JP2016178414A - 高周波ミクサ - Google Patents

高周波ミクサ Download PDF

Info

Publication number
JP2016178414A
JP2016178414A JP2015055997A JP2015055997A JP2016178414A JP 2016178414 A JP2016178414 A JP 2016178414A JP 2015055997 A JP2015055997 A JP 2015055997A JP 2015055997 A JP2015055997 A JP 2015055997A JP 2016178414 A JP2016178414 A JP 2016178414A
Authority
JP
Japan
Prior art keywords
wave
terminal
differential
transistor
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015055997A
Other languages
English (en)
Other versions
JP6299637B2 (ja
Inventor
津留 正臣
Masaomi Tsuru
正臣 津留
谷口 英司
Eiji Taniguchi
英司 谷口
隆二 稲垣
Ryuji Inagaki
隆二 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015055997A priority Critical patent/JP6299637B2/ja
Publication of JP2016178414A publication Critical patent/JP2016178414A/ja
Application granted granted Critical
Publication of JP6299637B2 publication Critical patent/JP6299637B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Superheterodyne Receivers (AREA)

Abstract

【課題】IM波及びLOリークを抑圧できる高周波ミクサを提供すること。【解決手段】本発明の高周波ミクサは、入力されたIF波を第1の差動IF波と第2の差動IF波とに分配する第1の90°分配器と、入力されたLO波を第1の差動LO波と第2の差動LO波とに分配する45°分配器と、第1の差動IF波と第2の差動LO波の2倍高調波とを混合する第1の偶高調波ミクサと、第2の差動IF波と第1の差動LO波の2倍高調波とを混合する第2の偶高調波ミクサと、第1の偶高調波ミクサにより混合された差動信号を同相にして合成する第1の180°合成器と、第2の偶高調波ミクサにより混合された差動信号を同相にして合成する第2の180°合成器と、第1の180°合成器が出力した信号と第2の180°合成器が出力した信号とを同相合成する同相合成器とを備える。【選択図】 図1

