CN1213323C - 红外折射衍射三片式减热差光学成像系统结构 - Google Patents

红外折射衍射三片式减热差光学成像系统结构 Download PDF

Info

Publication number
CN1213323C
CN1213323C CN 02118851 CN02118851A CN1213323C CN 1213323 C CN1213323 C CN 1213323C CN 02118851 CN02118851 CN 02118851 CN 02118851 A CN02118851 A CN 02118851A CN 1213323 C CN1213323 C CN 1213323C
Authority
CN
China
Prior art keywords
diffraction
refraction
hybrid lens
lens
diffraction hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 02118851
Other languages
English (en)
Other versions
CN1455282A (zh
Inventor
孙强
王肇圻
卢振武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN 02118851 priority Critical patent/CN1213323C/zh
Publication of CN1455282A publication Critical patent/CN1455282A/zh
Application granted granted Critical
Publication of CN1213323C publication Critical patent/CN1213323C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

本发明属于对红外波段的光学设计成像结构的改进,涉及红外折射/衍射三片式的光学成像方法。采用二元光学元件的折射/衍射混合减热差红外光学成像系统,不仅能在较大视场内得到接近衍射极限的成像质量,很宽的温度工作范围,表现出非常好的校色差作用,系统的离焦量小于焦深。而且结构简单,体积小,重量轻。因此二元光学衍射元件在红外光学系统的减热设计,校色差方面以及探讨变焦距和多波段系统的减热差设计有很大的应用价值。

