦点評価値の算出、さらには定常通信によるレンズ情報の取得が繰り返し行われる。
ステップS104において、カメラ制御部21は、非定常通信の第2要求信号を送信し、レンズ制御部36は、カメラ制御部21から非定常通信の第2要求信号を受信した後、レンズメモリ37に記憶されているテーブル(図6参照)を参照して、ズームレンズ32の現在のレンズ位置に対応する最大像面移動係数Kmax及び最小像面移動係数Kminを、カメラ制御部21に送信する。そして、カメラ制御部21は、最大像面移動係数Kmax及び最小像面移動係数Kminを受信する。
ステップS105では、カメラ制御部21により、位相差検出方式により、デフォーカス量が算出できたか否かの判定が行なわれる。デフォーカス量が算出できた場合には、ステップS111に進み、一方、デフォーカス量が算出できなかった場合には、ステップS106に進む。なお、本実施形態においては、デフォーカス量の算出ができた場合でも、算出されたデフォーカス量の信頼性が低い場合には、デフォーカス量が算出できなかったものとして扱い、ステップS106に進むこととする。本実施形態においては、たとえば、被写体のコントラストが低い場合、被写体が超低輝度被写体である場合、あるいは、被写体が超高輝度被写体である場合などにおいて、デフォーカス量の信頼性が低いと判断される。
なお、ステップS105においては、直近の一回のデフォーカス量算出処理の結果を用いて、上記判定を行なうが、直近の所定回数のデフォーカス量算出処理において、連続して、デフォーカス量が算出できなかった場合、あるいは、連続して、デフォーカス量の信頼性が低かった場合に、測距不能と判断して、ステップS106に進み、逆に、直近の所定回数のデフォーカス量算出処理において、一度でもデフォーカス量が算出された場合には、測距可能と判断して、ステップS111に進むような構成としてもよい。
ステップS105において、デフォーカス量が算出できたと判定され、測距可能と判断された場合には、ステップS111に進み、位相差検出方式により算出されたデフォーカス量に基づく合焦駆動が行なわれる。具体的には、カメラ制御部21により、位相差検出方式により算出されたデフォーカス量から、フォーカスレンズ33を合焦位置まで駆動させるのに必要となるレンズ駆動量の算出が行なわれ、算出されたレンズ駆動量が、レンズ制御部36を介して、フォーカスレンズ駆動モータ331に送出される。そして、フォーカスレンズ駆動モータ331は、カメラ制御部21により算出されたレンズ駆動量に基づいて、フォーカスレンズ33を合焦位置まで駆動させる。
なお、本実施形態においては、フォーカスレンズ駆動モータ331を駆動させ、フォーカスレンズ33を合焦位置まで駆動させている間においても、カメラ制御部21は、位相差検出方式によるデフォーカス量の算出を繰り返し行い、その結果、新たなデフォーカス量が算出された場合には、カメラ制御部21は、新たなデフォーカス量に基づいて、フォーカスレンズ33を駆動させる。
そして、ステップS106では、カメラ制御部21により、ステップS104で取得した最大像面移動係数Kmaxに基づいて、スキャン動作におけるフォーカスレンズ33の駆動速度である、スキャン駆動速度Vを決定する処理が行われる。ここで、スキャン動作とは、フォーカスレンズ駆動モータ331により、フォーカスレンズ33を、このステップS106で決定するスキャン駆動速度Vで駆動させながら、カメラ制御部21により、位相差検出方式によるデフォーカス量の算出、およびコントラスト検出方式による焦点評価値の算出を、所定の間隔で同時に行い、これにより、位相差検出方式による合焦位置の検出と、コントラスト検出方式による合焦位置の検出とを、所定の間隔で、同時に並行して実行する動作である。
また、このスキャン動作において、コントラスト検出方式により合焦位置を検出する場合、カメラ制御部21は、フォーカスレンズ33をスキャン駆動させながら、所定のサンプリング間隔で、焦点評価値を算出し、算出した焦点評価値がピークとなるレンズ位置を、合焦位置として検出する。具体的には、カメラ制御部21は、フォーカスレンズ33をスキャン駆動させることで、光学系による像面を光軸方向に移動させ、これにより、異なる像面において焦点評価値を算出し、これら焦点評価値がピークとなるレンズ位置を、合焦位置として検出する。しかしその一方で、像面の移動速度を速くし過ぎると、焦点評価値を算出する像面の間隔が大きくなり過ぎてしまい、合焦位置を適切に検出することができなくなってしまう場合がある。特に、フォーカスレンズ33の駆動量に対する像面の移動量を示す像面移動係数Kは、フォーカスレンズ33の光軸方向におけるレンズ位置に応じて変化するものであるため、フォーカスレンズ33を一定の速度で駆動させた場合でも、フォーカスレンズ33のレンズ位置によっては、像面の移動速度が速くなり過ぎてしまい、そのため、焦点評価値を算出する像面の間隔が大きくなり過ぎて、合焦位置を適切に検出することができなくなってしまう場合がある。
そこで、本実施形態において、カメラ制御部21は、ステップS106で取得した最大像面移動係数Kmaxに基づいて、フォーカスレンズ33のスキャン駆動を行う際におけるスキャン駆動速度Vを算出する。カメラ制御部21は、最大像面移動係数Kmaxを用いて、コントラスト検出方式により合焦位置を適切に検出することができるような駆動速度であり、かつ、最大の駆動速度となるようにスキャン駆動速度Vを算出する。
そして、ステップS107では、ステップS106で決定したスキャン駆動速度Vで、スキャン動作が開始される。具体的には、カメラ制御部21は、レンズ制御部36にスキャン駆動開始指令を送出し、レンズ制御部36は、カメラ制御部21からの指令に基づき、フォーカスレンズ駆動モータ331を駆動させ、フォーカスレンズ33を、ステップS106で決定したスキャン駆動速度Vでスキャン駆動させる。そして、カメラ制御部21は、スキャン駆動速度Vでフォーカスレンズ33を駆動させながら、所定間隔で、撮像素子22の焦点検出画素222a,222bから一対の像に対応した一対の像データの読み出しを行い、これに基づき、位相差検出方式により、デフォーカス量の算出および算出されたデフォーカス量の信頼性の評価を行うとともに、スキャン駆動速度Vでフォーカスレンズ33を駆動させながら、所定間隔で、撮像素子22の撮像画素221から画素出力の読み出しを行い、これに基づき、焦点評価値を算出し、これにより、異なるフォーカスレンズ位置における焦点評価値を取得することで、コントラスト検出方式により合焦位置の検出を行う。
そして、ステップS108では、カメラ制御部21により、スキャン動作を行なった結果、位相差検出方式により、デフォーカス量が算出できたか否かの判定が行なわれる。デフォーカス量が算出できた場合には、測距可能と判断して、ステップS111に進み、一方、デフォーカス量が算出できなかった場合には、測距不能と判断して、ステップS109に進む。なお、ステップS108においても、ステップS105と同様に、デフォーカス量の算出ができた場合でも、算出されたデフォーカス量の信頼性が低い場合には、デフォーカス量が算出できなかったものとして扱い、ステップS109に進むこととする。
ステップS109では、カメラ制御部21により、スキャン動作を行なった結果、コントラスト検出方式により、合焦位置の検出ができたか否かの判定が行なわれる。コントラスト検出方式により、合焦位置の検出ができた場合には、ステップS112に進み、一方、合焦位置の検出ができなかった場合には、ステップS110に進む。
ステップS110では、カメラ制御部21により、スキャン動作を、フォーカスレンズ33の駆動可能範囲の全域について行なったか否かの判定が行なわれる。フォーカスレンズ33の駆動可能範囲の全域について、スキャン動作を行なっていない場合には、ステップS108に戻り、ステップS108〜S110を繰り返すことにより、スキャン動作、すなわち、フォーカスレンズ33をスキャン駆動させながら、位相差検出方式によるデフォーカス量の算出、およびコントラスト検出方式による合焦位置の検出を、所定の間隔で同時に実行する動作を継続して行なう。一方、フォーカスレンズ33の駆動可能範囲の全域について、スキャン動作の実行を完了している場合には、ステップS113に進む。
そして、スキャン動作を実行した結果、ステップS108において、位相差検出方式により、デフォーカス量が算出できたと判定された場合には、スキャン動作の停止処理が行なわれた後、ステップS111に進み、上記のように、位相差検出方式により検出された合焦位置まで、フォーカスレンズ33を駆動させる合焦駆動が行なわれる。
また、スキャン動作を実行した結果、ステップS109において、コントラスト検出方式により、合焦位置が検出できたと判定された場合には、スキャン動作の停止処理が行なわれた後、ステップS112に進み、カメラ制御部21により、コントラスト検出方式により検出された合焦位置まで、フォーカスレンズ33を駆動させる合焦駆動が行なわれる。
そして、フォーカスレンズ33を、位相差検出方式により検出された合焦位置あるいは、コントラスト検出方式により検出された合焦位置まで駆動させ、フォーカスレンズ33の駆動が完了した場合には、電子ビューファインダ26を介して合焦表示が行われる。
一方、ステップS110において、フォーカスレンズ33の駆動可能範囲の全域について、スキャン動作の実行が完了していると判定された場合には、ステップS113に進む。ステップS113では、スキャン動作を行なった結果、コントラスト検出方式により、焦点検出を行うことができなかったため、スキャン動作の終了処理が行なわれ、その後、合焦不能表示が行なわれる。なお、合焦不能表示は、たとえば、電子ビューファインダ26により行われる。
以上のように、本実施形態では、フォーカスレンズ33のレンズ位置ごとに記憶された複数の像面移動係数Kのうち、最大の像面移動係数である最大像面移動係数Kmaxを、レンズ制御部36から取得する。カメラ制御部21は、最大像面移動係数Kmaxを用いて、コントラスト検出方式により合焦位置を適切に検出することができるような駆動速度であり、かつ、最大の駆動速度となるようにスキャン駆動速度Vを算出するので、像面移動係数Kが最大値(例えば、最大像面移動係数Kmaxと同一の値)となる位置にフォーカスレンズ33をスキャン駆動させた場合でも、焦点評価値の算出間隔(焦点評価値を算出する像面の間隔)が焦点検出に適した大きさとなる。
これにより、本実施形態では、フォーカスレンズ33を光軸方向に駆動させた際に、像面移動係数Kが変化していった結果、像面移動係数Kが大きくなった場合(例えば、最大像面移動係数Kmaxとなった場合)でも、コントラスト検出方式による合焦位置の検出を適切に行うことができる。
なお、上述した実施形態では、フォーカスレンズ33のレンズ位置ごとに記憶された複数の像面移動係数Kのうち、最大の像面移動係数である最大像面移動係数Kmaxを、レンズ鏡筒3から取得し、フォーカスレンズ33を駆動させる際の像面移動係数Kが、取得した最大像面移動係数Kmaxとである場合でも、コントラスト検出方式により焦点検出を適切に行うことができるフォーカスレンズ33の最大の駆動速度を、スキャン速度Vとして、スキャン動作を行う構成を例示したが、この構成に限定されるものではなく、たとえば、以下のような構成とすることができる。
すなわち、フォーカスレンズ33の現在のレンズ位置よりも至近側の第1位置に対応する第1像面移動係数K1、および、フォーカスレンズ33の現在のレンズ位置よりも無限遠側の第2位置に対応する第2像面移動係数K2のうち、大きい方を所定像面移動係数Kpreとしてレンズ鏡筒3から取得する。そして、この場合において、スキャン動作を行う際に、フォーカスレンズ33を駆動させる際の像面移動係数Kが、所定像面移動係数Kpreである場合でも、コントラスト検出方式により焦点検出を適切に行うことができるフォーカスレンズ33の最大の駆動速度を、スキャン速度Vとして、スキャン動作を行う構成としてもよい。
あるいは、フォーカスレンズ33の所定のレンズ位置に対応する所定像面移動係数Kpreが、フォーカスレンズ33の現在のレンズ位置における像面移動係数Kcurよりも大きい場合に、所定像面移動係数Kpreをレンズ鏡筒3から取得する。そして、この場合において、スキャン動作を行う際に、フォーカスレンズ33を駆動させる際の像面移動係数Kが、取得した所定像面移動係数Kpreである場合でも、コントラスト検出方式により焦点検出を適切に行うことができるフォーカスレンズ33の最大の駆動速度を、スキャン速度Vとして、スキャン動作を行う構成としてもよい。
また、上述した実施形態に係る動作を、たとえば、レンズ鏡筒3として、高倍率ズームレンズを用いた場合にのみ実行するような構成としてもよい。高倍率ズームレンズでは、像面移動係数が大きくなる傾向があるため、従来と比べて、コントラスト検出方式による合焦位置の検出精度をより高めることができる。
《第2実施形態》
次いで、本発明の第2実施形態について説明する。第2実施形態では、図1に示すカメラ1において、以下に説明するように動作する以外は、上述した第1実施形態と同様の構成を有するものである。
すなわち、第2実施形態においては、上述した第1実施形態において、図7に示すフローチャートにおいて、ステップS109で、コントラスト検出方式により合焦位置が検出できた際に、ステップS112において、コントラスト検出方式の結果に基づいて合焦駆動を行う際における、ガタ詰め駆動を行うか否かを判断し、該判断に基づいて、合焦駆動を行う際におけるフォーカスレンズ33の駆動形式を異ならせることを特徴とするものであり、この点において、上述した第1実施形態と異なる以外は、同様である。