Description

本発明は、マイクロ波帯またはミリ波帯の送受信装置に適用される高周波ミクサに関する。
高周波ミクサは、受信機の受信感度を決定する重要なコンポーネントであり、受信感度を高くするために、雑音に起因するイメージ波の抑圧が求められる。以下、イメージ波をIM波ともいう。
IM波の抑圧が可能な従来の高周波ミクサとして、ギルバートセルミクサを用いた特許文献1のイメージリジェクションミクサ(IRM:Image Rejection Mixer)がある。本IRMは、入力された位相差を有する局部発振器(LO)周波数を分配する分配手段と、分配されたそれぞれの前記LO周波数と位相差を有するそれぞれの高周波(RF)信号とをミクシングして、それぞれ中間周波数(IF)を出力する第1及び第2のミクシング手段と、それぞれ出力された前記IFを相対的に90度の移相差を有するように移相する移相手段と、移相された前記IFを加算する加算手段とを備えたイメージリジェクションミクサである。
次に、特許文献1のIRMの動作について説明する。本IRMは受信ミクサとして動作する。
差動RF信号である差動RF波、及び雑音に起因するIM波は、それぞれのギルバートセルミクサに入力され、本IRMに入力された差動LO波は、基準となる位相を有する差動LO波とそれより90°進んだ位相を有する差動LO波とに分配され、それぞれギルバートセルミクサに入力される。それぞれのギルバートセルミクサでは差動RF波と、IM波と、差動LO波とが混合され、RF−LO、LO−IMが出力される。ここで、RF−LOは、RF波とLO波との差分の周波数を意味し、LO−IMは、LO波とIM波との差分の周波数を意味する。
ここで、通常のミクサではLO−IF端子間のアイソレーションは実際には無限大ではないため、LO波がIF端子から漏れ出すことが生じる。このようなLO波の出力端子への漏洩をLOリークという。以下、かっこ内の数字は、信号の位相を表す。ギルバートセルミクサでは、差動LO波を構成する一方の信号(0°)をトランジスタのベース端子に入力するとともに、他方の信号(180°)を別のトランジスタのベース端子に入力し、2つのトランジスタのコレクタ端子同士を接続しているので、コレクタ端子において、LO波は相殺され、LOリークは出力されない。
特許文献1のIRMにおいて、各ギルバートセルミクサから出力される信号の位相関係を、以下に示す。
RF−LO LO−IM
ギルバートセルミクサ1: 0° 0°
ギルバートセルミクサ2: −90° 90°
ギルバートセルミクサ1から出力された信号は、α°移相されて、ギルバートセルミクサ2から出力された信号は、α°+90°移相されて、それぞれの信号が合成されるので、高周波ミクサとして所望のIF(=RF−LO)が得られる。このときの合成前の位相関係は次のようになる。
RF−LO LO−IM
ギルバートセルミクサ1: α° α°
ギルバートセルミクサ2: α° α°+180°
したがって、合成により、LO−IMは相殺されて、RF−LOが出力される。
特開2001−284968号公報
従来の高周波ミクサにおいては、2つのギルバートセルに入力する差動LO波の位相関係を用いてIM波を相殺し、ギルバートセルミクサにおける差動LO波の逆相関係を用いてLOリークの抑圧が可能であった。しかしながら、無線装置の低コスト化、周波数安定度の改善、受信感度の改善などのためには、差動LO波の低周波化が求められる。差動LO波を低周波化させるために、ギルバートセルミクサに替えて、差動LO波の2倍高調波を用いて混合を行う偶高調波ミクサを用いることが考えられる。その場合、ギルバートセルミクサに比べて差動LO波の周波数を1/2にすることができる。しかし、差動LO波の2倍高調波は、逆相ではなく、同相関係となるため、偶高調波ミクサを用いた場合、LOリークを抑圧できない課題があった。
本発明は、以上のような課題を解消するためになされたものであり、偶高調波ミクサを用いても、IM波及びLOリークを抑圧できる高周波ミクサを提供することを目的とする。
本発明の高周波ミクサは、入力されたIF波を、第1の差動IF波と、第1の差動IF波に対して90°の位相差をもつ第2の差動IF波とに分配する第1の90°分配器と、入力されたLO波を、第1の差動LO波と、第1の差動LO波に対して45°の位相差をもつ第2の差動LO波とに分配する45°分配器と、第1の差動IF波と第2の差動LO波の2倍高調波とを混合する第1の偶高調波ミクサと、第2の差動IF波と第1の差動LO波の2倍高調波とを混合する第2の偶高調波ミクサと、第1の偶高調波ミクサにより混合された差動信号を同相にして合成する第1の180°合成器と、第2の偶高調波ミクサにより混合された差動信号を同相にして合成する第2の180°合成器と、第1の180°合成器が出力した信号と第2の180°合成器が出力した信号とを同相合成する同相合成器とを備える。
本発明の高周波ミクサによれば、所望の出力波2LO+IFを出力しつつ、不要なイメージ波2LO−IFとLOリーク2LOとを相殺できる効果を奏する。
実施の形態1に係る高周波ミクサの一構成例を示す図である。 偶高調波ミクサの一構成例を示す図である。 実施の形態1に係る高周波ミクサの他の構成例を示す図である。 実施の形態2に係る高周波ミクサの一構成例を示す図である。 1つのLO帯同相分配器及び2つのLO帯90°分配器を用いた場合の実施の形態2に係る高周波ミクサの一構成例を示す図である。 IF波及びLO波が単相入力の場合の実施の形態2に係る高周波ミクサの一構成例を示す図である。 IF波及びLO波が単相入力の場合の実施の形態2に係る高周波ミクサの一構成例を示す図である。
実施の形態1
図1は、実施の形態1に係る高周波ミクサの一構成例を示す図である。
本高周波ミクサは、偶高調波ミクサ1(第1の偶高調波ミクサの一例)、偶高調波ミクサ2(第2の偶高調波ミクサの一例)と、IF帯90°分配器3(第1の90°分配器の一例)と、LO帯45°分配器4(45°分配器の一例)と、RF帯180°合成器5(第1の180°合成器の一例)、6(第2の180°合成器の一例)と、RF帯同相合成器7(同相合成器の一例)とを備える。
偶高調波ミクサ1は、1つの差動IF入力端子と、2つの差動LO入力端子と、1つのRF出力端子とを備え、LO波の2倍高調波とIF波との混合波を出力する偶高調波ミクサ(HMIX:Harmonic MIXer)である。
図2は、偶高調波ミクサ1の構成例を示す図である。
図2(a)は、入力される2つの差動LO波の位相差が180°である場合の偶高調波ミクサ1の構成例を示す図である。
偶高調波ミクサ1は、単位ミクサ11と、単位ミクサ12と、電流源201とを備える。
単位ミクサ11は、インダクタ111と、トランジスタ112(第1のトランジスタの一例)、トランジスタ114(第2のトランジスタの一例)、トランジスタ116(第3のトランジスタの一例)を備える。単位ミクサ12は、インダクタ121と、トランジスタ122(第4のトランジスタの一例)、トランジスタ124(第5のトランジスタの一例)、トランジスタ126(第6のトランジスタの一例)を備える。単位ミクサ11と単位ミクサ12とは同一の構成であり、インダクタ111とインダクタ121、トランジスタ112とトランジスタ122、接続点113と接続点123、トランジスタ114とトランジスタ124、接続点115と接続点125、トランジスタ116とトランジスタ126は、それぞれ対応している。
トランジスタ112とトランジスタ114とは、コレクタ端子(第2の端子の一例)同士が接続され、接続点113を形成し、エミッタ端子(第3の端子の一例)同士が接続され、接続点115を形成している。また、トランジスタ112とトランジスタ114のベース端子(第一の端子の一例)は、LO波の入力端子であり、互いに逆相の信号が入力される。図2(a)において、LO波の入力端子LO1とLO2とに逆相の信号が入力される。