Description

红外折射衍射三片式减热差光学成像系统结构
技术领域:本发明属于对红外波段的光学设计成像结构的改进,涉及一种红外折射衍射三片式的光学成像系统结构。
背景技术:红外光学系统的减热差设计是通过一定的机械、光学、电子等技术使红外系统在一个很大的温度范围内保持成像质量的稳定。一般有下面三种:机械主动式、机械被动式、光学被动式。由于光学被动式减热差系统具有重量轻、结构简单,更适合红外光学系统的需求,因此得到广泛的关注,Kanagawa Y,Wakabayashi S和Tajime T等人提出了很好的方法,但传统的折射光学系统中只能通过改变曲面的曲率或使用不同的材料来校正像差,需要至少三种以上的材料,使得透镜数量增加,需要昂贵的红外稀有材料,使系统效率比下降,系统结构复杂,特别在温度偏高时,系统的像差品质严重下降,导致系统不能使用,则不能适合于军事应用。
发明内容:本发明的目的是针对上述存在的问题,设计了一种结构简单,不用特殊材料,后工作距离长的红外折射/衍射三片式、超常温、硅锗材料组成的光学成像系统结构。
为实现上述目的,本发明的红外光学系统中引入二元光学元件即折射衍射混合透镜如图1所示,在依次置有正光焦度透镜1,第一折射衍射混合透镜2,第二折射衍射混合透镜3,冷光阑4,最后是像平面5,采用第一折射衍射混合透镜2和第二折射衍射混合透镜3通过调整它们的光焦度一个主要用来校正红外光学系统色差,另一个主要用来减小红外光学系统热差;第一折射衍射混合透镜2的衍射面位于第二折射衍射混合透镜3的一侧,或第一折射衍射混合透镜2的衍射面位于接近正光焦度透镜1的一侧;第二折射衍射混合透镜3的衍射面位于接近像平面5的一侧,或第二折射衍射混合透镜3的衍射面也可以位于接近第一折射衍射混合透镜2的一侧;冷光阑放在后面;第一折射衍射混合透镜2和第二折射衍射混合透镜3的衍射面可以制备在基底为平面、球面或非球面上,并且使用硅锗材料;使光学系统的温度范围-80℃~+280℃;正光焦度透镜1、第一折射衍射混合透镜2、第二折射衍射混合透镜3除衍射面以外的其它面既采用球面或非球面,利用非球面协调校正系统的慧差和球差。
本发明工作时,由于本发明所用的折射材料的热常数为正,而衍射热常数都为负,当系统工作温度升高时,系统的具有正光焦度特征的透镜将在光轴方向和径向发生膨胀(由于径向对系统的品质影响不大,故可忽略),所以光焦度将增大,具有负光焦度特征的折射衍射混合透镜的光焦度将减小,而两个折射衍射混合透镜的衍射面所承担的光焦度将减小,镜筒材料此时也将发生膨胀。所以系统的光焦度将发生改变,由于折射热常数大于衍射热常数,所以系统总的光焦度将增大,发生焦移。由于镜筒材料发生线膨胀,两者的同步移动,则解决了温度改变发生的系统焦移,当温度降低时,与上述相反。两个折射衍射混合透镜的衍射面一个主要起到校正系统的色差及色球差,另一个则主要起到减热差的效果。
本发明的积极效果:由于折射衍射混合透镜的衍射面与传统的折射元件组成的折射衍射混合光学系统,利用了光在传播中的折射和衍射两种特性,增加了光学设计过程中的自由度。同时由于折射衍射混合透镜的衍射面具有负色散,负的衍射热常数,正光焦度的特点,对于本发明的校色差和减热差设计有着不可替代的积极作用。可以将透镜材料的热常数和镜筒材料的热膨胀系数很好的配合起来,使得温度变化时透镜热常数导致的离焦正好和镜筒材料热膨胀系数导致的像面移动相一致。其中折射衍射混合透镜的衍射面的作用既可以起到系统的校色差的任务,另外还可以起到消热差的双重作用。利用折射衍射混合透镜减热差和利用它来校色差类似,都是通过合适的光焦度分配来实现的,由于折射衍射混合透镜中的衍射镜热差和折射透镜的热差差不多,为了避免衍射镜的一个衍射面承担过多的光焦度,使折射衍射混合透镜产生大色散,本发明所设计的系统使用两个衍射面,一面用来校正系统的色差,另一面用来消热差。本发明说明折射衍射混合透镜衍射面的光热膨胀系数和大多数的红外材料的光热膨胀系数符号相反,同材料的折射率温度系数无关的光热膨胀系数。所以采用二元光学元件的折射/衍射混合减热差红外光学系统,不仅能在较大视场内得到接近衍射极限的成像质量,很宽的温度工作范围,而且结构简单,体积小,重量轻。因此折射衍射混合透镜在红外光学系统的减热差设计,校色差方面以及变焦距和多波段系统的减热差设计有很大的应用价值。
附图说明:
图1是本发明一种实施例结构剖视图
图2A是本发明在-80℃时的光学传递函数图
图2B是本发明在40℃时的光学传递函数图
图2C是本发明在280℃时的光学传递函数图
图3是本发明-80℃到280℃时的波前差和温度的关系曲线
图4A为-80℃时的垂轴像差曲线
图4B为-80℃时的轴向像差曲线
图4C为像差曲线在280℃时的垂轴像差曲线
图4D为280℃时的轴向像差曲线所以此系统可用。
具体实施方式:下面结合附图,对本发明的实施作进一步说明
如图1为本发明所设计的红外折射/衍射三片式、超常温、硅锗材料光学系统最佳实施例结构示意及光学原理图。系统设计波段为3.2~4.5μm,口径为30mm、视场角为5°、系统焦距为68mm的红外系统。
图1中正光焦度透镜1可采用折射球面镜,第一折射衍射混合透镜2和第二折射衍射混合透镜3采用折射衍射混合的透镜,第一折射衍射混合透镜2和第二折射衍射混合透镜3的第一镜面6可采用衍射面,第二镜面7可采用非球面,第三镜面8可采用衍射面,第四镜面9可采用非球面,第五镜面10,第六镜面11可采用球面。其中第一镜面6、第二镜面7、第三镜面8、第四镜面9可根据需要选择衍射面。衍射面的基底可以使用球面或平面,不做衍射面的第五镜面10,第六镜面11可以使用球面或非球面。
本发明采用含有衍射元件的减热差设计方案,采用3片式系统,其中第一折射衍射混合透镜2和第二折射衍射混合透镜3为折/衍混合元件,分别采用硅,锗两种材料。
温度范围为-80℃~+280℃的红外折射/衍射系统。则此系统必须满足:
一、光焦度分配需满足总光焦度,二、消轴向色差,三、减热差设计三个方程。可以用(1),(2)和(3)式表述:
Σ 1 3 h i φ i = φ - - - ( 1 )
式中φi为透镜的光焦度,hi为近轴光线在透镜上的入射高度,φ为系统的光焦度。
Δf b T = ( 1 h 1 φ ) 2 Σ ( h i 2 ω i φ i ) = 0 - - - ( 2 )
式中Δfb T表示系统焦距的变化量,ωi为元件的色散因子,也就是色散引起的光焦度的相对变化,这里,h1为近轴光线在透镜上的入射高度。可以看出,色散因子的定义与光热膨胀系数的定义相近,所以能够得出由光学元件的温度效应所引起的离焦。对于光学被动式的减热差系统,要求光学元件产生的离焦同机械结构的离焦相互抵消,从而整个系统不产生温度离焦,可以得到下式:
d f b T / dT = ( 1 h 1 φ ) 2 Σ ( h i 2 x i φ i ) = α h L - - - ( 3 )
式中dfb T表示系统焦距的微分量,dT表示系统温度的微分量变化,Xi为系统的热常数,αh为光学系统外部结构的线膨胀系数,L为结构的长度。
通过求解上述方程得到初始结构。通过ZEMAX光学设计软件优化,得到系统的结构如图1所示。其中第四镜面9和第二镜面7为高次非球面,加上高次非球面的目的是更有利于消像差。第一镜面6和第三镜面8为衍射光学衍射面。冷光阑密接于第二折射衍射混合透镜3的后表面。
图2为本发明的光学系统在-80℃、40℃、280℃时的光学传递函数情况,说明此系统在360℃的温度范围内能正常工作。从图3的波前差曲线也能看出此系统可认为无缺陷的,说明系统的消热差非常的好。图4说明系统在-80℃和280℃处的像差非常小,说明二元光学衍射元件起到非常好的校色差效果。同时根据波像差和焦深的关系式,此系统在-80℃到280℃温度范围内的最大离焦量约为35.9μm小于系统的焦深(76μm)。