すなわち、図1に示すフォーカスレンズ33を駆動するためのフォーカスレンズ駆動モータ331は、通常、機械的な駆動伝達機構から構成され、このような駆動伝達機構は、たとえば、図8に示すように、第1の駆動機構500および第2の駆動機構600からなり、第1の駆動機構500が駆動することにより、これに伴い、フォーカスレンズ33側の第2の駆動機構600を駆動させ、これにより、フォーカスレンズ33を、至近側あるいは無限遠側に移動させるような構成を備えている。そして、このような駆動機構においては、通常、歯車の噛み合わせ部の円滑な動作の観点より、ガタ量Gが設けられている。しかしその一方で、コントラスト検出方式においては、その機構上、図9の(A)、(B)に示すように、フォーカスレンズ33は、スキャン動作により、一度、合焦位置を通り過ぎた後に、駆動方向を反転させ、合焦位置へと駆動させる必要がある。そして、この場合において、図9の(B)のようにガタ詰め駆動をしない場合には、フォーカスレンズ33のレンズ位置が、ガタ量Gだけ合焦位置からずれてしまうという特性がある。そのため、このようなガタ量Gの影響を除去するためには、図9の(A)に示すように、フォーカスレンズ33の合焦駆動を行う際に、一度、合焦位置を通り過ぎた後に、再度、駆動方向を反転させて合焦位置へと駆動させるガタ詰め駆動を行う必要が生じてくる。
なお、図9は、本実施形態に係るスキャン動作およびコントラスト検出方式に基づく合焦駆動を行った際における、フォーカスレンズ位置と焦点評価値との関係、およびフォーカスレンズ位置と時間との関係を示す図である。そして、図9の(A)は、時間t0において、レンズ位置P0から、無限遠側から至近側に向けてフォーカスレンズ33のスキャン動作を開始した後、時間t1において、フォーカスレンズ33がレンズ位置P1に移動させた時点において、焦点評価値のピーク位置(合焦位置)P2が検出されると、スキャン動作を停止し、ガタ詰め駆動を伴った合焦駆動を行うことで、時間t2において、合焦位置までフォーカスレンズ33を駆動させる態様を示している。一方、図9の(B)は、同様に、時間t0において、スキャン動作を開始した後、時間t1において、スキャン動作を停止し、ガタ詰め駆動を伴わずに合焦駆動を行うことで、時間t3において、合焦位置までフォーカスレンズ33を駆動させる態様を示している。
以下に、第2実施形態における動作例を、図10に示すフローチャートにしたがって、説明する。なお、以下の動作は、上述した図7に示すフローチャートにおいて、ステップS109において、コントラスト検出方式により合焦位置が検出された際に、実行される。すなわち、図9の(A)、(B)に示すように、時間t0からスキャン動作を開始し、時間t1において、フォーカスレンズ33がレンズ位置P1に移動させた時点において、焦点評価値のピーク位置(合焦位置)P2が検出された場合に、時間t1の時点において実行される。
すなわち、コントラスト検出方式により合焦位置が検出されると、まず、ステップS201において、カメラ制御部21により、ズームレンズ32の現在のレンズ位置およびフォーカスレンズ33の現在のレンズ位置における、現在位置像面移動係数Kcurの取得が行われる。たとえば、図9の(A)、(B)を例示して説明すると、現在位置像面移動係数Kcurとしては、時間t0におけるレンズ位置P1に対応する現在位置像面移動係数Kが取得されることとなる。なお、現在位置像面移動係数Kcurは、上述したカメラ制御部21とレンズ制御部36との間で行われている定常通信により、レンズ送受信部38およびカメラ送受信部21を介して、レンズ制御部36から取得することができる。
次いで、ステップS202では、カメラ制御部21により、フォーカスレンズ33の駆動伝達機構のガタ量G(図8参照)の情報の取得が行われる。なお、フォーカスレンズ33の駆動伝達機構のガタ量Gは、たとえば、レンズ鏡筒3に備えられたレンズメモリ37に予め記憶させておき、これを参照することにより取得することができる。すなわち、具体的には、カメラ制御部21から、カメラ送受信部29およびレンズ送受信部38を介して、レンズ制御部36に対して、フォーカスレンズ33の駆動伝達機構のガタ量Gの送信要求を送出し、レンズ制御部36に、レンズメモリ37に記憶されたフォーカスレンズ33の駆動伝達機構のガタ量Gの情報を、送信させることにより取得することができる。あるいは、上述したカメラ制御部21とレンズ制御部36との間で行われている定常通信により送受信するレンズ情報に、レンズメモリ37に記憶されたフォーカスレンズ33の駆動伝達機構のガタ量Gの情報を含めるような態様とすることもできる。
次いで、ステップS203では、カメラ制御部21により、上述したステップS201で取得した現在位置像面移動係数Kcur、および上述したステップS202で取得したフォーカスレンズ33の駆動伝達機構のガタ量Gの情報に基づいて、ガタ量Gに対応する像面移動量IGを算出する。なお、ガタ量Gに対応する像面移動量IGは、ガタ量Gと同じ量だけフォーカスレンズを駆動させた場合における像面の移動量であり、本実施形態では、以下の式(2)にしたがって算出する。
ガタ量Gに対応する像面移動量IG=ガタ量G×現在位置像面移動係数Kcur ・・・(2)
次いで、ステップS204では、カメラ制御部21により、上述したステップS203で算出したガタ量Gに対応する像面移動量IGと、所定像面移動量IPとを比較する処理が行われ、該比較の結果、ガタ量Gに対応する像面移動量IGが、所定像面移動量IP以下であるか否か、すなわち、「ガタ量Gに対応する像面移動量IG」≦「所定像面移動量IP」が成立するか否かの判定が行われる。なお、所定像面移動量IPは、光学系の焦点深度に対応して設定され、通常、焦点深度に対応する像面移動量とされる。また、所定像面移動量IPは、光学系の焦点深度に設定されるものであるため、F値や撮像素子22のセルサイズや、撮影する画像のフォーマットに応じて適宜設定するような態様とすることができる。すなわち、F値が大きいほど、所定像面移動量IPを大きく設定することができる。あるいは、撮像素子22のセルサイズが大きいほど、または、画像フォーマットが小さいほど、所定像面移動量IPを大きく設定することができる。そして、ガタ量Gに対応する像面移動量IGが、所定像面移動量IP以下である場合には、ステップS205に進む。一方、ガタ量Gに対応する像面移動量IGが、所定像面移動量IPよりも大きい場合には、ステップS206に進む。
ステップS205においては、上述したステップS204において、ガタ量Gに対応する像面移動量IGが、所定像面移動量IP以下であると判定されたため、この場合には、ガタ詰め駆動をしない場合でも、駆動後のフォーカスレンズ33のレンズ位置を、光学系の焦点深度内とすることができると判断し、合焦駆動時にガタ詰め駆動を行わないと決定し、該決定に基づき、ガタ詰め駆動を伴わずに合焦駆動を行う。すなわち、合焦駆動を行う際に、直接、合焦位置までフォーカスレンズ33を駆動させるとの決定を行い、該決定に基づき、図9の(B)に示すように、ガタ詰め駆動を伴わない合焦駆動を行う。
一方、ステップS206においては、上述したステップS204において、ガタ量Gに対応する像面移動量IGが、所定像面移動量IPより大きいと判定されたため、この場合には、ガタ詰め駆動をしないと、駆動後のフォーカスレンズ33のレンズ位置を、光学系の焦点深度内とすることができないと判断し、合焦駆動時にガタ詰め駆動を行うと決定し、該決定に基づき、ガタ詰め駆動を伴った合焦駆動を行う。すなわち、フォーカスレンズ33を駆動させ、合焦駆動を行う際に、一度、合焦位置を通過させた後、再度、反転駆動させて、合焦位置まで駆動させるとの決定を行い、該決定に基づき、図9の(A)に示すように、ガタ詰め駆動を伴った合焦駆動を行う。
第2実施形態においては、上述したように、現在位置像面移動係数Kcur、およびフォーカスレンズ33の駆動伝達機構のガタ量Gの情報に基づいて、ガタ量Gに対応する像面移動量IGを算出し、算出されたガタ量Gに対応する像面移動量IGが、光学系の焦点深度に対応する所定像面移動量IP以下であるか否かを判定することで、合焦駆動を行う際にガタ詰め駆動を実行するか否かの判定を行う。そして、該判定の結果、ガタ量Gに対応する像面移動量IGが、光学系の焦点深度に対応する所定像面移動量IP以下であり、駆動後のフォーカスレンズ33のレンズ位置を、光学系の焦点深度内とすることができる場合には、ガタ詰め駆動を行わない一方で、ガタ量Gに対応する像面移動量IGが、光学系の焦点深度に対応する所定像面移動量IPより大きく、ガタ詰め駆動を行わないと、駆動後のフォーカスレンズ33のレンズ位置を、光学系の焦点深度内とすることができない場合には、ガタ詰め駆動を行うものである。そのため、本実施形態によれば、ガタ詰め駆動が必要無い場合に、ガタ詰め駆動を行わないことにより、合焦駆動に要する時間を短縮することが可能となり、これにより、合焦動作に係る時間を短縮することができる。また、その一方で、ガタ詰め駆動が必要な場合には、ガタ詰め駆動を行うことにより、合焦精度を良好なものとすることができる。
特に、第2実施形態においては、ズームレンズ32のレンズ位置、およびフォーカスレンズ33のレンズ位置によって変動する像面移動係数Kを用いて、フォーカスレンズ33の駆動伝達機構のガタ量Gに対応する像面移動量IGを算出し、これを、光学系の焦点深度に対応する所定像面移動量IPと比較することにより、合焦時のガタ詰め駆動の要否を適切に判断することが可能となる。
《第3実施形態》
次いで、本発明の第3実施形態について説明する。第3実施形態では、図1に示すカメラ1において、以下に説明するように動作する以外は、上述した第2実施形態と同様の構成を有するものである。
すなわち、上述した第2実施形態においては、ガタ量Gに対応する像面移動量IGを算出する際に、フォーカスレンズ33のスキャン動作を終了し、反転駆動を開始する際のズームレンズ32のレンズ位置およびフォーカスレンズ33のレンズ位置に対応する現在位置像面移動係数Kcurを用いて、ガタ量Gに対応する像面移動量IGを算出する態様を例示した。これに対し、第3実施形態では、現在位置像面移動係数Kcurに代えて、ズームレンズ32の現在のレンズ位置に対応する最大像面移動係数Kmaxを用いて、ガタ量Gに対応する像面移動量IGを算出する点において、上述した第2実施形態と異なるものである。
以下に、第3実施形態における動作例を、図11に示すフローチャートにしたがって、説明する。なお、以下の動作は、上述した第2実施形態と同様に、上述した図7に示すフローチャートにおいて、ステップS109において、コントラスト検出方式により合焦位置が検出された際に、実行される。
すなわち、コントラスト検出方式により合焦位置が検出されると、まず、ステップS301において、カメラ制御部21により、ズームレンズ32の現在のレンズ位置における、最大像面移動係数Kmaxの取得が行われる。たとえば、図6に示すテーブルにおいて、ズームレンズ32のレンズ位置(焦点距離)が「f5」にある場合には、灰色で示した「K52」が、最大像面移動係数Kmaxとして取得される。
なお、本実施形態においては、カメラ制御部21による、最大像面移動係数Kmaxの取得タイミングとしては、コントラスト検出方式により合焦位置が検出され、フォーカスレンズ33の反転駆動を実行する時点とすることができるが、これに代えて、操作部28に備えられたシャッターレリーズボタンの半押し(第1スイッチSW1のオン)がされた時点、あるいは、シャッターレリーズボタンの半押しにより焦点調節動作の起動が行われた時点とすることができる。すなわち、シャッターレリーズボタンの半押しがされた時点、あるいは、シャッターレリーズボタンの半押しにより焦点調節動作の起動が行われた時点において、最大像面移動係数Kmaxを取得する場合には、これらの時点において、カメラ制御部21から、カメラ送受信部29およびレンズ送受信部38を介して、最大像面移動係数Kmaxの送信を要求する信号を送出することにより取得することができる。すなわち、この場合には、レンズ制御部36は、カメラ制御部21から最大像面移動係数Kmaxの送信を要求する信号を受信し、これに基づいて、レンズメモリ37に記憶された各レンズ位置と像面移動係数Kとの関係を示すテーブルを参照することで、最大像面移動係数Kmaxを取得し、これをレンズ送受信部38およびカメラ送受信部29を介してカメラ制御部21に送信するような構成とすることができる。
あるいは、ズームレンズ32の駆動が行われ、ズームレンズ32のレンズ位置が変動した場合には、最大像面移動係数Kmaxが異なるものとなっている場合があるため、ズームレンズ32のレンズ位置が変動した場合にも、カメラ制御部21による、最大像面移動係数Kmaxの取得を行うような構成とすることができる。
次いで、ステップS302では、上述した図10に示すステップS202と同様に、カメラ制御部21により、フォーカスレンズ33の駆動伝達機構のガタ量G(図8参照)の情報の取得が行われる。
次いで、ステップS303では、カメラ制御部21により、上述したステップS301で取得した最大像面移動係数Kmax、および上述したステップS302で取得したフォーカスレンズ33の駆動伝達機構のガタ量Gの情報に基づいて、ガタ量Gに対応する像面移動量IGを算出する。なお、ガタ量Gに対応する像面移動量IGは、ガタ量Gと同じ量だけフォーカスレンズを駆動させた場合における像面の移動量であり、本実施形態では、以下の式(3)にしたがって算出する。
