JP2015506826A - フィルタを洗浄する方法 - Google Patents

フィルタを洗浄する方法 Download PDF

Info

Publication number
JP2015506826A
JP2015506826A JP2014547932A JP2014547932A JP2015506826A JP 2015506826 A JP2015506826 A JP 2015506826A JP 2014547932 A JP2014547932 A JP 2014547932A JP 2014547932 A JP2014547932 A JP 2014547932A JP 2015506826 A JP2015506826 A JP 2015506826A
Authority
JP
Japan
Prior art keywords
line
filter
cross
controllable valve
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014547932A
Other languages
English (en)
Other versions
JP6050831B2 (ja
Inventor
フランツ ブルンマー
フランツ ブルンマー
Original Assignee
ハイキュー−ファクトリー ゲゼルシャフト ミット ベシュレンクテル ハフツング
ハイキュー−ファクトリー ゲゼルシャフト ミット ベシュレンクテル ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハイキュー−ファクトリー ゲゼルシャフト ミット ベシュレンクテル ハフツング, ハイキュー−ファクトリー ゲゼルシャフト ミット ベシュレンクテル ハフツング filed Critical ハイキュー−ファクトリー ゲゼルシャフト ミット ベシュレンクテル ハフツング
Publication of JP2015506826A publication Critical patent/JP2015506826A/ja
Application granted granted Critical
Publication of JP6050831B2 publication Critical patent/JP6050831B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/18Specific valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/20By influencing the flow
    • B01D2321/2066Pulsated flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Abstract

A)交差流フィルタ(20)を与える段階であって、交差流フィルタ(20)が、フィルタ膜(21)を含み、かつ液体浸透物ストリームを除去するように構成され、フィルタ膜(21)が、浸透物ストリームに面する第1の側と、第1の側と反対側でフィードストリームに面する第2の側とを含み、除去される堆積物(1010)の少なくとも一部が、フィルタ膜(21)の第2の側に位置付けられる交差流フィルタ(20)を与える段階と、B)フィルタ膜(21)を通してバックフラッシング液体ストリームを印加する段階とを含む交差流フィルタ(20)を洗浄する方法。段階B)においてバックフラッシング液体ストリームを印加する前に、フィルタ膜(21)の第1の側に位置付けられた浸透物は、気体によってフィルタ膜(21)の第1の側から少なくとも部分的に置換され、バックフラッシング液体ストリームと接触する気体は、少なくとも段階B)中に1バールよりも大きい圧力を有する。段階B)でバックフラッシング液体ストリームを印加する段階は、圧力がパルス駆動するように行われる。【選択図】 図1

Description

本発明は、フィルタ膜を含み、かつフィルタ膜を通過するフィードストリームから液体浸透物ストリームを除去するように構成された交差流フィルタを準備する段階と、フィルタ膜を通してバックフラッシング液体ストリームを印加する段階とを含むフィルタを洗浄する方法に関する。本発明は、更に、この方法に従って洗浄することができるフィルタシステムに関する。
