JP2016121541A - 内燃機関の冷却構造 - Google Patents

内燃機関の冷却構造 Download PDF

Info

Publication number
JP2016121541A
JP2016121541A JP2014260103A JP2014260103A JP2016121541A JP 2016121541 A JP2016121541 A JP 2016121541A JP 2014260103 A JP2014260103 A JP 2014260103A JP 2014260103 A JP2014260103 A JP 2014260103A JP 2016121541 A JP2016121541 A JP 2016121541A
Authority
JP
Japan
Prior art keywords
exhaust
passage
coolant
cylinder
coolant passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014260103A
Other languages
English (en)
Other versions
JP6071990B2 (ja
Inventor
洋岳 荻野
Hirotake Ogino
洋岳 荻野
幸生 小西
Yukio Konishi
幸生 小西
隆行 高徳
Takayuki Takatoku
隆行 高徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014260103A priority Critical patent/JP6071990B2/ja
Priority to US14/977,638 priority patent/US10107171B2/en
Priority to CN201510968753.6A priority patent/CN105736169B/zh
Publication of JP2016121541A publication Critical patent/JP2016121541A/ja
Application granted granted Critical
Publication of JP6071990B2 publication Critical patent/JP6071990B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • F01P3/14Arrangements for cooling other engine or machine parts for cooling intake or exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/14Cylinders with means for directing, guiding or distributing liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/38Cylinder heads having cooling means for liquid cooling the cylinder heads being of overhead valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/40Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4285Shape or arrangement of intake or exhaust channels in cylinder heads of both intake and exhaust channel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/024Cooling cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control

Abstract

【課題】シリンダヘッド内に排気集合部が形成された内燃機関において、シリンダヘッドの各部を均等に冷却し、冷却液の分配の調整を容易にする。【解決手段】主冷却液通路31と上下一対の排気側冷却液通路(32、33)とを互いに分離させる。主冷却液通路31は、冷却液を、シリンダ列方向の一端側において流入させ、シリンダ列方向の他端側において流出させるように一方向に流通させる構成とする。上下一対の排気側冷却液通路(32、33)は、冷却液を、シリンダ列方向の前記他端側において一方に流入させ、シリンダ列方向の前記一端側において一方から他方に流通させ、シリンダ列方向の前記他端側において他方から流出させるようにU字状に流通させる構成とする。【選択図】図3

Description

本発明は、シリンダヘッドの内部に排気集合部が形成された内燃機関の冷却構造に関する。
多気筒エンジンにおいては、シリンダヘッドの内部に複数の吸気ポート及び排気ポートを形成し、シリンダヘッドの吸気側側面及び排気側側面に対し、吸気を分配する吸気マニホールド及び排気を合流させる排気マニホールドをそれぞれ接合する形態が一般的である。近年では、排気を合流させる排気集合部をシリンダヘッドの内部に形成し、シリンダヘッドの排気側側面に単一の排気出口を形成して単一の排気管をシリンダヘッドに接合する形態のものもある。
排気集合部がシリンダヘッド内に形成された多気筒エンジンは、排気マニホールドを別体で設ける必要がないため、エンジン全体を小型化できる他、排ガスの放熱量を抑制でき、暖機時に排ガス浄化装置の温度を早期に高めて触媒を活性化することができる。また、燃焼室から排気集合部の出口までの距離を短くできるため、排ガスを利用する過給機(ターボチャージャ)を設ける場合に過給機の応答性を向上させることもできる。
その一方で、排気集合部が内部に形成されたシリンダヘッドでは、排気ポート及び排気集合部に晒される面積が大きくなるため、過度な温度上昇を防止するために排気集合部の周辺をも冷却する必要がある。シリンダヘッド内に形成された排気集合部の周辺をも冷却する内燃機関の冷却構造において、高温となる燃焼室周辺及び排気マニホールド(集合部)を均一に冷却するために、シリンダ列方向に直交する方向の水流れを形成し、シリンダ軸線方向に積層される3ピースからなるウォータージャケットに連続して冷却水を供給するための接続部を設けた構造が公知になっている(特許文献1参照)。
特開2012−189075号公報
しかしながら、特許文献1のようにウォータージャケットの冷却液の流れをシリンダ毎に複数に分割すると、各シリンダの周辺を流れる冷却液流量にばらつきが生じる上、分岐部及び合流部で滞留が生じることによって冷却効果が低下する虞がある。また、各通路に供給する冷却液の分配の調整が困難である。更に、冷却液の分配を調整できたとしても、各通路内において冷却液流量にばらつきが生じる場合があり、このような場合には冷却したい箇所を冷却できないことがある。
本発明は、このような従来技術に含まれる課題に鑑み、シリンダヘッド内に排気集合部が形成された内燃機関において、各シリンダ周りの冷却液流量を均等にでき、冷却液の分配の調整が容易な冷却構造を提供することを第1の課題とする。また、本発明は、冷却液通路内の冷却液が流れ難い箇所を冷却することを第2の目的とする。
第1の課題を解決するために、本発明は、複数のシリンダ(2)が一列に形成され、当該複数のシリンダの外周に沿ってブロック内冷却液通路(25)が形成されたシリンダブロック(3)と、前記シリンダブロックの上部に締結されて前記シリンダ内を摺動するピストン(1)の頂面との間に燃焼室(6)を形成し、ヘッド内冷却液通路(30)が形成されたシリンダヘッド(4)とを有する内燃機関(E)の冷却構造であって、前記シリンダヘッド内には、上流端が当該シリンダヘッドの一側面(4c)に開口し、下流端が前記燃焼室に開口する複数の吸気ポート(7)と、上流端が前記燃焼室に開口する複数の排気ポート(8a)と、前記複数の排気ポートを合流させ、当該シリンダヘッドの他側面(4d)に排気出口(8c)を開口させる排気集合部(8b)とが形成され、前記ヘッド内冷却液通路が、前記燃焼室の上方部分に形成された主冷却液通路(31)と、前記排気集合部を挟むように形成された上下一対の排気側冷却液通路(32、33)とを備え、前記主冷却液通路と前記上下一対の排気側冷却液通路とが互いに分離しており、前記主冷却液通路(31)は、冷却液を、シリンダ列方向の一端側(後側)において前記ブロック内冷却液通路から流入させ、シリンダ列方向の他端側(前側)において流出させるように一方向に流通させ、前記上下一対の排気側冷却液通路(32、33)は、冷却液を、シリンダ列方向の前記他端側(前側)において前記ブロック内冷却液通路から一方の排気側冷却液通路に流入させ、シリンダ列方向の前記一端側(後側)において前記一方の排気側冷却液通路から他方の排気側冷却液通路に流通させ、シリンダ列方向の前記他端側(前側)において前記他方の排気側冷却液通路から流出させるように流通させる構成とする。
この構成によれば、主冷却液通路が冷却液を一方向に流通させ、上下一対の排気側冷却液通路が直列に接続されて冷却液をU字状に流通させるため、各シリンダ周りの冷却液流量を均等にすることができる。また、冷却液は、主冷却液通路と実質的に1本の排気側冷却液通路とに分配されるだけなので、分配の調整が容易である。
また、上記の発明において、前記上下一対の排気側冷却液通路(32、33)は、冷却液を、前記ブロック内冷却液通路(25)から下側の排気側冷却液通路(32)に流入させ、前記上側の排気側冷却液通路(33)から流出させる構成とするとよい。
この構成によれば、排気側冷却液通路では、比較的高温になり易い下側の排気側冷却液通路を先に冷却液が流通するため、排気集合部周辺を効果的に冷却することができる。
また、上記の発明において、前記主冷却液通路の冷却液出口ポート(35)と前記上下一対の排気側冷却液通路の冷却液出口ポート(38)と前記ブロック内冷却液通路(25)の冷却液入口ポート(27)とが、前記シリンダ(2)に対してシリンダ列方向と直交する方向において同一の側(吸気側)に開口するように形成されている構成とするとよい。
この構成によれば、冷却液の配管のレイアウトが容易になる。
また、上記の発明において、前記主冷却液通路(31)が、内燃機関の搭載状態において当該主冷却液通路のなかで最も高い位置においてシリンダ列方向に延在するエア抜き通路(31e)を有する構成とするとよい。
この構成によれば、主冷却液通路にエアが流入したとしても、最も高い位置に形成されたエア抜き通路を通して主冷却液通路からエアを流出させることができる。また、エア抜き通路が最も高い位置に形成されるため、冷却性能への影響を最小限にすることができる。
また、上記の発明において、前記上側の排気側冷却液通路(33)が、内燃機関の搭載状態において前記上下一対の排気側冷却液通路のなかで最も高い位置においてシリンダ列方向に延在するエア抜き通路(33e)を有する構成とするとよい。
この構成によれば、上下一対の排気側冷却液通路にエアが流入したとしても、最も高い位置に形成されたエア抜き通路を通して上下一対の排気側冷却液通路からエアを流出させることができる。また、エア抜き通路が最も高い位置に形成されるため、冷却性能への影響を最小限にすることができる。
また、上記の発明において、内燃機関の搭載状態において前記下側の排気側冷却液通路(32)のなかで最も高い位置には、前記上側の排気側冷却液通路(33)に連通するエア抜き通路(41)が形成されている構成とするとよい。
この構成によれば、エア抜き通路が形成されたことで、下側の排気側冷却液通路に流入したエアはエア抜き通路を通って上側の排気側冷却液通路に流入することができる。そのため、エアを溜めることなく、冷却効果を高めるために下側の排気側冷却液通路を排気ポート等に沿った形状にすることができる。
また、上記の発明において、前記主冷却液通路の前記冷却液出口ポート(35)と前記上下一対の排気側冷却液通路の前記冷却液出口ポート(38)とが、シリンダ列方向視において交差している構成とするとよい。
この構成によれば、上側の排気側冷却液通路が主冷却液通路に対して下方に位置してしても、排気側冷却液通路のエア抜きを促進し、エア溜まりが生じることを抑制できる。
また、上記の発明において、前記シリンダヘッド内には、前記排気ポートが各燃焼室に2つずつ開口するように形成されると共に、前記排気ポートの前記燃焼室との各接続部を開閉する排気バルブ(10)を支持する複数の排気バルブガイド部(24)が形成され、上側の前記排気側冷却液通路は、前記複数の排気バルブガイド部を個別に囲繞するように形成されており、前記複数の排気バルブガイド部に対して前記シリンダヘッドの前記他側面(4d)側に形成された主通路(331)と、前記複数の排気バルブガイド部に対して前記シリンダヘッドの前記一側面(4c)側においてシリンダ列方向に延在するように形成された端部通路(332)と、前記主通路と前記端部通路とを連通する複数の連通路(333)とを有し、前記端部通路は、各シリンダにおいて冷却液の上流側に位置する前記排気バルブガイド部に接する部分の流路断面積が下流側に位置する前記排気バルブガイド部に接する部分の流路断面積よりも大きく形成されている構成とするとよい。
この構成によれば、上側の排気側冷却液通路において、上流側に位置する排気バルブガイド部に接する端部通路部分に冷却液が流れ易くなるため、シリンダ毎に設けられた2つの排気バルブガイド部間の連通路に冷却液が流れ易くなり、シリンダヘッドの排気バルブ間を効果的に冷却することができる。
また、上記の発明において、前記端部通路は、各シリンダにおいて冷却液の下流側に位置する排気バルブガイド部に接する部分に絞り(33b)を有している構成とするとよい。
この構成によれば、上流側に位置する排気バルブガイド部に接する端部通路部分を流通する冷却液がより連通路に流れ易くなるため、シリンダヘッドの排気バルブ間を一層効果的に冷却することができる。
また、第2の課題を解決するために、本発明は、複数のシリンダ(2)が一列に形成され、当該複数のシリンダの外周に沿ってブロック内冷却液通路(25)が形成されたシリンダブロック(3)と、前記シリンダブロックの上部に締結されて前記シリンダ内を摺動するピストン(1)の頂面との間に燃焼室(6)を形成し、ヘッド内冷却液通路(30)が形成されたシリンダヘッド(4)とを有する内燃機関(E)の冷却構造であって、前記シリンダヘッド内には、上流端が当該シリンダヘッドの一側面(4c)に開口し、下流端が前記燃焼室に開口する複数の吸気ポート(7)と、上流端が各燃焼室に2つずつ開口する複数の排気ポート(8a)と、前記複数の排気ポートを合流させ、当該シリンダヘッドの他側面に排気出口(8c)を開口させる排気集合部(8b)と、前記排気ポートの前記燃焼室との各接続部を開閉する排気バルブ(10)を支持する複数の排気バルブガイド部(24)とが形成され、前記ヘッド内冷却液通路が、前記燃焼室の上方部分に形成された主冷却液通路(31)と、前記排気集合部を挟むように形成された上下一対の排気側冷却液通路(32、33)とを備え、少なくとも上側の前記排気側冷却液通路(33)は、前記主冷却液通路と互いに分離し、かつ前記複数の排気バルブガイド部を個別に囲繞するように形成されると共に、冷却液をシリンダ列方向に流通させるように構成されており、上側の前記排気側冷却液通路は、前記複数の排気バルブガイド部に対して前記シリンダヘッドの前記他側面側に形成された主通路(331)と、前記複数の排気バルブガイド部に対して前記シリンダヘッドの前記一側面側においてシリンダ列方向に延在するように形成された端部通路(332)と、互いに隣接する前記排気バルブガイド部間において前記主通路と前記端部通路とを連通する複数の連通路(333)とを有し、前記端部通路は、各シリンダにおいて冷却液の上流側に位置する前記排気バルブガイド部に接する部分の流路断面積が下流側に位置する前記排気バルブガイド部に接する部分の流路断面積よりも大きく形成されている構成とする。