ガタ量Gに対応する像面移動量IG=ガタ量G×最大像面移動係数Kmax ・・・(3)
次いで、ステップS304では、上述した図10に示すステップS204と同様に、カメラ制御部21により、上述したステップS303で算出したガタ量Gに対応する像面移動量IGと、所定像面移動量IPとを比較する処理が行われ、該比較の結果、ガタ量Gに対応する像面移動量IGが、所定像面移動量IP以下であるか否か、すなわち、「ガタ量Gに対応する像面移動量IG」≦「所定像面移動量IP」が成立するか否かの判定が行われる。なお、所定像面移動量IPは、上述した第2実施形態と同様とすることができる。
そして、ステップS305においては、上述したステップS304において、ガタ量Gに対応する像面移動量IGが、所定像面移動量IP以下であると判定されたため、この場合には、上述した図10に示すステップS205と同様に、ガタ詰め駆動をしない場合でも、駆動後のフォーカスレンズ33のレンズ位置を、光学系の焦点深度内とすることができると判断し、合焦駆動時にガタ詰め駆動を行わないと決定し、該決定に基づき、ガタ詰め駆動を伴わずに合焦駆動を行う。
一方、ステップS306においては、上述したステップS304において、ガタ量Gに対応する像面移動量IGが、所定像面移動量IPより大きいと判定されたため、この場合には、上述した図10に示すステップS206と同様に、ガタ詰め駆動をしないと、駆動後のフォーカスレンズ33のレンズ位置を、光学系の焦点深度内とすることができないと判断し、合焦駆動時にガタ詰め駆動を行うと決定し、該決定に基づき、ガタ詰め駆動を伴った合焦駆動を行う。
第3実施形態によれば、上述した第2実施形態による効果に加えて、以下の効果を奏することができる。
すなわち、第3実施形態によれば、フォーカスレンズ33の駆動伝達機構のガタ量Gに対応する像面移動量IGを算出する際に、ズームレンズ32のレンズ位置ごとに設定される最大像面移動係数Kmaxを用いるものであるため、フォーカスレンズ33のレンズ位置によらず、合焦時のガタ詰め駆動の要否を判断することができるため、フォーカスレンズ33のレンズ位置によっては、実際にはガタ詰め駆動が必要な場合でも、ガタ詰め駆動が不要であると判断してしまうとういう結果となってしまうことを有効に防止することができる。特に、ズームレンズ32のレンズ位置が同じ場合でも、フォーカスレンズ33のレンズ位置が変化すると、像面移動係数Kも大きく変化するような特性を有するレンズ鏡筒の場合には、実際にはガタ詰め駆動が必要な場合でも、ガタ詰め駆動が不要であると判断してしまう可能性が高く、そのため、このような場合に特に有効である。
なお、このようにレンズ鏡筒の種類によっては、その構成上、フォーカスレンズ33のレンズ位置の変化に対する像面移動係数Kの変化の割合が異なることが考えられる。そのため、たとえば、カメラ本体2にレンズ鏡筒3を装着した際に、フォーカスレンズ33のレンズ位置の変化に対する像面移動係数Kの変化の割合が、所定の閾値以上であるか否かを判定し、所定の閾値以上である場合には、第3実施形態のように、最大像面移動係数Kmaxを用いる一方で、所定の閾値未満である場合には、第2実施形態のように、現在位置像面移動係数Kcurを用いることで、これらを適宜切り替えるような構成としてもよい。
《第4実施形態》
次いで、本発明の第4実施形態について説明する。第4実施形態では、図1に示すカメラ1において、以下に説明するように動作する以外は、上述した第2実施形態と同様の構成を有するものである。
すなわち、上述した第2実施形態においては、ガタ量Gに対応する像面移動量IGを算出する際に、フォーカスレンズ33のスキャン動作を終了し、反転駆動を開始する際のズームレンズ32のレンズ位置およびフォーカスレンズ33のレンズ位置に対応する現在位置像面移動係数Kcurを用いて、ガタ量Gに対応する像面移動量IGを算出する態様を例示した。これに対し、第4実施形態では、現在位置像面移動係数Kcurに代えて、フォーカスレンズ33が合焦位置近傍に位置する場合におけるレンズ位置に対応する像面移動係数Kを、合焦近傍像面移動係数Kfouとして取得し、これを用いて、ガタ量Gに対応する像面移動量IGを算出する点において、上述した第2実施形態と異なるものである。
以下に、第4実施形態における動作例を、図12に示すフローチャートにしたがって、説明する。なお、以下の動作は、上述した第2実施形態と同様に、上述した図7に示すフローチャートにおいて、ステップS109において、コントラスト検出方式により合焦位置が検出された際に、実行される。
すなわち、コントラスト検出方式により合焦位置が検出されると、まず、ステップS401において、カメラ制御部21により、フォーカスレンズ33が合焦位置近傍に位置する場合におけるレンズ位置に対応する像面移動係数Kを、合焦近傍像面移動係数Kfouとして取得する処理が行われる。なお、合焦近傍像面移動係数Kfouの取得方法としては、たとえば、以下の通りとすることができる。すなわち、フォーカスレンズ33のスキャン駆動を実行している際に、カメラ制御部21とレンズ鏡筒36との間における定常通信により取得された、現在のレンズ位置に対応する像面移動係数Kを、フォーカスレンズ33のレンズ位置の情報とともに、逐次、カメラ制御部21に記憶させておく。そして、合焦位置が検出された際に、フォーカスレンズ33が合焦位置近傍に位置していたときの像面移動係数Kを読み出し、これを合焦近傍像面移動係数Kfouとすることができる。
次いで、ステップS402では、上述した図10に示すステップS202と同様に、カメラ制御部21により、フォーカスレンズ33の駆動伝達機構のガタ量G(図8参照)の情報の取得が行われる。
次いで、ステップS403では、カメラ制御部21により、上述したステップS401で取得した合焦近傍像面移動係数Kfou、および上述したステップS402で取得したフォーカスレンズ33の駆動伝達機構のガタ量Gの情報に基づいて、ガタ量Gに対応する像面移動量IGを算出する。なお、ガタ量Gに対応する像面移動量IGは、ガタ量Gと同じ量だけフォーカスレンズを駆動させた場合における像面の移動量であり、本実施形態では、以下の式(4)にしたがって算出する。
ガタ量Gに対応する像面移動量IG=ガタ量G×合焦近傍像面移動係数Kfou ・・・(4)
次いで、ステップS404では、上述した図10に示すステップS204と同様に、カメラ制御部21により、上述したステップS403で算出したガタ量Gに対応する像面移動量IGと、所定像面移動量IPとを比較する処理が行われ、該比較の結果、ガタ量Gに対応する像面移動量IGが、所定像面移動量IP以下であるか否か、すなわち、「ガタ量Gに対応する像面移動量IG」≦「所定像面移動量IP」が成立するか否かの判定が行われる。なお、所定像面移動量IPは、上述した第2実施形態と同様とすることができる。
そして、ステップS405においては、上述したステップS404において、ガタ量Gに対応する像面移動量IGが、所定像面移動量IP以下であると判定されたため、この場合には、上述した図10に示すステップS205と同様に、ガタ詰め駆動をしない場合でも、駆動後のフォーカスレンズ33のレンズ位置を、光学系の焦点深度内とすることができると判断し、合焦駆動時にガタ詰め駆動を行わないと決定し、該決定に基づき、ガタ詰め駆動を伴わずに合焦駆動を行う。
一方、ステップS406においては、上述したステップS404において、ガタ量Gに対応する像面移動量IGが、所定像面移動量IPより大きいと判定されたため、この場合には、上述した図10に示すステップS206と同様に、ガタ詰め駆動をしないと、駆動後のフォーカスレンズ33のレンズ位置を、光学系の焦点深度内とすることができないと判断し、合焦駆動時にガタ詰め駆動を行うと決定し、該決定に基づき、ガタ詰め駆動を伴った合焦駆動を行う。
第4実施形態によれば、上述した第2実施形態による効果に加えて、以下の効果を奏することができる。
すなわち、第4実施形態によれば、フォーカスレンズ33の駆動伝達機構のガタ量Gに対応する像面移動量IGを算出する際に、フォーカスレンズ33が合焦位置近傍に位置する場合におけるレンズ位置に対応する像面移動係数である合焦近傍像面移動係数Kfouを用いるものであり、この場合には、算出されるガタ量Gに対応する像面移動量IGを、フォーカスレンズ33を実際に合焦位置まで駆動させた際における像面移動係数に基づいたものとすることができる。そのため、第4実施形態によれば、より高い精度でガタ量Gに対応する像面移動量IGを算出することができ、これにより、ガタ詰め駆動の要否の判断をより適切に行うことができる。
《第5実施形態》
次いで、本発明の第5実施形態について説明する。第5実施形態において上述した第1実施形態の構成と同様の構成について詳細な説明は省略する。
なお、以下に説明する第5実施形態に係る動作は、上述した第1〜第4実施形態に係る動作とともに、あるいは、第1〜第4実施形態に係る動作とは別に、単独で実行することができる。
図13に示した第5実施形態において、一眼レフデジタルカメラ1aは、カメラボディ2aに、ミラー系240、位相差AFモジュール210およびファインダ光学系を有する点において、上述したカメラ1と異なる構成となっている。
ミラー系240は、回転軸243を中心にして被写体の観察位置と撮影位置との間で所定角度だけ回転するクイックリターンミラー241と、このクイックリターンミラー241に軸支されてクイックリターンミラー241の回動に合わせて回転するサブミラー242とを備える。図13においては、ミラー系240が被写体の観察位置にある状態を実線で示し、被写体の撮影位置にある状態を二点鎖線で示す。
クイックリターンミラー241はハーフミラーで構成され、被写体の観察位置にある状態では、被写体からの光束(光軸L1)の一部の光束(光軸L3,L4)を当該クイックリターンミラー241で反射してファインダ135および測光センサ137へ導き、一部の光束(光軸L5)を透過させてサブミラー242へ導く。これに対して、サブミラー242は全反射ミラーで構成され、クイックリターンミラー241を透過した光束(光軸L4)を位相差AFジュール210へ導く。
クイックリターンミラー241で反射された被写体からの光束は、撮像素子22aと光学的に等価な面に配置された焦点板231に結像し、ペンタプリズム233と接眼レンズ234とを介して観察可能になっている。このとき、透過型液晶表示器232は、焦点板231上の被写体像に焦点検出エリアマークなどが重畳表示される。
操作部28はライブビュー撮影オン/オフスイッチ(図示せず)を有する。ライブビュー撮影オフであってミラー系240が被写体の観察位置にある状態のとき、位相差AFモジュール210を用いた位相差AFができる。また、ライブビュー撮影オンになるとミラー系240が被写体の撮影位置になり、被写体からの光束が、撮像素子22aに導かれる状態(たとえば、スルー画像を表示している状態等)になり、コントラストAFができる。この場合に、上述した第1〜第4の実施形態に係る動作と同様の動作をすることができる。以下、第5実施例に係る動作例について、図14、図15、図16を用いて詳細に説明する。
図14の動作は、カメラ1の電源がオンされることにより開始される。まず、ステップS501においては、カメラボディ2aがレンズ鏡筒3を識別するための通信を行う。レンズ鏡筒の種類に応じて通信可能な通信形式が異なるからである。
次に、ステップS502において、撮影者により操作部28に備えられたライブビュー撮影オン/オフスイッチをオンに操作がされたか否かの判定を行い、ライブビュー撮影オンとされると、ミラー系240が被写体の撮影位置になり、被写体からの光束が、撮像素子22aに導かれる。
ステップS503では、カメラボディ2aとレンズ鏡筒3との間で定常通信が開始される。定常通信において、レンズ制御部36は、カメラ制御部21から第1要求信号を受信したとき、現在位置像面移動係数Kcur等のレンズ情報をカメラ制御部21に繰り返し送信する。定常通信は、ステップS503以降、繰返し行われる。定常通信は、例えば、電源スイッチがオフされるまで繰り返し行うことが好ましい。
ステップS504では、撮影者により操作部28に備えられたレリーズボタンの半押し操作(第1スイッチSW1のオン)、あるいは、AF起動操作等が行われた否かの判定を行い、これらの動作が行われた場合に、ステップS505に進む(以下の実施例では半押し操作がされた場合について詳細に説明する)。
ステップS505において、カメラ制御部21は撮影者の半押し(第1スイッチSW1のオン)操作をトリガとして、レンズ制御部36に第2要求信号を送信する。第2要求信号を、レンズ制御部36に送信するための要件としては、たとえば、撮影者によりAF起動操作がされた場合、シャッターレリーズボタンの半押しにより焦点調節動作の起動が行われた場合、撮影者によりズームレンズ32を駆動させるための操作が行われた場合、カメラ1の電源がオンされた場合などであってもよい。
ステップS506において、レンズ制御部36は第2要求信号を受信したので、カメラメモリ37に記憶された各レンズ位置と像面移動係数Kとの関係を示すテーブル(図6参照)を参照してズームレンズ32の現在のレンズ位置に対応する最大像面移動係数Kmax、最小像面移動係数Kminを取得し、最大像面移動係数Kmax及び最小像面移動係数Kminを、カメラ制御部21に送信する。