過去数年のうちに、化学機械研磨(CMP)は、半導体材料を研磨する標準的な工程として確立されてきた。特に、CMPは、機能層を半導体ウェーハ上に堆積した後に使用されて堆積中に発生する凹凸を平滑化する。工程では、スラリと呼ぶ化学的かつ機械的に活性のコロイド状研磨材料が、半導体ウェーハと研磨される表面の間に分配される。半導体ウェーハ面は、半導体ウェーハと研磨される表面の間の相対運動により支持されて化学的に攻撃されて研磨される。
これらのタイプの研磨工程では、最適な研磨が達成されるように、研磨される表面に新しいスラリを連続的に供給しなければならない。研磨中、研磨液体(一般的に水及びスラリ)と研磨時の摩耗からの汚染物質との両方を含む廃水が生成される。これに加えて、廃水は、研磨工程を制御する追加の薬剤を一般的に含む。これらの薬剤は、工程のタイプに応じてpH調節剤、酸化剤、及び/又は安定剤を含む可能性がある。スラリ廃水は、通常は排水されて廃棄される。スラリ及び研磨液体は、いずれも生成するのに高価であるので、スラリ再利用工程は、潜在的に高い費用節約を提供する。
例えば、DE 10 2009 044 204 A1は、半導体処理工程から、特に化学機械研磨工程からのスラリ廃水を再利用する再利用方法及び再利用装置を開示しており、以下の工程段階、すなわち、新しいスラリを含む廃水を循環タンクに連続的に経路指定し、一方、混合廃水を循環タンクから連続的に除去し、除去された混合廃水が、限外濾過装置を通るように経路指定され、それによって液体の抽出を経て濃縮廃水に濃縮され、濃縮廃水が循環タンクに経路指定され、循環タンクの内容物と混合させて混合廃水を取得する濾過段階と、濾過段階後に行われ、循環タンクへの新しい廃水の供給を低減するか又は実質的に停止し、一方、混合廃水を循環タンクから連続的に除去し、除去された混合廃水が、限外濾過装置を通るように経路指定され、それによって液体の抽出を経て濃縮廃水に濃縮され、濃縮廃水が循環タンクに経路指定される濃縮段階とが実施される。
US 6,929,532によれば、半導体製造工程のための研磨スラリ供給装置は、交差流フィルタを含む。このフィルタは、ウェーハ研磨ユニットの上流に配置される。交差流フィルタは、中空繊維フィルタ又は管状フィルタの形態を取ることができる。このようなフィルタは、ウルトラフィルタ又はマイクロフィルタとして設計することができる。化学機械研磨システムを作動させる方法も説明されている。
US 6,527,969は、化学機械研磨工程からの研磨スラリを再利用する方法を開示している。この方法は、研磨スラリを回収する段階と、研磨粒子を回収された研磨スラリに再分散させる段階とを含む。特に、研磨粒子は、電磁場によるか又は超音波照射を用いて分散剤を追加することによって分散させることができる。
WO 2010/111291 A2は、研磨スラリ及び洗浄水をCMP工程から回収するためのデバイス及び方法を説明している。この文献はまた、流動学的測定及び遠心ポンプの使用による集塊の防止に関するものである。
EP 1 055 446 Aは、流入廃水が濾過を通して洗浄される半導体デバイスを製造する方法を扱っている。この方法では、第1のフィルタ薄膜により捕捉された粒子を第2のフィルタ薄膜として使用する。フィルタリング機能を維持するために、第1のフィルタの目詰まりが防止され、気泡のような外力が、第2のフィルタ薄膜に作用する。除去される粒子が濾過水と混合された時に、濾過水は、廃水が貯蔵されるタンクに再循環して戻される。望ましい結果が達せられたか否かを検査した後に、濾過は、再び開始される。
WO 2001/51186 A1は、保持側と浸透側とを含む濾過膜を有する濾過モジュールを含む交差流濾過システムを説明している。システムは、濾過される媒体のための容器と、容器と濾過モジュールの間のフィードポンプとを更を含む。固形保持粒子により引き起こされる保持物の流路の目詰まりは、濾過膜の保持側に掛かる圧力を低減することによって濾過膜の保持側で防止される。これは、フィードポンプの吸込み側との接続を行うことによって行われ、それによって圧力は、浸透物が濾過膜を通って逆流して障害物を除去し、それを保持粒子と共にフィードポンプにより吸い込ませるほど遙かに十分に低減される。これは、圧力式浸透物タンクを不要にすることができる。
US 2004/069878 A1は、半導体の製造における研磨段階から研磨液体又はスラリ廃水を回収するためのデバイス及び方法を開示している。スラリ廃水中の研磨元素の集塊は、超音波振動又は圧力下の循環を通して粉砕機内で破砕される。スラリ廃水は、次に、再生されて再利用される。