同様に、トランジスタ122とトランジスタ124とは、コレクタ端子同士が接続され、接続点123を形成し、エミッタ端子同士が接続され、接続点125を形成している。また、トランジスタ122及びトランジスタ124のベース端子は、LO波の入力端子であり、互いに逆相の信号が入力される。図2(a)において、LO波の入力端子LO3とLO4とに逆相の信号が入力される。
接続点115にトランジスタ116のコレクタ端子が接続され、トランジスタ116のエミッタ端子には、トランジスタ112、114、116に一定電流を流す電流源201が接続される。トランジスタ116のベース端子は、IF波の入力端子であり、図2(a)において、IF1である。
同様に、接続点125にトランジスタ126のコレクタ端子が接続され、トランジスタ126のエミッタ端子には、トランジスタ122、124、126に一定電流を流す電流源201が接続される。トランジスタ126のベース端子は、IF波の入力端子であり、図2(a)において、IF2である。トランジスタ116のベース端子とトランジスタ126のベース端子とには互いに逆相のIF波が入力される。逆相のIF波が入力されるので、トランジスタ116とトランジスタ126とは、逆相動作し、両者のエミッタ端子同士が接続される点において仮想短絡が形成される。これにより、トランジスタ116及びトランジスタ126のエミッタ端子は、高周波に対して接地されることになる。
接続点113にインダクタ111の一端とRF波の出力端子401とが接続される。接続点123にインダクタ121の一端とRF波の出力端子402とが接続される。インダクタ111の他端とインダクタ121の他端とは接続され、その接続点に電源が接続されている。電源は、トランジスタ112のコレクタ端子、トランジスタ114のコレクタ端子、トランジスタ122のコレクタ端子及びトランジスタ124のコレクタ端子に直流電圧を供給する。本偶高調波ミクサ1の構成では、出力端子401と、出力端子402とから出力されるRF波は逆相関係になるので、インダクタ111とインダクタ121との接続点において、仮想短絡が形成される。これにより、本偶高調波ミクサ1は、電源インピーダンスに影響されずに動作する。なお、ここでは、トランジスタとしてバイポーラトランジスタを用いる場合を説明したが、電界効果トランジスや他のトランジスタを用いても良い。電界効果トランジスタを用いる場合、バイポーラトランジスタの制御端子であるベース端子が電界効果トランジスタの制御端子であるゲート端子に、コレクタ端子がドレイン端子に、エミッタ端子がソース端子に対応する。
図2(b)は、偶高調波ミクサの他の構成例を示す図である。
図2(a)に対して、インダクタ111とインダクタ121との接続点に一端が接地されたキャパシタ301(第1のキャパシタの一例)が装荷され、トランジスタ116とトランジスタ126との接続点に一端が接地されたキャパシタ302(第2のキャパシタの一例)が装荷されている点が異なる。
図2(b)の偶高調波ミクサ1は、単位ミクサ11と単位ミクサ12との電源側の接続点にキャパシタ301が接続され、単位ミクサ11と単位ミクサ12との電流源201側の接続点にキャパシタ302が接続され、高周波を短絡している。このため、図2(b)において、IF1に入力されるIF波とIF2に入力されるIF波との位相差が180°からずれていても、キャパシタ301とキャパシタ302とにより高周波が短絡されるため、偶高調波ミクサ1は、電源による負荷変動の影響を受けずに動作し、出力端子401及び402から出力されるRF波の損失を抑圧できる。これは、単位ミクサ11と単位ミクサ12との接続点に短絡点が形成されることにより、高周波電流が、電源側に流れないからである。さらに、図2(b)の偶高調波ミクサ1は、キャパシタ301とキャパシタ302により、短絡点を形成しているので、出力端子401と出力端子402とから、逆相関係にない信号を出力できる。
図1における各構成要素の説明に戻る。
偶高調波ミクサ2は、偶高調波ミクサ1と同様の構成である。偶高調波ミクサ2の単位ミクサ21が、偶高調波ミクサ1の単位ミクサ11に対応し、偶高調波ミクサ2の単位ミクサ22が、偶高調波ミクサ1の単位ミクサ12に対応する。偶高調波ミクサ2には、偶高調波ミクサ1に入力される差動LO波に対して位相差をもつ差動LO波が入力され、偶高調波ミクサ1に入力される差動IF波に対して位相差をもつ差動IF波が入力される。なお、差動LO波とは、互いに逆相関係にある2つのLO波から構成される差動のLO信号である。差動IF波とは、互いに逆相関係にある2つのIF波から構成される差動のIF信号である。
IF帯90°分配器3は、入力された差動IF波を、90°の位相差を有する2つの信号に分けて、偶高調波ミクサ1のIF端子と偶高調波ミクサ2のIF端子とに分配する90°分配器である。図1中、90°分配器3において、破線で示した0°及び90°は、信号に与える相対的な移相量を示している。
LO帯45°分配器4は、入力された差動LO波を、45°の位相差を有する2つの信号に分けて、偶高調波ミクサ1のLO端子と偶高調波ミクサ2のLO端子とに分配する45°分配器である。LO帯45°分配器4として、例えば、ウィルキンソン同相分配器の出力に電気長が45°異なる伝送線路を備えた受動回路または、8相リングVCO(Voltage Controlled Oscillator)などが用いられる。
RF帯180°合成器5は、高調波ミクサ1から出力される差動信号を同相にして合成する180°合成器である。つまり、RF帯180°合成器5は、入力される信号の一方を、他方の信号に対して相対的に180°移相して、一方の信号と他方の信号とを合成する。したがって、RF帯180°合成器に逆相信号が入力された場合、同相で合成されるが、同相信号が入力された場合、相殺される。RF帯180°合成器5として、平衡-不平衡変換器、例えば、バランが用いられる。
RF帯180°合成器6は、高調波ミクサ2から出力される差動信号を同相にして合成する180°合成器である。
RF帯同相合成器7は、RF帯180°合成器5が出力する信号とRF帯180°合成器6が出力する信号とを同相合成する合成器である。つまり、RF帯同相合成器7は、入力される信号を相対的に移相せずに合成する。したがって、RF帯同相合成器7に同相信号が入力された場合、合成されるが、逆相信号が入力された場合、相殺される。
次に、実施の形態1に係る高周波ミクサ1の動作について説明する。
IF帯90°分配器などにおいて、入力信号と出力信号との位相は、実際には変化する。例えば、入力信号の位相が0°で入力されても、出力信号の位相が0°とは限らない。しかし、位相関係の説明を簡単にするために、各ノードにおける位相の基準は0°とし、位相差の関係を保持して説明する。
図1に示すように、IF帯90°分配器3に、位相0°の信号と位相180°の信号とからなる差動IF波が入力される。IF帯90°分配器3は、入力された差動IF波を、基準となる差動IF波(0°)と90°位相が進んだ差動IF波(90°)とに分配して、出力する。基準となる差動IF波は偶高調波ミクサ1に入力され、その差動IF波を構成する一方の信号が単位ミクサ11の単相IF入力端子に入力され、他方の信号が単位ミクサ12の単相IF入力端子に入力される。また、90°位相が進んだ差動IF波は偶高調波ミクサ2に入力され、その差動IF波を構成する一方の信号が単位ミクサ21の単相IF入力端子に入力され、他方の信号が単位ミクサ22の単相IF入力端子に入力される。