ステップS507において、カメラ制御部21はコントラスト検出方式による焦点検出を行うためにレンズ制御部36にスキャン駆動指令(スキャン駆動の開始指示)を送信する。レンズ制御部36に対するスキャン駆動指令(スキャン駆動時の駆動速度の指示、又は、駆動位置の指示)は、フォーカスレンズ33の駆動速度で与えてもよいし、像面移動速度で与えてもよいし、目標駆動位置等で与えてもよい。次いで、ステップS508において、レンズ制御部36はスキャン駆動指令に基づいてフォーカスレンズ33の駆動制御を行う。
次に、ステップS509において、カメラ制御部21は後述する異常判定処理を行う。ステップS510において、カメラ制御部21は焦点評価値のピーク値が検出できたか否か(合焦位置が検出できたか否か)を判断する。焦点評価値のピーク値が検出できなかったときはステップS508に戻り、焦点評価値のピーク値が検出できたときはステップS511に進む。
ステップS511において、カメラ制御部21は焦点評価値のピーク値に対応する位置に合焦駆動させるための指令をレンズ制御部36に送信する。レンズ制御部36は受信した指令に従ってフォーカスレンズ33の駆動制御を行う。
ステップS512において、カメラ制御部21はフォーカスレンズ33が焦点評価値のピーク値に対応する位置に到達した旨の判断を行い、撮影者によりシャッターレリーズボタンの全押し操作(第2スイッチSW2のオン)がされたとき静止画の撮影制御を行う。撮影制御が終了した後は、再びステップS503に戻る。
次に、図15、図16を用いて異常判定処理(図14のステップS509参照)の詳細な説明を行う。
まず、図15を用いて説明する。ステップS601において、定常通信より繰り返し取得している現在位置像面移動係数Kcurが上述したステップS506で取得した最大像面移動係数Kmaxよりも大きいか否かを判断する。すなわち、最大像面移動係数Kmax<現在位置像面移動係数Kcurとなった現在位置像面移動係数Kcurが検出されたか否かを判断する。最大像面移動係数Kmax<現在位置像面移動係数Kcurとなった現在位置像面移動係数Kcurが検出された場合には、カメラ本体2とレンズ鏡筒3との間の通信異常等の何らかの異常が発生していると考えられるため、ステップS605に進み、異常フラグ=1に設定し、異常判定処理を終了し、図14のステップS510に進む。なお、異常が発生されていない場合等、通常時には、異常フラグ=0に設定されている。一方、最大像面移動係数Kmax<現在位置像面移動係数Kcurとなった現在位置像面移動係数Kcurが検出されていない場合には、ステップS602に進む。
ステップS602では、カメラ1の電源がオンされてから現在までの間に、フォーカスレンズ33を、至近端から無限遠端まで駆動させたか否かの判定が行われる。フォーカスレンズ33を、至近端から無限遠端まで駆動させた場合には、ステップS606に進み、ステップS606において、フォーカスレンズ33を、至近端から無限遠端まで駆動させた結果、定常通信により得られた、現在位置像面移動係数Kcurとして、現在位置像面移動係数Kcur=最大像面移動係数Kmaxとなったものが検出できたか否かの判定が行われる。フォーカスレンズ33を、至近端から無限遠端まで駆動させたにも拘わらず、現在位置像面移動係数Kcur=最大像面移動係数Kmaxとなったものが検出できなかった場合には、カメラ本体2とレンズ鏡筒3との間の通信異常等の何らかの異常が発生していると考えられるため、ステップS607に進み、異常フラグ=2に設定し、異常判定処理を終了し、図14のステップS510に進む。ステップS606において、現在位置像面移動係数Kcur=最大像面移動係数Kmaxとなったものが検出できた場合には、異常判定処理を終了し、図14のステップS510に進む。
一方、ステップS602において、フォーカスレンズ33を、至近端から無限遠端まで駆動させていないと判定された場合には、ステップS603に進む。
次いで、ステップS603では、カメラ制御部21によりズームレンズ32の駆動操作がされたか否かが判断される。ズームレンズ32の駆動操作がされたと判断されたときはステップS604に進み、ズームレンズ32の駆動操作がされなかったと判断されたときは異常判定処理を終了し、図14のステップS510に進む。
ステップS604では、カメラ制御部21がレンズ制御部36に再度の第2要求信号を送信し、レンズ制御部36はカメラ制御部21に、ズームレンズ32を駆動した後のズームレンズ32のレンズ位置に対応する最大像面移動係数Kmaxを送信する。また、カメラ制御部21はズームレンズ32を駆動する前に取得した最大像面移動係数Kmax及び現在位置像面移動係数Kcurをリセットする。
上述したステップS601およびS606の判断は、ズームレンズ32のレンズ位置が同じ位置にある場合に取得された最大像面移動係数Kmaxおよび現在位置像面移動係数Kcurを比較するものであり、ズームレンズ32のレンズ位置が変動した場合には、新たに、最大像面移動係数Kmaxおよび現在位置像面移動係数Kcurを収集しないと上述したステップS601およびS606の判断を適切に行うことができなくなるからである。ステップS604の処理が終了するとステップS601に戻る。
次に、図16を用いて異常フラグ=1が設定される場合について詳細に説明する。図16においては、ズームレンズの位置(焦点距離)が「f1」(図6参照)である場合を例に説明する。
図16においては、時刻t2において撮影者によりシャッターレリーズボタンの半押し操作がされた場合を例示しており、この場合に、時刻t4においてレンズ制御部36がカメラ制御部21に最大像面移動係数Kmaxとして、「K11」ではなく、「K12」を送信したとする。そして、時刻t7においてカメラ制御部21がレンズ制御部36にスキャン駆動指令を行う。スキャン駆動指令前の時刻t1、t3、t5、t6では、フォーカスレンズ33が移動していないので、現在位置像面移動係数Kcurはいずれも「K19」になっている。
一方で、スキャン駆動指令がされた時刻t8以降は、時刻t9で現在位置像面移動係数Kcurは「K18」になり、時刻t10で現在位置像面移動係数Kcurは「K12」になり、時刻t12で現在位置像面移動係数Kcurは「K11」になっている。
この場合においては、図16に示した実施例では時刻t4において、カメラ制御部21が最大像面移動係数Kmaxとして、「K12」を受信している。このため、時刻t12で現在位置像面移動係数Kcurとして、「K12」よりも大きい「K11」を受信することにより、最大像面移動係数Kmax<現在位置像面移動係数Kcurの関係を満たすことになり(図15のステップS601参照)、「異常フラグ=1」が設定される(図15のステップS605参照)。
上述した本実施形態において、ステップS605で「異常フラグ=1」が設定された場合(最大像面移動係数Kmax<現在位置像面移動係数Kcurとなった現在位置像面移動係数Kcurが検出された場合)、又は、ステップS606で「異常フラグ=2」が設定された場合(至近端から無限遠端まで駆動させたにも拘わらず、現在位置像面移動係数Kcur=最大像面移動係数Kmaxとなったものが検出できなかった場合)には、カメラ本体2とレンズ鏡筒3との間の通信異常等の何らかの異常が発生していると考えられる。
「異常フラグ=1」又は「異常フラグ=2」が設定された場合は、異常処理を行うことが好ましい。異常処理としては、例えば、電子ビューファインダ26等で合焦表示を行うことを禁止することが好ましい。「異常フラグ=1」又は「異常フラグ=2」が設定された場合は、通信異常、回路異常、電源異常等が生じている可能性があり、AFの信頼性を保証し得ない。このため、信頼性の低い「合焦表示」をしないために合焦表示の禁止等の異常処理をすることが好ましい。なお、ステップS509において、異常フラグ=1、又は、異常フラグ=2が設定されている場合であって、合焦表示が禁止されている場合には、ステップS511でフォーカスレンズ33が合焦位置に到達した場合でも合焦表示はされないことになる。
また、「異常フラグ=1」又は「異常フラグ=2」が設定された場合は、例えば、合焦表示を行うことを禁止する処理を行う代わりに、あるいは、合焦表示を行うことを禁止する処理とともに、至近端から無限遠端まで駆動させる全域サーチを行うことも好ましい。全域サーチを行うことで、異常の原因が解消されたことを確認できる場合がある。
また、通常時の駆動速度である第1駆動速度よりも十分に遅い第2駆動速度で至近端から無限遠端までフォーカスレンズ33を駆動させる全域サーチを行うことが更に好ましい。十分に遅い第2駆動速度で行うことで、より安全な全域サーチが可能になるからである。また、例えば、フォーカスレンズ33の駆動速度が速すぎて、現在位置像面移動係数Kcur=最大像面移動係数Kmaxとなる現在位置像面移動係数Kcurが検出されなかった場合には、十分に遅い第2駆動速度で全域サーチを行うことで、現在位置像面移動係数Kcur=最大像面移動係数Kmaxとなる現在位置像面移動係数Kcurを検出できる場合があるからである。
また、「異常フラグ=1」あるいは「異常フラグ=2」に設定された場合には、合焦表示を行うことを禁止する処理、あるいは、十分に遅い第2駆動速度で、全域サーチを行う処理に代えて、あるいは、これらの処理と共に、位相差検出方式による焦点検出、およびコントラスト検出方式による焦点検出を共に禁止するような処理を行ってもよい。特に、「異常フラグ=1」あるいは「異常フラグ=2」に設定され、通信異常等の何らかの異常が発生していると考えられる場合には、位相差検出方式による焦点検出、およびコントラスト検出方式による焦点検出を行っても、良好な焦点検出結果が得られない可能性が高いため、そのため、この場合には、位相差検出方式による焦点検出、およびコントラスト検出方式による焦点検出を禁止する処理を行うことができる。
また、第5実施形態においては、一度、「異常フラグ=1」あるいは「異常フラグ=2」が設定された場合には、通信異常等の何らかの異常が発生していると考えられるため、電源がオフとされるまで、あるいは、レンズ鏡筒3が交換されるまで、異常フラグをリセットせずに、「異常フラグ=1」あるいは「異常フラグ=2」に設定したままとすることが望ましい。
第5実施形態については、例えば、図14のステップS509において、異常フラグ=1、又は、異常フラグ=2が設定されている場合にはAFの信頼性を保証し得ないので、無駄なフォーカスレンズ33の駆動を回避するために、カメラ制御部21はステップS510でピーク値が検出できたか否かにかかわらずフォーカスレンズ33の駆動を禁止する処理をしてもよい。この場合、電源がオフとされるまで、あるいは、レンズ鏡筒3が交換されるまで、フォーカスレンズ33の駆動を禁止することが好ましい。
また、例えば、図14のステップS509において、異常フラグ=1、又は、異常フラグ=2が設定されている場合には、カメラ制御部21はステップS510でピーク値が検出できたか否かにかかわらず十分に遅い第2駆動速度で、全域サーチを行う処理、位相差検出方式による焦点検出及びコントラスト検出方式による焦点検出の少なくとも一方を禁止する処理、カメラの電源をOFFにする処理、異常が生じた旨の警告表示等を行ってもよい。
また、例えば、図14のステップS509において、異常フラグ=1、又は、異常フラグ=2が設定されている場合にはAFの信頼性を保証し得ないので、カメラ制御部21はステップS510でピーク値が検出できてもステップS511の合焦駆動を行わない処理をしてもよい。
《第6実施形態》
次いで、本発明の第6実施形態について説明する。第6実施形態において上述した第5実施形態の構成と同様の構成について詳細な説明は省略する。
なお、以下に説明する第6実施形態に係る動作は、上述した第1〜第5実施形態に係る動作とともに、あるいは、第1〜第5実施形態に係る動作とは別に、単独で実行することができる。
図18に示した第6実施形態において、ステップS501〜504、507〜508、510〜512については、図14の構成と同様であるため、詳細な説明は省略する。ステップS504において、レリーズボタンの半押し操作(第1スイッチSW1のオン)、あるいは、AF起動操作等が行われた否かの判定を行い、これらの動作が行われた場合に、ステップS507に進み、ステップS507において、カメラ制御部21がレンズ制御部36にスキャン駆動指令を送信し、ステップS508において、レンズ制御部36がスキャン駆動指令に基づいてフォーカスレンズ33の駆動制御を行う。
次に、ステップS705において、レンズ制御部36に対するスキャン駆動指令(ステップS507参照)をトリガとして、カメラ制御部21が、レンズ制御部36に周期的に第2要求信号を送信する。第2要求信号を、レンズ制御部36に送信するための要件としては、たとえば、レンズ制御部36が実際にフォーカスレンズ33の駆動制御を開始したことをカメラ制御部21が検知したタイミングをトリガとしても良いし、スキャン駆動指令後にレンズ制御部36からカメラ制御部21に所定の信号が送信されたタイミング等をトリガとしてもよい。また、レンズ制御部36に対するスキャン駆動指令と同時に第2要求信号を送信してもよい。
また、本実施例において、カメラ制御部21は、後述する第2要求信号の送信を停止するための要件を満たすまで、第2要求信号を周期的に送信することが好ましい。第2要求信号を送信する周期としては、第1要求信号を送信する周期よりも短いことが好ましい。例えば、第1要求信号を送信する周期の1/2以下にすることが好ましい。