上述したように、堆積物は、多くの場合に、これらの種類の濾過システムの作動において濾過膜の保持側に形成される。現在に至るまで、これを解決しようとする手法は、多かれ少なかれ、これらの堆積物を除去するために単に濾過膜をバックフラッシングすることを伴うものである。しかし、これは、濾過膜上の堆積物の厚みが保持物の流れの方向で均一ではない時に短所を呈する。経験的に、最大厚みは、保持物ストリームが入る点で見出されることが予想され、堆積物の厚みは、流れの方向に下流に連続的に減少することが分かっている。下流で更に別の堆積がないことも可能である。フィルタ膜のバックフラッシングがこのような状況で行われた場合に、バックフラッシング液体は、抵抗が最も小さい経路を求めることになり、かつ堆積物をそれらが最も厚くかつ最もしつこく付着した正確にその点で強制的に取り除かず、むしろ、緩く着座した堆積物に行われることになり、又は、それは、フィルタ膜を通る堆積物を避ける通路を求めることになる。これらの状況は、濾過ユニットの長寿命に悪影響を与える。
DE 10 2009 044 294 A1 US 6,929,532 US 6,527,969 WO 2010/111291 A2 EP 1 055 446 A WO 2001/51186 A1 US 2004/069878 A1
本発明の目的は、従来技術の短所を少なくともある程度まで克服することである。特に、この目的は、長い濾過ユニット寿命をもたらすためにフィルタを洗浄するより良好な方法を提供することに関わるものである。
本発明により、この目的は、以下の段階、すなわち、A)交差流フィルタを与える段階であって、交差流フィルタが、フィルタ膜を含み、かつフィルタ膜を通過して流れるフィードストリームから液体浸透物ストリームを除去するように構成され、フィルタ膜が、浸透物ストリームに面する第1の側と第1の側の反対側のかつフィードストリームに面する第2の側とを含み、除去される堆積物の少なくとも一部が、フィルタ膜の第2の側に位置付けられる上記交差流フィルタを与える段階と、B)フィルタ膜を通してバックフラッシング液体ストリームを印加する段階とを含み、段階B)においてバックフラッシング液体ストリームを印加する前に、フィルタ膜の第1の側に位置付けられた浸透物が、気体によりフィルタ膜の第1の側から少なくとも部分的に置換され、バックフラッシング液体ストリームと接触している気体が、少なくとも段階B)中に1バールよりも大きい圧力を有し、段階B)においてバックフラッシング液体ストリームを印加する段階が、バックフラッシング液体ストリームの圧力が最小圧力と最大圧力の間で一度よりも多く切り換わるように行われるフィルタを洗浄する方法によって達成される。
段階A)において準備される交差流フィルタはまた、交差流フィルタ又は接線流フィルタと呼ぶことができる。例えば、それは、中空繊維フィルタとして又は中空繊維フィルタの束として設計することができる。フィルタ膜は、ポリマー、例えば、ポリアクリロニトリルから製造されることが好ましい。更に、フィルタ膜は、除去されることになる堆積物で少なくとも部分的に被覆される。このような堆積物は、濾過して除去された摩耗粒子及び研磨元素などとすることができる。
膜に対する側の名称に関して、フィルタ膜の第1の側は、浸透側と呼ぶこともでき、第2の側は、保持側と呼ぶことができる。
段階B)に従って、バックフラッシング液体のストリームは、フィルタ膜を通して印加することができる。バックフラッシング液体ストリームは、第1の側(浸透側)から第2の側(保持側)にフィルタ膜を通過することが理解される。簡単にいうと、本発明による方法は、フィルタ膜のパルス式バックフラッシングの形態の公知のバックフラッシング方法と比較して改良を与えるものである。
この目的のために、フィルタ膜の第1の側(浸透側)に位置付けられた浸透物又は他の液体は、真っ先に除去される。本発明により、この除去は、気体による上述の液体の置換によって達成される。気体は、重要でない場合に空気とすることもできるが、窒素のような不活性気体であることが好ましい。弁を有する廃水ラインが、交差流フィルタに接続され、かつ置換の目的に使用される。液体は、このラインを通して押し出される。
置換後に、フィルタ膜の第1の側(浸透側)の状況は、そこに形成された気体クッションと説明することができる。この気体クッションは、次に、バックフラッシング液体ストリームを押圧する。