Claims (2)

1、红外折射衍射三片式减热差光学成像系统结构,包括正光焦度透镜(1),冷光阑(4),像平面(5),其特征在于包括第一折射衍射混合透镜(2),第二折射衍射混合透镜(3),沿着光束传播方向依次置有正光焦度透镜(1),第一折射衍射混合透镜(2),第二折射衍射混合透镜(3),冷光阑(4),最后是像平面(5),使第一折射衍射混合透镜(2)和第二折射衍射混合透镜(3)折射面的折射热常数大于衍射面的负衍射热常数来调整它们的光焦度,第一折射衍射混合透镜(2)用来校正红外光学系统色差,第二折射衍射混合透镜(3)用来减小红外光学系统热差;第一折射衍射混合透镜(2)的衍射面位于第二折射衍射混合透镜(3)的球面一侧,或第一折射衍射混合透镜(2)的衍射面接近正光焦度透镜(1)的一侧;第二折射衍射混合透镜(3)的衍射面位于接近像平面(5)的一侧,或第二折射衍射混合透镜(3)的衍射面也可以位于接近第一折射衍射混合透镜(2)的一侧;冷光阑(4)放在后面;第一折射衍射混合透镜(2)和第二折射衍射混合透镜(3)的衍射面可以制备在基底为平面、球面或非球面上;使光学系统的温度范围为-80℃~+280℃;除正光焦度透镜(1)、第一折射衍射混合透镜(2)、第二折射衍射混合透镜(3)的衍射面以外的其它面采用球面或非球面,利用非球面协调校正系统的慧差和球差。
2、根据权利1要求所述的红外折射衍射三片式减热差光学成像系统结构,其特征还在于第一折射衍射混合透镜(2)和第二折射衍射混合透镜(3)分别使用硅、锗材料。
CN 02118851 2002-04-29 2002-04-29 红外折射衍射三片式减热差光学成像系统结构 Expired - Fee Related CN1213323C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 02118851 CN1213323C (zh) 2002-04-29 2002-04-29 红外折射衍射三片式减热差光学成像系统结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 02118851 CN1213323C (zh) 2002-04-29 2002-04-29 红外折射衍射三片式减热差光学成像系统结构

Publications (2)

Publication Number Publication Date
CN1455282A CN1455282A (zh) 2003-11-12
CN1213323C true CN1213323C (zh) 2005-08-03

Family

ID=29257455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 02118851 Expired - Fee Related CN1213323C (zh) 2002-04-29 2002-04-29 红外折射衍射三片式减热差光学成像系统结构

