JP2016090913A - 画像表示装置及びその制御方法 - Google Patents

画像表示装置及びその制御方法 Download PDF

Info

Publication number
JP2016090913A
JP2016090913A JP2014227673A JP2014227673A JP2016090913A JP 2016090913 A JP2016090913 A JP 2016090913A JP 2014227673 A JP2014227673 A JP 2014227673A JP 2014227673 A JP2014227673 A JP 2014227673A JP 2016090913 A JP2016090913 A JP 2016090913A
Authority
JP
Japan
Prior art keywords
counter
image display
range
value
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014227673A
Other languages
English (en)
Other versions
JP6269446B2 (ja
Inventor
龍也 大原
Tatsuya Ohara
龍也 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
JVCKenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JVCKenwood Corp filed Critical JVCKenwood Corp
Priority to JP2014227673A priority Critical patent/JP6269446B2/ja
Priority to PCT/JP2015/004649 priority patent/WO2016075854A1/ja
Priority to EP15859654.4A priority patent/EP3220184B1/en
Priority to CN201580050108.4A priority patent/CN106716222B/zh
Publication of JP2016090913A publication Critical patent/JP2016090913A/ja
Priority to US15/591,408 priority patent/US9894335B2/en
Application granted granted Critical
Publication of JP6269446B2 publication Critical patent/JP6269446B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • H04N9/3135Driving therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

【課題】走査単位毎の画像のずれを抑えることが可能な画像表示装置及びその制御方法を提供する。【解決手段】画像表示装置100は、レーザー光を出力するRGBレーザーダイオード200と、レーザー光を反射し、水平方向に往復動作する水平スキャナ220と、水平方向のラインごとに往路または復路の動作範囲及び往復動作範囲を検出する走査検出部202と、検出された各動作範囲と基準値とのずれに基づいて、ラインごとに画像表示位置を決定する描画位置制御部116と、決定された画像表示位置に対応するタイミングで、画像データに基づきRGBレーザーダイオード200を駆動するレーザードライバ140と、を備える。【選択図】図1

Description

本発明は、画像表示装置及びその制御方法に関し、より具体的には、レーザースキャン方式の画像表示装置及びその制御方法に関する。
レーザー光を反射させて走査することで画像を投影表示するレーザースキャン方式の画像表示装置が知られている(例えば、特許文献1)。レーザースキャン方式の画像表示装置は、自動車のウィンドシールドやコンバイナなどに画像を投影表示するHUD(Head Up Display)やプロジェクター等として利用されている。
レーザースキャン方式の画像表示装置では、ミラーを有する光スキャナによりレーザー光を反射させ、光スキャナのミラーを水平方向及び垂直方向に往復揺動させることで、レーザー光を走査している。
特開2007−025522号公報
従来の画像表示装置では、光スキャナによるレーザー光の走査動作を制御するため、フィードバック制御が行われている。例えば、特許文献1では、光スキャナが反射した光を光センサで検出し、フィードバックを行っている。また、他の従来技術では、光スキャナに圧電膜を設けて、この圧電膜により光スキャナの動作を検出し、フィードバックすることも行われている。このような従来の画像表示装置のフィードバック制御では、走査周波数を一定に保つために、光スキャナを駆動する駆動信号の開始タイミングなどが制御されている。
しかしながら、例えば温度変化などの影響により光スキャナの往復周期が変動する場合があり、従来の画像表示装置では、この変動によって水平方向のラインなどの走査単位毎に画像がずれて表示される恐れがあるという問題がある。
そこで、本発明は、光束を出力する光源部と、前記光束を反射し、所定の走査方向に往復動作を繰り返す走査部と、前記往復動作の往路または復路の走査単位ごとの前記走査部の第1の動作範囲、および前記往復動作の往復単位ごとの前記走査部の第2の動作範囲を検出する走査検出部と、前記検出された第1の動作範囲と往路または復路の第1の基準値との第1の差、および前記検出された第2の基準範囲と往復動作の第2の基準値との第2の差に基づいて、前記走査単位ごとに画像表示位置を決定する表示位置決定部と、前記決定された画像表示位置に対応するタイミングで、画像データに基づき前記光源部を駆動する光源駆動部と、を備える画像表示装置を提供する。
また、本発明は、光束を出力する光源部と、前記光束を反射し、所定の走査方向に往復動作を繰り返す走査部と、を備えた画像表示装置の制御方法であって、前記往復動作の往路または復路の走査単位ごとの前記走査部の第1の動作範囲、および前記往復動作の往復単位ごとの前記走査部の第2の動作範囲を検出し、前記検出された第1の動作範囲と往路または復路の第1の基準値との第1の差、および前記検出された第2の基準範囲と往復動作の第2の基準値との第2の差に基づいて、前記走査単位ごとに画像表示位置を決定し、前記決定された画像表示位置に対応するタイミングで、画像データに基づき前記光源部を駆動する、画像表示装置の制御方法を提供する。
本発明によれば、走査単位毎の画像のずれを抑えることができる。
実施の形態1に係る画像表示装置の構成例を示す構成図である。 実施の形態1に係る水平スキャナの構成の一例を示す構成図である。 実施の形態1に係る水平スキャナの構成の他の例を示す構成図である。 実施の形態1に係るFPGAの構成例を示すブロック図である。 実施の形態1に係る画像表示装置で用いる信号の例を示す波形図である。 実施の形態1に係る描画位置制御部の構成例を示すブロック図である。 実施の形態1に係る描画位置制御部の動作例を示すフローチャートである。 理想例の動作を説明するための説明図である。 理想例の動作を説明するための説明図である。 参考例1の動作を説明するための説明図である。 参考例1の動作を説明するための説明図である。 実施の形態1に係る動作例1を説明するための説明図である。 実施の形態1に係る動作例1を説明するための説明図である。 参考例2の動作を説明するための説明図である。 参考例2の動作を説明するための説明図である。 実施の形態1に係る動作例2を説明するための説明図である。 実施の形態1に係る動作例2を説明するための説明図である。 参考例3の動作を説明するための説明図である。 参考例3の動作を説明するための説明図である。 実施の形態1に係る動作例3を説明するための説明図である。 実施の形態1に係る動作例3を説明するための説明図である。 参考例4の動作を説明するための説明図である。 参考例4の動作を説明するための説明図である。 実施の形態1に係る動作例4を説明するための説明図である。 実施の形態1に係る動作例4を説明するための説明図である。 参考例5の動作を説明するための説明図である。 参考例5の動作を説明するための説明図である。 実施の形態1に係る動作例5を説明するための説明図である。 実施の形態1に係る動作例5を説明するための説明図である。 参考例6の動作を説明するための説明図である。 参考例6の動作を説明するための説明図である。 実施の形態1に係る動作例6を説明するための説明図である。 実施の形態1に係る動作例6を説明するための説明図である。 参考例7の動作を説明するための説明図である。 参考例7の動作を説明するための説明図である。 実施の形態1に係る動作例7を説明するための説明図である。 実施の形態1に係る動作例7を説明するための説明図である。
(実施の形態1)
以下、図面を参照して本発明の実施の形態1について説明する。
図1は、本実施の形態に係る画像表示装置100の構成を示している。画像表示装置100は、レーザー光を光スキャナにより反射させ、垂直方向及び水平方向に往復走査することにより投影面に画像を表示(描画)するレーザースキャン方式の画像表示装置である。例えば、画像表示装置100は、自動車のウィンドシールドやコンバイナなど画像表示面である投影面に投影画像300を投影し表示する。
図1に示すように、画像表示装置100は、映像入力部101、FPGA(Field Programmable Gate Array)110、マイコン120、フラッシュメモリ131及び132、DDR(Double Data Rate)メモリ133、レーザードライバ140、V軸スキャナドライバ150、H軸スキャナドライバ160、コンパレータ170、RGBレーザーダイオード200、垂直スキャナ210、水平スキャナ220を備えている。なお、表示する画像の垂直方向(縦方向、Y方向)をV(Vertical)軸方向とも称し、画像の水平方向(横方向、X方向)をH(Horizontal)軸方向とも称する。
映像入力部101は、投影面に表示する映像データが入力され、入力された映像データはFPGA110に送出される。この映像データには、R(赤)G(緑)B(青)の3色の色信号が含まれている。例えば、映像入力部101は、カーナビゲーション装置など他の装置で生成された映像が入力されてもよいし、映像入力部101が映像データを生成してもよい。
FPGA110及びマイコン120は、画像表示装置100の制御部102を構成し、画像表示に必要な各種制御を行う。FPGA110及びマイコン120により、レーザードライバ140、V軸スキャナドライバ150、H軸スキャナドライバ160を介して、RGBレーザーダイオード200、垂直スキャナ210、水平スキャナ220の動作を制御し、投影画像300を描画する。なお、FPGA110及びマイコン120の制御動作は、ハードウェア又はソフトウェアのいずれか、もしくはその両方によって実現されてもよい。
FPGA110は、入力される映像データに基づいて、RGBの画像データを1ラインずつ出力し、また、垂直スキャナ210の往復動作を制御するためのV軸駆動信号を生成し、生成したV軸駆動信号を出力する。本実施の形態に係るFPGA110は、後述するように、コンパレータ170から得られる水平スキャナ220のH軸検出パルス信号に基づき、ライン毎の画像のずれを抑えるように画像の描画位置を設定し、設定した位置でレーザードライバ140を駆動させ描画を行う。
マイコン120は、水平スキャナ220の往復動作を制御するためのH軸駆動信号を生成し、生成したH軸駆動信号を出力する。フラッシュメモリ131及び132は、それぞれFPGA110及びマイコン120の動作に必要なデータやプログラムなどを記憶する不揮発性記憶部である。
DDR(Double Data Rate)メモリ133は、FPGA110に入力される映像データを一時的に保存するフレームバッファである。DDRメモリ133は、DDR2やDDR3、その他のSDRAMでもよい。
レーザードライバ140は、FPGA110から供給される画像データに応じて、RGBレーザーダイオード200を駆動する。レーザードライバ140は、FPGA110が決定した画像表示位置に対応するタイミングで、画像データに基づきRGBレーザーダイオード200を駆動する光源駆動部である。RGBレーザーダイオード200は、レーザードライバ140の駆動により、RGBの3色のレーザー光を発光する。RGBレーザーダイオード200は、光束であるレーザー光を出力する光源部である。
V軸スキャナドライバ150は、FPGA110から供給されるV軸駆動信号に応じて、垂直スキャナ210を往復駆動する。H軸スキャナドライバ160は、マイコン120から供給されるH軸駆動信号に応じて、水平スキャナ220を往復駆動する。
垂直スキャナ210または水平スキャナ220は、垂直または水平方向に往復動作を繰り返す走査部である。垂直スキャナ210は、RGBレーザーダイオード200から照射されたレーザー光を反射し、V軸スキャナドライバ150の駆動により垂直方向に往復動作する光スキャナである。水平スキャナ220は、RGBレーザーダイオード200から照射されたレーザー光を反射し、H軸スキャナドライバ160の駆動により水平方向に往復動作する光スキャナである。本実施の形態では、水平スキャナ220は、左右均等に、すなわち、往路の動作範囲と復路の動作範囲が等しくなるように、往復動作を繰り返す。また、水平スキャナ220は、水平方向の往復動作を検出する走査検出部202を含み、検出した往復動作を示すH軸検出アナログ信号を出力する。走査検出部202は、往復動作の往路または復路の走査単位ごとの水平スキャナ220の動作範囲を第1の動作範囲として検出し、また、往復動作の往復単位ごとの水平スキャナ220の動作範囲を第2の動作範囲として検出する。
この例では、水平スキャナ220が、RGBレーザーダイオード200からのレーザー光を反射し、垂直スキャナ210が、水平スキャナ220からの反射光をさらに反射することで、投影面へ投影画像300を描画している。垂直スキャナ210及び水平スキャナ220が、垂直方向及び水平方向に往復走査する光スキャナ201を構成しているとも言える。例えば、垂直スキャナ210と水平スキャナ220を1つの2軸(2次元)光スキャナとしてもよい。
コンパレータ170は、水平スキャナ220が出力したH軸検出アナログ信号を、FPGA110で処理可能なH軸検出パルス信号に変換する信号変換部である。なお、走査検出部202とコンパレータ170を含めて、走査検出部を構成してもよいし、走査検出部202とコンパレータ170と後述の信号調整部118を含めて走査検出部を構成してもよい。
図2及び図3は、水平スキャナ220の構成例であり、水平スキャナ220をミラー側から見た正面図である。なお、垂直スキャナ210についても水平スキャナ220と同様に構成してもよい。
水平スキャナ220(及び垂直スキャナ210)である光スキャナは、MEMS(Micro Electro Mechanical Systems)技術により作成されたMEMS素子である。例えば、水平スキャナ220は、PZT(チタン酸ジルコン酸鉛)膜などの圧電膜を含むSOI(Silicon On Insulator)基板をエッチングして形成されている。
図2及び図3に示すように、水平スキャナ220は、本体の枠を構成する枠体221、枠体221の枠内において枠体221から離間した状態で支持された揺動片部222、枠体221の内縁と揺動片部222とを繋ぐ4つのL型梁部223a〜223d、揺動片部222の表面に形成されたMEMSミラー224を備えている。MEMSミラー224は、反射率の高い金属(例えばAlやAu)を蒸着することにより形成されている。
L型梁部223a〜223dは、揺動片部222の水平方向中央に近接した位置において揺動片部222と連結されており、この連結部を揺動軸として揺動片部222及びMEMSミラー224が水平方向に揺動可能となっている。L型梁部223a〜223dは、揺動片部222を揺動可能に支持するトーションバーを構成しているとも言える。
さらに、4つL型梁部223a〜233dにおいて、水平方向に延びる複数の圧電膜が配置されている。例えば、圧電膜は、下部電極と上部電極との間に圧電体膜を挟んだ積層構造である。
図2の例では、L型梁部223a及び223bに、H軸駆動信号が供給される駆動用圧電膜225a及び225bがそれぞれ配置され、L型梁部223a及び223bと対向するL型梁部223c及び223dに、MEMSミラー224(揺動片部222)の動作を検出する検出用圧電膜226a及び226bがそれぞれ配置されている。
また、図3の例では、L型梁部223a〜223dに、駆動用圧電膜及び検出用圧電膜のペア(225a及び226a、225b及び226b、225c及び226c、225d及び226d)がそれぞれ配置されている。
図2の駆動用圧電膜225a及び225b、または図3の駆動用圧電膜225a〜225dにH軸駆動信号を供給すると、H軸駆動信号に応じて駆動用圧電膜225a及び225b、または225a〜225dが振動し、この振動がL型梁部223a及び223b、または223a〜223dを介して揺動片部222に伝達され、揺動片部222及びMEMSミラー224が揺動する。
また、図2の検出用圧電膜226a及び226b、または図3の検出用圧電膜226a〜226dは、走査検出部202であり、揺動片部222及びMEMSミラー224の振動を検出し、検出する振動に応じたH軸検出アナログ信号を出力する。検出用圧電膜226a及び226b、または226a〜226dから得られるH軸検出アナログ信号に対して所定の位相差をもったH軸駆動信号を駆動用圧電膜225a及び225b、または225a〜225dにフィードバックすることにより、揺動片部222及びMEMSミラー224を共振駆動させることができる。
図4は、本実施の形態に係るFPGA110の機能ブロックを示している。図4に示すように、FPGA110は、入力インタフェース111、DDRインタフェース112、画像処理部113、映像出力部114、PLL(Phase Locked Loop)115、描画位置制御部116、V軸駆動処理部117、信号調整部118を備えている。
入力インタフェース111は、映像入力部101との間のインタフェースであり、映像入力部101から入力された映像データを受け取り、受け取った映像データをDDRインタフェース112へ出力する。
DDRインタフェース112は、DDRメモリ133との間のインタフェースであり、入力インタフェース111が受け取った映像データをDDRメモリ133に一時的に保存し、さらに、DDR133に保存した映像データを内部クロックに従って取り出す。
DDRインタフェース112は、DDRメモリ133へ映像データ(画像データ)をフレーム単位に書き込み、内部クロックと同期してDDRメモリ133から1フレームに含まれる水平方向の1ラインずつ読み出す。また、水平スキャナ220の往復動作における往路及び復路で描画を行うため、DDRインタフェース112は、往路で描画する往路ラインの場合、順方向のアドレス順に画像データを読み出し、復路で描画する復路ラインの場合、逆方向のアドレス順に画像データを読み出すことで、往路及び復路の画像データの並び替えを行う。
画像処理部113は、DDRインタフェース112がDDR133から取り出した画像データに対し、アスペクト比の変更やブライトコントロールなど、必要な画像処理を行う。映像出力部(画像出力部)114は、画像処理部113により画像処理された画像データをレーザードライバ140へ出力する。映像出力部114は、H軸検出波形とV軸駆動信号より生成された描画位置クロック(ピクセルクロック)、HSync(H軸同期信号)とVSync(V軸同期信号)を利用して描画位置を決定し、決定した描画位置のタイミングで、画像データを1ラインずつ出力する。
PLL115は、外部クロック180が入力され、この外部クロック180に基づいて内部クロックを生成し、生成した内部クロックを各ブロックへ供給する。
信号調整部118は、コンパレータ170が生成したH軸検出パルス信号を所定時間遅延させてH軸描画位置設定信号を生成し、生成したH軸描画位置設定信号を描画位置制御部116へ出力する。例えば、信号調整部118が信号を遅延させる遅延時間は、描画開始位置調整値としてフラッシュメモリ132に記憶されている。なお、信号調整部118は、FPGA110の外部に設けてもよい。
描画位置制御部(クロック生成部)116は、水平スキャナ220とレーザー描画の同期をとるため、PLL115が生成した内部クロックに基づいて、ピクセルクロックを生成する。例えば、ピクセルクロックは、後述のピクセルカウンタに同期したクロックである。描画位置制御部116は、H軸検出パルス信号に基づいたH軸描画位置設定信号とV軸駆動信号に基づいて描画位置を決定するピクセルクロック、HSync、VSyncを生成する。描画位置制御部116は、H軸描画位置設定信号のエッジ位置からカウンタのカウントを開始し、カウントしたカウンタ値により描画エリアを決定する。描画位置制御部116は、走査検出部202により検出された水平スキャナ220の往路または復路の第1の動作範囲と第1の基準値との第1の差、および検出された水平スキャナ220の往復動作の第2の動作範囲と第2の基準値との第2の差に基づいて、ラインごとに画像表示位置を決定する表示位置決定部である。また、後述するように、描画位置制御部116は、往路または復路の第1の動作範囲をカウントしたカウンタ値と第1の基準値に対応するカウンタ値との差、および往復動作の第2の動作範囲をカウントしたカウンタ値と第2の基準値に対応するカウンタ値との差に基づいて、ラインごとのカウンタのカウント開始位置を補正する。例えば、第1の基準値、第2の基準値は、フラッシュメモリ132に記憶されている。
V軸駆動処理部117は、HSync及びVSyncに基づいてV軸駆動信号を生成し、生成したV軸駆動信号をV軸スキャナドライバ150へ出力する。例えば、VGA(Video Graphics Array)で表示する場合、垂直走査周波数は60Hzであり、60Hzで垂直スキャナ210を垂直方向に揺動させるようにV軸駆動信号を出力する。
図5は、本実施の形態に係るH軸検出アナログ信号、H軸検出パルス信号及びH軸描画位置設定信号の一例を示している。H軸検出アナログ信号は、水平方向の両側で駆動する水平スキャナ220に配置された片側の圧電膜(例えば、図2の226a及び226b、または図3の226a〜226d)によって検出された波形である。
図5に示すように、H軸検出アナログ信号は、水平スキャナ220のMEMSミラー224の向きに応じたアナログ波形である。このため、そのままではFPGA110でH軸検出アナログ信号を処理することができない。そこで、本実施の形態では、コンパレータ170等を利用してH軸検出アナログ信号をパルス状の矩形波に変換し、FPGA110で処理可能なH軸検出パルス信号を生成している。
コンパレータ170から出力されるH軸検出パルス信号は、MEMSミラー224の往復動作のタイミングと一致しない恐れがあり、この場合、H軸検出パルス信号から描画エリアを設定すると正しく描画を行うことができない。例えば、図5では、H軸検出パルス信号は、MEMSミラー224の向きが正面(中央)のタイミングで立ち上り/立ち下りを繰り返している。
そこで、本実施の形態では、適切な描画位置を設定するため、FPGA110の信号調整部118では、H軸検出パルス信号を描画開始位置調整値だけ任意にずらした(遅延を持った)H軸描画位置設定信号を生成する。描画開始位置調整値によりH軸検出パルス信号を遅延させることにより、MEMSミラー224が最大角度振った位置にエッジがくるようにH軸描画位置設定信号を生成する。そして、H軸描画位置設定信号のエッジに挟まれたエッジ間の領域に、水平方向の描画エリアを設定する。
次に、本実施の形態に係る動作を実現するための構成例について説明する。図6は、描画位置制御部116の機能ブロックの一例であり、図7は描画位置制御部116のフローチャートの一例である。なお、後述する本実施の形態に係る動作を実現できれば、その他の構成でもよい。
図6に示すように、描画位置制御部116は、カウンタ11、基準値設定部12、ラインずれ判定部13、ラインずれ補正部14、描画位置決定部15を備えている。
カウンタ11は、H軸描画位置設定信号のエッジ間隔をカウントするカウンタである。カウンタ11は、後述するクロックカウンタ及びピクセルカウンタを含んでいる。基準値設定部12は、基準値として、往路または復路の動作範囲である第1の基準値と往復の動作範囲である第2の基準値を設定する。
ラインずれ判定部13は、カウンタ11の値と第1の基準値、第2の基準値とを比較しラインのずれを判定する。ラインずれ補正部14、判定されたラインのずれを補正するため、後述するようにカウント開始位置を補正する。描画位置決定部15は、カウント開始位置が補正されたカウンタ11の値に基づいて、描画位置(描画エリア)を決定する。
図7に示すように、描画位置制御部116に、H軸描画位置設定信号の入力が開始され(S101)、基準値設定部12が基準値を設定する(S102)。基準値である第1の基準値と第2の基準値は、予め設定されていてもよいし、H軸描画位置設定信号のエッジ間隔を複数回カウントした結果に基づいて設定してもよい。
続いて、カウンタ11は、MEMSミラーの走査範囲をカウントする(S103)。カウンタ11は、内部クロックに同期して、後述のように、クロックカウンタ(clk_cnt)、ピクセルカウンタ(pix_cnt)により、H軸描画位置設定信号のエッジ間隔をカウントする。
続いて、ラインずれ判定部13は、カウンタ値と基準値とを比較する(S104)。具体的には後述するように、往路または復路のカウンタ値と第1の基準値との差、および往復のカウンタ値と第2の基準値との差を求める。S104において、カウンタ値と基準値とに差がある場合、ラインずれ補正部14は、その差に基づいてカウント開始位置を補正する(S105)。具体的には、往路または復路のカウンタ値と第1の基準値との第1の差、および往復のカウンタ値と第2の基準値との第2の差を求め、第1の差と第2の差との差分の半分の値を補正値とする。
描画位置決定部15は、カウンタ値と基準値とに差がない場合、そのままのカウンタ値に基づいて描画位置を決定し、カウンタ値と基準値とに差がある場合、補正されたカウンタ値に基づいて描画位置を決定する(S106)。例えば、描画位置決定部15は、カウンタ値5〜14の間を描画エリアとして設定し、カウンタ値5のタイミングで立ち上り、カウンタ値14のタイミングで立ち下りを繰り返すHSyncを生成する。
次に、本実施の形態の主要な特徴である描画位置制御方法について説明する。
レーザースキャン方式の画像表示装置では、描画を行う時に、圧電膜などの検出回路から出力されるMEMSミラー224の動作を検出したH軸検出波形(H軸検出パルス信号)をFPGA110に取り込み描画タイミングの基準信号として利用をしている。
しかし、MEMSミラー224の温度特性などにより、MEMSミラー224の振れ角度が変化し検出波形が変化する事がある。この検出波形の変化によって、FPGA110内の検出波形のカウント数がずれる事で描画タイミングにずれが生じるため、描画した投影画像300のライン毎のずれに繋がる。本実施の形態では、この問題を以下で説明するように改善する。
なお、以下の動作例では、検出波形(H軸検出パルス信号)のエッジ位置は実際のMEMSミラー224の動作において、正確な位置が不明の為、上述のように、検出波形を任意にずらす事によりH軸描画位置設定信号を生成し、そのH軸描画位置設定信号を基準に描画位置を設定する。このH軸描画位置設定信号の設定により、往路復路で描画に問題のない位置に、描画エリアを設定することができる。以下の動作例では、説明上このH軸描画位置設定信号の位置調整値は初期設定時に固定値が設定されるものとする。
<理想例>
まず、図8A及び図8Bを用いて、理想的な検出信号による動作について説明する。例えば、図8A及び図8Bは、図1〜図3、図5と同様の構成による例である。
図8A及び図8Bに示すように、理想的には、H軸検出パルス信号に基づくH軸描画位置設定信号は常に一定周期の検出波形、すなわち、同じエッジ間隔(立ち上りエッジと次の立ち下りエッジまでの間隔、立ち下りエッジと次の立ち上りエッジまでの間隔)でHigh/Lowを繰り返す矩形波である。
FPGA110は、H軸描画位置設定信号のエッジ間隔をドット(ピクセル)に同期した内部クロックでカウントしており、H軸描画位置設定信号が一定周期のため、クロックカウンタ(clk_cnt)のカウンタ値は一定の値となる。ここでは、一例として、エッジ間隔を20カウントとし、カウンタ値=1〜20が繰り返される。すなわち、理想的な各動作範囲のカウンタ値(カウント数)は、往路範囲または復路範囲A0=20、往復範囲B0=40である。この理想的な往路範囲または復路範囲A0を第1の基準値とし、理想的な復路範囲B0を第2の基準値とする。なお、説明簡略化のため、カウンタ値=1からカウントを開始するが、カウンタ値=0からカントを開始してもよい(以下でも同様)。
ここでは、一例として、カウンタ値6〜15の間を描画エリアとして設定する。そうすると、描画エリアを設定するHSyncは、往路及び復路のラインのそれぞれでカウンタ値6のタイミングで立ち上り、カウンタ値15のタイミングで立ち下りを繰り返す波形となる。
その結果、この往路ライン及び復路ラインの繰り返しにより描画される投影画像300の描画エリアはD1の領域となる。図8A及び図8Bでは、H軸描画位置設定信号が一定周期であり、HSyncも一定周期となるため、往路範囲、復路範囲、往復範囲が常に基準値である。このため、理想的な描画エリアD1は、ラインごとの描画位置にずれがなく、垂直方向の縦ラインが一直線状の矩形となる。
<参考例1>
例えば、温度特性などによりMEMSミラーの周波数が変わり検出波形の周期が変わった場合、本来であれば、MEMSミラーの動作として往路・復路ともに均等に動作していると考えられる為、検出波形においても、往路・復路とも均等になることが理想である。しかし、回路などの影響により、実際のMEMSミラーの動作とは異なった検出波形を得ることがある。この検出波形をFPGAに取り込み、カウンタ値を基準に描画するタイミング波形を生成し描画を行うと、描画エリアにおいて、最初の設定値(基準値)より往路と復路でのカウント数が異なることで、理想状態から見て縦のラインにずれが生じてしまう。
図9A及び図9Bは、このような描画エリアにずれが生じる例を示している。図9A及び図9Bは、本実施の形態の適用前の参考例1における、検出信号が変化する場合の動作例である。例えば、図9A及び図9Bは、図1〜図3、図5と同様の構成による例である。
図9A及び図9Bに示すように、参考例1では、MEMSミラー224の動作が変化した場合、H軸検出パルス信号に基づくH軸描画位置設定信号は周波数(エッジ間隔)が一定ではなく変化した波形となっている。このH軸描画位置設定信号をFPGA110に取り込みエッジ間隔をカウントすると、エッジ間隔ごとにクロックカウンタのカウンタ値が変動する。
この参考例1は、往路範囲が基準値より短く、復路範囲が基準値より長く、往復範囲が基準値と等しい例である。すなわち、各動作範囲のカウンタ値(カウント数)は、往路範囲A1=18であり、基準値A0=20よりも2少なく、復路範囲C1=22であり、基準値A0=20よりも2多く、往復範囲B1=40であり、基準値B0=40と等しい。
カウンタ値6〜15の間を描画エリアとして設定すると、描画エリアを設定するHSyncは、エッジ間隔(カウント数)が変動する往路及び復路のラインごとに、カウンタ値6のタイミングで立ち上り、カウンタ値15のタイミングで立ち下りを繰り返す波形となる。
ここでは、なんらかの理由により、検出波形が変化した場合でも、MEMSミラーは左右均等に振っている事を条件とし、往復範囲の全トータルカウントの半分が往路または復路の実質カウント数として描画エリアを設定する(以下でも同様)。これは、回路特性として立ち上がりと立ち下がりエッジを生成する特性が異なる事があるため、片側のエッジのみを見た場合、同じ特性であることから、片側エッジを基準として、カウントした数が往復のトータルカウントとなり、その半分が往路または復路のMEMSミラー移動と考えられるためである。
そうすると、この往路ライン及び復路ラインの繰り返しにより描画される投影画像300の描画エリアはD2の領域となる。図9A及び図9Bでは、H軸描画位置設定信号の周期(エッジ間隔)が変動し、HSyncの周期も変動するため、描画エリアD2は、ラインごとに描画位置がずれてしまう。この例では、往復範囲B1が40カウントであり、往路または復路は往復の半分である20カウントと考えるため、図9Aのように20カウントで折り返して描画エリアを形成する。具体的には、往路ラインは、カウンタ値=1、2、・・・、18、1、2となり、復路ラインは、カウンタ値3、4、・・・、21、22となる。そうすると、往路ラインと復路ラインでカウンタ値6〜15の位置が2カウンタ分(2クロック分)ずれてしまう。したがって、カウンタ値とMEMSミラーの動作にずれが生じて、描画エリアがずれる原因となる。
すなわち、実施の形態適用前の参考例では、最初に<理想例>のように設定された状態から、画角変更や温度特性により検出波形が変化した場合、初期の設定カウント数(基準値)と比較して変化してしまい、描画ずれが発生する。参考例では、H軸描画位置設定信号のカウンタ値を基準に描画するタイミング波形(HSync)を生成し描画を行っているため、往路ラインと復路ラインでのカウント数が異なった場合、描画エリアの縦のラインにずれが生じてしまう。
<本実施の形態の動作例1>
図10A及び図10Bは、図9A及び図9Bと同じ検出信号に対し、本実施の形態を適用した場合の動作例1を示している。図10A及び図10Bは、図1〜図6で説明した本実施の形態の構成における動作である。
図10A及び図10Bでは、図9A及び図9Bと同様に、H軸描画位置設定信号の周波数(エッジ間隔)が一定ではなく変化した波形となっている。このH軸描画位置設定信号のエッジ間隔を内部クロックに合わせてカウントすると、エッジ間隔ごとにクロックカウンタ(clk_cnt)のカウンタ値が変動する。
このため、本実施の形態では、予めMEMSミラーからの理想的な検出波形に対して所定の基準値を設定しておき、カウンタ値が基準値から外れた場合は、計算式より定まる補正値によって基準値に戻すことで、ラインごとの基準を保ち、描画ずれを抑える。基準値には、初期設定時に<理想例>のように画像ずれが無いところのカウンタ値(カウント数)を基準値として設定し、設定された往路範囲または復路範囲A0、往復範囲B0を記憶しておく。ここでは、上記のように、往路範囲または復路範囲A0=20、往復範囲B0=40として記憶する。
H軸描画位置設定信号を常にカウンタ値=1からカウントするクロックをクロックカウンタ(clk_cnt)と称し、基準値に基づいて設定された開始位置からカウントするクロックをピクセルカウンタ(pix_cnt)と称する。ここでは、クロックカウンタと補正後のピクセルカウンタとを用いて説明するが、一つのカウンタで実現してもよい。なお、上記の例と同様に、MEMSミラーは左右均等に振っている事を条件とし、往復範囲の全トータルカウントの半分が往路または復路の実質カウント数として描画エリアを設定する。
図10A及び図10Bでは、図9A及び図9Bと同様、基準値の往路範囲または復路範囲A0=20、往復範囲B0=40に対し、H軸描画位置設定信号をカウントした値(変化値)は、往路範囲A1=18、復路範囲C1=22、往復範囲B1=40である。本実施の形態では、これらの値から次の式(1)を用いて、カウンタの開始位置を補正するための補正値を求める。
{(往復の全カウントの変化値−往復の全カウントの基準値)−(往路カウントの変化値−往路カウントの基準値)}÷2
={(B1−B0)−(A1−A0)}÷2=補正値 ・・・式(1)
すなわち、往復範囲のカウントした値と基準値との差から、往路のカウントした値と基準値との差を、差し引いて2で割った値を補正値とする。なお、往路と復路とで、補正値は異なるが、往路の代わりに復路を用いて、往復範囲のカウントした値と基準値との差から、復路のカウントした値と基準値との差を、差し引いて2で割った値を補正値としてもよい。
この例では、式(1)より、{(40−40)−(18−20)}÷2=2÷2=1が補正値となる。このため、本実施の形態に係る動作例1ではカウンタの開始位置を+1ずらす。図10A及び図10Bのように、往路(復路)のみで考えると、カウンタが基準値よりも2ずれているが、往路のカウンタ開始位置を1ずらすと、復路も同様に1ずれる事になる。したがって、図10A及び図10Bから明らかなように、カウンタが2ずれていたとしても、基準値からのずれを2で割った値を実際の補正値とすることで、カウンタのずれを正しく補正することができる。