次に、ステップS706において、レンズ制御部36は第2要求信号を周期的に受信するので、カメラメモリ37に記憶された各レンズ位置と像面移動係数Kとの関係を示すテーブル(図6参照)を参照してズームレンズ32の現在のレンズ位置に対応する最大像面移動係数Kmax、最小像面移動係数Kminを取得し、最大像面移動係数Kmax及び最小像面移動係数Kminを周期的にカメラ制御部21に送信する。
次に、ステップS709において、カメラ制御部21は後述する異常判定処理を行う。例えば、第2要求信号を周期的に送信することにより、第2要求信号を送信したタイミング、又は、最大像面移動係数Kmax及び最小像面移動係数Kminを受信したタイミングをトリガとして周期的に異常判定を行うことができる。また、第2要求信号を短い周期で送信することにより短い周期で異常判定を行うことができ、好適な異常判定が可能となる。
次に、ステップS510において、カメラ制御部21は焦点評価値のピーク値が検出できたか否か(合焦位置が検出できたか否か)を判断する。焦点評価値のピーク値が検出できなかったときはステップS508に戻る。焦点評価値のピーク値が検出できたときはステップS511に進み、カメラ制御部21は周期的な第2要求信号の送信を停止する。第2要求信号の送信を停止するための要件としては、例えば、合焦駆動させるための指令をレンズ制御部36に送信するタイミング、フォーカスレンズ33が焦点評価値のピーク値に対応する位置に到達したタイミング、カメラ制御部21がピーク位置を検出できないと判断したとき、カメラ制御部21がスキャン制御を止めると判断したとき、カメラ制御部21がコントラストAF制御を止めると判断したとき、カメラ制御部21がライブビュー表示を止めると判断したとき等をトリガとしてもよい。また、第1要求信号は、第2要求信号の周期的な送信が開始される時刻よりも前から、第2要求信号の周期的な送信が終了した時刻よりも後まで周期的に送信されることが好ましい。すなわち、第2要求信号が周期的に送信されている期間は、第1要求信号が周期的に送信されている期間に含まれることが好ましい。
次に、図19を用いて異常判定処理(図18のステップS709参照)の詳細な説明を行う。図19において、ステップS602〜605、607については、図15の構成と同様であるため、詳細な説明は省略する。
図19のステップS801において、定常通信より繰り返し取得している現在位置像面移動係数Kcurが上述したステップS706で取得した最大像面移動係数Kmaxよりも大きいか、又は、最小像面移動係数Kminよりも小さいか否かを判断する。最大像面移動係数Kmax<現在位置像面移動係数Kcur、又は、最小像面移動係数Kmin>現在位置像面移動係数Kcurとなった現在位置像面移動係数Kcurが検出された場合には、カメラ本体2とレンズ鏡筒3との間の通信異常等の何らかの異常が発生していると考えられるため、ステップS605に進み、異常フラグ=1に設定し、異常判定処理を終了し、図18のステップS510に進む。一方、最大像面移動係数Kmax<現在位置像面移動係数Kcur、又は、最小像面移動係数Kmin>現在位置像面移動係数Kcurとなった現在位置像面移動係数Kcurが検出されていない場合には、ステップS602に進む。
ステップS602において、フォーカスレンズ33を至近端から無限遠端まで駆動させた旨の判定がされたときは、ステップS806に進む。ステップS806において、フォーカスレンズ33を、至近端から無限遠端まで駆動させた結果、定常通信により得られた現在位置像面移動係数Kcurとして、現在位置像面移動係数Kcur=最大像面移動係数Kmaxとなったもの、及び、現在位置像面移動係数Kcur最小像面移動係数Kminとなったものが検出できたか否かの判定が行われる。フォーカスレンズ33を、至近端から無限遠端まで駆動させたにも拘わらず、現在位置像面移動係数Kcur=最大像面移動係数Kmaxとなったもの、及び、現在位置像面移動係数Kcur=最小像面移動係数Kminとなったものが検出できなかった場合には、カメラ本体2とレンズ鏡筒3との間の通信異常等の何らかの異常が発生していると考えられるため、ステップS607に進み、異常フラグ=2に設定し、異常判定処理を終了し、図18のステップS510に進む。ステップS806において、現在位置像面移動係数Kcur=最大像面移動係数Kmaxとなったもの、及び、現在位置像面移動係数Kcur=最小像面移動係数Kminとなったものが検出できた場合には、異常判定処理を終了し、図18のステップS510に進む。
なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。また、上述した各実施形態は、適宜組み合わせて用いることもできる。
たとえば、上述した実施形態では、像面移動係数Kとして、「像面の移動量/フォーカスレンズ33の駆動量」で算出される値を採用したが、像面移動係数Kとしては、「フォーカスレンズ33の駆動量/像面の移動量」としてもよい。
例えば、像面移動係数Kとして、「像面の移動量/フォーカスレンズ33の駆動量」で算出される値を採用した場合には、値(絶対値)が大きくなるほど、フォーカスレンズが所定値(例えば1mm)駆動した場合の像面の移動量が大きくなる。像面移動係数Kとして、「フォーカスレンズ33の駆動量/像面の移動量」で算出される値を採用した場合には、値(絶対値)が大きくなるほど、フォーカスレンズが所定値(例えば1mm)駆動した場合の像面の移動量が小さくなる。
また、上述した実施形態では、図15のステップS601において、最大像面移動係数Kmax<現在位置像面移動係数Kcurとなった現在位置像面移動係数Kcurが検出された場合には、カメラ本体2とレンズ鏡筒3との間の通信異常等の何らかの異常が発生していると考えられるため異常フラグ=1に設定(ステップS605)し、最大像面移動係数Kmax<現在位置像面移動係数Kcurとなった現在位置像面移動係数Kcurが検出されていない場合には異常フラグ=0に設定(ステップS602に進む)しているが、これに限定されるものではない。
例えば、図15のステップS601において、最小像面移動係数Kmin>現在位置像面移動係数Kcurとなった現在位置像面移動係数Kcurが検出された場合には、カメラ本体2とレンズ鏡筒3との間の通信異常等の何らかの異常が発生していると考えられるため異常フラグ=1に設定(ステップS605)し、最小像面移動係数Kmin>現在位置像面移動係数Kcurとなった現在位置像面移動係数Kcurが検出されていない場合には異常フラグ=0に設定(ステップS602に進む)してもよい。
また、上述した実施形態では、図15のステップS606において、フォーカスレンズ33を至近端から無限遠端まで駆動させたにも拘わらず、現在位置像面移動係数Kcur=最大像面移動係数Kmaxとなったものが検出できなかった場合には、カメラ本体2とレンズ鏡筒3との間の通信異常等の何らかの異常が発生していると考えられるため異常フラグ=2に設定(ステップS607)し、現在位置像面移動係数Kcur=最大像面移動係数Kmaxとなったものが検出できた場合には異常フラグ=0に設定(異常判定処理を終了)しているが、これに限定されるものではない。
例えば、図15のステップS606において、フォーカスレンズ33を至近端から無限遠端まで駆動させたにも拘わらず、現在位置像面移動係数Kcur=最小像面移動係数Kminとなったものが検出できなかった場合には、カメラ本体2とレンズ鏡筒3との間の通信異常等の何らかの異常が発生していると考えられるため異常フラグ=2に設定(ステップS607)し、現在位置像面移動係数Kcur=最小像面移動係数Kminとなったものが検出できた場合には異常フラグ=0に設定(異常判定処理を終了)してもよい。
上述した実施形態では、最小像面移動係数Kmin、及び、最大像面移動係数Kmaxの少なくとも一方を用いた簡単な処理により通信異常等の異常を検出できるので、信頼性の高い焦点調節制御装置を提供できる、という格別の効果を奏する。
また、上述した実施形態では、図6に示す各レンズ位置と像面移動係数Kとの関係を示すテーブルを、レンズメモリ37に記憶させるような構成としたが、レンズメモリ37ではなく、レンズ制御部36に記憶させるような構成としてもよい。さらに、上述した実施形態では、図6に示すように、ズームレンズ32のレンズ位置およびフォーカスレンズ33のレンズ位置と、像面移動係数Kとの関係を示すテーブルを記憶するような構成としたが、ズームレンズ32のレンズ位置のみと、像面移動係数Kとの関係を示すテーブルを用いてもよいし、あるいは、フォーカスレンズ33のレンズ位置のみと、像面移動係数Kとの関係を示すテーブルを用いてもよい。特に、レンズ鏡筒3の種類によっては、ズームレンズ32のレンズ位置が同じであれば、フォーカスレンズ33のレンズ位置が変化しても、像面移動係数Kの変動量がごく小さいものもあるため、このような場合には、ズームレンズ32のレンズ位置のみと、像面移動係数Kとの関係を示すテーブルを用いてもよい。また、レンズ鏡筒3が単焦点レンズである場合には、フォーカスレンズ33のレンズ位置のみと、像面移動係数Kとの関係を示すテーブルが好適に用いられる。
あるいは、上述した実施形態では、ズームレンズ32のレンズ位置およびフォーカスレンズ33のレンズ位置と、像面移動係数Kとの関係を示すテーブルを記憶するような構成としたが、このようなテーブルに加えて、環境温度やカメラ1の姿勢を加味したテーブルをさらに備えていてもよい。
さらに、上述した実施形態では、レンズ制御部36が、カメラ制御部21からの要求信号に応じて、最大像面移動係数Kmax及び最小像面移動係数Kminを送信するような構成としたが、特にこのような構成に限定されるものではない。すなわち、たとえば、カメラ制御部21から、ズームレンズ32を駆動させるための信号を受信した場合や、シャッターレリーズボタンの半押しがされた旨の信号を受信した場合、あるいは、シャッターレリーズボタンの半押しにより焦点調節動作の起動が行われた旨の信号を受信した場合等に、レンズ制御部36は、カメラ制御部21からの要求信号によらずに、カメラ制御部21に最大像面移動係数Kmax及び最小像面移動係数Kminを送信するような構成としてもよい。さらに、レンズ制御部36は、最大像面移動係数Kmax又は、ズームレンズ32のレンズ位置ごとに設定される像面移動係数Kのうち、最小の値を示す最小像面移動係数Kminの一方のみを送信するような構成としてもよく、この場合には、カメラ制御部21からの最大像面移動係数Kmax又は最小像面移動係数Kminの送信要求に応じて送信するような構成としてもよいし、あるいは、上記と同様に、送信要求が無い場合でも、ズームレンズ32を駆動させるための信号を受信した場合等において、送信するような構成としてもよい。
また、上述した第2〜第4実施形態においては、フォーカスレンズ33の合焦駆動を行う際のガタ詰め駆動として、一度、合焦位置を通過させた後、反転駆動させて合焦位置まで駆動させるような方式を例示したが、合焦駆動を行う際のガタ詰め駆動として、合焦位置に駆動させる際にガタ量を上乗せさせるような方式を採用してもよい。なお、この場合において、ガタ詰め駆動を行わない場合には、ガタ量を上乗せせずに、合焦位置に駆動させればよい。
なお、上述した実施形態のカメラ1は特に限定されず、例えば、デジタルビデオカメラ、レンズ一体型のデジタルカメラ、携帯電話用のカメラ、望遠鏡、フィールドスコープなどのその他の光学機器に本発明を適用してもよい。
また、最大像面移動係数Kmaxを送信できるものであれば、レンズメモリ37に像面移動係数Kを記憶するものに限定されない。例えば、ズームレンズ位置等に応じて最大像面移動係数Kmaxを演算し、演算した最大像面移動係数Kmaxをカメラ本体2に送信するものであってもよい。同様に、ズームレンズ位置等に応じて最小像面移動係数Kminを演算し、演算した最小像面移動係数Kminをカメラ本体2に送信するものであってもよい。
また、例えば、ズームレンズの位置が変化しないのに最大像面移動係数Kmax又は最小像面移動係数Kminが変化した場合も、異常が生じたと判断し、図15における「異常フラグ=1」又は「異常フラグ=2」が設定された場合と同様の処理を行うことも好ましい。
また、レンズメモリ37に記憶されている最大像面移動係数Kmaxは、図17のようなものであってもよい。最小像面移動係数Kminについても最大像面移動係数Kmaxと同様に構成できるが詳細な図示は省略する。
また、レンズメモリ37に記憶されている像面移動係数K及び最大像面移動係数Kmaxは、整数であってもよいし、少数点以下を含む値であっても良いし、指数であってもよいし、対数であっても良い。また、像面移動係数K及び最大像面移動係数Kmaxは、10進数であってもよいし、2進数等でもよい。
また、最大像面移動係数Kmaxをカメラ本体2に送信するものであれば、カメラ本体2のマウント部401の電気接点とレンズ鏡筒3のマウント部402の電気接点とが接続されるものに限定されない。例えば、無線を用いてレンズ鏡筒3からカメラ本体2に最大像面移動係数Kmaxを送信してもよい。
1…デジタルカメラ
2…カメラ本体
21…カメラ制御部
22…撮像素子
221…撮像画素
222a,222b…焦点検出画素
3…レンズ鏡筒
32…ズームレンズ
33…フォーカスレンズ
36…レンズ制御部
37…レンズメモリ

Claims (11)

  1. カメラボディに取り付けられる交換レンズであって、
    焦点調節レンズを含む光学系と、
    前記焦点調節レンズを前記光学系の光軸方向に駆動させる駆動部と、
    前記焦点調節レンズの位置によって変化し、前記焦点調節レンズの移動量に対する像面の移動量に対応する像面移動係数の、前記焦点調節レンズのレンズ位置での第1の値と、
    前記駆動部による前記焦点調節レンズの駆動範囲内において、前記焦点調節レンズの移動量に対する像面の移動量が最大になる像面移動係数である第2の値と、
    前記駆動部による前記焦点調節レンズの駆動範囲内において、前記焦点調節レンズの移動量に対する像面の移動量が最小になる像面移動係数である第3の値とを前記カメラボディに送信する送信部と、
    を有する交換レンズ。
  2. 請求項1に記載された交換レンズにおいて、
    前記駆動部による前記駆動を制御するための制御情報を前記カメラボディから受信する受信部を有し、
    前記送信部は、前記受信部が前記制御情報を受信する前に、前記第1の値と前記第2の値と前記第3の値を前記カメラボディに送信し、
    前記駆動部は、前記制御情報に基づき前記光学系の合焦位置を検出するために前記焦点調節レンズの駆動を開始し、
    前記送信部は、前記焦点調節レンズが駆動している間に、前記第1の値と前記第2の値と前記第3の値を前記カメラボディに繰り返し送信する交換レンズ。
  3. 請求項1または2に記載された交換レンズにおいて、
    前記第1の値と前記第2の値と前記第3の値は、前記光学系の合焦位置の検出の信頼性を判定するための情報である交換レンズ。
  4. 請求項2または3に記載された交換レンズにおいて、
    前記光学系の合焦位置は、前記光学系の焦点評価値が最大となる前記焦点調節レンズのレンズ位置である交換レンズ。
  5. 請求項1に記載された交換レンズにおいて、
    前記送信部は、前記カメラボディに対して操作が行われると、前記第2の値と前記第3の値を前記カメラボディに送信する交換レンズ。
  6. 請求項2から4のいずれか一項に記載された交換レンズにおいて、
    前記受信部は、前記カメラボディから第1の信号及び前記第1の信号とは異なる第2の信号を受信し、
    前記送信部は、前記第1の信号を受信した後、前記第1の値を送信し、前記第2の信号を受信した後、前記第2の値と前記第3の値を送信する交換レンズ。
  7. 請求項6に記載された交換レンズにおいて、
    前記受信部は、前記第1の信号とは異なるタイミングで前記第2の信号を受信する交換レンズ。
  8. 請求項1〜7のいずれか一項に記載された交換レンズにおいて、
    前記交換レンズの焦点距離を変化させるズーム光学系を有し、
    前記第2の値及び前記第3の値は、前記ズーム光学系のレンズ位置が変化すると変化する交換レンズ。
  9. 請求項1〜8のいずれか一項に記載された交換レンズにおいて、
    前記像面移動係数は、前記焦点調節レンズの移動量TLに対する像面の移動量TIの比であるTI/TLに対応する係数である交換レンズ。
  10. 請求項1〜9のいずれか一項に記載された交換レンズにおいて、
    前記第2の値と前記第3の値を記憶する記憶部を有する交換レンズ。
  11. 請求項1〜10のいずれか一項に記載された交換レンズを装着可能なカメラボディであって、
    前記交換レンズから、前記第1の値と前記第2の値と前記第3の値とを取得する取得部と、
    前記第1の値と前記2の値と前記第3の値とに基づいて前記交換レンズの異常判定を行う制御部とを有するカメラボディ。
JP2016190995A 2011-11-11 2016-09-29 交換レンズおよびカメラボディ Active JP6380491B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011247090 2011-11-11
JP2011247090 2011-11-11