Country Status (1)

Country Link
CN (1) CN1213323C (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100405115C (zh) * 2005-08-22 2008-07-23 中国科学院长春光学精密机械与物理研究所 折衍混合偏振型红外热像仪光学成像装置
CN1800908B (zh) * 2006-01-18 2010-08-25 中国科学院光电技术研究所 一种激光束轴对称整形元件的折衍混合结构设计方法
CN102096124A (zh) * 2011-01-27 2011-06-15 南京理工大学 红外非球面齐明透镜装置
RU2650435C2 (ru) * 2011-11-11 2018-04-13 Никон Корпорейшн Устройство регулировки фокуса, устройство формирования изображения и объектив
CN102917163A (zh) * 2012-11-20 2013-02-06 无锡成电科大科技发展有限公司 无线摄像头
CN102981219A (zh) * 2012-12-07 2013-03-20 武汉邮电科学研究院 一种波长选择开关的色差、温差同时补偿装置和方法
CN104238117B (zh) * 2014-10-09 2017-01-11 中山联合光电科技有限公司 一种低成本低温漂的红外共焦光学系统
CN105652599B (zh) * 2014-12-04 2018-03-02 上海微电子装备(集团)股份有限公司 降低光刻投影物镜环境热效应影响的方法
KR20180070669A (ko) 2015-10-22 2018-06-26 헵타곤 마이크로 옵틱스 피티이. 리미티드 비 온도의존 광학 어셈블리
CN105242399B (zh) * 2015-11-02 2018-04-20 长春理工大学 基于多层衍射光学元件热特性的消热差方法
US10288854B2 (en) * 2016-11-30 2019-05-14 Omnivision Technologies, Inc. Athermal compound lens
CN110542980A (zh) * 2019-02-18 2019-12-06 广州长步道光电科技有限公司 一种焦距35mm高分辨率低畸变长波红外镜头
CN110471173B (zh) * 2019-08-05 2021-05-11 同济大学 一种带衍射面的四反中波红外取景器光学系统
CN114488508B (zh) * 2021-12-29 2023-08-15 中国人民解放军63921部队 一种长焦距大口径紧凑型空间望远成像系统及成像装置

Also Published As

Publication number Publication date
CN1455282A (zh) 2003-11-12

Similar Documents

Publication Publication Date Title
CN1213323C (zh) 红外折射衍射三片式减热差光学成像系统结构
US5619373A (en) Optical system for a head mounted display
US3947084A (en) Long-wave infrared afocal zoom telescope
CN210090810U (zh) 一种经济型中波红外制冷连续变焦镜头
CN110780432A (zh) 一种非共轴全反射式无移动元件主动变焦中继光学系统
CN104049343A (zh) 紧凑型双视场中波红外消热差镜头
CN109143555B (zh) 一种变焦镜头
CN102033316B (zh) 长波长焦非制冷无热化红外光学系统
CN102778747A (zh) 光机结合被动消热差的长焦距长波红外物镜
CN105223679A (zh) 大相对孔径近红外共光路双视场消热差光学成像系统
CN110703421B (zh) 一种变倍比可调紧凑型中波红外连续变焦镜头
CN209297023U (zh) 一种高光轴精度、小型化双视场制冷中波红外光学系统
RU2642173C1 (ru) Атермализованный широкоугольный объектив для ИК-области спектра
RU2629890C1 (ru) Инфракрасный объектив с пассивной атермализацией
CN112305732A (zh) 超长焦距高分辨率连续变焦中波红外光学系统
RU2613483C1 (ru) Атермализованный объектив для ИК-области спектра
US4330181A (en) Compact zoom lens
CN214474202U (zh) 一种低成本连续变倍红外物镜
CN1215350C (zh) 红外折射和衍射双波段光学成像装置
CN214252721U (zh) 一种超长焦距中波红外光学系统
Shen et al. Deformable mirror-based optical design of dynamic local athermal longwave infrared optical systems
Xie et al. Off-axis three-mirror reflective zoom system based on freeform surface
CN107656362A (zh) 大光圈大倍率变焦镜头
Kuo et al. Midwave infrared optical zooming design and kinoform degrading evaluation methods
CN103197405B (zh) 一种近红外波段消热差光学镜头

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee