WO2013100066A1 - 画像表示装置、画像表示装置の制御方法、および、情報出力装置 - Google Patents

画像表示装置、画像表示装置の制御方法、および、情報出力装置 Download PDF

Info

Publication number
WO2013100066A1
WO2013100066A1 PCT/JP2012/083913 JP2012083913W WO2013100066A1 WO 2013100066 A1 WO2013100066 A1 WO 2013100066A1 JP 2012083913 W JP2012083913 W JP 2012083913W WO 2013100066 A1 WO2013100066 A1 WO 2013100066A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
scanning
scanning mirror
image data
main scanning
Prior art date
Application number
PCT/JP2012/083913
Other languages
English (en)
French (fr)
Inventor
佐々木 淳
菅原 孝
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Publication of WO2013100066A1 publication Critical patent/WO2013100066A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen

Definitions

  • the present invention relates to an image display device, an image display device control method, and an information output device. More specifically, the present invention relates to a laser scanning projection display and a control method thereof.
  • An image display device that reflects laser light with a scanning mirror and displays an image on a projection surface by raster scanning of light rays is known.
  • a laser scanning projection display draws a horizontal scanning line by reciprocally swinging the scanning mirror left and right, and reciprocally swings the scanning mirror vertically according to the number of scanning lines constituting the image.
  • Such an image display device may be very miniaturized by using a semiconductor laser diode or a MEMS mirror, and various application products such as a head-up display and a head-mounted display have been developed.
  • Patent Document 1 discloses a method of adjusting the dot clock so that an appropriate horizontal blanking period can be obtained even if the resolution (number of pixels) of the original image changes.
  • the laser scanning projection display employs a unique drawing method in which the scanning mirror is swung back and forth. Therefore, the timing of horizontal synchronization must be determined depending on the oscillation period of the scanning mirror. In addition, since the scanning mirror uses mechanical resonance, there is a particular problem that it is likely to vary due to individual differences, environmental temperature, and the like.
  • one cycle of the main scanning drive of the scanning mirror is a concept different from one cycle of the horizontal synchronization signal (HSYNC) of the liquid crystal panel.
  • HSELNC horizontal synchronization signal
  • the liquid crystal panel it is only necessary to generate image data for one line per cycle of the horizontal synchronizing signal, but this method cannot be simply applied to a laser scanning projection display.
  • a display driving method suitable for the laser scanning projection display must be developed.
  • the light source unit the scanning mirror unit that performs resonance scanning in the main scanning direction and non-resonance driving in the sub-scanning direction, reflects the light beam from the light source unit, and performs raster scanning
  • a memory controller that reads out image data line by line on the basis of a designated dot clock, a light source driving unit that drives the light source unit based on the image data, and an operation of the memory controller in the scanning mirror unit
  • a timing processing unit that performs timing processing so as to match the driving of the vibration, and the timing processing unit detects a vibration frequency in a main scanning direction when the scanning mirror unit is resonantly driven, and the vibration By multiplying the vibration frequency of the scanning mirror unit detected by the detection unit, it is equivalent to one main scanning line in half the time of one cycle of vibration of the scanning mirror unit.
  • a frequency multiplier which generates a dot clock for controlling the timing to output the image data.
  • a method for controlling an image display device comprising: a memory controller that reads out image data line by line based on a designated dot clock; and a light source driving unit that drives the light source unit based on the image data. And detecting a vibration frequency in the main scanning direction when the scanning mirror unit is driven to resonate, and multiplying the detected vibration frequency of the scanning mirror unit by half of one cycle of the vibration of the scanning mirror unit. And a dot clock for controlling the timing so as to output the image data for one main scanning line in the time of the above.
  • the scanning mirror unit that performs resonance driving, the vibration detection unit that detects the vibration frequency of the scanning mirror unit, and the frequency multiplication unit that multiplies the vibration frequency detected by the vibration detection unit;
  • an information output device comprising: a dot clock supply unit that supplies the frequency generated by the frequency multiplication unit as a dot clock for controlling a signal input to the scanning mirror unit.
  • FIG. 1 is a diagram illustrating a typical usage example of the image display apparatus according to the first embodiment.
  • FIG. 2 is a functional block diagram showing the overall configuration of the image display apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating a processing flow of the video signal according to the first embodiment.
  • FIG. 4 is a diagram for explaining a configuration of image data according to the first embodiment.
  • FIG. 5 is a perspective view of the light emitting unit according to the first embodiment.
  • FIG. 6 is a diagram illustrating the structure of the scanning mirror unit according to the first embodiment.
  • FIG. 7 is a diagram showing an optical path until the image light beam L1 emitted from the light emitting unit according to the first embodiment reaches the eyes of the viewer.
  • FIG. 1 is a diagram illustrating a typical usage example of the image display apparatus according to the first embodiment.
  • FIG. 2 is a functional block diagram showing the overall configuration of the image display apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating a processing
  • FIG. 8 is a diagram illustrating a configuration of the timing processing unit according to the first embodiment.
  • FIG. 9 is a diagram illustrating a state in which the main scanning drive signal SH is generated from the vibration detection signal Sn according to the first embodiment.
  • FIG. 10 is a diagram illustrating the sub-scanning drive signal SV according to the first embodiment.
  • FIG. 11 is a timing chart for explaining the operation of the first embodiment.
  • FIG. 12 is a timing chart for explaining the second embodiment.
  • FIG. 1 is a typical use example of an image display apparatus 100 assumed in the present embodiment.
  • the image display apparatus 100 reflects laser light with a scanning mirror and displays an image on a projection surface by raster scanning of light rays.
  • the image display device 100 is built in an automobile 10.
  • the image display device 100 emits an image light beam L1 adjusted to display a desired image.
  • the image light beam L1 is reflected by the windshield 11, enters the eyes of the driver P, and forms an image on the retina.
  • light L2 from the outside also enters the windshield 11 and is transmitted therethrough.
  • the light L2 from the outside and the image light beam L1 from the light emitting unit are overlaid (superimposed), and the actual scene of the outside and the image adjusted by the image display device 100 can be simultaneously seen in the field of view of the driver P. Become.
  • FIG. 2 is a functional block diagram showing the overall configuration of the image display apparatus 100.
  • the image display device 100 includes an image signal processing unit 110, a light emission unit 120, an imaging optical system 150, and a timing processing unit 160. The configuration and operation of each functional unit will be described below.
  • the image signal processing unit 110 includes a video interface 111, a video decoder 112, a memory controller 113, a frame memory 114, a data buffer 115, and a light source driving unit 116.
  • the original image signal is input via the video interface 111.
  • the video decoder 112 decodes the original image signal according to the image type. For example, when the original image signal is an analog image signal (component video signal), the decoding process is performed to convert the original image signal into a digital image signal composed of digital color signals of three colors (RGB) and a horizontal synchronization signal. And a synchronizing signal including a vertical synchronizing signal.
  • RGB digital color signals of three colors
  • a synchronizing signal including a vertical synchronizing signal.
  • the memory controller 113 includes a writing unit 113W and a reading unit 113R.
  • FIG. 3 is a diagram showing a flow of processing of the video signal.
  • the writing unit 113W temporarily writes the video signal processed by the video decoder 112 into the frame memory 114 and buffers it.
  • the reading unit 113R reads image data from the frame memory 114 line by line on the main scanning line based on the designated dot clock.
  • the reading unit 113R reads the image data at a timing suitable for the laser scanning projection display and outputs it to the subsequent stage. That is, the reading unit 113R reads the image data in accordance with the timing signal (dot clock, display period instruction signal) adjusted by the timing processing unit 160.
  • the image data read in this way is temporarily stored in the data buffer 115.
  • the configuration and operation of the timing processing unit 160 will be described later.
  • the image data read line by line is temporarily stored in the data buffer 115.