補正値が+1であるため、図10A及び図10Bのように、ピクセルカウンタでは、往路におけるクロックカウンタの開始位置を時間軸の正方向へ1クロック分ずらしてカウントを行う。カウンタを1クロック分遅延させているともいえる。往復範囲が40カウントで往路または復路が20カウントであるため、この補正後のピクセルカウンタを用いると、往路ラインは、カウンタ値=22、1、・・・、18、1となり、復路ラインは、カウンタ値=2、3、・・・、20、21となる。これにより、往路ラインの描画位置が右方向へ1クロック分ずれ、復路ラインの描画位置が左方向へ1クロック分ずれるため、往路ラインのカウンタ値6〜15と、復路ラインのカウンタ値6〜15とで、垂直方向の位置が等しくなる。
このような制御により、描画エリアを設定するHSyncは、エッジ間隔(カウント数)が変動する往路及び復路のラインごとに、補正されたカウンタ値6のタイミングで立ち上り、補正されたカウンタ値15のタイミングで立ち下りを繰り返す波形となる。
その結果、この往路ライン及び復路ラインの繰り返しにより描画される投影画像300の描画エリアはD3のように理想的な矩形状の領域となる。図10A及び図10Bでは、H軸描画位置設定信号のエッジ間隔と基準値との差分に基づいてカウンタを制御することにより、先のラインの描画エリアから両端までの距離と、次のラインの両端から描画エリアまでの距離を等しくできる。すなわち、本実施の形態では、縦のラインにおいて描画エリアが一致するように、基準とするカウンタ値とMEMSミラーの検出パルス信号からのカウント値に基づいて、カウント値を制御する事で、描画エリア範囲を一定に保つ事ができ、縦ラインのずれを無くす事ができる。
<参考例2>
次に、図11A及び図11Bを用いて、本実施の形態の適用前の参考例2における、検出信号が変化する場合の他の動作例について説明する。例えば、図11A及び図11Bは、図1〜図3、図5と同様の構成による例である。
この参考例2は、往路範囲が基準値と等しく、復路範囲が基準値より短く、往復範囲が基準値より短い例である。すなわち、各動作範囲のカウンタ値(カウント数)は、往路範囲A1=20であり、基準値A0=20と等しく、復路範囲C1=18であり、基準値A0=20よりも2少なく、往復範囲B1=38であり、基準値B0=40よりも2少ない。
上記の例と同様に、検出波形が変化した場合でも、MEMSミラーは左右均等に振っている事を条件とするため、往復範囲である38カウントの半分の19カウントを往路または復路の値として折り返し描画を行うこととし、カウンタ値6〜15の間を描画エリアとする。そうすると、往路ラインは、カウンタ値=1、2、・・・、18、19となり、復路ラインは、カウンタ値=20、1、2、・・・、17、18となる。このため、往路ラインと復路ラインでカウンタ値6〜15の位置が2カウンタ分(2クロック分)ずれてしまうため、描画エリアにずれが生じる。すなわち、図11Aに示すように、この往路ライン及び復路ラインの繰り返しにより描画される投影画像300の描画エリアD4は、ラインごとに描画位置がずれてしまう。
<本実施の形態の動作例2>
次に、図12A及び図12Bを用いて、図11A及び図11Bと同じ検出信号に対し、本実施の形態を適用した場合の動作例2について説明する。図12A及び図12Bは、図1〜図6で説明した本実施の形態の構成における動作である。
図12A及び図12Bでは、図11A及び図11Bと同様、基準値の往路範囲または復路範囲A0=20、往復範囲B0=40に対し、H軸描画位置設定信号をカウントした値は、往路範囲A1=20、復路範囲C1=18、往復範囲B1=38である。これらの値から上記の式(1)を用いて、カウンタの開始位置を補正するための補正値を求めると、{(38−40)−(20−20)}÷2=−2÷2=−1となる。このため、本実施の形態に係る動作例2ではカウンタの開始位置を−1ずらす。
補正値が−1であるため、図12A及び図12Bのように、ピクセルカウンタでは、往路におけるクロックカウンタの開始位置を時間軸の負方向へ1クロック分ずらしてカウントを行う。カウンタを1クロック分進めているともいえる。往復範囲が38カウントで往路または復路が19カウントであるため、この補正後のピクセルカウンタを用いると、往路ラインは、カウンタ値=2、3、・・・、19、20となり、復路ラインは、カウンタ値=1、2、・・・、17、18、1となる。これにより、往路ラインの描画位置が左方向へ1クロック分ずれ、復路ラインの描画位置が右方向へ1クロック分ずれるため、往路ラインのカウンタ値6〜15と、復路ラインのカウンタ値6〜15とで、垂直方向の位置が等しくなる。その結果、この往路ライン及び復路ラインの繰り返しにより描画される投影画像300の描画エリアはD5のように理想的な矩形状の領域となる。
<参考例3>
次に、図13A及び図13Bを用いて、本実施の形態の適用前の参考例3における、検出信号が変化する場合の他の動作例について説明する。例えば、図13A及び図13Bは、図1〜図3、図5と同様の構成による例である。
この参考例3は、往路範囲及び復路範囲の両方が基準値より長く、往復範囲も基準値より長い例である。すなわち、各動作範囲のカウンタ値(カウント数)は、往路範囲A1=22であり、基準値A0=20より2多く、復路範囲C1=22であり、基準値A0=20よりも2多く、往復範囲B1=44であり、基準値B0=40よりも4多い。
上記の例と同様に、検出波形が変化した場合でも、MEMSミラーは左右均等に振っている事を条件とするため、往復範囲である44カウントの半分の22カウントを往路または復路の値として折り返し描画を行うこととし、カウンタ値6〜15の間を描画エリアとする。そうすると、往路ラインは、カウンタ値=1、2、・・・、21、22となり、復路ラインは、カウンタ値=1、2、・・・、21、22となる。このため、往路ラインと復路ラインでカウンタ値6〜15の位置が2カウンタ分(2クロック分)ずれてしまうため、描画エリアにずれが生じる。すなわち、図13Aに示すように、この往路ライン及び復路ラインの繰り返しにより描画される投影画像300の描画エリアD6は、ラインごとに描画位置がずれてしまう。
<本実施の形態の動作例3>
次に、図14A及び図14Bを用いて、図13A及び図13Bと同じ検出信号に対し、本実施の形態を適用した場合の動作例3について説明する。図13A及び図13Bは、図1〜図6で説明した本実施の形態の構成における動作である。
図14A及び図14Bでは、図13A及び図13Bと同様、基準値の往路範囲または復路範囲A0=20、往復範囲B0=40に対し、H軸描画位置設定信号をカウントした値は、往路範囲A1=22、復路範囲C1=22、往復範囲B1=44である。これらの値から上記の式(1)を用いて、カウンタの開始位置を補正するための補正値を求めると、{(44−40)−(22−20)}÷2=2÷2=1となる。このため、本実施の形態に係る動作例2ではカウンタの開始位置を+1ずらす。
補正値が+1であるため、図14A及び図14Bのように、ピクセルカウンタでは、往路におけるクロックカウンタの開始位置を時間軸の正方向へ1クロック分ずらしてカウントを行う。カウンタを1クロック分遅延させているともいえる。往復範囲が44カウントで往路または復路が22カウントであるため、この補正後のピクセルカウンタを用いると、往路ラインは、カウンタ値=22、1、2、・・・、20、21となり、復路ラインは、カウンタ値=22、1、2、・・・、20、21となる。これにより、往路ラインの描画位置が右方向へ1クロック分ずれ、復路ラインの描画位置が左方向へ1クロック分ずれるため、往路ラインのカウンタ値6〜15と、復路ラインのカウンタ値6〜15とで、垂直方向の位置が等しくなる。その結果、この往路ライン及び復路ラインの繰り返しにより描画される投影画像300の描画エリアはD7のように理想的な矩形状の領域となる。
<参考例4>
次に、図15A及び図15Bを用いて、本実施の形態の適用前の参考例4における、検出信号が変化する場合の他の動作例について説明する。例えば、図15A及び図15Bは、図1〜図3、図5と同様の構成による例である。
この参考例4は、往路範囲が基準値より長く、復路範囲が基準値より短く、往復範囲が基準値と等しい例である。すなわち、各動作範囲のカウンタ値(カウント数)は、往路範囲A1=22であり、基準値A0=20より2多く、復路範囲C1=18であり、基準値A0=20よりも2少なく、往復範囲B1=40であり、基準値B0=40と等しい。
上記の例と同様に、検出波形が変化した場合でも、MEMSミラーは左右均等に振っている事を条件とするため、往復範囲である40カウントの半分の20カウントを往路または復路の値として折り返し描画を行うこととし、カウンタ値6〜15の間を描画エリアとする。そうすると、往路ラインは、カウンタ値=1、2、・・・、19、20となり、復路ラインは、カウンタ値=21、22、1、2、・・・、17、18となる。このため、往路ラインと復路ラインでカウンタ値6〜15の位置が2カウンタ分(2クロック分)ずれてしまうため、描画エリアにずれが生じる。すなわち、図15Aに示すように、この往路ライン及び復路ラインの繰り返しにより描画される投影画像300の描画エリアD8は、ラインごとに描画位置がずれてしまう。
<本実施の形態の動作例4>
次に、図16A及び図16Bを用いて、図15A及び図15Bと同じ検出信号に対し、本実施の形態を適用した場合の動作例2について説明する。図16A及び図16Bは、図1〜図6で説明した本実施の形態の構成における動作である。
図16A及び図16Bでは、図15A及び図15Bと同様、基準値の往路範囲または復路範囲A0=20、往復範囲B0=40に対し、H軸描画位置設定信号をカウントした値は、往路範囲A1=22、復路範囲C1=18、往復範囲B1=40である。これらの値から上記の式(1)を用いて、カウンタの開始位置を補正するための補正値を求めると、{(40−40)−(22−20)}÷2=−2÷2=−1となる。このため、本実施の形態に係る動作例2ではカウンタの開始位置を−1ずらす。
補正値が−1であるため、図16A及び図16Bのように、ピクセルカウンタでは、往路におけるクロックカウンタの開始位置を時間軸の負方向へ1クロック分ずらしてカウントを行う。カウンタを1クロック分進めているともいえる。往復範囲が40カウントで往路または復路が20カウントであるため、この補正後のピクセルカウンタを用いると、往路ラインは、カウンタ値=2、3、・・・、20、21となり、復路ラインは、カウンタ値=22、1、2、・・・、17、18、1となる。これにより、往路ラインの描画位置が左方向へ1クロック分ずれ、復路ラインの描画位置が右方向へ1クロック分ずれるため、往路ラインのカウンタ値6〜15と、復路ラインのカウンタ値6〜15とで、垂直方向の位置が等しくなる。その結果、この往路ライン及び復路ラインの繰り返しにより描画される投影画像300の描画エリアはD9のように理想的な矩形状の領域となる。