複数の排気バルブガイド部を個別に囲繞するように形成される上側の排気側冷却液通路においては、シリンダ毎に設けられた2つの排気バルブガイド部間の連通路に冷却液が流れ難く、排気バルブ間でシリンダヘッドの温度が高くなり易いが、この構成によれば、各シリンダの上流側に位置する排気バルブガイド部に接する端部通路部分に冷却液が流れ易くなるため、当該排気バルブガイド部間の連通路にも冷却液が流れ易くなり、シリンダヘッドの排気バルブ間を効果的に冷却することができる。
また、上記の発明において、前記端部通路は、各シリンダにおいて冷却液の下流側に位置する前記排気バルブガイド部に接する部分に絞り(33b)を有している構成とするとよい。
この構成によれば、上流側に位置する排気バルブガイド部に接する端部通路部分を流通する冷却液がより連通路に流れ易くなるため、シリンダヘッドの排気バルブ間を一層効果的に冷却することができる。
このように本発明によれば、シリンダヘッド内に排気集合部が形成された内燃機関において、各シリンダ周りの冷却液流量を均等にでき、冷却液の分配の調整が容易な冷却構造を提供することができる。
第1実施形態に係るエンジンの要部をシリンダ列方向から見た断面図 ブロック内冷却液通路及びヘッド内冷却液通路用の中子を示す斜視図 ブロック内冷却液通路及びヘッド内冷却液通路用の中子を示す斜視図 ブロック内冷却液通路及びヘッド内冷却液通路を実態的に示した上面図 ブロック内冷却液通路及びヘッド内冷却液通路を実態的に示した下面図 第2実施形態に係るエンジンの要部を示す正面図 ブロック内冷却液通路及びヘッド内冷却液通路用の中子を示す平面図 ブロック内冷却液通路及びヘッド内冷却液通路用の中子を示す後面図 ブロック内冷却液通路及びヘッド内冷却液通路用の中子を示す側面図 図7中のX−X断面図 エアの流れを示す説明図 ブロック内冷却液通路及びヘッド内冷却液通路用の中子の要部拡大正面図
以下、図面を参照して、本発明を自動車用内燃機関(以下、単にエンジンという)に適用した2つの実施形態について詳細に説明する。
≪第1実施形態≫
まず、図1〜図5を参照して第1実施形態について説明する。以下では、エンジンE1が自動車に搭載された状態を基準として図1に示す上下の方向に従って説明する。
図1に示すように、エンジンE1は、SOHC4バルブ式の直列3気筒ガソリンエンジンである。図1に示すように、エンジンE1は、ピストン1が収容される3つのシリンダ2が一列に形成されたシリンダブロック3と、シリンダブロック3の上部に締結された箱形のシリンダヘッド4と、シリンダヘッド4の上部に締結されたヘッドカバー5とを備えており、シリンダヘッド4を鉛直方向の上側に配置した姿勢で自動車に搭載されている。シリンダブロック3及びシリンダヘッド4は、アルミニウム合金で鋳造される。
シリンダ2は、それぞれ略上下方向に延在し、互いに平行にシリンダブロック3に形成されている。より具体的には、シリンダ2は、上側が図の左側に倒れるように鉛直線に対して若干傾斜している。以下、列設された複数のシリンダ2の配列方向をシリンダ列方向という。各シリンダ2は、上端がシリンダブロック3の上面3aに開口し、下端がシリンダブロック3の下部に形成されたクランク室(図示しない)に開口している。
シリンダヘッド4のシリンダブロック3との接合面(以下、対ブロック接合面4aと称する)における各シリンダ2に対向する部分には、曲面状の窪みである燃焼室凹部4bが形成されている。各燃焼室凹部4bは、各シリンダ2のピストン1よりも上方の部分と共に燃焼室6を画定する。つまり、シリンダヘッド4がシリンダ2内を摺動するピストン1の頂面との間に燃焼室6を形成している。
シリンダヘッド4の内部には、上流端がシリンダヘッド4のシリンダ列方向に沿う一側面4c(図1の右側の側面)に開口する一方、二股に分岐した下流端が各燃焼室凹部4bを画定する壁面に2つずつ開口する3つの吸気ポート7と、上流端が各燃焼室凹部4bを画定する壁面に2つずつ開口する一方、下流端がシリンダヘッド4のシリンダ列方向に沿う他側面4d(図1の左側の側面)に開口する1つの排気集合ポート8とが形成されている。即ち、排気集合ポート8は、シリンダ2毎に設けられて二股に分岐した上流端が各燃焼室凹部4bに2つずつ開口する複数(3本)の排気ポート8aと、全ての排気ポート8aを集合させる排気集合部8bとをシリンダヘッド4の内部に有しており、排気集合部8bがシリンダヘッド4の他側面4dに単一の排気出口8cを形成している。燃焼室凹部4bを基準として吸気ポート7が設けられた側を吸気側、排気集合ポート8が設けられた側を排気側とする。
シリンダ列方向と直交する断面(図1)において、吸気ポート7及び排気集合ポート8はそれぞれシリンダ軸線と直交する方向に対して傾斜している。前述したようにシリンダ2は上側が左側(排気側)に倒れるように傾斜しているため、シリンダ列方向と直交する方向において、排気集合ポート8の延在方向は吸気ポート7の延在方向に比べて水平に近い角度になっている。
シリンダヘッド4には、吸気ポート7の燃焼室6との各接続部を開閉する6本の吸気バルブ9と、排気集合ポート8の燃焼室6との各接続部を開閉する6本の排気バルブ10とが、それぞれバルブガイド23を介して摺動自在に設けられている。シリンダヘッド4とヘッドカバー5との間には、両者によって動弁室11が画定され、動弁室11には、吸気バルブ9及び排気バルブ10を開弁駆動する動弁機構12が収容されている。動弁機構12は、シリンダヘッド4に回転可能に取り付けられるカムシャフト13、カムシャフト13の上方に配置されるロッカシャフト14、ロッカシャフト14により揺動可能に支持される吸気ロッカアーム15及び排気ロッカアーム16等により構成される。カムシャフト13には、シリンダ2毎に一対の吸気バルブ9及び排気バルブ10を駆動する動弁カム13aが形成されている。
排気出口8cは、シリンダヘッド4の排気側の他側面4dにおける長手方向の中間位置に形成される。つまり、図1は、3つのシリンダ2のうち中央に配置されたシリンダ2の断面を示している。また、燃焼室凹部4bの壁面に開口する合計4つの吸気ポート7及び排気集合ポート8の中央には、点火プラグ(図示しない)を挿入するための点火プラグ挿入孔(図示しない)がシリンダヘッド4の底壁を貫通してシリンダヘッド4の上向き面に開口するように形成されている。
排気集合部8bは、シリンダヘッド4の対ブロック接合面4aよりも排気側に形成されている。より具体的には、排気出口8cがシリンダヘッド4の排気側の他側面4dにおいて突出する管状の排気出口管状部18により画定され、シリンダヘッド4の排気出口管状部18及びその近傍が、シリンダブロック3に対して側方に膨出して排気集合部8bを形成する膨出部19を構成している。
排気出口管状部18の先端面18aは、図示しない過給機(ターボチャージャ)のタービンや排気浄化装置などの下流側排気通路部材20との接合面をなす。下流側排気通路部材20は、排気出口8cを囲むように配置される4本のボルト21によって排気出口管状部18の先端面18aに締結される。膨出部19の下面には、対ブロック接合面4aの周縁からそれぞれ下側の2本のボルト21を締結するための図示しない締結ボスに至るように2本のリブ22が形成されている。これにより、膨出部19の変形が抑制される。
シリンダブロック3の内部には、燃焼室6内の燃焼ガスからの熱伝搬による温度上昇を抑制するために、各シリンダ2の外周部にブロック内冷却液通路25(ウォータージャケット)が形成されている。ブロック内冷却液通路25は、各シリンダ2の外周に沿って湾曲するように形成される。ブロック内冷却液通路25の上端の少なくとも一部はシリンダブロック3の上面3aに開口している。ブロック内冷却液通路25は、冷却水やオイル、冷媒などの冷却液を流通させるべく、シリンダブロック3の成型時に砂型などの中子によって形成された空洞により構成される。
シリンダヘッド4の内部には、燃焼室6内や排気集合ポート8内の燃焼ガスからの熱伝搬による温度上昇を抑制するために、燃焼室凹部4b、吸気ポート7及び排気集合ポート8の周辺にヘッド内冷却液通路30(31〜38、ヘッド内ウォータージャケット)が形成されている。ヘッド内冷却液通路30は、ブロック内冷却液通路25の上端開口と対応する位置で下端の少なくとも一部がシリンダヘッド4の下面に開口するように形成されている。ヘッド内冷却液通路30も、冷却液を流通させるべく、シリンダヘッド4の成型時に砂型などの中子によって形成された空洞により構成される。
図2及び図3は、シリンダヘッド4の鋳造時に用いるブロック内冷却液通路25及びヘッド内冷却液通路30用の中子を示す図である。つまり、図2及び図3は、シリンダブロック3及びシリンダヘッド4を透視して空洞部分であるブロック内冷却液通路25及びヘッド内冷却液通路30を実体的に示しているのと同等である。以下では、ブロック内冷却液通路25及びヘッド内冷却液通路30の説明として記載し、図中には中子の符号を括弧付きで示す。
ブロック内冷却液通路25は、ブロック内冷却液通路用中子45によって形成される。ブロック内冷却液通路25は、互いに隣接するシリンダ2間で比較的小さな断面積をもって連通しつつ、3つのシリンダ2を囲む概ね環状の空洞として構成された通路本体部26と、通路本体部26の吸気側かつシリンダ列方向の一端側に接続され、図示しない冷却液ポンプから送られてくる冷却液を通路本体部26に流入させる冷却液入口ポート27とを備えている。ブロック内冷却液通路25の冷却液の出口ポートであるブロック出口ポート28(28a、28b)は、前述したシリンダブロック3の上面3aに開口する部分によって構成される。以下、シリンダ列方向において冷却液入口ポート27が設けられた側を前、その反対側を後として説明する。
具体的に説明すると、ブロック出口ポート28は、通路本体部26の上端から上方へ延びるように通路本体部26の周方向に概ね等間隔に形成された複数のブロック第1出口ポート28aと、通路本体部26の吸気側かつ前側の側面から排気側に突出した後、屈曲して上方へ延びるブロック第2出口ポート28bとを備えている。複数のブロック第1出口ポート28aのうち、吸気側に配置されたものは後述する主冷却液通路31の吸気側部分31bに連通し、排気側に配置されたものは後述する主冷却液通路31の排気側部分31cに連通する。ブロック第2出口ポート28bは後述する下排気側冷却液通路32に連通する。
通路本体部26における冷却液入口ポート27が接続する位置よりも前端側には、想像線で示す仕切部材29が上方から挿入される。通路本体部26は、この仕切部材29によって前端側で仕切られる。仕切部材29は少なくとも表面部に弾性体を含む棒状の部材であり、上端がシリンダブロック3の上面3aと一致し、かつ下方に隙間を形成するように配置される。これにより、仕切部材29の下方の隙間(即ち仕切部材29の欠損部)は比較的小さな断面積をもって通路本体部26の吸気側と排気側とを連通させる。
ヘッド内冷却液通路30は、複数の燃焼室凹部4bの上方近傍を通過するように前後方向(シリンダ列方向)に延在する主冷却液通路31と、排気集合部8b(図1)を上下から挟むように配置され、それぞれ前後方向に延在する下排気側冷却液通路32(図3)及び上排気側冷却液通路33とを備えている。主冷却液通路31は主冷却液通路用中子51によって形成され、下排気側冷却液通路32は下排気側冷却液通路用中子52よって形成され、上排気側冷却液通路33は上排気側冷却液通路用中子53によって形成される。なお、下排気側冷却液通路32及び上排気側冷却液通路33が1つの排気側冷却液通路用中子によって形成されてもよい。以下、下排気側冷却液通路32と上排気側冷却液通路33とを総称する場合、単に排気側冷却液通路32、33と記す。
主冷却液通路31は、吸気ポート7(図1)と排気ポート8aとの間に形成される主部31aと、吸気ポート7の下方に形成される吸気側部分31bと、排気ポート8aの下方に形成される排気側部分31cとを主要部としている。主部31aと吸気側部分31b、並びに主部31aと排気側部分31cとは、これらの前端及び後端、並びに隣接する2つのシリンダ2間に形成された横連通路(符号なし)によって互いに連通される。
図4は、ブロック内冷却液通路25及びヘッド内冷却液通路30を実態的に示した上面図であり、図5は同要部下面図である。図5に示すように、主部31aと排気側部分31cとは、上記ブロック内冷却液通路用中子45によって形成される隣接する2つのシリンダ2間の横連通路に加え、3つの排気ポート8aのそれぞれについて排気ポート8aの分岐した部分の間に形成された横連結通路31dによっても互いに連通される。この横連結通路31dは、シリンダヘッド4の鋳造後にドリル加工によって形成される。横連結通路31dが形成されることにより、燃焼室6内や排気ポート8a内の燃焼ガスから熱が伝搬する排気バルブシート周辺が効果的に冷却される。
図2及び図3に戻り、主冷却液通路31におけるブロック内冷却液通路25のブロック第1出口ポート28aに対応する部分には、主シリンダ入口ポート34が下方に突出するように形成されている。主冷却液通路31の前側には、主冷却液通路31内の冷却液を排出する主冷却液出口ポート35が主部31a及び吸気側部分31bから吸気側かつ上方に突出するように形成されている。
主冷却液通路31のなかで最も高い位置となる主部31aの上端部は、概ね直線状を呈して略水平に前後方向に延びており、この部分が主冷却液通路31のエア抜き通路である主エア抜き通路31eとなる。
下排気側冷却液通路32の前端には、ブロック内冷却液通路25のブロック第2出口ポート28bと接続する排気側シリンダ入口ポート36が下方に突出するように形成されている。下排気側冷却液通路32は、この排気側シリンダ入口ポート36のみをもってブロック内冷却液通路25と連通している。下排気側冷却液通路32は主冷却液通路31とは連通していない。
下排気側冷却液通路32と上排気側冷却液通路33とは、後端に形成された縦連通路37(図2)によって互いに連通している。上排気側冷却液通路33は、この縦連通路37のみをもって下排気側冷却液通路32と連通している。上排気側冷却液通路33はブロック内冷却液通路25及び主冷却液通路31とは連通していない。即ち、主冷却液通路31と排気側冷却液通路32、33とは互いに分離している。
上排気側冷却液通路33の前端には、上排気側冷却液通路33内の冷却液を排出する排気側冷却液出口ポート38が吸気側に突出するように形成されている。排気側冷却液出口ポート38は、主冷却液出口ポート35に対して下側から合流するように形成される。主冷却液出口ポート35及び排気側冷却液出口ポート38は、シリンダヘッド4に接続される図示しない冷却液配管通路39(図8参照)に連通する。
つまり、主冷却液通路31の冷却液出口ポートである主冷却液出口ポート35と、排気側冷却液通路32、33の冷却液出口ポートである排気側冷却液出口ポート38と、ブロック内冷却液通路25の冷却液入口ポート27との全てが、シリンダ2に対して吸気側に開口するように形成されている。
図1及び図5に併せて示すように、下排気側冷却液通路32の吸気側の端縁32aは、シリンダ軸線方向視(図5)において、シリンダ2の外側に位置し、シリンダ2の形状に沿う主冷却液通路31(31c)や締結用のボルトボスの外縁に沿った形状となっている。一方、上排気側冷却液通路33は、吸気側の端縁33aがシリンダ軸線方向視(図5)でシリンダ2と重なる位置まで吸気側に延出しており、排気バルブ10が通る部分では、排気バルブ10を支持するバルブガイド23(図1)やバルブガイド23を支持する肉により構成される排気バルブガイド部24(図1)が存在するため、上排気側冷却液通路用中子53には貫通孔53aが形成されている。この貫通孔53aは、切欠きとしてではなく孔として形成されている。そのため、上排気側冷却液通路33は、排気バルブガイド部24(図1)を個別に囲繞するように形成される。
即ち、図4に併せて示すように、上排気側冷却液通路33は、複数の排気バルブガイド部24(貫通孔53a)に対して排気側(シリンダヘッド4の他側面4d側)に形成された主通路331と、複数の排気バルブガイド部24に対して吸気側(シリンダヘッド4の一側面4c側)においてシリンダ列方向に延在するように形成された端部通路332と、主通路331と端部通路332とを連通する複数の連通路333とにより構成される。上排気側冷却液通路33の吸気側の端縁33aを構成する端部通路332は、排気側冷却液通路32、33のなかで最も高い位置にある。そしてこの部分は、概ね直線状を呈して略水平に前後方向に延びており、排気側冷却液通路32、33のエア抜き通路である排気側エア抜き通路33eとなる。
また、端部通路332は、各シリンダ2において後側(冷却液の上流側)に位置する排気バルブガイド部24に接する部分において、端縁33aを排気バルブガイド部24の輪郭に沿って吸気側に膨出させる一方、前側(冷却液の下流側)に位置する排気バルブガイド部24に接する部分において、端縁33aを直線状に形成している。即ち、端部通路332では、各シリンダ2において冷却液の上流側に位置する排気バルブガイド部24に接する部分の流路断面積が下流側に位置する排気バルブガイド部24に接する部分の流路断面積よりも大きくなっており、各シリンダ2において冷却液の下流側に位置する排気バルブガイド部24に接する部分に絞り33bが形成されている。
このように構成されたブロック内冷却液通路25及びヘッド内冷却液通路30では、図2及び図3中に黒塗り矢印で示すように冷却液が流通する。具体的に説明すると、ブロック内冷却液通路25では、図2に示すように、冷却液入口ポート27から通路本体部26に流入した冷却液の大部分は、通路本体部26の吸気側を前端側から後端側に流れ、最も後側のシリンダ2を回り込み、図3に示すように通路本体部26の排気側を後端側から前端側に流れる。また、図2に示すように、冷却液入口ポート27から通路本体部26に流入した冷却液の一部は、仕切部材29の下方を通過して通路本体部26の排気側に流れる。
この間に、冷却液の一部はブロック第1出口ポート28a及び主シリンダ入口ポート34を通って主冷却液通路31(31a、31b、31c)に流入する。主冷却液通路31に流入した冷却液は、主冷却液通路31を後端側から前端側に向けて一方向に流れ、主冷却液出口ポート35から排出される。
一方、ブロック内冷却液通路25の通路本体部26の排気側かつ前端側に到達した冷却液の一部は、ブロック第2出口ポート28b及び排気側シリンダ入口ポート36を通って下排気側冷却液通路32に流入する。下排気側冷却液通路32に流入した冷却液は、下排気側冷却液通路32を前端側から後端側に向けて一方向に流れ、後端で縦連通路37(図2)を通って上排気側冷却液通路33に流入した後、上排気側冷却液通路33を後端側から前端側に向けて一方向に流れ、排気側冷却液出口ポート38から排出される。つまり、排気側冷却液通路32、33では冷却液はU字状に流れる。
このように、エンジンE1では、主冷却液通路31が、冷却液を後側においてブロック内冷却液通路25から流入させ、前側において流出させるように一方向に流通させる。一方、排気側冷却液通路32、33は、冷却液を前側においてブロック内冷却液通路25から下排気側冷却液通路32に流入させ、後側において下排気側冷却液通路32から上排気側冷却液通路33に流通させ、前側において上排気側冷却液通路33から流出させるように流通させる。これにより、各シリンダ2周りの冷却液流量が均等になる。また、主冷却液通路31と排気側冷却液通路32、33とが互いに分離しており、冷却液が主冷却液通路31と実質的に1本の排気側冷却液通路32、33とに分配されるだけなので、分配の調整が容易である。