LO帯45°分配器4には差動LO波が入力される。LO帯45°分配器4は、入力された差動LO波を、基準となる差動LO波と45°位相が進んだ差動LO波とに分配し、出力する。基準となる差動LO波は、同相で分配されて偶高調波ミクサ2の単位ミクサ21、22にそれぞれ入力される。45°位相が進んだ差動LO波は、同相で分配されて偶高調波ミクサ1の単位ミクサ11、12にそれぞれ入力される。
単位ミクサ11、12、21、22に入力されるLO及びIF波の位相関係をまとめると次のようになる。
IF LO
単位ミクサ11: 0° 45°、225°
単位ミクサ12: 180° 45°、225°
単位ミクサ21: 90° 0°、180°
単位ミクサ22: −90° 0°、180°
入力されたIF波とLO波とは各単位ミクサ11、12、21、22において混合される。ここで示すミクサは偶高調波ミクサであるため、LO波の2倍高調波とIF波との混合波が、RF波として出力される。したがって、主にLO波の2倍高調波の周波数からIF波の周波数だけ離れた周波数(2LO+IF、2LO−IF)が、偶高調波ミクサ1、2のRF端子から出力される。2LO+IFが偶高調波ミクサ1の出力信号として必要な所望の出力波であり。2LO−IFが、不要なイメージ波である。また、単位ミクサ11、12、21、22のLO−RF端子間のアイソレーションは実際には無限大ではないため、LOリークとしてLO波の2倍高調波(2LO)が、単位ミクサ11、12、21、22のRF端子から漏洩する。LO波の基本波も漏洩するがRF波から離れた周波数であり、フィルタなどで遮断できるため、2LOの漏洩の方が問題となる。2LOは、不要な漏洩波である。
これらの周波数における位相関係は、入力されるIF波の位相関係とLO波の位相関係とから、次のようになる。
2LO+IF 2LO−IF 2LO
単位ミクサ11: 90° 90° 90°
単位ミクサ12: −90° −90° 90°
単位ミクサ21: 90° −90° 0°
単位ミクサ22: −90° 90° 0°
単位ミクサ11の出力信号と単位ミクサ12の出力信号との位相関係において、2LO+IF及び2LO−IFは逆相関係にあるのに対し、2LOは同相関係にある。同様に、単位ミクサ21の出力信号と単位ミクサ22の出力信号との位相関係において、2LO+IF及び2LO−IFは逆相関係にあるのに対し、2LOは同相関係にある。
したがって、単位ミクサ11の出力信号と単位ミクサ12の出力信号とは、RF帯180°合成器5に入力されると、2LO+IF及び2LO−IFに関しては同相合成される。これに対して、2LOに関しては、同相でRF帯180°合成器5に入力されるため相殺されて、出力されなくなる。
これは、単位ミクサ21及び単位ミクサ22でも同様であり、単位ミクサ21の出力信号と単位ミクサ22の出力信号とはRF帯180°合成器6に入力されると、2LO+IF及び2LO-IFに関しては同相合成される。2LOに関しては、相殺されて、出力されなくなる。したがって、RF帯180°合成器5、6の出力信号の位相関係は、次のようになる。なお、―は出力がないことを意味する。
2LO+IF 2LO−IF 2LO
180°合成器5: 90° 90° ―
180°合成器6: 90° −90° ―
よって、RF帯180°合成器5、6からの出力信号はRF帯同相合成器7において、2LO+IFは同相合成され出力される。一方、イメージ波2LO−IFは逆相合成となるので、相殺されて、出力されなくなる。
以上のように、実施の形態1によれば、所望の出力波2LO+IFを出力しつつ、不要なイメージ波2LO-IFとLOリーク2LOとを相殺できる効果を奏する。
なお、ここでは、LO帯45°分配器4により、入力された差動LO波を、45°の位相差をつけた2つの差動LOに分配し、偶高調波ミクサ1、2に出力する構成を示したが、LO帯45°分配器4の代わりに、8相リングVCOを用いても良い。以下、8相リングVCOを用いた構成例を説明する。
図3は、実施の形態1に係る高周波ミクサの他の構成例である。
リングVCOはトランジスタの縦続段数に応じて多相出力が可能であり、4段リングVCOにより8相出力、つまり45°位相差の出力が得られる。伝送線路を用いた受動回路では位相差に相当する電気長が必要であり、サイズが大きくなる。リングVCOはトランジスタの縦続接続により構成されるため、小型化の効果を奏する。図3では、8相リングVCOがLO波入力端子を備えているが、これは外部信号との同期が可能であることを示している。外部信号に8相リングVCOを同期させることにより、8相リングVCOが出力する信号の位相安定度を改善できる。ただし、8相リングVCOが出力する信号の位相安定度が十分であれば、8相リングVCOに外部信号を入力する必要はないので、8相リングVCOのLO波入力端子はなくても良い。図3において、8相リングVCOの出力そのものが高周波ミクサのLO波である。
また、分配器の入力を単相としても良い。図3では、IF90°分配器の入力を単相とし、基準となる差動IF波と90°位相が進んだ差動IF波を出力する単相-直交差動変換31を示している。入力波を単相とすることで、高周波ミクサの入力波に位相偏差が生じず、不要なイメージ波及びLOリークを抑圧しやすくなる効果がある。また、図3では、180°合成器の一例としてバランを示している。
実施の形態2.
実施の形態1では、RF帯180°分配器5,6を用いて2LOを相殺する構成を示したが、実施の形態2では、RF帯180°分配器5,6を削減しつつ、2LOを相殺できる構成の高周波ミクサについて説明する。
図4は、実施の形態2に係る高周波ミクサの一構成例を示す図である。
なお、図4中、図1と同一符号は同一又は相当部分を示し、説明を省略する。実施の形態2の高周波ミクサは、RF帯180°分配器5,6を削減し、LO帯45°分配器4の代わりにLO帯90°分配器8(第2の90°分配器の一例)を備え、RF帯同相合成器7の代わりにRF帯90°合成器9(90°合成器の一例)を備え、偶高調波ミクサ1,2において単位ミクサの出力端子が接続され、単相出力となっている点が、実施の形態1の構成と異なる。
LO帯90°分配器8は、入力された差動LO波を、90°の位相差を有する2つの信号に分けて、偶高調波ミクサ1のLO端子と偶高調波ミクサ2のLO端子とに分配する90°分配器である。LO帯90°分配器4として、例えば、ポリフェーズフィルタなどが用いられる。
RF帯90°合成器9は、偶高調波ミクサ1、2が出力した90°位相差を有する信号を同相にして合成する90°合成器である。つまり、RF帯90°合成器9は、入力された一方の信号を、他方の信号に対して相対的に90°移相して、一方の信号と他方の信号とを、同相合成する。
次に、実施の形態2に係る高周波ミクサの動作について説明する。
図4に示すように、IF帯90°分配器3に、差動IF波が入力される。IF帯90°分配器3は、入力された差動IF波を、基準となる差動IF波と90°位相が進んだ差動IF波とに分配して、出力する。基準となる差動IF波は、偶高調波ミクサ1に入力され、その差動IF波を構成する一方の信号が単位ミクサ11のIF入力端子に入力され、他方の信号が単位ミクサ12のIF入力端子に入力される。また、90°位相が進んだ差動信号は偶高調波ミクサ2に入力され、その差動信号を構成する一方の信号が単位ミクサ21のIF入力端子に入力され、他方の信号が単位ミクサ22のIF入力端子に入力される。
LO帯90°分配器8には、差動LO波が入力される。LO帯90°分配器8は、入力された差動LO波を、基準位相を有する差動LO波と90°位相が進んだ差動LO波とに分配し、出力する。基準位相を有する差動LO波は、同相で分配されて、偶高調波ミクサ1の単位ミクサ11と偶高調波ミクサ2の単位ミクサ21とにそれぞれ入力される。90°位相が進んだ差動LO波は、同相で分配されて、偶高調波ミクサ1の単位ミクサ12と偶高調波ミクサ2の単位ミクサ22とにそれぞれ入力される。