  • the image data is sequentially output from the data buffer 115 to the light source driver 116.
  • the light source driving unit 116 includes a D / A conversion unit, and applies a driving current to each semiconductor laser diode that is a light source of the light emitting unit 120 according to image data to cause each semiconductor laser diode to emit light with a desired luminance.
  • a red laser diode, a blue laser diode, and a green laser diode are provided to obtain three colors of RGB (see FIG. 5 for a specific structure).
  • the light source driving unit 116 includes a red driver 116R, a green driver 116G, and a blue driver 116B.
  • Each pixel data constituting the image data has color information composed of three colors of R (red), G (green), and B (blue) for each pixel as shown in FIG.
  • Each of the red driver 116R, the green driver 116G, and the blue driver 116B applies a current to the semiconductor laser diode in accordance with information on the color corresponding to each pixel.
  • the light emission unit 120 includes a light source unit 130 and a scanning mirror unit 200.
  • FIG. 5 is a perspective view of the light emitting unit 120.
  • the light source unit 130 and the scanning mirror unit 200 are unitized.
  • the light source unit 130 includes three-color laser diodes 132R, 132G, and 132B, first to fourth mirrors 133A, 133B, 133C, and 133D, and a plurality of condensing lenses 134.
  • As the laser diode a red laser diode 132R, a green laser diode 132G, and a blue laser diode 132B are provided for each color of R (red), G (green), and B (blue).
  • the mirrors 133B and 133C are dichroic mirrors that transmit or reflect a color having a predetermined wavelength.
  • the light path in the light source unit 130 will be briefly described.
  • the first mirror 133A reflects the green laser at a right angle and guides the reflected light to the optical path of the red laser.
  • the second mirror 133B transmits the red laser and reflects the green laser to multiplex both.
  • the third mirror 133C transmits the light from the second mirror 133B and reflects the blue laser.
  • the light beam is incident on the scanning mirror unit 200 at a predetermined angle by the fourth mirror 133D as a light beam obtained by combining the three laser beams on one axis.
  • a condensing lens 134 is appropriately disposed on the optical path to condense the laser light. The optical characteristics and arrangement positions of the respective condensing lenses are determined in relation to the imaging optical system 150 at the next stage.
  • a circuit board is provided on the back side of the light emission unit 120.
  • An image signal processing unit 110 and a timing processing unit 160 are incorporated on this circuit board, and are modularized as a whole.
  • the scanning mirror unit 200 is a MEMS (Micro Electro Mechanical Systems) device, and is manufactured by applying a semiconductor integrated circuit processing technique.
  • the scanning mirror unit 200 can be driven biaxially with two swing axes orthogonal to each other, and has a mirror on one surface.
  • the image light beam is raster scanned by swinging the mirror.
  • FIG. 6A is a plan view of the scanning mirror unit 200
  • FIG. 6B is a schematic cross-sectional view.
  • hatching is omitted in a range where there is no misunderstanding for easy viewing.
  • FIG. 6A the vertical direction is described as the y-axis direction, and the horizontal direction is described as the x-axis direction.
  • the scanning mirror unit 200 includes an optical deflection element 210 that is biaxially driven so as to deflect light in the main scanning direction and the sub-scanning direction, and a support base portion 250 that supports the optical deflection element 210.
  • the light deflection element 210 is manufactured from a Si (silicon) wafer by a known semiconductor process.
  • the optical deflection element 210 includes support portions 220L and 220R disposed at both ends in the x-axis direction in FIG. 6A and a sub-scanning swinging body portion swinging in the sub-scanning direction as a whole between the support portions 220L and 220R.
  • the arm 240L (or 240R) connects the support part 220L (or 220R) and the sub-scanning rocking body 230 at substantially the center in the vertical direction, whereby the sub-scanning rocking body with the sub-scanning rocking axis XS as the rocking axis.
  • the portion 230 can swing.
  • the sub-scanning oscillating body 230 includes a frame 231 constituting the frame, a main scanning oscillating piece 232 supported in a state of being separated from the frame 231 within the frame 231, and the frame 231.
  • the L-shaped beam portions 233A, 233B, 233C, and 233D connect the inner side parallel to the y-axis of the frame body 231 and the side parallel to the x-axis of the main scanning swing piece 232.
  • the L-shaped beam portions 233 ⁇ / b> A, 233 ⁇ / b> B, 233 ⁇ / b> C, and 233 ⁇ / b> D are connected to the main scanning rocking piece portion 232 at a position close to the left and right center of the main scanning rocking piece portion 232.
  • the main scanning oscillating piece 232 can oscillate about the main scanning oscillating axis YS as the oscillating axis.
  • piezoelectric elements 234A, 234B, 234C, and 234D are arranged in portions parallel to the x-axis, respectively.
  • the piezoelectric elements 234A, 234B, 234C, and 234D have a laminated structure in which a piezoelectric film is sandwiched between a lower electrode and an upper electrode.
  • the mirror 235 is formed on one surface of the main scanning swing piece 232.
  • the mirror can be formed by vapor deposition of a highly reflective metal (for example, Al or Au).
  • a highly reflective metal for example, Al or Au.
  • Magnets 236U and 236D are arranged at the upper and lower portions along the y-axis in the main scanning swing piece 232, respectively.
  • the magnets 236U and 236D are pasted on the back surface of the sub-scanning rocking body 230.
  • the support base part 250 includes a base part 251 and electromagnetic coils 252U and 252D.
  • the electromagnetic coils 252U and 252D are arranged to be paired with the magnets 236U and 236D, respectively.
  • the piezoelectric elements 234A and 234B induce vibration in the main scanning oscillating piece 232, and the piezoelectric elements 234C and 234D detect vibration of the main scanning oscillating piece 232. That is, in FIG. 6A, drive signals are applied to the drive piezoelectric elements 234A and 234B arranged on the left side with respect to the main scanning swing axis YS. Then, the vibrations of the driving piezoelectric elements 234A and 234B are transmitted to the main scanning oscillating piece 232 via the L-shaped beams 233A and 233B, and the main scanning oscillating piece 232 oscillates the main scanning oscillating shaft YS. Swings as a shaft.
  • the vibration of the main scanning rocking piece 232 is detected by the detecting piezoelectric elements 234C and 234D arranged on the right side with respect to the main scanning rocking axis YS.
  • the drive voltage signal having a predetermined phase difference with respect to the vibration detection signals obtained from the detection piezoelectric elements 234C and 234D is fed back to the drive piezoelectric elements 234A and 234B, whereby the main scanning oscillating piece 232 is obtained. Can be driven to resonate.
  • a driving current for oscillating the sub-scanning oscillating body 230 at a predetermined cycle is applied to the electromagnetic coils 252U and 252D.
  • the electromagnetic coils 252U and 252D and the magnets 236U and 236D repeat repulsion and approach alternately, and the sub-scanning rocking body 230 swings using the sub-scanning rocking axis XS as the rocking axis.
  • the oscillation in the sub-scanning direction is non-resonant driving and is adjusted according to the period of vertical driving of image data.
  • FIG. 7 is a diagram showing an optical path until the image light beam L1 emitted from the light emitting unit 120 reaches the eye of the viewer.
  • the imaging optical unit 150 includes a flat mirror 151, a screen 152, a flat mirror 153, a concave mirror 154, and a windshield 11 as a combiner.
  • the screen 152 is of a light transmission type, and includes a microlens array in which a diffusion plate and microlenses are arranged in a matrix.
  • the micro lens array has an effect of reducing speckle peculiar to a laser, and is optimally designed in consideration of a radiation angle and color unevenness.
  • the light beam L 1 reflected by the scanning mirror unit 200 forms an intermediate image once on the screen 152. Thereafter, the image light beam L1 reaches the eyes of the viewer through reflection on the flat mirror 153, the concave mirror 154, and the windshield 11. Further, on the windshield 11 as a combiner, the image light beam L1 and the actual scene from the outside are overlaid.
  • timing processing unit 160 Since the timing processing unit 160 is also a main component of the present embodiment, a detailed configuration is shown in FIG. 8, and the operation of each functional unit will be described step by step.
  • the timing processing unit 160 includes a mirror drive control circuit 161, a vibration detection unit 162, and a timing adjustment unit 170.
  • the items that require timing processing include main scanning drive control of the scanning mirror unit 200, sub-scanning drive control of the scanning mirror unit 200, and image processing timing in the image signal processing unit 110. Generation of a timing signal to meet the above.
  • the mirror drive control circuit 161 includes a main scan drive control unit 161H that performs main scan drive control of the scan mirror unit 200, and a sub scan drive control unit 161V that performs sub scan drive control of the scan mirror unit 200.
  • the vibration detection unit 162 can be configured by an amplifier circuit or a filter, for example. Assume that the detected vibration detection signal Sn has a waveform as shown in FIG. The vibration detection unit 162 feeds back the detected vibration detection signal Sn to the main scanning drive control unit 161H and adjusts the phase so that the scanning mirror unit 200 resonates in the main scanning direction as shown in FIG. 9B. And applied to the driving piezoelectric elements 234A and 234B as the main scanning drive control signal SH. As can be seen from FIGS.
  • the vibration detection signal Sn and the main scanning drive control signal SH are out of phase, but the wavelengths of both signals are the same.
  • the main scanning drive control signal SH may be pulsed. As a result, the scanning mirror unit 200 is driven to resonate in the main scanning direction.
  • the sub-scanning drive control unit 161V causes the scanning mirror unit 200 to perform non-resonant driving in the sub-scanning direction in accordance with the vertical driving cycle of the image data.
  • the vibration frequency in the sub-scanning direction is 60 Hz for VGA, for example.
  • the sub-scanning drive control unit 161V makes a sub-scanning drive control signal SV that swings the scanning mirror unit 200 in the sub-scanning direction at 60 Hz while matching the timing with the main scanning drive control signal SH output from the main scanning drive control unit 161H. Is output.
  • FIG. 10 illustrates the sub-scanning drive control signal SV.
  • the sub-scanning drive control signal SV is a triangular wave, and is swung relatively slowly in order to secure time for drawing 480 main scanning lines from the top to the bottom, and the return from the bottom to the top is driven quickly. .
  • the timing adjustment unit 170 includes a period detection unit 171, a frequency multiplier 172, a dot clock supply unit 173, and a display period instruction unit 174.
  • the cycle detection unit 171 detects one cycle of vibration in the main scanning direction of the scanning mirror unit 200 based on the vibration detection signal Sn supplied from the vibration detection unit 162. It is assumed that the vibration detection signal Sn of the scanning mirror unit 200 has the waveform of FIG. When this is pulsed, a rectangular wave shown in FIG. 11B is obtained. If a point that changes from negative to positive in FIG. 11B is detected as a cycle change, one cycle of vibration in the main scanning direction of the scanning mirror unit 200 can be detected as shown in FIG. The cycle detection unit 171 performs this cycle detection for each cycle, and outputs the detected cycle length (frequency) to the frequency multiplication unit 172.
  • the frequency multiplier 172 generates a dot clock based on the detected vibration frequency (vibration period) of the scanning mirror unit 200 in the main scanning direction.
  • the frequency multiplying unit 172 is, for example, a PLL (phase synchronization circuit, phase-locked loop), specifically a PLL frequency synthesizer, and multiplies the oscillation frequency of the scanning mirror unit 200 by a predetermined number (divides one cycle into a predetermined number). ).
  • the scanning mirror unit 200 swings from left to right in the first half cycle of the cycle length. (Going forward), swinging from right to left in the latter half of the cycle (returning). Therefore, if one-way display scanning is performed only in the forward direction, the time during which one main scanning line can be drawn is less than half the cycle length. Furthermore, when the direction of the scanning mirror unit 200 is changed, there is a moment when the temporary movement stops at the end (limit) that has swung to the maximum angle. Therefore, it is necessary to provide a blanking time of, for example, 10% when changing directions. Then, 640 pixels corresponding to one main scanning line are secured in the displayable period.
  • the frequency multiplying unit 172 generates a dot clock obtained by multiplying the oscillation frequency of the scanning mirror unit 200 by 1536.
  • the frequency multiplying unit 172 multiplies the vibration frequency F of the scanning mirror unit 200 in the main scanning direction by k.
  • k is represented by the following formula.
  • the frequency multiplying unit 172 generates a dot clock for drawing image data for one main scanning direction in a half period of one cycle by multiplying the vibration frequency F of the scanning mirror unit 200 in the main scanning direction. To do. In other words, the frequency multiplying unit 172 multiplies the vibration frequency F in the main scanning direction of the scanning mirror unit 200 to generate a dot clock that can draw image data for two main scanning directions in one period. Generate. Further, the frequency multiplier 172 updates the dot clock every time the period detector 171 detects one period. That is, the dot clock is always updated to the latest in accordance with the driving of the scanning mirror unit 200 for each cycle.
  • the dot clock generated in this way is output to the dot clock supply unit 173 and the display period instruction unit 174.
  • the display period instruction unit 174 generates a signal representing an effective display period during which the main scanning line can be effectively drawn and an image can be displayed, excluding the blanking period in the forward path of the scanning mirror unit 200 (see FIG. 11E). . If the semiconductor laser diode is driven at the dot clock timing during the period indicated by the display period instruction signal, a desired image can be displayed in the effective display area.
  • 11E shows the effective display period in the main scanning line direction, but as shown in FIG. 10, not only the effective display time but also the blanking time occurs in the sub-scanning direction.
  • the display period instruction unit 174 generates display period instruction signals in the main scanning direction and the sub scanning direction, respectively.
  • the dot clock from the dot clock supply unit 173 and the display period instruction signal generated by the display period instruction unit 174 are supplied to the reading unit 113R, the RGB data buffer 115, and the light source driving unit 116 as timing signals.
  • the operation of drawing based on the timing signal (dot clock, display period instruction signal) generated in this way will be described in order.
  • the reading unit 113R reads the image data line by line at the timing of the dot clock, and outputs it to the RGB data buffer 115. However, for the time corresponding to the blanking time, the reading unit 113R skips the image data without reading it and outputs a dummy signal to the RGB data buffer 115 (see FIG. 11F).
  • the image data temporarily stored in the RGB data buffer 115 is sent to the light source driving unit 116 in order. Then, each color semiconductor laser diode is driven to emit light with the brightness indicated by the image data. By synchronizing the luminance of each color, the driving of the main scanning, and the sub-scanning, each pixel is appropriately drawn, and thereby desired image data is drawn.
  • the dot clock and the display period instruction signal are always derived from the oscillation frequency of the scanning mirror unit 200 and generated. That is, since a separately prepared system clock or the like is not used, the dot clock and the display period instruction signal can be completely synchronized with the vibration of the scanning mirror unit 200. As a result, it is possible to prevent malfunction such as display deviation and always realize an optimal image display.
  • the period corresponding to the return path of the main scanning drive of the scanning mirror unit 200 is also set as the display period, and the image data corresponding to the return path is in the reverse order of the addresses. Is characterized in that image data is read out.
  • FIG. 12 is a timing chart corresponding to FIG. 11 of the first embodiment.
  • the display period instruction signal (FIG. 12E) is also at the H level in the return pass of the main scanning drive.
  • the reading unit 113R reads the image data in the reverse order of the addresses when reading the image data corresponding to the return path of the main scanning drive. That is, as illustrated in FIG. 12F, the reading unit 113R reads from data of the 640th pixel in the main scanning direction (the pixel corresponding to the rightmost edge in the display image). Since the drawing point moves from right to left in the return path of the main scanning drive, the image data may be sent to the light source driving unit 116 in the order read in reverse order, and the semiconductor laser diode may be driven to emit light. As a result, an image can be displayed even in the return pass of the main scanning drive.
  • the following effects are obtained in addition to the effects of the first embodiment. That is, since reciprocal display scanning is performed even in the backward direction, the blanking time is reduced to half or less, and an image display with high brightness and contrast can be realized.
  • the present invention is not limited to the first and second embodiments, and can be modified as appropriate without departing from the spirit of the present invention.
  • the image resolution is not limited to VGA.
  • the MEMS mirror capable of being integrally and biaxially driven is exemplified as the scanning mirror unit.
  • the mirror that swings in the horizontal direction and the mirror that swings in the vertical direction may be separate. .
  • various modifications are possible without being limited to the above examples.
  • the image display device can be applied not only to a vehicle-mounted type as a head-up display, but also to a head-mounted display such as a helmet built-in type or a spectacle type, a front projector, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