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013543059A Division JP6070566B2 (ja) 2011-11-11 2012-11-09 焦点調節装置、撮像装置、およびレンズ鏡筒

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018145793A Division JP6642649B2 (ja) 2011-11-11 2018-08-02 交換レンズおよびカメラボディ

Publications (2)

Publication Number Publication Date
JP2017033008A true JP2017033008A (ja) 2017-02-09
JP6380491B2 JP6380491B2 (ja) 2018-08-29

Family

ID=48290160

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2013543059A Active JP6070566B2 (ja) 2011-11-11 2012-11-09 焦点調節装置、撮像装置、およびレンズ鏡筒
JP2016190995A Active JP6380491B2 (ja) 2011-11-11 2016-09-29 交換レンズおよびカメラボディ
JP2016191382A Active JP6380492B2 (ja) 2011-11-11 2016-09-29 交換レンズおよびカメラボディ
JP2018145793A Active JP6642649B2 (ja) 2011-11-11 2018-08-02 交換レンズおよびカメラボディ
JP2019237139A Active JP7115462B2 (ja) 2011-11-11 2019-12-26 交換レンズおよびカメラボディ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013543059A Active JP6070566B2 (ja) 2011-11-11 2012-11-09 焦点調節装置、撮像装置、およびレンズ鏡筒

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2016191382A Active JP6380492B2 (ja) 2011-11-11 2016-09-29 交換レンズおよびカメラボディ
JP2018145793A Active JP6642649B2 (ja) 2011-11-11 2018-08-02 交換レンズおよびカメラボディ
JP2019237139A Active JP7115462B2 (ja) 2011-11-11 2019-12-26 交換レンズおよびカメラボディ

Country Status (7)

Country Link
US (5) US9635239B2 (ja)
EP (2) EP2778733A4 (ja)
JP (5) JP6070566B2 (ja)
CN (4) CN103946731B (ja)
BR (1) BR112014011332B1 (ja)
RU (2) RU2650435C2 (ja)
WO (1) WO2013069795A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2650435C2 (ru) * 2011-11-11 2018-04-13 Никон Корпорейшн Устройство регулировки фокуса, устройство формирования изображения и объектив
JP5746794B2 (ja) * 2012-09-27 2015-07-08 富士フイルム株式会社 撮像装置及び画像処理方法
CN105359023B (zh) 2013-05-10 2020-08-21 株式会社尼康 可换镜头、相机系统以及摄像装置
JP6210824B2 (ja) * 2013-10-02 2017-10-11 オリンパス株式会社 焦点調節装置および焦点調節方法
DE112015002098B4 (de) 2014-05-02 2022-02-03 Fujifilm Corporation Abstandsmessvorrichtung
JP6543916B2 (ja) * 2014-11-07 2019-07-17 株式会社ニコン 交換レンズおよび撮像装置
JP6724288B2 (ja) 2014-11-07 2020-07-15 株式会社ニコン 交換レンズ、カメラ本体およびカメラ
JP6459409B2 (ja) * 2014-11-07 2019-01-30 株式会社ニコン カメラボディ、交換レンズ及び撮像装置
JP6381434B2 (ja) * 2014-12-16 2018-08-29 キヤノン株式会社 フォーカス制御装置、光学機器およびフォーカス制御方法
JP2016148732A (ja) * 2015-02-10 2016-08-18 キヤノン株式会社 撮像装置及び画像の表示方法、プログラム、プログラムの記憶媒体
US20160269644A1 (en) * 2015-03-13 2016-09-15 Samsung Electro-Mechanics Co., Ltd. Driver for actuator and camera module and method thereof
JP6474693B2 (ja) * 2015-06-19 2019-02-27 オリンパス株式会社 焦点検出装置、焦点検出方法、および記録媒体
JP6634298B2 (ja) * 2016-01-23 2020-01-22 オリンパス株式会社 撮像装置および撮像方法
JP6717719B2 (ja) * 2016-09-09 2020-07-01 株式会社Screenホールディングス パターン露光装置、露光ヘッドおよびパターン露光方法
AT519192B1 (de) * 2016-09-19 2019-03-15 B & R Ind Automation Gmbh Kamera für die industrielle Bildverarbeitung
US10284800B2 (en) 2016-10-21 2019-05-07 Canon Kabushiki Kaisha Solid-state image pickup element, method of controlling a solid-state image pickup element, and image pickup apparatus
JP6727453B2 (ja) * 2017-09-28 2020-07-22 富士フイルム株式会社 撮像装置、撮像装置の制御方法、及び撮像装置の制御プログラム
WO2020031374A1 (ja) * 2018-08-10 2020-02-13 キヤノン株式会社 アクセサリ及びこれを備えるカメラシステム
US10979616B2 (en) * 2018-11-29 2021-04-13 Sony Corporation Wireless communication between a lens assembly and a camera
JP6614323B2 (ja) * 2018-12-28 2019-12-04 株式会社ニコン カメラボディおよび撮像装置
CN111654617B (zh) * 2020-04-30 2021-09-21 浙江大华技术股份有限公司 机芯镜头运行状态的控制方法、设备和计算机设备
JP2021184053A (ja) * 2020-05-22 2021-12-02 キヤノン株式会社 レンズ装置、撮像装置、およびカメラシステム
JP7024823B2 (ja) * 2020-06-23 2022-02-24 株式会社ニコン 交換レンズ、カメラ本体およびカメラ
CN111880283A (zh) * 2020-08-24 2020-11-03 长春通视光电技术有限公司 一种变焦距光学系统的控制系统
JP2023048693A (ja) * 2021-09-28 2023-04-07 キヤノン株式会社 制御装置、レンズ装置、制御方法、及びプログラム
CN115229330B (zh) * 2022-09-22 2022-12-13 武汉引领光学技术有限公司 一种激光加工的自动对焦装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05257055A (ja) * 1992-03-16 1993-10-08 Nikon Corp 交換レンズ
JPH05313062A (ja) * 1992-05-07 1993-11-26 Canon Inc 制御装置
JP2002267924A (ja) * 2001-03-12 2002-09-18 Canon Inc 光学機器システム
JP2006078660A (ja) * 2004-09-08 2006-03-23 Canon Inc 撮影光学系、カメラ及びカメラシステム