また、排気側冷却液通路32、33では、比較的高温になり易い下排気側冷却液通路32を先に冷却液が流通するため、排気集合部8b周辺が効果的に冷却される。更に、主冷却液通路31の主冷却液出口ポート35、排気側冷却液通路32、33の排気側冷却液出口ポート38、並びにブロック内冷却液通路25の冷却液入口ポート27が、シリンダ2に対して吸気側に形成されているため、冷却液の配管のレイアウトが容易になる。
エンジンE1では、その搭載状態において主冷却液通路31のなかで最も高い位置にシリンダ列方向に延在する主エア抜き通路31eが形成されている。そのため、主冷却液通路31にエアが流入したとしても、エアは主エア抜き通路31eを通って主冷却液通路31から排出される。同様に、エンジンE1の搭載状態において排気側冷却液通路32、33のなかで最も高い位置にシリンダ列方向に延在する排気側エア抜き通路33eが上排気側冷却液通路33に形成されている。そのため、排気側冷却液通路32、33にエアが流入したとしても、エアは排気側エア抜き通路33eを通って上排気側冷却液通路33から排出される。なお、これらのエア抜き通路(31e、33e)は、それらが形成された主冷却液通路31又は上排気側冷却液通路33のなかで最も高い位置に形成されるため、冷却性能への影響を最小限に抑制することができる。
また、複数の排気バルブガイド部24(図1)を個別に囲繞するように形成される上排気側冷却液通路33においては、図4に示すように、シリンダ2毎に設けられた2つの排気バルブガイド部24間の連通路333に冷却液が流れ難く、排気バルブ10間でシリンダヘッド4の温度が高くなり易いが、各シリンダ2における上流側に位置する排気バルブガイド部24に接する部分の端部通路332の流路断面積が下流側に位置する排気バルブガイド部24に接する部分の端部通路332の流路断面積よりも大きく形成されている。これにより、上流側に位置する排気バルブガイド部24に接する部分の端部通路332に冷却液が流れ易くなり、排気バルブガイド部24間の連通路333にも冷却液が流れ易くなるため、シリンダヘッド4の排気バルブ10間が効果的に冷却される。
更に、端部通路332が、各シリンダ2における下流側に位置する排気バルブガイド部24に接する部分に絞り33bを有しているため、上流側に位置する排気バルブガイド部24に接する部分の端部通路332を流通する冷却液がより連通路333に流れ易くなり、シリンダヘッド4の排気バルブ10間が一層効果的に冷却される。
≪第2実施形態≫
次に、図6〜図12を参照して第2実施形態について説明する。図6に示すように、エンジンE2は、SOHC4バルブ式のV型6気筒ガソリンエンジンである。以下では、第1実施形態と対応する部材は部位には同一の符合を付し、重複する説明を省略する。また、エンジンE2が自動車に搭載された状態を基準として図1に示す上下の方向に従って説明する。
図6に示すように、エンジンE2では、シリンダブロック3が図に左側に傾いた左のシリンダバンク3L及び右側に傾いた右のシリンダバンク3RによりV字型に形成されている。シリンダバンク3L、3Rのそれぞれは、シリンダ2が3つ形成された第1実施形態のシリンダブロック3と同様の左右対称的な構成とされている。以下、左右で対称的に設けられている部位等には、符号の後に左右を示すL又はRを付して説明する。シリンダバンク3L、3Rの上部にはそれぞれシリンダヘッド4L、4Rが締結される。シリンダヘッド4L、4Rは左右対称的な構成とされ、吸気側を向き合わせて配置される。従って、各シリンダバンク3L、3Rの排気集合ポート8は、第1実施形態に比べて燃焼室凹部4bから排気出口8cに向けて一層下向きに傾斜している。
図7〜図9に示すように、シリンダバンク3L、3Rのそれぞれには、ブロック内冷却液通路25L、25Rが形成される。ブロック内冷却液通路25L、25Rでは、それぞれの通路本体部26L、26Rの吸気側(即ち、シリンダバンク3L、3Rの内側)かつ前側の側面に冷却液入口ポート27L、27Rが接続される。また、ブロック内冷却液通路25L、25Rの主冷却液出口ポート35L、35Rも、通路本体部26L、26Rの吸気側(即ち、シリンダバンク3L、3Rの内側)かつ前側に設けられる。
シリンダヘッド4L、4Rのそれぞれには、ヘッド内冷却液通路30L、30Rが形成される。ヘッド内冷却液通路30L、30Rのそれぞれは、主冷却液通路用中子51L、51Rによって形成される主冷却液通路31L、31R、下排気側冷却液通路用中子52L、52Rよって形成される下排気側冷却液通路32L、32R、及び上排気側冷却液通路用中子53L、53Rによって形成される上排気側冷却液通路33L、33Rを備える。
ブロック内冷却液通路25L、25Rのブロック第2出口ポート28bL、28bRと、これらに接続する排気側シリンダ入口ポート36L、36Rは、それぞれの通路(25L、25R、32L、32R)の排気側(即ち、シリンダバンク3L、3Rの外側)かつ前側に設けられている。下排気側冷却液通路32L、32Rと上排気側冷却液通路33L、33Rとを連通する縦連通路37L、37R(図8)は、これら通路(32L、32R、33L、33R)の後端に設けられている。また、排気側冷却液出口ポート38L、38Rは、下排気側冷却液通路32L、32R及び上排気側冷却液通路33L、33Rの吸気側(即ち、シリンダバンク3L、3Rの内側)かつ前側に設けられる。
このように構成されたブロック内冷却液通路25L、25R及びヘッド内冷却液通路30L、30Rでは、図7〜図9中に黒塗り矢印で示すように冷却液が流れる。冷却液の流れは、左右のブロック内冷却液通路25L、25Rで通路本体部26L、26Rを流れる向きが逆回りになるが、第1実施形態で説明した流れと同様である。
主冷却液通路31L、31Rに流入したエアは、主冷却液通路31L、31Rのなかで最も高い位置に形成された主エア抜き通路31eL、31eRを通って主シリンダ入口ポート34L、34Rから排出される。また、下排気側冷却液通路32L、32R及び上排気側冷却液通路33L、33Rに流入したエアは、これらの通路のなかで最も高い位置にある排気側エア抜き通路33eを通って排気側冷却液出口ポート38L、38Rから排出される。
図10は図7中のX−X断面を示しており、図11は同断面で破断したヘッド内冷却液通路30L(主冷却液通路用中子51L、下排気側冷却液通路用中子52L及び上排気側冷却液通路用中子53L)を示している。上記のように、下排気側冷却液通路32の吸気側の端縁32aLは、主冷却液通路31L(31cL)や締結用のボルトボスの外縁に沿った形状となっている。そのため、特に排気集合ポート8が排気出口8cに向けて下向きに傾斜する本実施形態では、下排気側冷却液通路32の吸気側の端縁32aの高さ位置(最も高い位置)がシリンダ列方向について変化し、高さが低くなる部分の手前にエアが溜まり易い。そこで、下排気側冷却液通路32のなかで最も高い位置に、ドリル40を用いて鋳造後のシリンダヘッド4を削孔し、上排気側冷却液通路33Lに連通する縦エア抜き通路41Lが形成されている。これにより、下排気側冷却液通路32L、32Rに流入したエアは、図10及び図11中に黒塗り矢印で示すように、縦エア抜き通路41L、41Rを通って上排気側冷却液通路33L、33Rに流入できるようになり、エアが溜まることなく、冷却効果を高めるために下排気側冷却液通路32L、32Rを排気ポート8a等に沿った形状にすることが可能になる。
また、図7に示すように本実施形態においても第1実施形態と同様に、端部通路332では、各シリンダ2において冷却液の上流側に位置する排気バルブガイド部24に接する部分の流路断面積が下流側に位置する排気バルブガイド部24に接する部分の流路断面積よりも大きくなっており、各シリンダ2において冷却液の下流側に位置する排気バルブガイド部24に接する部分に絞り33bが形成されている。そのため、上流側に位置する排気バルブガイド部24に接する端部通路332部分に冷却液が流れ易くなり、排気バルブガイド部24間の連通路333にも冷却液が流れ易くなるため、シリンダヘッド4の排気バルブ10間が効果的に冷却される。
図12はブロック内冷却液通路25及びヘッド内冷却液通路30の要部拡大正面図である。図に示されるように、主冷却液通路31Lの主冷却液出口ポート35Lと、下排気側冷却液通路32L、32R及び上排気側冷却液通路33Lの排気側冷却液出口ポート38Lとは、シリンダ列方向視において交差するように形成されている。これにより、上排気側冷却液通路33Lが主冷却液通路31Lに対して下方に位置していても、上排気側冷却液通路33Lのエア抜きが促進され、エア溜まりが生じることが抑制される。
以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。例えば、上記実施形態では、本発明を自動車用の4バルブ式の直列3気筒及びV型6気筒のガソリンエンジンに適用しているが、他の用途に用いる異なる形式の内燃機関に適用してもよい。また上記実施形態では、排気出口8cが1つだけ形成されているが、例えば互いに近接する2つのシリンダ2毎に2つ以上の排気出口8cが形成されてもよい。この他、各部材や部位の具体的構成や配置、数量、角度など、本発明の趣旨を逸脱しない範囲であれば適宜変更可能である。一方、上記実施形態に示した本発明に係る内燃機関の各構成要素は必ずしも全てが必須ではなく、適宜選択してもよい。
1 ピストン
2 シリンダ
3 シリンダブロック
4 シリンダヘッド
4c 一側面
4d 他側面
6 燃焼室
7 吸気ポート
8 排気集合ポート
8a 排気ポート
8b 排気集合部
8c 排気出口
10 排気バルブ
24 排気バルブガイド部
25 ブロック内冷却液通路
26 通路本体部
27 冷却液入口ポート
30 ヘッド内冷却液通路
31 主冷却液通路
31e 主エア抜き通路
32 下排気側冷却液通路
33 上排気側冷却液通路
331 主通路
332 端部通路
333 連通路
33b 絞り
33e 排気側エア抜き通路
35 主冷却液出口ポート
38 排気側冷却液出口ポート
41L 縦エア抜き通路
51 主冷却液通路用中子
52 下排気側冷却液通路用中子
53 上排気側冷却液通路用中子
E1、E2 エンジン