画像表示装置(100)は、主走査方向に共振駆動するとともに副走査方向に非共振駆動して、光源部(130)からの光束を反射させてラスター走査する走査ミラー部(200)と、画像データを指定されたドットクロックに基づいて主走査線の一ラインずつ読み出すメモリコントローラ(113)と、光源部(130)を画像データに基づいて駆動させる光源駆動部(116)と、タイミング処理部(160)とを備える。タイミング処理部(160)は、走査ミラー部(200)の主走査方向振動を検出する振動検出部(162)と、振動検出部(162)で検出された走査ミラー部(200)の振動周波数を逓倍して、走査ミラー部(200)の振動の一周期の半分の時間で主走査線一本分の画像データを描画するドットクロックを生成する周波数逓倍部(172)と、を備える。

Description

画像表示装置、画像表示装置の制御方法、および、情報出力装置
 本発明は、画像表示装置、画像表示装置の制御方法および情報出力装置に関する。より具体的には、レーザー走査型のプロジェクションディスプレーおよびその制御方法に関する。
 レーザー光を走査ミラーで反射させ、光線のラスター走査により投射面に画像を表示させる画像表示装置が知られている。すなわち、レーザー走査型のプロジェクションディスプレーは、走査ミラーを左右に往復揺動させて水平方向の走査線を描き、かつ、画像を構成する走査線の数に合わせて走査ミラーを垂直方向に往復揺動させる。このような画像表示装置は、半導体レーザーダイオードやMEMSミラーを利用することによって非常に小型化できる可能性があり、ヘッドアップディスプレイやヘッドマウントディスプレイなど様々な応用製品が現在開発されてきている。
 液晶表示装置(LCD)など従来の画像表示装置では、主走査線の一ライン単位で描画を行っている(例えば、特許文献1)。したがって描画用の画像データ信号は、有効画素数と表示タイミングとに合わせて主走査線の一ライン単位で生成される。そして、液晶パネルの仕様は決まっているので、この仕様に合わせた水平同期信号に合うようにドットクロックを設定しておき、ドットクロックのタイミングで一ラインずつ画像信号をサンプリングしていく。なお、特許文献1には、原画像の解像度(画素数)が変わっても適切な水平ブランキング期間を取れるようにドットクロックを調整する方法が開示されている。
特開2000-253335号公報
 しかしながら、レーザー走査型のプロジェクションディスプレーでは、走査ミラーを左右に往復揺動させるという独特の描画方法を採用している。したがって水平同期のタイミングは走査ミラーの振動周期に依存して決定されなければならない。また、走査ミラーは機械的共振を利用しているため、個体差や環境温度等によってバラツキがでやすいという特有の問題がある。
 ここで、走査ミラーが左右に往復揺動するので、左から右に一ライン分を描画した後、走査ミラーは右から左に戻らなければならない。これに対して、液晶パネルを駆動させるにあたっては、戻り時間などという概念が無い。したがって、走査ミラーの主走査駆動の一周期は、液晶パネルの水平同期信号(HSYNC)の一周期とは異なる概念である。液晶パネルでは水平同期信号の一周期あたりに一ライン分の画像データを生成していればよかったが、この方法は、レーザー走査型のプロジェクションディスプレーには単純には適用できない。レーザー走査型のプロジェクションディスプレーには、それに適した表示駆動方法が開発されなければならない。
 本発明の第1態様によれば、光源部と、主走査方向に共振駆動するとともに副走査方向に非共振駆動して、前記光源部からの光束を反射してラスター走査する走査ミラー部と、画像データを指定されたドットクロックに基づいて主走査線の一ラインずつ読み出すメモリコントローラと、前記光源部を前記画像データに基づいて駆動させる光源駆動部と、前記メモリコントローラの動作を前記走査ミラー部の駆動に合わせるようにタイミング処理するタイミング処理部と、を備え、前記タイミング処理部は、前記走査ミラー部が共振駆動している際の主走査方向振動周波数を検出する振動検出部と、前記振動検出部で検出された走査ミラー部の振動周波数を逓倍することにより、走査ミラー部の振動の一周期の半分の時間で主走査線一本分の画像データを出力するようにタイミングを制御するドットクロックを生成する周波数逓倍部と、を備えることを特徴とする画像表示装置を提供する。
 本発明の第2態様によれば、光源部と、主走査方向に共振駆動するとともに副走査方向に非共振駆動して、前記光源部からの光束を反射してラスター走査する走査ミラー部と、画像データを指定されたドットクロックに基づいて主走査線の一ラインずつ読み出すメモリコントローラと、前記光源部を前記画像データに基づいて駆動させる光源駆動部と、を備えた画像表示装置の制御方法であって、前記走査ミラー部が共振駆動している際の主走査方向振動周波数を検出し、前記検出した前記走査ミラー部の振動周波数を逓倍することにより、走査ミラー部の振動の一周期の半分の時間で主走査線一本分の画像データを出力するようにタイミングを制御するドットクロックを生成することを特徴とする画像表示装置の制御方法を提供する。
 本発明の第3態様によれば、共振駆動する走査ミラー部と、前記走査ミラー部の振動周波数を検出する振動検出部と、前記振動検出部が検出した前記振動周波数を逓倍する周波数逓倍部と、前記周波数逓倍部が生成した逓信周波数を、前記走査ミラー部に入力される信号を制御するためのドットクロックとして供給するドットクロック供給部と、を備える情報出力装置を提供する。
図1は、第1実施形態に係る画像表示装置の典型的使用例を示す図である。 図2は、第1実施形態に係る画像表示装置の全体構成を示す機能ブロック図である。 図3は、第1実施形態に係る映像信号の処理の流れを示す図である。 図4は、第1実施形態に係る画像データの構成を説明するための図である。 図5は、第1実施形態に係る光射出ユニットの斜視図である。 図6は、第1実施形態に係る走査ミラー部の構造を示す図である。 図7は、第1実施形態に係る光射出ユニットから発射された画像光束L1が見る人の眼に到達するまでの光路を示す図である。 図8は、第1実施形態に係るタイミング処理部の構成を示す図である。 図9は、第1実施形態に係る振動検出信号Snから主走査駆動信号SHを生成する様子を説明する図である。 図10は、第1実施形態に係る副走査駆動信号SVを例示する図である。 図11は、第1実施形態の動作を説明ためのタイミングチャートである。 図12は、第2実施形態を説明するためのタイミングチャートである。
 本発明の第1,2実施形態を図1乃至12を参照して説明する。
 (第1実施形態)
 本発明の第1実施形態に係る画像表示装置を説明する。図1は、本実施形態が想定する画像表示装置100の典型的使用例である。画像表示装置100は、レーザー光を走査ミラーで反射させ、光線のラスター走査により投射面に画像を表示する。図1において、画像表示装置100は、自動車10に内蔵されている。画像表示装置100からは所望の画像を表示させるように調整された画像光束L1が発射される。画像光束L1は、フロントガラス11で反射して運転者Pの眼に入射し、網膜上に像を結ぶ。同時に、フロントガラス11には外界からの光L2も入射して透過していく。したがって、外界からの光L2と光射出ユニットからの画像光束L1とがオーバーレイ(重畳)し、運転者Pの視界には外界の実景と画像表示装置100によって調整された画像とが同時に見えることになる。
 図2は、画像表示装置100の全体構成を示す機能ブロック図である。画像表示装置100は、画像信号処理部110と、光射出ユニット120と、結像光学系150と、タイミング処理部160と、を備える。各機能部の構成および動作を以下に説明する。
 画像信号処理部110は、ビデオインターフェース111と、ビデオデコーダ112と、メモリコントローラ113と、フレームメモリ114と、データバッファ115と、光源駆動部116と、を備える。
 ビデオインターフェース111を介して原画像信号が入力される。ビデオデコーダ112は、画像種別に応じて原画像信号をデコード処理する。例えば、原画像信号がアナログ画像信号(コンポーネント映像信号)である場合には、デコード処理により、原画像信号を、3色(RGB)のデジタル色信号で構成されるデジタル画像信号と、水平同期信号と垂直同期信号とを含む同期信号と、に分離する。
 メモリコントローラ113は、書込み部113Wと読出し部113Rとを有する。図3は、映像信号の処理の流れを示す図である。書込み部113Wは、ビデオデコーダ112で処理した映像信号をフレームメモリ114に一旦書き込んでバッファする。そして、読出し部113Rは、指定されたドットクロックに基づいてフレームメモリ114から画像データを主走査線の一ラインずつ読み出す。ここで、読出し部113Rは、レーザー走査型のプロジェクションディスプレーに適したタイミングで画像データを読み出すとともに後段に出力する。すなわち、読出し部113Rは、タイミング処理部160で調整されたタイミング信号(ドットクロック、表示期間指示信号)に合わせて画像データを読み出す。このように読み出された画像データはデータバッファ115に一時保持される。タイミング処理部160の構成および動作については後述する。
 データバッファ115には一ラインずつ読み出された画像データが一時保持される。画像データは順にデータバッファ115から光源駆動部116に出力される。
 光源駆動部116は、D/A変換部を備え、画像データに応じて光射出ユニット120の光源である各半導体レーザーダイオードに駆動電流を印加して各半導体レーザーダイオードを所望の輝度で発光させる。光射出ユニット120の光源としては、RGB3色を得るため、赤色レーザーダイオード、青色レーザーダイオード、および、緑色レーザーダイオードが設けられている(具体的な構造は図5を参照)。赤色レーザーダイオード、青色レーザーダイオード、および、緑色レーザーダイオードに対応して、光源駆動部116は、赤色ドライバ116Rと、緑色ドライバ116Gと、青色ドライバ116Bと、を備えている。
 画像データを構成する各画素データは、図4に示すように、画素ごとにR(赤)、G(緑)、B(青)の3色で構成される色情報を有する。赤色ドライバ116R、緑色ドライバ116G、青色ドライバ116Bの各々は各画素の対応する色の情報に応じて半導体レーザーダイオードに電流を印加する。
 光射出ユニット120は、光源部130と、走査ミラー部200と、を備える。図5は、光射出ユニット120の斜視図である。光源部130と走査ミラー部200とはユニット化されている。光源部130は、3色のレーザーダイオード132R、132G、132Bと、第1乃至4ミラー133A、133B、133C、133Dと、複数の集光レンズ134と、を有する。レーザーダイードとしては、R(赤)、G(緑)、B(青)の各色用に赤色レーザーダイオード132R、緑色レーザーダイオード132Gおよび青色レーザーダイオード132Bが設けられている。
 ミラー133B、133Cはそれぞれ所定の波長の色を透過または反射させるダイクロイックミラーである。光源部130における光の経路を簡単に説明すると、第1ミラー133Aは緑色レーザーを直角に反射して反射光を赤色レーザーの光路に導く。第2ミラー133Bは、赤色レーザーを透過させるとともに緑色レーザーを反射して両者を合波する。第3ミラー133Cは、前記第2ミラー133Bからの光を透過させるとともに青色レーザーを反射する。これにより三つのレーザー光を一軸に合波した光束として、第4ミラー133Dによって前記光束を走査ミラー部200に所定の角度で入射させる。なお、光路上に集光レンズ134が適宜配置されており、レーザー光を集光させる。各集光レンズの光学特性および配置位置は、次段の結像光学系150との関係で決定される。
 なお、図5において、光射出ユニット120の背面側に回路基板が設けられている。この回路基板上に画像信号処理部110とタイミング処理部160とが組み込まれており、全体としてモジュール化されている。
 次に、走査ミラー部200の構成を説明する。走査ミラー部200は、MEMS(Micro Electro Mechanical Systems)デバイスであって、半導体集積回路の加工技術を応用して製造される。走査ミラー部200は、互いに直交する二つの揺動軸を有する二軸駆動可能であって、一面にミラーを有する。ミラーを揺動させることにより、画像光束をラスタースキャンさせる。
 走査ミラー部200の典型的構造を図6を参照して説明する。図6において、(A)は走査ミラー部200の平面図であり、(B)は断面模式図である。なお、断面模式図において、見易いように、誤解のない範囲でハッチングは省略した。また、説明の都合上、図6(A)において、上下方向をy軸方向、左右方向をx軸方向として説明する。
 走査ミラー部200は、光を主走査方向および副走査方向に偏向させるように二軸駆動する光偏向素子210と、光偏向素子210を支える支持基台部250と、を備える。光偏向素子210は、Si(シリコン)ウェハから周知の半導体プロセスで作製される。光偏向素子210は、図6(A)においてx軸方向の両端に配置された支持部220L,220Rと、支持部220L,220Rの間において全体として副走査方向に揺動する副走査揺動体部230と、支持部220L,220Rと副走査揺動体部230とを繋ぐアーム240L,240Rと、を有する。アーム240L(又は240R)は、上下方向のほぼ中央で支持部220L(又は220R)と副走査揺動体部230とを繋ぎ、これにより、副走査揺動軸XSを揺動軸として副走査揺動体部230が揺動可能になっている。
 次に、副走査揺動体部230は、枠を構成する枠体231と、枠体231の枠内において枠体231から離間した状態で支持された主走査揺動片部232と、枠体231の内縁と主走査揺動片部232とを繋ぐL型梁部233A、233B、233C、233Dと、圧電素子234A、234B、234C、234Dと、ミラー235と、磁石236U、236Dと、を備える。
 L型梁部233A、233B、233C、233Dは、枠体231のうちのy軸に平行な内辺と、主走査揺動片部232のx軸に平行な辺と、を連結している。このとき、L型梁部233A、233B、233C、233Dは、主走査揺動片部232の左右中央に近接した位置において主走査揺動片部232と連結されている。これにより、主走査揺動軸YSを揺動軸として主走査揺動片部232が揺動可能になっている。
 L型梁部233A、233B、233C、233Dにおいて、x軸に平行な部分に圧電素子234A、234B、234C、234Dがそれぞれ配置されている。圧電素子234A、234B、234C、234Dは、詳しくは図示しないが、下部電極と上部電極との間に圧電体膜を挟んだ積層構造である。
 ミラー235は、主走査揺動片部232の一面に形成されている。ミラーは、反射率の高い金属(例えばAlやAu)の蒸着によって形成できる。このような構造により、ミラー235は、アーム240L、240Rによる支持によって副走査方向に揺動するとともに、L型梁部233A、233B、233C、233Dの支持によって主走査方向にも揺動できる。
 磁石236U、236Dは、主走査揺動片部232においてy軸に沿った上部と下部にそれぞれ配置されている。ミラー235が形成された面を表面とすると、磁石236U、236Dは副走査揺動体部230の裏面に貼設されている。
 支持基台部250は、台部251と、電磁コイル252U、252Dと、を有する。電磁コイル252U、252Dは、それぞれ磁石236U、236Dと対になるように配置されている。
 最後に、電気的配線について説明する。圧電素子234A、234Bで主走査揺動片部232に振動を誘起し、圧電素子234C、234Dで主走査揺動片部232の振動を検出する。すなわち、図6(A)において、主走査揺動軸YSに対して左側に配置されている駆動用圧電素子234A、234Bには駆動信号を印加する。すると、駆動用圧電素子234A、234Bの振動がL型梁部233A、233Bを介して主走査揺動片部232に伝達され、主走査揺動片部232が主走査揺動軸YSを揺動軸として揺動する。また、主走査揺動軸YSに対して右側に配置されている検出用圧電素子234C、234Dで主走査揺動片部232の振動を検出する。ここで、検出用圧電素子234C、234Dから得られる振動検出信号に対して所定の位相差をもった駆動電圧信号を駆動用圧電素子234A、234Bにフィードバックすることにより、主走査揺動片部232を共振駆動させることができる。
 電磁コイル252U、252Dには、所定周期で副走査揺動体部230を揺動させる駆動電流を印加する。これにより、電磁コイル252U、252Dと磁石236U、236Dとが反発および接近を交互に繰り返し、副走査揺動体部230が副走査揺動軸XSを揺動軸として揺動する。副走査方向の揺動は、非共振駆動であり、画像データの垂直駆動の周期に合わせて調整される。
 次に、結像光学部150について説明する。図7は、光射出ユニット120から発射された画像光束L1が見る人の眼に到達するまでの光路を示す図である。なお、結像光学部150の構成は、光射出ユニット120から射出された画像光束L1を見る人の眼に導くものであればよく、特定の構成に限定されるものではない。結像光学部150は、平面ミラー151、スクリーン152と、平面ミラー153と、凹面ミラー154と、コンバイナ(combiner)としてのフロントガラス11と、を備える。スクリーン152は、光透過型のものであり、拡散板やマイクロレンズをマトリックス状に配列したマイクロレンズアレイなどで構成される。マイクロレンズアレイは、レーザー特有のスペックルを低減する効果があり、放射角や色ムラを考慮して最適設計されている。走査ミラー部200で反射された光束L1は、スクリーン152上で一旦中間像を結ぶ。その後、平面ミラー153、凹面ミラー154、フロントガラス11での反射を介して画像光束L1は見る者の眼に届く。また、コンバイナとしてのフロントガラス11において、画像光束L1と外界からの実景とがオーバーレイされる。
 次に、タイミング処理部160について説明する。タイミング処理部160は、本実施形態の主要構成要素でもあるので、図8に詳細構成を示し、各機能部の動作を順を追って説明する。
 タイミング処理部160は、ミラー駆動制御回路161と、振動検出部162と、タイミング調整部170と、を備える。
 ここで、タイミング処理が必要な事項としては、走査ミラー部200の主走査駆動制御、走査ミラー部200の副走査駆動制御、および、画像信号処理部110での画像処理タイミングを走査ミラー部の駆動に合わせるためのタイミング信号の生成、がある。
 ミラー駆動制御回路161は、走査ミラー部200の主走査駆動制御を行う主走査駆動制御部161Hと、走査ミラー部200の副走査駆動制御を行う副走査駆動制御部161Vと、を備える。
 まず、走査ミラー部200の主走査駆動制御について説明する。走査ミラー部200の検出用圧電素子234C、234Dからの検出信号を振動検出部162で検出する。振動検出部162は、例えば、増幅回路やフィルタで構成することができる。検出された振動検出信号Snが、例えば、図9(A)の波形になったとする。振動検出部162は、検出された振動検出信号Snを主走査駆動制御部161Hにフィードバックし、図9(B)に示すように、走査ミラー部200が主走査方向で共振するように位相調整を行い、主走査駆動制御信号SHとして駆動用圧電素子234A、234Bに印加する。図9(A),9(B)からわかるように、振動検出信号Snと主走査駆動制御信号SHとは、両信号の位相がずれているが、両信号の波長は同じである。なお、主走査駆動制御信号SHは、パルス化してもよい。これにより、走査ミラー部200を主走査方向においては共振駆動させる。
 一方、副走査駆動制御部161Vは、画像データの垂直駆動の周期に合わせて走査ミラー部200を副走査方向に非共振駆動させる。副走査方向の振動周波数は、例えば、VGAであれば60Hzである。副走査駆動制御部161Vは、主走査駆動制御部161Hから出力される主走査駆動制御信号SHとタイミングを合わせながら、60Hzで走査ミラー部200を副走査方向で揺動させる副走査駆動制御信号SVを出力する。図10に、副走査駆動制御信号SVを例示する。副走査駆動制御信号SVは三角波であり、上から下には480本の主走査線を描画するだけの時間を確保するために比較的遅く揺動させ、下から上への戻りは素早く駆動させる。
 タイミング調整部170は、周期検出部171と、周波数逓倍器172と、ドットクロック供給部173と、表示期間指示部174と、を備える。
 周期検出部171は、振動検出部162から供給される振動検出信号Snに基づいて走査ミラー部200の主走査方向の振動の一周期を検出する。走査ミラー部200の振動検出信号Snが図11(A)の波形であったとする。これをパルス化すると図11(B)の矩形波が得られる。図11(B)において負から正に変化するポイントを周期の変わり目として検出すれば、図11(C)のように走査ミラー部200の主走査方向の振動の一周期を検出できる。周期検出部171は、この周期検出を一周期ごとに行い、検出した周期長(周波数)を周波数逓倍部172に出力する。
 周波数逓倍部172は、検出された走査ミラー部200の主走査方向の振動周波数(振動周期)に基づいてドットクロックを生成する。周波数逓倍部172は、例えば、PLL(位相同期回路、Phase-locked loop)、詳しくは、PLL周波数シンセサイザであり、走査ミラー部200の振動周波数を所定数倍する(一周期を所定数に分割する)。
 例えば、表示画像の解像度がVGA(640×480)であれば、主走査方向の振動周波数を1536倍にしたドットクロックを生成する。この数値が導かれる理由を説明する。
 図9(A)の振動検出信号Snまたは図9(B)の主走査駆動制御信号SHからわかるように、走査ミラー部200は、周期長のうちの前半の半周期で左から右に揺動し(往路)、後半の半周期で右から左に揺動する(復路)。したがって、往路方向だけの片道表示走査を行うとすると、主走査線の一ラインを描画できる時間は周期長の半分以下である。更に、走査ミラー部200の方向転換では、最大角まで振れきった端(リミット)で一時動きが停止する瞬間がある。したがって、方向転換時に例えば10%のブランキングタイムを設ける必要がある。そして、表示可能期間に主走査線一本分である640画素を確保することになる。
 上記の観点から、図11(D)に示すように、一周期は、1536(=(640+64+64)×2)個分のドットクロックに対応しなければならない。したがって、周波数逓倍部172は、走査ミラー部200の振動周波数を1536倍したドットクロックを生成する。
 一般式で表現すると次のようになる。主走査方向の有効画素数をP、主走査方向の両端のそれぞれにおけるブランキング期間を有効画素を表示する期間のb%とする。このとき、周波数逓倍部172は、走査ミラー部200の主走査方向の振動周波数Fをk倍する。ただし、kは次の式で表される。
 k=(P+P ×(b/100)×2)×2
 このように周波数逓倍部172は、走査ミラー部200の主走査方向の振動周波数Fを逓倍することにより、一周期の半分の期間で主走査方向一本分の画像データを描画するドットクロックを生成する。表現を変えると、周波数逓倍部172は、走査ミラー部200の主走査方向の振動周波数Fを逓倍することにより、一周期の期間で主走査方向二本分の画像データを描画できるだけのドットクロックを生成する。また、周波数逓倍部172は、周期検出部171で一周期を検出するごとにドットクロックを更新する。すなわち、一周期ごとにドットクロックは走査ミラー部200の駆動に合わせて常に最新に更新される。
 このように生成されたドットクロックは、ドットクロック供給部173および表示期間指示部174に出力される。
 表示期間指示部174は、走査ミラー部200の往路においてブランキング期間を除き、主走査線を有効に描画して画像を表示できる有効表示期間を表す信号を生成する(図11(E)参照)。この表示期間指示信号で示される期間に、ドットクロックのタイミングで半導体レーザーダイオードを駆動すれば、有効表示エリアに所望の画像を表示できることになる。
 なお、図11(E)では主走査線方向の有効表示期間を示すが、図10に示すように、副走査方向にも有効表示時間のみならずブランキングタイムが発生する。表示期間指示部174は、主走査方向および副走査方向の表示期間指示信号をそれぞれ生成する。
 ドットクロック供給部173からのドットクロックおよび表示期間指示部174で生成される表示期間指示信号は、タイミング信号として、読出し部113R、RGBデータバッファ115、光源駆動部116に供給される。このように生成されたタイミング信号(ドットクロック、表示期間指示信号)に基づいて描画が行われる動作を順に説明する。
 まず、読出し部113Rは、ドットクロックのタイミングで画像データを一ラインずつ読み出してRGBデータバッファ115に出力する。ただし、ブランキングタイムに相当する時間については、読出し部113Rは画像データを読み出さないで空送りし、ダミー信号をRGBデータバッファ115に出力する(図11(F)参照)。
 このRGBデータバッファ115に一時保持された画像データが順送りに光源駆動部116に送られる。すると、各色の半導体レーザーダイオードそれぞれが画像データで指示された輝度で発光駆動される。各色の輝度、主走査、副走査の駆動が同期することにより、各画素が適切に描画され、これによって、所望の画像データが描画されることになる。
 このような構成を有する本実施形態によれば、次の効果を奏する。本実施形態において、主走査駆動制御信号SHに加えて、ドットクロックおよび表示期間指示信号を常に走査ミラー部200の振動周波数から派生して生成する。すなわち、別途に用意されたシステムクロックなどを調整して用いるのではないので、ドットクロックおよび表示期間指示信号を走査ミラー部200の振動に完全に同期させることができる。これにより、表示ずれなどの誤動作を防ぎ、常に最適な画像表示を実現させることができる。
 (第2実施形態)
 第1実施形態では、走査ミラー部200の往復振動のうち往路方向だけ描画する片道表示走査を行う場合を例示した。この場合、復路の時間はブランキングタイムとなっているので、表示画像の輝度やコントラストが低くなってしまう可能性がある。そこで、第2実施形態においては、復路においても描画を行う往復表示走査を行う場合を説明する。
 本実施形態の基本的構成は第1実施形態と同じであるが、走査ミラー部200の主走査駆動の復路に相当する期間も表示期間とし、また、復路に相当する画像データについてはアドレスの逆順に画像データを読み出す点に特徴がある。
 図12は、第1実施形態の図11に相当するタイミングチャートである。図12において、表示期間指示信号(図12(E))は、主走査駆動の復路においてもHレベルになる。読出し部113Rは、主走査駆動の復路に相当する画像データを読み出すとき、画像データをアドレスの逆順に読み出す。すなわち、図12(F)に示すように、読出し部113Rは、主走査方向の640番目の画素(表示画像でいうと一番右端に当たる画素)のデータから読み出す。主走査駆動の復路において、描画点は右から左に移動するので、逆順に読み出した通りの順番で画像データを光源駆動部116に送り、半導体レーザーダイオードを発光駆動させればよい。これにより、主走査駆動の復路においても画像を表示することができる。
 本実施形態によれば、第1実施形態の効果に加えて次の効果を奏する。すなわち、復路方向でも描画する往復表示走査を行うので、その分ブランキングタイムが半分以下になり、輝度、コントラストが高い画像表示を実現できる。
 なお、本発明は第1,2実施形態に限られず、本発明の趣旨を逸脱しない範囲で適宜変更することが可能である。画像の解像度はVGAに限られない。上記の説明では、走査ミラー部として、一体で二軸駆動が可能なMEMSミラーを例示したが、水平方向に揺動するミラーと垂直方向に揺動するミラーとが別体になっていてもよい。このように、上記の例示に限定されず種々変更が可能である。
 画像表示装置は、ヘッドアップディスプレイとしての車載タイプのみならず、ヘルメット内蔵型や眼鏡タイプなどのヘッドマウントディスプレイ、フロントプロジェクターなどに応用できることはいうまでもない。
 本発明によれば、表示ずれなどの誤動作を防ぎ、常に最適な画像表示を実現することができる。