<参考例5>
次に、図17A及び図17Bを用いて、本実施の形態の適用前の参考例5における、検出信号が変化する場合の他の動作例について説明する。例えば、図17A及び図17Bは、図1〜図3、図5と同様の構成による例である。
この参考例5は、往路範囲が基準値より長く、復路範囲が基準値より短く、往復範囲が基準値より短い例である。すなわち、各動作範囲のカウンタ値(カウント数)は、往路範囲A1=22であり、基準値A0=20より2多く、復路範囲C1=16であり、基準値A0=20よりも4少なく、往復範囲B1=38であり、基準値B0=40よりも2少ない。
上記の例と同様に、検出波形が変化した場合でも、MEMSミラーは左右均等に振っている事を条件とするため、往復範囲である38カウントの半分の19カウントを往路または復路の値として折り返し描画を行うこととし、カウンタ値6〜15の間を描画エリアとする。そうすると、往路ラインは、カウンタ値=1、2、・・・、18、19となり、復路ラインは、カウンタ値=20、21、22、1、2、・・・、15、16となる。このため、往路ラインと復路ラインでカウンタ値6〜15の位置が4カウンタ分(4クロック分)ずれてしまうため、描画エリアにずれが生じる。すなわち、図17Aに示すように、この往路ライン及び復路ラインの繰り返しにより描画される投影画像300の描画エリアD10は、ラインごとに描画位置がずれてしまう。
<本実施の形態の動作例5>
次に、図18A及び図18Bを用いて、図17A及び図17Bと同じ検出信号に対し、本実施の形態を適用した場合の動作例5について説明する。図18A及び図18Bは、図1〜図6で説明した本実施の形態の構成における動作である。
図18A及び図18Bでは、図17A及び図17Bと同様、基準値の往路範囲A0または復路範囲A0=20、往復範囲B0=40に対し、H軸描画位置設定信号をカウントした値は、往路範囲A1=22、復路範囲C1=16、往復範囲B1=38である。これらの値から上記の式(1)を用いて、カウンタの開始位置を補正するための補正値を求めると、{(38−40)−(22−20)}÷2=−4÷2=−2となる。このため、本実施の形態に係る動作例2ではカウンタの開始位置を−2ずらす。
補正値が−2であるため、図18A及び図18Bのように、ピクセルカウンタでは、往路におけるクロックカウンタの開始位置を時間軸の負方向へ2クロック分ずらしてカウントを行う。カウンタを2クロック分進めているともいえる。往復範囲が38カウントで往路または復路が19カウントであるため、この補正後のピクセルカウンタを用いると、往路ラインは、カウンタ値=3、4、・・・、20、21となり、復路ラインは、カウンタ値=22、1、2、・・・、15、16、1、2となる。これにより、往路ラインの描画位置が左方向へ2クロック分ずれ、復路ラインの描画位置が右方向へ2クロック分ずれるため、往路ラインのカウンタ値6〜15と、復路ラインのカウンタ値6〜15とで、垂直方向の位置が等しくなる。その結果、この往路ライン及び復路ラインの繰り返しにより描画される投影画像300の描画エリアはD11のように理想的な矩形状の領域となる。
<参考例6>
次に、図19A及び図19Bを用いて、本実施の形態の適用前の参考例6における、検出信号が変化する場合の他の動作例について説明する。例えば、図19A及び図19Bは、図1〜図3、図5と同様の構成による例である。
この参考例6は、往路範囲が基準値より短く、復路範囲が基準値より長く、往復範囲が基準値より長い例である。すなわち、各動作範囲のカウンタ値(カウント数)は、往路範囲A1=18であり、基準値A0=20より2少なく、復路範囲C1=24であり、基準値A0=20よりも4多く、往復範囲B1=42であり、基準値B0=40よりも2多い。
上記の例と同様に、検出波形が変化した場合でも、MEMSミラーは左右均等に振っている事を条件とするため、往復範囲である42カウントの半分の21カウントを往路または復路の値として折り返し描画を行うこととし、カウンタ値6〜15の間を描画エリアとする。そうすると、往路ラインは、カウンタ値=1、2、・・・、18、1、2、3となり、復路ラインは、カウンタ値=3、5、・・・、23、24となる。このため、往路ラインと復路ラインでカウンタ値6〜15の位置が4カウンタ分(4クロック分)ずれてしまうため、描画エリアにずれが生じる。すなわち、図19Aに示すように、この往路ライン及び復路ラインの繰り返しにより描画される投影画像300の描画エリアD12は、ラインごとに描画位置がずれてしまう。
<本実施の形態の動作例6>
次に、図20A及び図20Bを用いて、図19A及び図19Bと同じ検出信号に対し、本実施の形態を適用した場合の動作例6について説明する。図20A及び図20Bは、図1〜図6で説明した本実施の形態の構成における動作である。
図20A及び図20Bでは、図19A及び図19Bと同様、基準値の往路範囲A0または復路範囲A0=20、往復範囲B0=40に対し、H軸描画位置設定信号をカウントした値は、往路範囲A1=18、復路範囲C1=24、往復範囲B1=42である。これらの値から上記の式(1)を用いて、カウンタの開始位置を補正するための補正値を求めると、{(42−40)−(18−20)}÷2=4÷2=2となる。このため、本実施の形態に係る動作例2ではカウンタの開始位置を+2ずらす。
補正値が+2であるため、図20A及び図20Bのように、ピクセルカウンタでは、往路におけるクロックカウンタの開始位置を時間軸の正方向へ2クロック分ずらしてカウントを行う。カウンタを2クロック分遅延させているともいえる。往復範囲が42カウントで往路または復路が21カウントであるため、この補正後のピクセルカウンタを用いると、往路ラインは、カウンタ値=23、24、1、2、・・・、17、18、1となり、復路ラインは、カウンタ値=2、3、・・・、21、22となる。これにより、往路ラインの描画位置が右方向へ2クロック分ずれ、復路ラインの描画位置が左方向へ2クロック分ずれるため、往路ラインのカウンタ値6〜15と、復路ラインのカウンタ値6〜15とで、垂直方向の位置が等しくなる。その結果、この往路ライン及び復路ラインの繰り返しにより描画される投影画像300の描画エリアはD13のように理想的な矩形状の領域となる。
<参考例7>
次に、図21A及び図21Bを用いて、本実施の形態の適用前の参考例7における、検出信号が変化する場合の他の動作例について説明する。例えば、図21A及び図21Bは、図1〜図3、図5と同様の構成による例である。
この参考例7は、往路範囲及び復路範囲の両方が基準値より短く、往復範囲も基準値より短い例である。すなわち、各動作範囲のカウンタ値(カウント数)は、往路範囲A1=18であり、基準値A0=20より2少なく、復路範囲C1=16であり、基準値A0=20よりも4少なく、往復範囲B1=34であり、基準値B0=40よりも6少ない。
上記の例と同様に、検出波形が変化した場合でも、MEMSミラーは左右均等に振っている事を条件とするため、往復範囲である34カウントの半分の17カウントを往路または復路の値として折り返し描画を行うこととし、カウンタ値6〜15の間を描画エリアとする。そうすると、往路ラインは、カウンタ値=1、2、・・・、16、17となり、復路ラインは、カウンタ値=18、1、2、・・・、15、16となる。このため、往路ラインと復路ラインでカウンタ値6〜15の位置が4カウンタ分(4クロック分)ずれてしまうため、描画エリアにずれが生じる。すなわち、図21Aに示すように、この往路ライン及び復路ラインの繰り返しにより描画される投影画像300の描画エリアD14は、ラインごとに描画位置がずれてしまう。
<本実施の形態の動作例7>
次に、図22A及び図22Bを用いて、図21A及び図21Bと同じ検出信号に対し、本実施の形態を適用した場合の動作例7について説明する。図22A及び図22Bは、図1〜図6で説明した本実施の形態の構成における動作である。
図22A及び図22Bでは、図21A及び図21Bと同様、基準値の往路範囲または復路範囲A0=20、往復範囲B0=40に対し、H軸描画位置設定信号をカウントした値は、往路範囲A1=18、復路範囲C1=16、往復範囲B1=34である。これらの値から上記の式(1)を用いて、カウンタの開始位置を補正するための補正値を求めると、{(34−40)−(18−20)}÷2=−4÷2=−2となる。このため、本実施の形態に係る動作例2ではカウンタの開始位置を−2ずらす。
補正値が−2であるため、図22A及び図22Bのように、ピクセルカウンタでは、往路におけるクロックカウンタの開始位置を時間軸の負方向へ2クロック分ずらしてカウントを行う。カウンタを2クロック分進めているともいえる。往復範囲が34カウントで往路または復路が17カウントであるため、この補正後のピクセルカウンタを用いると、往路ラインは、カウンタ値=3、4、・・・、17、18、1となり、復路ラインは、カウンタ値=2、3、・・・、15、16、1、2となる。これにより、往路ラインの描画位置が左方向へ2クロック分ずれ、復路ラインの描画位置が右方向へ2クロック分ずれるため、往路ラインのカウンタ値6〜15と、復路ラインのカウンタ値6〜15とで、垂直方向の位置が等しくなる。その結果、この往路ライン及び復路ラインの繰り返しにより描画される投影画像300の描画エリアはD15のように理想的な矩形状の領域となる。
以上のように、本実施の形態では、レーザースキャン方式の画像表示装置において、光スキャナに設けられた圧電膜によりMEMSミラーの動作を検出し、この検出した第1及び第2の動作範囲と基準範囲とのずれに基づいて、描画位置を補正することとした。これにより、MEMSミラーの動作変動による検出波形の変化がもたらす描画位置のずれを補正し、常に一定の場所に描画エリアを設定する事でライン毎の描画ずれを防止することができる。特に、基準値とのずれに応じて、カウンタの開始位置を補正することで、ライン毎の描画位置のずれを無くし、描画ずれを防止することができる。
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
11 カウンタ
12 基準値設定部
13 ラインずれ判定部
14 ラインずれ補正部
15 描画位置決定部
100 画像表示装置
102 制御部
101 映像入力部
111 入力インタフェース
112 DDRインタフェース
113 画像処理部
114 映像出力部
116 描画位置制御部
117 V軸駆動処理部
118 信号調整部
120 マイコン
131、132 フラッシュメモリ
133 DDRメモリ
140 レーザードライバ
150 V軸スキャナドライバ
160 H軸スキャナドライバ
170 コンパレータ
180 外部クロック
200 RGBレーザーダイオード
201 光スキャナ
202 走査検出部
210 垂直スキャナ
220 水平スキャナ
221 枠体
222 揺動片部
223a〜223d L型梁部
224 MEMSミラー
225a〜225d 駆動用圧電膜
226a〜226d 検出用圧電膜
300 投影画像