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888609A (en) 1985-01-17 1989-12-19 Minolta Camera Kabushiki Kaisha Automatic focus adjusting apparatus
GB2181262B (en) * 1985-10-02 1989-12-13 Canon Kk Automatic focusing system
JP2681912B2 (ja) * 1986-01-22 1997-11-26 株式会社ニコン 自動合焦装置
JPH03150513A (ja) 1989-11-08 1991-06-26 Canon Inc 光学機器のレンズ駆動装置
JP3045763B2 (ja) * 1990-11-22 2000-05-29 旭光学工業株式会社 カメラシステム
JP3220990B2 (ja) * 1990-12-12 2001-10-22 株式会社ニコン リアコンバージョンレンズを含むカメラシステム
JPH04315116A (ja) 1991-04-15 1992-11-06 Canon Inc ビデオカメラシステム
DE69326106T2 (de) 1992-06-29 2000-01-05 Canon Kk Objektivkontrollgerät
JP3341308B2 (ja) * 1992-07-28 2002-11-05 株式会社ニコン レンズ鏡筒
JP3590846B2 (ja) 1994-09-07 2004-11-17 株式会社ニコン 自動焦点カメラ
JP3525353B2 (ja) * 1994-09-28 2004-05-10 株式会社リコー デジタル電子スチル・カメラ
JP3535603B2 (ja) 1995-03-27 2004-06-07 キヤノン株式会社 自動焦点調節装置
JPH08286238A (ja) * 1995-04-13 1996-11-01 Nikon Corp 焦点位置補正装置
JPH09211648A (ja) 1996-01-31 1997-08-15 Minolta Co Ltd レンズ交換可能なカメラ
JP4063924B2 (ja) * 1997-09-02 2008-03-19 オリンパス株式会社 カメラの自動焦点調節装置
JP3818346B2 (ja) * 1997-12-05 2006-09-06 株式会社ニコン ズームレンズの調整方法
JP2000019379A (ja) * 1998-06-30 2000-01-21 Nikon Corp 撮影光学系駆動制御装置
JP2000358237A (ja) * 1999-06-17 2000-12-26 Ishikawajima Harima Heavy Ind Co Ltd 監視装置及び監視領域の異常検出方法
JP2001201678A (ja) * 2000-01-20 2001-07-27 Canon Inc 自動合焦装置
JP2001305419A (ja) * 2000-04-24 2001-10-31 Nikon Corp 自動焦点調節装置
JP2002023041A (ja) 2000-07-12 2002-01-23 Canon Inc 撮影距離測定装置、撮影レンズ、カメラシステム及びカメラシステムの為の情報演算装置
JP2003029135A (ja) 2001-07-17 2003-01-29 Canon Inc カメラ、カメラシステムおよび撮影レンズ装置
CN1213323C (zh) * 2002-04-29 2005-08-03 南开大学 红外折射衍射三片式减热差光学成像系统结构
JP2004109690A (ja) * 2002-09-19 2004-04-08 Canon Inc カメラシステムおよびカメラ
JP4407564B2 (ja) 2005-04-15 2010-02-03 ソニー株式会社 オートフォーカス装置とオートフォーカス方法およびプログラム
JP2007104124A (ja) * 2005-09-30 2007-04-19 Kyocera Mita Corp 画像読取装置
JP2007158935A (ja) * 2005-12-07 2007-06-21 Sony Corp 撮像装置および撮像システム
JP2007192859A (ja) * 2006-01-17 2007-08-02 Sony Corp 合焦制御装置、及び撮像装置
JP2007206451A (ja) 2006-02-02 2007-08-16 Canon Inc 撮像装置、その制御方法、及びコンピュータプログラム
JP5032775B2 (ja) * 2006-02-17 2012-09-26 富士フイルム株式会社 レンズ装置
JP4881042B2 (ja) 2006-03-03 2012-02-22 本田技研工業株式会社 通信システム
CN100533199C (zh) * 2006-05-02 2009-08-26 佳能株式会社 焦点检测装置、光学设备和摄像系统
JP4215781B2 (ja) * 2006-06-16 2009-01-28 独立行政法人産業技術総合研究所 異常動作検出装置および異常動作検出方法
JP2008015274A (ja) 2006-07-06 2008-01-24 Olympus Imaging Corp デジタルカメラ
JP4821506B2 (ja) * 2006-08-28 2011-11-24 株式会社ニコン 焦点調節装置およびカメラ
JP2008158028A (ja) * 2006-12-21 2008-07-10 Nikon Corp 電子スチルカメラ
WO2008099605A1 (ja) 2007-02-15 2008-08-21 Panasonic Corporation 撮像装置およびカメラ本体
JP5173210B2 (ja) 2007-02-20 2013-04-03 キヤノン株式会社 フォーカスレンズ、ズームレンズの駆動手段を有する光学機器
JP2008241733A (ja) 2007-03-23 2008-10-09 Canon Inc 撮像装置
JP2008275890A (ja) * 2007-04-27 2008-11-13 Olympus Imaging Corp レンズ交換式デジタルカメラ
JP2008276115A (ja) * 2007-05-07 2008-11-13 Olympus Imaging Corp デジタルカメラ及びフォーカス制御プログラム
US20110141340A1 (en) * 2007-05-07 2011-06-16 Naoto Yumiki Interchangeable lens and camera system using the same
JP2008310215A (ja) * 2007-06-18 2008-12-25 Nikon Corp 焦点調節装置およびカメラ
JP2009115921A (ja) * 2007-11-02 2009-05-28 Olympus Corp 撮像装置
JP2009145645A (ja) 2007-12-14 2009-07-02 Canon Inc 光学機器
JP2009175241A (ja) * 2008-01-22 2009-08-06 Nikon Corp 光学装置およびその調整方法
WO2009119091A1 (ja) * 2008-03-28 2009-10-01 パナソニック株式会社 カメラシステム
JP2009251557A (ja) * 2008-04-11 2009-10-29 Panasonic Corp 撮像装置
JP5089515B2 (ja) * 2008-07-15 2012-12-05 キヤノン株式会社 焦点調節装置、撮像装置、交換レンズ、換算係数較正方法、換算係数較正プログラム
JP5072764B2 (ja) * 2008-08-01 2012-11-14 キヤノン株式会社 光学機器及びカメラシステム
JP5266948B2 (ja) * 2008-08-08 2013-08-21 株式会社タムロン インナーフォーカスズームレンズ鏡筒
JP5535080B2 (ja) * 2008-10-30 2014-07-02 パナソニック株式会社 カメラシステム
US8237852B2 (en) * 2008-10-30 2012-08-07 Panasonic Corporation Camera body and camera system
WO2010061352A2 (en) * 2008-11-26 2010-06-03 Hiok Nam Tay Auto-focus image system
JP2010139666A (ja) 2008-12-10 2010-06-24 Canon Inc 撮像装置
JP5202270B2 (ja) 2008-12-12 2013-06-05 キヤノン株式会社 撮像装置
JP2010145887A (ja) 2008-12-22 2010-07-01 Canon Inc カメラシステム
CN101765025A (zh) * 2008-12-23 2010-06-30 北京中星微电子有限公司 一种监控摄像设备异常检测的系统及方法
JP5371417B2 (ja) * 2008-12-26 2013-12-18 キヤノン株式会社 レンズ駆動装置、光学機器及びレンズ駆動装置の制御方法
JP5335445B2 (ja) * 2009-01-06 2013-11-06 キヤノン株式会社 レンズ制御装置、光学機器およびレンズ制御方法
JP5222815B2 (ja) * 2009-09-08 2013-06-26 三洋電機株式会社 バックフォーカス調整機構を具えた撮像装置
US8611739B2 (en) * 2009-09-17 2013-12-17 Panasonic Corporation Focus adjusting apparatus and imaging apparatus
JP5427024B2 (ja) * 2009-12-25 2014-02-26 キヤノン株式会社 撮像装置、撮像装置の制御方法及びプログラム
JP2011248159A (ja) * 2010-05-28 2011-12-08 Sony Corp 撮像装置、撮像システム、撮像装置の制御方法およびプログラム
JP5621325B2 (ja) 2010-05-28 2014-11-12 ソニー株式会社 焦点制御装置、焦点制御方法、レンズ装置、フォーカスレンズ駆動方法、および、プログラム
JP5177184B2 (ja) 2010-07-30 2013-04-03 株式会社ニコン 焦点調節装置および撮像装置
KR101710625B1 (ko) * 2010-08-11 2017-02-27 삼성전자주식회사 초점 조절 장치, 초점 조절 방법 및 상기 방법을 기록한 기록 매체
CN202102220U (zh) * 2010-09-09 2012-01-04 株式会社尼康 可换透镜、相机主体及电子设备
JP5728216B2 (ja) 2010-12-13 2015-06-03 キヤノン株式会社 画像形成システム及びサーバ装置
JP5875256B2 (ja) 2011-06-06 2016-03-02 キヤノン株式会社 撮像装置及び交換レンズ、撮像装置の制御方法及び交換レンズの制御方法
US10250793B2 (en) 2011-06-29 2019-04-02 Nikon Corporation Focus adjustment device having a control unit that drives a focus adjustment optical system to a focused position acquired first by either a contrast detection system or a phase difference detection system
JP5418552B2 (ja) 2011-07-22 2014-02-19 株式会社ニコン アダプター、カメラシステム、および、アダプター制御プログラム
JP2013057746A (ja) 2011-09-07 2013-03-28 Nikon Corp レンズ鏡筒
RU2650435C2 (ru) 2011-11-11 2018-04-13 Никон Корпорейшн Устройство регулировки фокуса, устройство формирования изображения и объектив
JP2014153615A (ja) 2013-02-12 2014-08-25 Nikon Corp 交換レンズおよびカメラボディ
WO2014133152A1 (ja) 2013-02-28 2014-09-04 株式会社ニコン 撮像装置および交換レンズ
JP6102489B2 (ja) 2013-05-10 2017-03-29 株式会社ニコン 撮像装置
CN105359023B (zh) * 2013-05-10 2020-08-21 株式会社尼康 可换镜头、相机系统以及摄像装置
JP6724288B2 (ja) 2014-11-07 2020-07-15 株式会社ニコン 交換レンズ、カメラ本体およびカメラ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05257055A (ja) * 1992-03-16 1993-10-08 Nikon Corp 交換レンズ
JPH05313062A (ja) * 1992-05-07 1993-11-26 Canon Inc 制御装置
JP2002267924A (ja) * 2001-03-12 2002-09-18 Canon Inc 光学機器システム
JP2006078660A (ja) * 2004-09-08 2006-03-23 Canon Inc 撮影光学系、カメラ及びカメラシステム

Also Published As

Publication number Publication date
US20170184811A1 (en) 2017-06-29
JP2017033009A (ja) 2017-02-09
JPWO2013069795A1 (ja) 2015-04-02
JP7115462B2 (ja) 2022-08-09
CN108387995A (zh) 2018-08-10
JP2019003199A (ja) 2019-01-10
US10302902B2 (en) 2019-05-28
CN108387997B (zh) 2022-07-08
JP2020074010A (ja) 2020-05-14
US20220342178A1 (en) 2022-10-27
JP6642649B2 (ja) 2020-02-05
RU2018111405A (ru) 2019-02-28
EP4310569A1 (en) 2024-01-24
CN108387996B (zh) 2020-11-03
US20140320736A1 (en) 2014-10-30
US9635239B2 (en) 2017-04-25
US11474325B2 (en) 2022-10-18
CN108387997A (zh) 2018-08-10
CN103946731B (zh) 2018-03-09
WO2013069795A1 (ja) 2013-05-16
JP6380492B2 (ja) 2018-08-29
CN108387996A (zh) 2018-08-10
CN103946731A (zh) 2014-07-23
RU2014123677A (ru) 2015-12-20
BR112014011332A2 (pt) 2017-04-25
US20190243090A1 (en) 2019-08-08
US20230273400A1 (en) 2023-08-31
CN108387995B (zh) 2021-05-14
RU2650435C2 (ru) 2018-04-13
EP2778733A4 (en) 2015-11-11
EP2778733A1 (en) 2014-09-17
RU2756433C2 (ru) 2021-09-30
RU2018111405A3 (ja) 2021-07-23
JP6380491B2 (ja) 2018-08-29
BR112014011332B1 (pt) 2021-05-18
JP6070566B2 (ja) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6642649B2 (ja) 交換レンズおよびカメラボディ
JP2013025144A (ja) 焦点調節装置および撮像装置
JP5966267B2 (ja) 焦点調節装置および撮像装置
JP5845660B2 (ja) 焦点検出装置および撮像装置
JP2017126076A (ja) 交換レンズ
JP6098097B2 (ja) 焦点調節装置、焦点検出装置、および撮像装置
JP2014074852A (ja) 撮像装置
JP2013054261A (ja) 焦点検出装置および撮像装置
JP5982749B2 (ja) 焦点調節装置および撮像装置
JP2013015561A (ja) 撮像装置
JP5923900B2 (ja) 焦点検出装置および撮像装置
JP5966283B2 (ja) カメラボディおよびカメラ
JP5423734B2 (ja) レンズ鏡筒および撮像装置
JP5899735B2 (ja) 交換レンズ
JP6477745B2 (ja) 焦点調節装置および撮像装置
JP2016028297A (ja) レンズ鏡筒およびカメラボディ
JP2014074919A (ja) カメラボディ
JP2015049473A (ja) 焦点調節装置および撮像装置
JP5545278B2 (ja) レンズアダプタおよびカメラボディ
JP2013104935A (ja) 焦点調節装置および撮像装置
JP2013025126A (ja) 撮像装置およびレンズ鏡筒
JP2013037047A (ja) 撮像装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R150 Certificate of patent or registration of utility model

Ref document number: 6380491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250