Claims (11)

  1. 複数のシリンダが一列に形成され、当該複数のシリンダの外周に沿ってブロック内冷却液通路が形成されたシリンダブロックと、
    前記シリンダブロックの上部に締結されて前記シリンダ内を摺動するピストンの頂面との間に燃焼室を形成し、ヘッド内冷却液通路が形成されたシリンダヘッドとを有する内燃機関の冷却構造であって、
    前記シリンダヘッド内には、上流端が当該シリンダヘッドの一側面に開口し、下流端が前記燃焼室に開口する複数の吸気ポートと、上流端が前記燃焼室に開口する複数の排気ポートと、前記複数の排気ポートを合流させ、当該シリンダヘッドの他側面に排気出口を開口させる排気集合部とが形成され、
    前記ヘッド内冷却液通路が、前記燃焼室の上方部分に形成された主冷却液通路と、前記排気集合部を挟むように形成された上下一対の排気側冷却液通路とを備え、
    前記主冷却液通路と前記上下一対の排気側冷却液通路とが互いに分離しており、
    前記主冷却液通路は、冷却液を、シリンダ列方向の一端側において前記ブロック内冷却液通路から流入させ、シリンダ列方向の他端側において流出させるように一方向に流通させ、
    前記上下一対の排気側冷却液通路は、冷却液を、シリンダ列方向の前記他端側において前記ブロック内冷却液通路から一方の排気側冷却液通路に流入させ、シリンダ列方向の前記一端側において前記一方の排気側冷却液通路から他方の排気側冷却液通路に流通させ、シリンダ列方向の前記他端側において前記他方の排気側冷却液通路から流出させるように流通させることを特徴とする内燃機関の冷却構造。
  2. 前記上下一対の排気側冷却液通路は、冷却液を、前記ブロック内冷却液通路から下側の前記排気側冷却液通路に流入させ、上側の前記排気側冷却液通路から流出させることを特徴とする請求項1に記載の内燃機関の冷却構造。
  3. 前記主冷却液通路の冷却液出口ポートと前記上下一対の排気側冷却液通路の冷却液出口ポートと前記ブロック内冷却液通路の冷却液入口ポートとが、前記シリンダに対してシリンダ列方向と直交する方向において同一の側に開口するように形成されていることを特徴とする請求項1又は請求項2に記載の内燃機関の冷却構造。
  4. 前記主冷却液通路が、内燃機関の搭載状態において当該主冷却液通路のなかで最も高い位置においてシリンダ列方向に延在するエア抜き通路を有することを特徴とする請求項1〜請求項3のいずれか一項に記載の内燃機関の冷却構造。
  5. 上側の前記排気側冷却液通路が、内燃機関の搭載状態において前記上下一対の排気側冷却液通路のなかで最も高い位置においてシリンダ列方向に延在するエア抜き通路を有することを特徴とする請求項1〜請求項4のいずれか一項に記載の内燃機関の冷却構造。
  6. 内燃機関の搭載状態において下側の前記排気側冷却液通路のなかで最も高い位置には、上側の前記排気側冷却液通路に連通するエア抜き通路が形成されていることを特徴とする請求項1〜請求項5のいずれか一項に記載の内燃機関の冷却構造。
  7. 前記主冷却液通路の冷却液出口ポートと前記上下一対の排気側冷却液通路の冷却液出口ポートとが、シリンダ列方向視において交差していることを特徴とする請求項1〜請求項6のいずれか一項に記載の内燃機関の冷却構造。
  8. 前記シリンダヘッド内には、前記排気ポートが各燃焼室に2つずつ開口するように形成されると共に、前記排気ポートの前記燃焼室との各接続部を開閉する排気バルブを支持する複数の排気バルブガイド部が形成され、
    上側の前記排気側冷却液通路は、前記複数の排気バルブガイド部を個別に囲繞するように形成されており、前記複数の排気バルブガイド部に対して前記シリンダヘッドの前記他側面側に形成された主通路と、前記複数の排気バルブガイド部に対して前記シリンダヘッドの前記一側面側においてシリンダ列方向に延在するように形成された端部通路と、前記主通路と前記端部通路とを連通する複数の連通路とを有し、
    前記端部通路は、各シリンダにおいて冷却液の上流側に位置する前記排気バルブガイド部に接する部分の流路断面積が下流側に位置する前記排気バルブガイド部に接する部分の流路断面積よりも大きく形成されていることを特徴とする請求項1〜請求項7のいずれか一項に記載の内燃機関の冷却構造。
  9. 前記端部通路は、各シリンダにおいて冷却液の下流側に位置する排気バルブガイド部に接する部分に絞りを有していることを特徴とする請求項8に記載の内燃機関の冷却構造。
  10. 複数のシリンダが一列に形成され、当該複数のシリンダの外周に沿ってブロック内冷却液通路が形成されたシリンダブロックと、
    前記シリンダブロックの上部に締結されて前記シリンダ内を摺動するピストンの頂面との間に燃焼室を形成し、ヘッド内冷却液通路が形成されたシリンダヘッドとを有する内燃機関の冷却構造であって、
    前記シリンダヘッド内には、上流端が当該シリンダヘッドの一側面に開口し、下流端が前記燃焼室に開口する複数の吸気ポートと、上流端が各燃焼室に2つずつ開口する複数の排気ポートと、前記複数の排気ポートを合流させ、当該シリンダヘッドの他側面に排気出口を開口させる排気集合部と、前記排気ポートの前記燃焼室との各接続部を開閉する排気バルブを支持する複数の排気バルブガイド部とが形成され、
    前記ヘッド内冷却液通路が、前記燃焼室の上方部分に形成された主冷却液通路と、前記排気集合部を挟むように形成された上下一対の排気側冷却液通路とを備え、
    少なくとも上側の前記排気側冷却液通路は、前記主冷却液通路と互いに分離し、かつ前記複数の排気バルブガイド部を個別に囲繞するように形成されると共に、冷却液をシリンダ列方向に流通させるように構成されており、
    上側の前記排気側冷却液通路は、前記複数の排気バルブガイド部に対して前記シリンダヘッドの前記他側面側に形成された主通路と、前記複数の排気バルブガイド部に対して前記シリンダヘッドの前記一側面側においてシリンダ列方向に延在するように形成された端部通路と、互いに隣接する前記排気バルブガイド部間において前記主通路と前記端部通路とを連通するように形成された連通路とを有し、
    前記端部通路は、各シリンダにおいて冷却液の上流側に位置する前記排気バルブガイド部に接する部分の流路断面積が下流側に位置する前記排気バルブガイド部に接する部分の流路断面積よりも大きく形成されていることを特徴とする内燃機関の冷却構造。
  11. 前記端部通路は、各シリンダにおいて冷却液の下流側に位置する前記排気バルブガイド部に接する部分に絞りを有していることを特徴とする請求項10に記載の内燃機関の冷却構造。
JP2014260103A 2014-12-24 2014-12-24 内燃機関の冷却構造 Active JP6071990B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014260103A JP6071990B2 (ja) 2014-12-24 2014-12-24 内燃機関の冷却構造
US14/977,638 US10107171B2 (en) 2014-12-24 2015-12-22 Cooling structure of internal combustion engine
CN201510968753.6A CN105736169B (zh) 2014-12-24 2015-12-22 内燃机的冷却结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014260103A JP6071990B2 (ja) 2014-12-24 2014-12-24 内燃機関の冷却構造