単位ミクサ11、12、21、22に入力されるLO及びIF波の位相関係をまとめると次のようになる。
IF LO
単位ミクサ11: 0° 0°、180°
単位ミクサ12: 180° 90°、−90°
単位ミクサ21: 90° 0°、180°
単位ミクサ22: −90° 90°、−90°
入力されたIF波とLO波とは、各単位ミクサ11、12、21、22において混合される。ここで示すミクサは、偶高調波ミクサであるため、LO波の2倍高調波とIF波との混合波が、RF波として出力される。したがって、主にLO波2倍高調波の周波数からIF波の周波数だけ離れた周波数(2LO+IF、2LO−IF)が、偶高調波ミクサ1、2のRF端子から出力される。また、単位ミクサ11、12、21、22のLO−RF端子間のアイソレーションは実際には無限大ではないため、LOリークとしてLO波の2倍高調波(2LO)が、単位ミクサ11、12、21、22のRF端子から漏洩する。
これらの周波数における位相関係は、入力されるIF波の位相関係とLO波の位相関係とから、次のようになる。
2LO+IF 2LO−IF 2LO
単位ミクサ11: 0° 0° 0°
単位ミクサ12: 0° 0° 180°
単位ミクサ21: 90° −90° 0°
単位ミクサ22: 90° −90° 180°
偶高調波ミクサ1において、単位ミクサ11の出力端子と単位ミクサ12の出力端子とは接続されているので、単位ミクサ11の出力信号と単位ミクサ12信号とは直接合成される。したがって、単位ミクサ11の出力信号と単位ミクサ12の出力信号との位相関係において、2LO+IF及び2LO−IFは同相関係にあるのに対し、2LOは逆相関係にある。よって、2LOは相殺され、2LO+IF及び2LO−IFは同相合成される。このため、偶高調波ミクサ1は、2LO+IF及び2LO−IFを出力する。
偶高調波ミクサ1と同様に、偶高調波ミクサ2において、単位ミクサ21の出力端子と単位ミクサ22の出力端子とは接続されているので、単位ミクサ21の出力信号と単位ミクサ22の出力信号とは直接合成される。したがって、2LOは相殺され、2LO+IF及び2LO−IFが同相合成される。このため、偶高調波ミクサ2は、2LO+IF及び2LO−IFを出力する。したがって、RF帯90°合成器9の入力信号の位相関係は次のようになる。
2LO+IF 2LO−IF 2LO
偶高調波ミクサ1: 0° 0° ―
偶高調波ミクサ2: 90° −90° ―
したがって、RF帯90°合成器9において、2LO+IFは同相合成されて、出力される。一方、2LO−IFは逆相合成となるので、相殺されて出力されない。
以上のように、実施の形態2によれば、所望の2LO+IFを出力しつつ、不要な2LO−IF及び2LOを相殺できる効果を奏する。加えて、実施の形態2では、実施の形態1で必要であったRF帯180°合成器5及び6を削除できる。
なお、上記では、LO帯90°分配器8により、入力された差動LO波を、基準位相を有する差動LO波と90°位相差を有する差動LO波とに分配し、それぞれの差動LO波を同相分配して、偶高調波ミクサ1及び2に入力する構成例を示したが、偶高調波ミクサ1及び2に入力する位相関係が上記と同じであれば他の構成でも良い。以下、他の構成例を説明する。
図5は、1つのLO帯同相分配器及び2つのLO帯90°分配器を用いた場合の実施の形態2に係る高周波ミクサの一構成例を示す図である。入力された差動LO波をLO帯同相分配器10により同相分配した後に、分配した一方の差動LO波に対して、LO帯90°分配器100により90°位相差分配を行い、基準位相を有する差動LO波と、90°位相差を有するLO波とを偶高調波ミクサ1に入力する。また、LO帯同相分配器10が分配した他方の差動LO波に対して、LO帯90°分配器101により90°位相差分配を行い、基準位相を有する差動LO波と、90°位相差を有するLO波とを偶高調波ミクサ2に入力する。
このような構成であっても、偶高調波ミクサ1に入力される差動LO波と偶高調波ミクサ2に入力される差動LO波との位相関係は、図4の場合と同じであるので、図4に示す構成と同様の効果を奏する。さらに、図4の場合は、4相信号のLO波を4つの信号線で配線するのに対して、図5の場合うは、2相信号のLO波を2つの信号線で配線する。このため、2つの信号間の位相偏差を小さくでき、位相偏差によりイメージ波及びLOリークの抑圧量が劣化することを防止する効果がある。4つの信号線で配線する場合に比べて、2つの信号線で配線する方が、信号線の配線長に違いが生じにくいからである。
図6は、IF波及びLO波が単相入力の場合の実施の形態2に係る高周波ミクサの一構成例を示す図である。
図6の高周波ミクサは、入力された単相IF波を、IF帯単相−直交変換器31を用いて、90°の位相差をもつ2つの差動IF波に分配して、一方を偶高調波ミクサ1に入力し、他方を偶高調波ミクサ2に入力する。また、図6の高周波ミクサは、入力された1つの単相LO波を、LO帯単相−直交差動変換器81を用いて、90°の位相差を有する2つの差動LO波に分配し、2つの差動LO波をそれぞれ同相分配して、偶高調波ミクサ1及び偶高調波ミクサ2に入力する構成である。
このような構成であっても、偶高調波ミクサ1に入力される差動LO波と偶高調波ミクサ2に入力される差動LO波との位相関係は、図4の場合と同じであるので、図4に示す構成と同様の効果を奏する。さらに、図4の場合は分配器への入力が差動であるのに対して、図6は単相であるため、高周波ミクサへの入力波(IF波、LO波)の位相偏差がなく、イメージ波及びLOリークの抑圧を大きくする効果がある。
図7は、IF波及びLO波が単相入力の場合の実施の形態2に係る高周波ミクサの一構成例を示す図である。
図7において、入力された単相IF波を、IF帯単相−直交変換器31を用いて、90°の位相差をもつ2つの差動IF波に分配して、一方を偶高調波ミクサ1に入力し、他方を偶高調波ミクサ2に入力する点は、図6と同じである。
図7の高周波ミクサは、まず、入力された1つの単相LO波を、LO帯同相分配器20を用いて、同相の2つの単相LO波に分配する。次に、一方の単相LO波に対して、単相−直交変換器200を用いて、90°の位相差を有する2つの差動LO波に分配し、偶高調波ミクサ1に入力する。同様に、他方の単相LO波に対して、単相−直交変換器201を用いて、90°の位相差を有する2つの差動LO波に分配し、偶高調波ミクサ2に入力する。
このような構成であっても、偶高調波ミクサ1に入力される差動LO波と偶高調波ミクサ2に入力される差動LO波との位相関係は、図4の場合と同じであるので、図4に示す構成と同様の効果を奏する。さらに、図6の場合と同様に高周波ミクサへの入力波(IF波、LO波)が単相であるため位相偏差がなく、図5の場合よりもLO波に対する信号線が2相から単相となるため、信号線の配線長の違いによる位相偏差を小さくでき、イメージ波及びLOリークの抑圧を大きくする効果がある。
1 2 偶高調波ミクサ、3 IF帯90°分配器、4 LO帯45°分配器、5 6 RF帯180°合成器、7 RF帯同相合成器、11 12 21 22 単位ミクサ、8 LO帯90°分配器、9 RF帯90°合成器、10 LO帯同相分配器、100 101 LO帯90°分配器、31 IF帯単相-直交差動変換器、41 LO帯8相リングVCO、51 61 バラン、81 LO帯単相-直交差動変換器、20 LO帯同相分配器、200 201 LO帯単相-直交差動変換器、111 112 114 116 121 122 124 126 トランジスタ、111 121 インダクタ、113 115 123 126 接続点、201 電流源、301 302 キャパシタ、401 402 出力端子。