Claims (8)

  1. 光束を出力する光源部と、
    前記光束を反射し、所定の走査方向に往復動作を繰り返す走査部と、
    前記往復動作の往路または復路の走査単位ごとの前記走査部の第1の動作範囲、および前記往復動作の往復単位ごとの前記走査部の第2の動作範囲を検出する走査検出部と、
    前記検出された第1の動作範囲と往路または復路の第1の基準値との第1の差、および前記検出された第2の基準範囲と往復動作の第2の基準値との第2の差に基づいて、前記走査単位ごとに画像表示位置を決定する表示位置決定部と、
    前記決定された画像表示位置に対応するタイミングで、画像データに基づき前記光源部を駆動する光源駆動部と、
    を備える画像表示装置。
  2. 前記走査部は、前記往路の動作範囲と前記復路の動作範囲が等しくなるように前記往復動作を繰り返す、
    請求項1に記載の画像表示装置。
  3. 前記表示位置決定部は、前記第1の差と前記第2の差との差分に応じて、前記画像表示位置を決定する、
    請求項1または2に記載の画像表示装置。
  4. 前記表示位置決定部は、前記差分の半分の値を補正値として、前記画像表示位置を補正する、
    請求項3に記載の画像表示装置。
  5. 前記第1の動作範囲と前記第2の動作範囲をクロックに基づいてカウントするカウンタを備え、
    前記表示位置決定部は、前記第1の動作範囲を前記カウンタがカウントしたカウンタ値と前記第1の基準値に対応するカウンタ値との差、および前記第2の動作範囲を前記カウンタがカウントしたカウンタ値と前記第2の基準値に対応するカウンタ値との差に基づいて、前記走査単位ごとの前記カウンタのカウント開始位置を補正する、
    請求項1乃至4のいずれか一項に記載の画像表示装置。
  6. 前記表示位置決定部は、前記往路の走査単位のカウント開始位置を補正する、
    請求項5に記載の画像表示装置。
  7. 前記走査検出部は、前記走査部の往復動作に応じた往復動作検出信号を所定時間遅延させた遅延信号に基づいて、前記第1及び第2の動作範囲を検出する、
    請求項1乃至6のいずれか一項に記載の画像表示装置。
  8. 光束を出力する光源部と、前記光束を反射し、所定の走査方向に往復動作を繰り返す走査部と、を備えた画像表示装置の制御方法であって、
    前記往復動作の往路または復路の走査単位ごとの前記走査部の第1の動作範囲、および前記往復動作の往復単位ごとの前記走査部の第2の動作範囲を検出し、
    前記検出された第1の動作範囲と往路または復路の第1の基準値との第1の差、および前記検出された第2の基準範囲と往復動作の第2の基準値との第2の差に基づいて、前記走査単位ごとに画像表示位置を決定し、
    前記決定された画像表示位置に対応するタイミングで、画像データに基づき前記光源部を駆動する、
    画像表示装置の制御方法。
JP2014227673A 2014-11-10 2014-11-10 画像表示装置及びその制御方法 Active JP6269446B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014227673A JP6269446B2 (ja) 2014-11-10 2014-11-10 画像表示装置及びその制御方法
PCT/JP2015/004649 WO2016075854A1 (ja) 2014-11-10 2015-09-11 画像表示装置及びその制御方法
EP15859654.4A EP3220184B1 (en) 2014-11-10 2015-09-11 Image display device and control method therefor
CN201580050108.4A CN106716222B (zh) 2014-11-10 2015-09-11 图像显示装置及其控制方法
US15/591,408 US9894335B2 (en) 2014-11-10 2017-05-10 Image display device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014227673A JP6269446B2 (ja) 2014-11-10 2014-11-10 画像表示装置及びその制御方法