Publications (2)

Publication Number Publication Date
JP2016121541A true JP2016121541A (ja) 2016-07-07
JP6071990B2 JP6071990B2 (ja) 2017-02-01

Family

ID=56163612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014260103A Active JP6071990B2 (ja) 2014-12-24 2014-12-24 内燃機関の冷却構造

Country Status (3)

Country Link
US (1) US10107171B2 (ja)
JP (1) JP6071990B2 (ja)
CN (1) CN105736169B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138282A (ja) * 2018-02-15 2019-08-22 株式会社Subaru エンジン
WO2020129823A1 (ja) * 2018-12-19 2020-06-25 三菱自動車工業株式会社 シリンダヘッド

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015201238B3 (de) * 2015-01-26 2016-05-12 Ford Global Technologies, Llc Verfahren zum Betrieb einer Brennkraftmaschine mit Split-Kühlsystem und Zylinderabschaltung
GB2536030A (en) * 2015-03-04 2016-09-07 Gm Global Tech Operations Llc A water jacket for an internal combustion engine
JP6747029B2 (ja) * 2016-04-14 2020-08-26 三菱自動車工業株式会社 エンジンのシリンダヘッド
GB2551961B (en) * 2016-06-24 2019-06-05 Jaguar Land Rover Ltd Coolant apparatus
WO2018057305A1 (en) * 2016-09-20 2018-03-29 Cummins Inc. Systems and methods for avoiding structural failure resulting from hot high cycles using a cylinder head cooling arrangement
AT519458B1 (de) 2017-03-01 2018-07-15 Avl List Gmbh Zylinderkopf für eine brennkraftmaschine
US10428705B2 (en) 2017-05-15 2019-10-01 Polaris Industries Inc. Engine
US10550754B2 (en) * 2017-05-15 2020-02-04 Polaris Industries Inc. Engine
AT520322B1 (de) * 2017-08-21 2019-03-15 Avl List Gmbh Zylinderkopf
KR101842437B1 (ko) * 2017-10-16 2018-03-27 유성용 선형밴드묶음 자동생산장치
US10801380B1 (en) * 2017-11-29 2020-10-13 Steve Sousley Durable high performance water-cooled exhaust systems and components and methods of manufacture
JP7115158B2 (ja) * 2018-09-04 2022-08-09 トヨタ自動車株式会社 内燃機関
CN111852682B (zh) * 2020-06-04 2022-04-05 浙江义利汽车零部件有限公司 一种发动机冷却水套系统、发动机冷却方法及车辆