Claims (9)

  1. 入力されたIF波を、第1の差動IF波と、前記第1の差動IF波に対して90°の位相差をもつ第2の差動IF波とに分配する第1の90°分配器と、
    入力されたLO波を、第1の差動LO波と、前記第1の差動LO波に対して45°の位相差をもつ第2の差動LO波とに分配する45°分配器と、
    前記第1の差動IF波と前記第2の差動LO波の2倍高調波とを混合する第1の偶高調波ミクサと、
    前記第2の差動IF波と前記第1の差動LO波の2倍高調波とを混合する第2の偶高調波ミクサと、
    前記第1の偶高調波ミクサにより混合された差動信号を同相にして合成する第1の180°合成器と、
    前記第2の偶高調波ミクサにより混合された差動信号を同相にして合成する第2の180°合成器と、
    前記第1の180°合成器が出力した信号と前記第2の180°合成器が出力した信号とを同相合成する同相合成器と
    を備えた高周波ミクサ。
  2. 入力されたIF波を、第1の差動IF波と、前記第1の差動IF波に対して90°の位相差をもつ第2の差動IF波とに分配する第1の90°分配器と、
    入力されたLO波を、第1の差動LO波と、前記第1の差動LO波に対して90°の位相差をもつ第2の差動LO波とに分配する第2の90°分配器と、
    前記第1の差動IF波を構成する一方の信号と前記第1の差動LO波の2倍高調波とを混合し、前記第1の差動IF波を構成する他方の信号と前記第2の差動LO波の2倍高調波とを混合する第1の偶高調波ミクサと、
    前記第2の差動IF波を構成する一方の信号と前記第1の差動LO波の2倍高調波とを混合し、前記第2の差動IF波を構成する他方の信号と前記第2の差動LO波の2倍高調波とを混合する第2の偶高調波ミクサと、
    前記第1の偶高調波ミクサが出力した信号または前記第2の偶高調波ミクサが出力した信号の一方を90°移相して、他方と同相合成する90°合成器と
    を備えた高周波ミクサ。
  3. 前記45°分配器に入力される前記LO波は、単相である請求項1に記載の高周波ミクサ。
  4. 前記第1の90°分配器に入力される前記IF波は、単相である請求項1または請求項2に記載の高周波ミクサ。
  5. 前記第2の90°分配器に入力される前記LO波は、単相である請求項2に記載の高周波ミクサ。
  6. 前記第1の90°分配器は、伝送線路を用いて構成される請求項1または請求項2に記載の高周波ミクサ。
  7. 前記第2の90°分配器は、発振器を用いて構成される請求項2に記載の高周波ミクサ。
  8. 前記第1の偶高調波ミクサ及び前記第2の偶高調波ミクサは、制御端子である第1の端子と、第2の端子と、第3の端子とを有する第1から第6のトランジスタと、電流源とを各々備え、
    前記第1のトランジスタは、前記第1の端子に前記第1の差動LO波を構成する一方の信号が入力され、
    前記第2のトランジスタは、前記第1の端子に前記第1の差動LO波を構成する他方の信号が入力され、前記第2の端子に前記第1のトランジスタの前記第2の端子が接続され、前記第3の端子に前記第1のトランジスタの前記第3の端子が接続され、
    前記第3のトランジスタは、前記第1の端子に前記差動IF波を構成する一方の信号が入力され、前記第2の端子に前記第2のトランジスタの前記第3の端子が接続され、
    前記第4のトランジスタは、前記第1の端子に前記第2の差動LO波を構成する一方の信号が入力され、
    前記第5のトランジスタは、前記第1の端子に前記第2の差動LO波を構成する他方の信号が入力され、前記第2の端子に前記第4のトランジスタの前記第2の端子が接続され、前記第3の端子に前記第4のトランジスタの前記第3の端子が接続され、
    前記第6のトランジスタは、前記第1の端子に前記差動IF波を構成する他方の信号が入力され、前記第2の端子に前記第5のトランジスタの前記第3の端子が接続され、
    前記電流源は、一端が前記第3のトランジスタの前記第3の端子と前記第6のトランジスタの前記第3の端子とに接続され、他端が接地され、
    前記第1のトランジスタの前記第2の端子及び前記第4のトランジスタの前記第2の端子に電圧が供給され、前記第1のトランジスタの前記第2の端子及び前記第4のトランジスタの前記第2の端子からRF波を出力する請求項1に記載の高周波ミクサ。
  9. 前記第1の偶高調波ミクサ及び前記第2の偶高調波ミクサは、制御端子である第1の端子と、第2の端子と、第3の端子とを有する第1から第6のトランジスタと、電流源と、第1及び第2のキャパシタを各々備え、
    前記第1のトランジスタは、前記第1の端子に前記第1の差動LO波を構成する一方の信号が入力され、
    前記第2のトランジスタは、前記第1の端子に前記第1の差動LO波を構成する他方の信号が入力され、前記第2の端子に前記第1のトランジスタの前記第2の端子が接続され、前記第3の端子に前記第1のトランジスタの前記第3の端子が接続され、
    前記第3のトランジスタは、前記第1の端子に前記差動IF波を構成する一方の信号が入力され、前記第2の端子に前記第2のトランジスタの前記第3の端子が接続され、
    前記第4のトランジスタは、前記第1の端子に前記第2の差動LO波を構成する一方の信号が入力され、
    前記第5のトランジスタは、前記第1の端子に前記第2の差動LO波を構成する他方の信号が入力され、前記第2の端子に前記第4のトランジスタの前記第2の端子が接続され、前記第3の端子に前記第4のトランジスタの前記第3の端子が接続され、
    前記第6のトランジスタは、前記第1の端子に前記差動IF波を構成する他方の信号が入力され、前記第2の端子に前記第5のトランジスタの前記第3の端子が接続され、
    前記電流源は、一端が前記3のトランジスタの前記第3の端子と前記第6のトランジスタの前記第3の端子とに接続され、他端が接地され、
    前記第1のキャパシタは、一端が前記第1のトランジスタの前記第2の端子と前記第4のトランジスタの前記第2の端子との接続点に接続され、他端が接地され、
    前記第2のキャパシタは、一端が前記第3のトランジスタの前記第3の端子と前記第6のトランジスタの前記第3の端子との接続点に接続され、他端が接地され、
    前記第1のトランジスタの前記第2の端子及び前記第4のトランジスタの前記第2の端子に電圧が供給され、前記第1のトランジスタの前記第2の端子及び前記第4のトランジスタの前記第2の端子からRF波を出力する請求項2に記載の高周波ミクサ。
JP2015055997A 2015-03-19 2015-03-19 高周波ミクサ Active JP6299637B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015055997A JP6299637B2 (ja) 2015-03-19 2015-03-19 高周波ミクサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015055997A JP6299637B2 (ja) 2015-03-19 2015-03-19 高周波ミクサ