Publications (2)

Publication Number Publication Date
JP2016090913A true JP2016090913A (ja) 2016-05-23
JP6269446B2 JP6269446B2 (ja) 2018-01-31

Family

ID=55953962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014227673A Active JP6269446B2 (ja) 2014-11-10 2014-11-10 画像表示装置及びその制御方法

Country Status (5)

Country Link
US (1) US9894335B2 (ja)
EP (1) EP3220184B1 (ja)
JP (1) JP6269446B2 (ja)
CN (1) CN106716222B (ja)
WO (1) WO2016075854A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6582943B2 (ja) * 2015-12-04 2019-10-02 株式会社Jvcケンウッド 描画装置及び描画方法
JP6822091B2 (ja) * 2016-11-17 2021-01-27 富士通株式会社 画像情報出力装置、画像情報出力方法、プログラム
CN109788263A (zh) * 2018-12-20 2019-05-21 歌尔股份有限公司 投影设备及图像数据处理方法
CN109561290B (zh) * 2018-12-21 2020-12-08 北京仿真中心 一种外触发式光学投影系统
CN112859327B (zh) * 2019-11-27 2022-10-18 成都理想境界科技有限公司 一种图像输出控制方法及光纤扫描成像系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007334162A (ja) * 2006-06-16 2007-12-27 Brother Ind Ltd 光走査装置、画像表示装置及び網膜走査型画像表示装置
JP2009014791A (ja) * 2007-06-29 2009-01-22 Brother Ind Ltd 光走査装置及び画像表示装置及び網膜走査型画像表示装置
JP2009104085A (ja) * 2007-10-25 2009-05-14 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2013072982A (ja) * 2011-09-27 2013-04-22 Nec Corp 蛍光体スクリーンおよびそれを用いた走査型表示装置
JP2013140224A (ja) * 2011-12-28 2013-07-18 Jvc Kenwood Corp 画像表示装置、画像表示装置の制御方法、および、情報出力装置
WO2015092948A1 (ja) * 2013-12-17 2015-06-25 株式会社Jvcケンウッド 画像表示装置及びその制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265854B2 (ja) * 1994-09-28 2002-03-18 ミノルタ株式会社 画像出力装置
US6937372B2 (en) * 2001-07-11 2005-08-30 Canon Kabushiki Kaisha Light beam deflecting apparatus, image forming apparatus utilizing the same and drive method therefor
DE60203218T2 (de) * 2001-07-11 2006-03-23 Canon K.K. Lichtstrahl-Ablenkvorrichtung, damit ausgestattetes Bilderzeugungsgerät und Ansteuerungsverfahren
JP2007025522A (ja) 2005-07-21 2007-02-01 Seiko Epson Corp 画像表示装置及び画像表示装置の制御方法
JP4935013B2 (ja) * 2005-07-21 2012-05-23 ブラザー工業株式会社 光走査装置、画像表示装置及び光スキャナの共振周波数変更方法並びに反射ミラー位置の補正方法
US20080001850A1 (en) * 2006-06-06 2008-01-03 Mark Champion Beam scanner with reduced phase error
US8842352B2 (en) * 2006-08-17 2014-09-23 Texas Instruments Incorporated Method to improve scan-line alignment by adjusting the pixel rate
JP2011107675A (ja) * 2009-10-20 2011-06-02 Seiko Epson Corp 光偏向素子、光偏向器、及び画像形成装置
WO2012172652A1 (ja) * 2011-06-15 2012-12-20 パイオニア株式会社 駆動装置
JP5849728B2 (ja) * 2012-01-26 2016-02-03 株式会社Jvcケンウッド 投射型表示装置
TWI557478B (zh) * 2013-04-26 2016-11-11 鴻海精密工業股份有限公司 背光模組

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007334162A (ja) * 2006-06-16 2007-12-27 Brother Ind Ltd 光走査装置、画像表示装置及び網膜走査型画像表示装置
JP2009014791A (ja) * 2007-06-29 2009-01-22 Brother Ind Ltd 光走査装置及び画像表示装置及び網膜走査型画像表示装置
JP2009104085A (ja) * 2007-10-25 2009-05-14 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2013072982A (ja) * 2011-09-27 2013-04-22 Nec Corp 蛍光体スクリーンおよびそれを用いた走査型表示装置
JP2013140224A (ja) * 2011-12-28 2013-07-18 Jvc Kenwood Corp 画像表示装置、画像表示装置の制御方法、および、情報出力装置
WO2015092948A1 (ja) * 2013-12-17 2015-06-25 株式会社Jvcケンウッド 画像表示装置及びその制御方法

Also Published As

Publication number Publication date
CN106716222B (zh) 2019-03-15
WO2016075854A1 (ja) 2016-05-19
EP3220184B1 (en) 2019-10-23
US20170244944A1 (en) 2017-08-24
EP3220184A1 (en) 2017-09-20
JP6269446B2 (ja) 2018-01-31
CN106716222A (zh) 2017-05-24
EP3220184A4 (en) 2017-12-13
US9894335B2 (en) 2018-02-13

Similar Documents

Publication Publication Date Title
JP6090147B2 (ja) 画像表示装置及びその制御方法
JP6269446B2 (ja) 画像表示装置及びその制御方法
US7864390B2 (en) Image display apparatus
US9251730B2 (en) Image display apparatus and image scanning apparatus
US9075246B2 (en) Image display device having laser light scanning with a variation in scanning speed
WO2014103462A1 (ja) 画像表示装置、画像表示方法及びプログラム
JP4840175B2 (ja) 画像表示装置
US8643926B2 (en) Image forming apparatus
WO2013100066A1 (ja) 画像表示装置、画像表示装置の制御方法、および、情報出力装置
US11706392B2 (en) MEMS resonance control using phase detection
US20190235229A1 (en) Mems control circuit and projector
KR20140000667A (ko) 화상 표시 장치
JP6350685B2 (ja) 画像表示装置及びその制御方法
JP6365698B2 (ja) 画像表示装置及びその制御方法
JP2014010347A (ja) 画像表示装置および画像表示方法
JP6946708B2 (ja) 制御装置、画像投影装置、および制御方法
JP2010266824A (ja) 画像表示装置
JP2021101219A (ja) 回転装置、光偏向装置、表示システムおよび移動体
JP2014010261A (ja) 画像表示装置
JP2017102252A (ja) 光走査装置及びプロジェクタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R150 Certificate of patent or registration of utility model

Ref document number: 6269446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150