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182560A (ja) * 1988-01-11 1989-07-20 Yamaha Motor Co Ltd 過給機付エンジンのシリンダヘッド構造
JPH0828345A (ja) * 1994-07-19 1996-01-30 Isuzu Motors Ltd エンジンのシリンダヘッド
JP2001289116A (ja) * 2000-04-06 2001-10-19 Toyota Autom Loom Works Ltd シリンダヘッドの冷却水通路構造及び製造方法
JP2002070551A (ja) * 2000-08-25 2002-03-08 Honda Motor Co Ltd 多気筒エンジンのシリンダヘッド
JP2005188352A (ja) * 2003-12-25 2005-07-14 Honda Motor Co Ltd 排気マニホールド一体型エンジンの冷却構造
JP2007051601A (ja) * 2005-08-19 2007-03-01 Toyota Motor Corp シリンダヘッドの冷却構造
JP2007162519A (ja) * 2005-12-12 2007-06-28 Nissan Motor Co Ltd シリンダヘッドの冷却構造
JP2007278065A (ja) * 2006-04-03 2007-10-25 Nissan Motor Co Ltd 排気マニホールド一体型シリンダヘッドの冷却構造
JP2008075507A (ja) * 2006-09-20 2008-04-03 Yamaha Motor Co Ltd 水冷式多気筒エンジン
JP2010209749A (ja) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd 内燃機関のシリンダヘッド
JP2012189075A (ja) * 2011-03-10 2012-10-04 Fiat Powertrain Technologies Spa 互いに重なり離れて配置されたマニホールド部に合流する排気管の一体化された排気マニホールド及びサブグループを有する内燃機関用シリンダヘッド
JP2014084739A (ja) * 2012-10-19 2014-05-12 Honda Motor Co Ltd シリンダヘッドのウォータージャケット構造
JP2014126015A (ja) * 2012-12-27 2014-07-07 Daihatsu Motor Co Ltd 流路
JP2014145285A (ja) * 2013-01-28 2014-08-14 Honda Motor Co Ltd 内燃機関のシリンダヘッド

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4446989B2 (ja) * 2006-09-08 2010-04-07 トヨタ自動車株式会社 シリンダブロックおよび内燃機関
JP2009002265A (ja) * 2007-06-22 2009-01-08 Toyota Motor Corp 内燃機関の冷却構造
JP2009097371A (ja) * 2007-10-15 2009-05-07 Suzuki Motor Corp 船外機の排気装置
US7784442B2 (en) * 2007-11-19 2010-08-31 Gm Global Technology Operations, Inc. Turbocharged engine cylinder head internal cooling
EP2309114B1 (de) * 2009-07-30 2012-09-12 Ford Global Technologies, LLC Kühlsystem
JP4911229B2 (ja) * 2010-02-01 2012-04-04 トヨタ自動車株式会社 水冷アダプタ
JP5903263B2 (ja) * 2011-03-31 2016-04-13 本田技研工業株式会社 水冷式v型エンジン

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182560A (ja) * 1988-01-11 1989-07-20 Yamaha Motor Co Ltd 過給機付エンジンのシリンダヘッド構造
JPH0828345A (ja) * 1994-07-19 1996-01-30 Isuzu Motors Ltd エンジンのシリンダヘッド
JP2001289116A (ja) * 2000-04-06 2001-10-19 Toyota Autom Loom Works Ltd シリンダヘッドの冷却水通路構造及び製造方法
JP2002070551A (ja) * 2000-08-25 2002-03-08 Honda Motor Co Ltd 多気筒エンジンのシリンダヘッド
JP2005188352A (ja) * 2003-12-25 2005-07-14 Honda Motor Co Ltd 排気マニホールド一体型エンジンの冷却構造
JP2007051601A (ja) * 2005-08-19 2007-03-01 Toyota Motor Corp シリンダヘッドの冷却構造
JP2007162519A (ja) * 2005-12-12 2007-06-28 Nissan Motor Co Ltd シリンダヘッドの冷却構造
JP2007278065A (ja) * 2006-04-03 2007-10-25 Nissan Motor Co Ltd 排気マニホールド一体型シリンダヘッドの冷却構造
JP2008075507A (ja) * 2006-09-20 2008-04-03 Yamaha Motor Co Ltd 水冷式多気筒エンジン
JP2010209749A (ja) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd 内燃機関のシリンダヘッド
JP2012189075A (ja) * 2011-03-10 2012-10-04 Fiat Powertrain Technologies Spa 互いに重なり離れて配置されたマニホールド部に合流する排気管の一体化された排気マニホールド及びサブグループを有する内燃機関用シリンダヘッド
JP2014084739A (ja) * 2012-10-19 2014-05-12 Honda Motor Co Ltd シリンダヘッドのウォータージャケット構造
JP2014126015A (ja) * 2012-12-27 2014-07-07 Daihatsu Motor Co Ltd 流路
JP2014145285A (ja) * 2013-01-28 2014-08-14 Honda Motor Co Ltd 内燃機関のシリンダヘッド

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138282A (ja) * 2018-02-15 2019-08-22 株式会社Subaru エンジン
JP7112158B2 (ja) 2018-02-15 2022-08-03 株式会社Subaru エンジン
WO2020129823A1 (ja) * 2018-12-19 2020-06-25 三菱自動車工業株式会社 シリンダヘッド
JPWO2020129823A1 (ja) * 2018-12-19 2021-09-30 三菱自動車工業株式会社 シリンダヘッド
JP7151785B2 (ja) 2018-12-19 2022-10-12 三菱自動車工業株式会社 シリンダヘッド

Also Published As

Publication number Publication date
CN105736169A (zh) 2016-07-06
CN105736169B (zh) 2018-09-11
US20160186641A1 (en) 2016-06-30
JP6071990B2 (ja) 2017-02-01
US10107171B2 (en) 2018-10-23

Similar Documents

Publication Publication Date Title
JP6071990B2 (ja) 内燃機関の冷却構造
US7849683B2 (en) Multiple-cylinder internal combustion engine having cylinder head provided with centralized exhaust passageway
JP5719334B2 (ja) シリンダヘッドのウォータージャケット構造
JP5864401B2 (ja) 内燃機関のウォータージャケット構造
KR20090028817A (ko) 내연 기관
JP5162501B2 (ja) 内燃機関
JP4791305B2 (ja) 水冷式多気筒エンジン
US10533471B2 (en) Internal combustion engine
JP5798427B2 (ja) 空油冷内燃機関のオイル通路構造
JP5711715B2 (ja) シリンダヘッドの冷却液通路構造
JP2000161131A (ja) 多気筒エンジンのシリンダヘッド構造
JP2000161129A (ja) 多気筒エンジンのシリンダヘッド構造
JP5048618B2 (ja) 4サイクル空油冷エンジン
JP5551547B2 (ja) 内燃機関
JP5981830B2 (ja) シリンダヘッドのウォータージャケット構造
JP6044076B2 (ja) 油冷エンジン
JP2013072354A (ja) シリンダヘッドのオイル通路中子構造
JP4640245B2 (ja) エンジンの冷却装置
JP5189529B2 (ja) 車両用内燃機関におけるプラグ挿入孔からの水抜き構造
JP5750016B2 (ja) 空油冷内燃機関のオイル通路構造
JP5091754B2 (ja) シリンダブロック及びシリンダブロックを備えるエンジン
JP4914877B2 (ja) エンジンの冷却用オイル通路構造
JP3737074B2 (ja) 多気筒エンジン
JP2022139765A (ja) モノブロック式多気筒内燃機関
JP2021148028A (ja) 多気筒エンジンのシリンダヘッド

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R150 Certificate of patent or registration of utility model

Ref document number: 6071990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150