Publications (2)

Publication Number Publication Date
JP2016178414A true JP2016178414A (ja) 2016-10-06
JP6299637B2 JP6299637B2 (ja) 2018-03-28

Family

ID=57071372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015055997A Active JP6299637B2 (ja) 2015-03-19 2015-03-19 高周波ミクサ

Country Status (1)

Country Link
JP (1) JP6299637B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6407473B1 (ja) * 2017-07-27 2018-10-17 三菱電機株式会社 高周波ミクサ

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202908A (ja) * 1988-02-09 1989-08-15 Nec Corp 差動回路
JPH08242261A (ja) * 1995-03-03 1996-09-17 Mitsubishi Electric Corp 検波器及び受信装置並びに送信装置
JPH09167920A (ja) * 1995-12-15 1997-06-24 Toshiba Corp イメージ・リジェクション機能を備えた周波数変換回路
JPH09205382A (ja) * 1995-11-22 1997-08-05 Toshiba Corp 周波数変換器およびこれを用いた無線受信機
JPH1013158A (ja) * 1996-06-20 1998-01-16 Mitsubishi Electric Corp 偶高調波ミクサ、直交ミクサ、イメージリジェクションミクサ、2重平衡形ミクサ、受信装置、送信装置および位相同期発振器
JPH10303650A (ja) * 1997-04-23 1998-11-13 Nippon Telegr & Teleph Corp <Ntt> 周波数変換器
WO2001001564A1 (fr) * 1999-06-29 2001-01-04 Mitsubishi Denki Kabushiki Kaisha Circuit a semiconducteur
JP2001284968A (ja) * 2000-03-30 2001-10-12 Nec Corp 移相器、加算器、イメージリジェクションミキサ及びそれを用いた受信機
JP2002353741A (ja) * 2001-03-23 2002-12-06 Rf Chips Technology Inc ミキサ回路
WO2003009465A1 (fr) * 2001-07-12 2003-01-30 Mitsubishi Denki Kabushiki Kaisha Circuit melangeur
JP2003198388A (ja) * 2001-12-21 2003-07-11 Nec Corp 送信ハーモニックミキサ回路
WO2003079538A1 (fr) * 2002-03-15 2003-09-25 Mitsubishi Denki Kabushiki Kaisha Convertisseur de frequence
WO2004019482A1 (ja) * 2002-08-23 2004-03-04 Mitsubishi Denki Kabushiki Kaisha ミクサ回路
JP2005159587A (ja) * 2003-11-21 2005-06-16 Akihiko Yonetani 偶高調波ミキサ
US20050140402A1 (en) * 2003-12-24 2005-06-30 Sung Jin B. Frequency converter
JP2005244361A (ja) * 2004-02-24 2005-09-08 Nippon Telegr & Teleph Corp <Ntt> 広帯域位相器
US20060003717A1 (en) * 2004-07-02 2006-01-05 Tirdad Sowlati Quadrature subharmonic mixer
JP2006217460A (ja) * 2005-02-07 2006-08-17 Mitsubishi Electric Corp 偶高調波ミクサ
JP2006286990A (ja) * 2005-03-31 2006-10-19 Toyota Industries Corp 集積回路
JP2007259416A (ja) * 2006-03-22 2007-10-04 Samsung Electro-Mechanics Co Ltd サブハーモニック方式の周波数変換装置
US20070242779A1 (en) * 2006-04-14 2007-10-18 Information And Communications University Educational Foundation Direct-conversion receiver and sub-harmonic frequency mixer thereof
JP2007312315A (ja) * 2006-05-22 2007-11-29 Mitsubishi Electric Corp ポリフェーズフィルタ回路、イメージリジェクションミクサ及び直交変調器
JP2008536432A (ja) * 2005-04-14 2008-09-04 エヌエックスピー ビー ヴィ ミキサ回路
JP2009010726A (ja) * 2007-06-28 2009-01-15 Toyota Central R&D Labs Inc 無限移相器
WO2009044451A1 (ja) * 2007-10-02 2009-04-09 Mitsubishi Electric Corporation イメージリジェクションミクサ及び無線装置
JP2012222490A (ja) * 2011-04-06 2012-11-12 Hitachi Metals Ltd 高周波回路