Claims (5)

  1.  光源部と、
     主走査方向に共振駆動するとともに副走査方向に非共振駆動して、前記光源部からの光束を反射してラスター走査する走査ミラー部と、
     画像データを指定されたドットクロックに基づいて主走査線の一ラインずつ読み出すメモリコントローラと、
     前記光源部を前記画像データに基づいて駆動させる光源駆動部と、
     前記メモリコントローラの動作を前記走査ミラー部の駆動に合わせるようにタイミング処理するタイミング処理部と、を備え、
     前記タイミング処理部は、
     前記走査ミラー部が共振駆動している際の主走査方向振動周波数を検出する振動検出部と、
     前記振動検出部で検出された走査ミラー部の振動周波数を逓倍することにより、走査ミラー部の振動の一周期の半分の時間で主走査線一本分の画像データを出力するようにタイミングを制御するドットクロックを生成する周波数逓倍部と、
     を備えることを特徴とする画像表示装置。
  2.  前記周波数逓倍部は、前記走査ミラー部の振動周波数Fをk倍したドットクロックを生成し、
     主走査線方向の有効画素数をP、前記主走査線方向の両端のそれぞれにおけるブランキング期間を有効画素を表示する期間のb%とするとき、式“k=(P+P ×(b/100)×2)×2”でkが表されることを特徴とする請求項1に記載の画像表示装置。
  3.  前記メモリコントローラは、
     前記走査ミラー部の主走査駆動の往路に相当する画像データはアドレス順に読出し、
     前記走査ミラー部の主走査駆動の復路に相当する画像データはアドレスの逆順に読み出すことを特徴とする請求項1または2に記載の画像表示装置。
  4.  光源部と、
     主走査方向に共振駆動するとともに副走査方向に非共振駆動して、前記光源部からの光束を反射してラスター走査する走査ミラー部と、
     画像データを指定されたドットクロックに基づいて主走査線の一ラインずつ読み出すメモリコントローラと、
     前記光源部を前記画像データに基づいて駆動させる光源駆動部と、を備えた画像表示装置の制御方法であって、
     前記走査ミラー部が共振駆動している際の主走査方向振動周波数を検出し、
     前記検出した前記走査ミラー部の振動周波数を逓倍することにより、走査ミラー部の振動の一周期の半分の時間で主走査線一本分の画像データを出力するようにタイミングを制御するドットクロックを生成する
     ことを特徴とする画像表示装置の制御方法。
  5.  共振駆動する走査ミラー部と、
     前記走査ミラー部の振動周波数を検出する振動検出部と、
     前記振動検出部が検出した前記振動周波数を逓倍する周波数逓倍部と、
     前記周波数逓倍部が生成した逓信周波数を、前記走査ミラー部に入力される信号を制御するためのドットクロックとして供給するドットクロック供給部と、を備える情報出力装置。
PCT/JP2012/083913 2011-12-28 2012-12-27 画像表示装置、画像表示装置の制御方法、および、情報出力装置 WO2013100066A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-289968 2011-12-28
JP2011289968A JP2013140224A (ja) 2011-12-28 2011-12-28 画像表示装置、画像表示装置の制御方法、および、情報出力装置