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202908A (ja) * 1988-02-09 1989-08-15 Nec Corp 差動回路
JPH08242261A (ja) * 1995-03-03 1996-09-17 Mitsubishi Electric Corp 検波器及び受信装置並びに送信装置
US5787126A (en) * 1995-03-03 1998-07-28 Mitsubishi Denki Kabushiki Kaisha Detector and receiving and transmitting apparatus
JPH09205382A (ja) * 1995-11-22 1997-08-05 Toshiba Corp 周波数変換器およびこれを用いた無線受信機
JPH09167920A (ja) * 1995-12-15 1997-06-24 Toshiba Corp イメージ・リジェクション機能を備えた周波数変換回路
JPH1013158A (ja) * 1996-06-20 1998-01-16 Mitsubishi Electric Corp 偶高調波ミクサ、直交ミクサ、イメージリジェクションミクサ、2重平衡形ミクサ、受信装置、送信装置および位相同期発振器
JPH10303650A (ja) * 1997-04-23 1998-11-13 Nippon Telegr & Teleph Corp <Ntt> 周波数変換器
WO2001001564A1 (fr) * 1999-06-29 2001-01-04 Mitsubishi Denki Kabushiki Kaisha Circuit a semiconducteur
JP2001284968A (ja) * 2000-03-30 2001-10-12 Nec Corp 移相器、加算器、イメージリジェクションミキサ及びそれを用いた受信機
JP2002353741A (ja) * 2001-03-23 2002-12-06 Rf Chips Technology Inc ミキサ回路
WO2003009465A1 (fr) * 2001-07-12 2003-01-30 Mitsubishi Denki Kabushiki Kaisha Circuit melangeur
JP2003198388A (ja) * 2001-12-21 2003-07-11 Nec Corp 送信ハーモニックミキサ回路
WO2003079538A1 (fr) * 2002-03-15 2003-09-25 Mitsubishi Denki Kabushiki Kaisha Convertisseur de frequence
WO2004019482A1 (ja) * 2002-08-23 2004-03-04 Mitsubishi Denki Kabushiki Kaisha ミクサ回路
JP2005159587A (ja) * 2003-11-21 2005-06-16 Akihiko Yonetani 偶高調波ミキサ
US20050140402A1 (en) * 2003-12-24 2005-06-30 Sung Jin B. Frequency converter
JP2005244361A (ja) * 2004-02-24 2005-09-08 Nippon Telegr & Teleph Corp <Ntt> 広帯域位相器
US20060003717A1 (en) * 2004-07-02 2006-01-05 Tirdad Sowlati Quadrature subharmonic mixer
JP2006217460A (ja) * 2005-02-07 2006-08-17 Mitsubishi Electric Corp 偶高調波ミクサ
JP2006286990A (ja) * 2005-03-31 2006-10-19 Toyota Industries Corp 集積回路
US20080284488A1 (en) * 2005-04-14 2008-11-20 Nxp B.V. Mixer Circuit
JP2008536432A (ja) * 2005-04-14 2008-09-04 エヌエックスピー ビー ヴィ ミキサ回路
JP2007259416A (ja) * 2006-03-22 2007-10-04 Samsung Electro-Mechanics Co Ltd サブハーモニック方式の周波数変換装置
US20070242779A1 (en) * 2006-04-14 2007-10-18 Information And Communications University Educational Foundation Direct-conversion receiver and sub-harmonic frequency mixer thereof
JP2007312315A (ja) * 2006-05-22 2007-11-29 Mitsubishi Electric Corp ポリフェーズフィルタ回路、イメージリジェクションミクサ及び直交変調器
JP2009010726A (ja) * 2007-06-28 2009-01-15 Toyota Central R&D Labs Inc 無限移相器
WO2009044451A1 (ja) * 2007-10-02 2009-04-09 Mitsubishi Electric Corporation イメージリジェクションミクサ及び無線装置
US20110300823A1 (en) * 2007-10-02 2011-12-08 Mitsubishi Electric Corporation Image rejection mixer and wireless communication device
JP2012222490A (ja) * 2011-04-06 2012-11-12 Hitachi Metals Ltd 高周波回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6407473B1 (ja) * 2017-07-27 2018-10-17 三菱電機株式会社 高周波ミクサ
WO2019021425A1 (ja) * 2017-07-27 2019-01-31 三菱電機株式会社 高周波ミクサ

Also Published As

Publication number Publication date
JP6299637B2 (ja) 2018-03-28

Similar Documents

Publication Publication Date Title
US7894778B2 (en) LO generator to reject unwanted sideband
US6766158B1 (en) Harmonic cancellation mixer
US20040142673A1 (en) Mixer circuit and high frequency signal receiver using the same
JP3996458B2 (ja) ダブル・アップコンバージョン変調器
US20110136460A1 (en) Mixer and radio frequency receiver using the mixer
US20130130632A1 (en) Signal generator circuit and radio transmission and reception device including the same
JP2008035031A (ja) 混合装置とこれを用いた高周波受信装置
JP2007306573A (ja) 周波数アップコンバータ及び周波数ダウンコンバータ
JP2002300488A (ja) デュアル型デジタルテレビジョンチューナ
JP6299637B2 (ja) 高周波ミクサ
KR100392361B1 (ko) 우수 고주파 혼합기를 이용한 누설 신호 제거 장치 및 그방법
JP6440911B1 (ja) ミクサ
JP2010016829A (ja) 再設定可能なヘテロダイン・ミキサーおよび設定方法
JP5997596B2 (ja) ミキサ
JP3993573B2 (ja) 複数の無線システムに対応可能な無線通信装置
JP2014116697A5 (ja)
JP5495747B2 (ja) 高周波発振源
JP4864758B2 (ja) 直交ミクサおよびイメージリジェクションミクサ
JP2009159604A (ja) 信号生成装置並びに送信機及び送受信機
JP4849422B2 (ja) イメージリジェクションミクサ及び無線装置
WO2020183619A1 (ja) ミクサ
CN111211737B (zh) 高谐波抑制比混频电路
JP2010109716A (ja) 信号生成回路及びその信号生成方法
JPWO2017094817A1 (ja) 周波数混合器および中間周波数信号生成方法
JPH11196016A (ja) 周波数変換器と周波数変換方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180212

R151 Written notification of patent or utility model registration

Ref document number: 6299637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250