Publications (1)

Publication Number Publication Date
WO2013100066A1 true WO2013100066A1 (ja) 2013-07-04

Family

ID=48697545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083913 WO2013100066A1 (ja) 2011-12-28 2012-12-27 画像表示装置、画像表示装置の制御方法、および、情報出力装置

Country Status (2)

Country Link
JP (1) JP2013140224A (ja)
WO (1) WO2013100066A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092948A1 (ja) * 2013-12-17 2015-06-25 株式会社Jvcケンウッド 画像表示装置及びその制御方法
AT516666A1 (de) * 2014-11-24 2016-07-15 Zizala Lichtsysteme Gmbh Messung der Schwingamplitude eines Scannerspiegels
JP2017076151A (ja) * 2017-01-20 2017-04-20 株式会社Jvcケンウッド 画像表示装置及びその制御方法
JP2017083898A (ja) * 2017-01-20 2017-05-18 株式会社Jvcケンウッド 画像表示装置及びその制御方法
CN106716222A (zh) * 2014-11-10 2017-05-24 Jvc 建伍株式会社 图像显示装置及其控制方法
CN109587461A (zh) * 2018-10-26 2019-04-05 歌尔股份有限公司 激光扫描投影设备及其投影方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040928A (ja) * 2013-08-21 2015-03-02 株式会社リコー 光偏向装置、画像形成装置、車両及び光偏向装置の制御方法
JP6330944B2 (ja) * 2017-03-15 2018-05-30 株式会社Jvcケンウッド 中間像形成装置
JP2023010142A (ja) 2021-07-09 2023-01-20 セイコーエプソン株式会社 回路装置、制御装置及びレーザープロジェクター

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292380A (ja) * 2004-03-31 2005-10-20 Canon Inc コヒーレント光を用いるディスプレイ
JP2008233561A (ja) * 2007-03-20 2008-10-02 Brother Ind Ltd 光走査装置及び光走査装置を備えた画像表示装置並びに網膜走査型画像表示装置
JP2011107505A (ja) * 2009-11-19 2011-06-02 Konica Minolta Opto Inc 2次元光スキャナ駆動装置
JP2011180277A (ja) * 2010-02-26 2011-09-15 Brother Industries Ltd 画像表示装置
JP2011215397A (ja) * 2010-03-31 2011-10-27 Brother Industries Ltd 画像表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292380A (ja) * 2004-03-31 2005-10-20 Canon Inc コヒーレント光を用いるディスプレイ
JP2008233561A (ja) * 2007-03-20 2008-10-02 Brother Ind Ltd 光走査装置及び光走査装置を備えた画像表示装置並びに網膜走査型画像表示装置
JP2011107505A (ja) * 2009-11-19 2011-06-02 Konica Minolta Opto Inc 2次元光スキャナ駆動装置
JP2011180277A (ja) * 2010-02-26 2011-09-15 Brother Industries Ltd 画像表示装置
JP2011215397A (ja) * 2010-03-31 2011-10-27 Brother Industries Ltd 画像表示装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092948A1 (ja) * 2013-12-17 2015-06-25 株式会社Jvcケンウッド 画像表示装置及びその制御方法
JP2015118181A (ja) * 2013-12-17 2015-06-25 株式会社Jvcケンウッド 画像表示装置及びその制御方法
CN106716222A (zh) * 2014-11-10 2017-05-24 Jvc 建伍株式会社 图像显示装置及其控制方法
AT516666A1 (de) * 2014-11-24 2016-07-15 Zizala Lichtsysteme Gmbh Messung der Schwingamplitude eines Scannerspiegels
US10281717B2 (en) 2014-11-24 2019-05-07 Zkw Group Gmbh Measuring the vibration amplitude of a scanner mirror
JP2017076151A (ja) * 2017-01-20 2017-04-20 株式会社Jvcケンウッド 画像表示装置及びその制御方法
JP2017083898A (ja) * 2017-01-20 2017-05-18 株式会社Jvcケンウッド 画像表示装置及びその制御方法
CN109587461A (zh) * 2018-10-26 2019-04-05 歌尔股份有限公司 激光扫描投影设备及其投影方法
WO2020082534A1 (zh) * 2018-10-26 2020-04-30 歌尔股份有限公司 激光扫描投影设备及其投影方法

Also Published As

Publication number Publication date
JP2013140224A (ja) 2013-07-18

Similar Documents

Publication Publication Date Title
WO2013100066A1 (ja) 画像表示装置、画像表示装置の制御方法、および、情報出力装置
JP6079239B2 (ja) 画像表示装置
WO2013146096A1 (ja) 画像表示装置、および、画像表示装置の制御方法
US8780096B2 (en) Scanning image display apparatus
US7023402B2 (en) Scanned display with pinch, timing, and distortion correction
US20020171810A1 (en) System and method for displaying/projecting a color image
Tauscher et al. Evolution of MEMS scanning mirrors for laser projection in compact consumer electronics
JP4840175B2 (ja) 画像表示装置
US20140232736A1 (en) Device and method for projecting an image
US6639719B2 (en) System and method for using multiple beams to respectively scan multiple regions of an image
JP2013200474A (ja) 画像表示装置、および、画像表示装置の制御方法
US20060145945A1 (en) Scanned beam system with distortion compensation
US7180555B2 (en) System and method for producing an image with a screen using erase (off) and image (on) light sources
JP4819354B2 (ja) 画像表示装置
US20020171776A1 (en) System and method for capturing, transmitting, and displaying an image
WO2002037163A9 (en) Scanned display with variation compensation
Niesten et al. Scanning laser beam displays based on a 2D MEMS
JP5867225B2 (ja) 画像表示装置、および、画像表示装置の制御方法
US11109000B2 (en) Laser projection device and laser projection system
JP2014010347A (ja) 画像表示装置および画像表示方法
JP2014130287A (ja) 画像表示装置
EP1242844B1 (en) Scanned display with pinch, timing, and distortion correction
US10310259B2 (en) Image rendering apparatus, head up display, and image luminance adjusting method
JP4735608B2 (ja) 画像表示装置
JP2017072864A (ja) 画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861539

Country of ref document: EP

Kind code of ref document: A1