本発明により、バックフラッシング液体ストリームの圧力は、一度よりも多く最小圧力と最大圧力の間で切り換えられる。換言すると、圧力は、パルス駆動され、又は最小圧力と最大圧力の間で振動し、この振動は、周期的又は非周期的とすることができる。周期的な振動の場合に、例えば、圧力変動は、正弦形又は正方形のプロフィールを有することができる。バックフラッシング液体ストリームが、フィルタ膜を通っても流れ、第1の側(浸透側)に沿ってのみではないように、気体クッションの圧力は、1バールよりも大きく、好ましくは3バール以上であり、より好ましくは5バール以上である。本発明における圧力情報は、大気圧に対する圧力(疑念がある場合は、1013ミリバール)を意味する。
本発明による洗浄方法は、規則的な間隔で、及び/又は必要に応じて例えば濾過膜を通じた測定圧力差を用いて開始することができる。
フィルタ膜のパルス式バックフラッシングの結果は、バックフラッシング液体の高度の静的摩擦及び高加速度である。これは、堆積物に影響を及ぼし、それらを除去し、又は更に別の洗浄段階を失敗せずに実行することができるようにそれらを少なくとも弛緩する。
全体として、評価目的で使用した限外濾過モジュールの寿命の観測は、寿命が数週間から約1年に延びたことを示している。この限外濾過モジュールは、以下に説明するようにスラリ廃水濃縮プラントに使用されたものである。
本発明の実施形態及び他の態様を以下に説明する。それらは、明確な矛盾がその関係から生じない限り、互いに任意に組み合わせることができる。
本発明による方法の一実施形態において、段階B)におけるバックフラッシング液体ストリームは、以前に除去された浸透物を含む。この浸透物は、適切な大きさの浸透物タンク内に貯蔵することができ、かつ適切に取り付けられたバックフラッシュラインを通してフィルタ膜に供給することができる。
本発明による方法の別の実施形態において、交差流フィルタは、フィードストリームが垂直方向に流れるように配置される。フィードストリームが下端で交差流フィルタに入り、そこを通って下から上に垂直方向に流れ、上端で保持物ストリームとして交差流フィルタを出ることが好ましい。このようにして、フィルタ膜を通って流れるバックフラッシング液体ストリームに掛かる重力の効果を利用することができ、バックフラッシング液体は、フィルタの下端で集まる。
本発明による方法の別の実施形態において、交差流フィルタは、限外濾過ユニットであり、フィードストリームは、半導体処理工程からのスラリ廃水を含む。限外濾過ユニットは、濾過ユニットであり、それは、それに供給されてそこを通って流れる混合廃水から液体を除去することができる。一般的に、この液体は、水であるが、半導体処理工程に使用される場合がある他の液体又は液体混合物を混合廃水から除去することができる。
限外濾過ユニットは、混合廃水から除去された液体に位置付けられた粒子が0.01μm以上で0.1μm以下の粒径を有することを保証する。これは、例えば、除去される液体が0.1μmよりも大きい桁の粒子を含むことができるミクロ濾過ユニットとは異なっている。換言すると、表現「限外濾過ユニット」の「限外」という用語は、フィルタデバイスによって液体と共に混合水から分離された粒径を識別するために本明細書で使用される。
スラリを含む廃水は、半導体の化学機械研磨(CMP)から得られることが好ましい。混合廃水は、それが限外濾過ユニットを通過する時に濃縮廃水になるように濃縮される。これは、濃縮廃水中のスラリが、限外濾過ユニットに供給された混合廃水中よりも高い容積濃度で存在することを意味する。濃縮は、限外濾過ユニット内の液体の除去によって行われ、混合廃水と比較して濃縮廃水中の固形物濃度の増大をもたらす。
本発明による工程の別の実施形態において、バックフラッシング液体ストリームと接触する気体は、段階B)中に1.5バール以上で2.5バール以下の圧力を有する。この気体及び気体の圧力は、パルス式バックフラッシング液体の背圧を表している。圧力レベルは、バックフラッシング液体がフィルタ膜の浸透側で目詰まりした膜を通過して又は一般的に垂直上方である別の方向に移動する程度に影響を与える。すなわち、背圧の選択を通して、フィルタ膜に及ぼすバックフラッシング液体のパルス駆動効果の程度を決定することができる。この圧力は、1.7バール以上で2.3バール以下、より好ましくは1.9バール以上で2.1バール以下であることが好ましい。
本発明による方法の別の実施形態において、段階B)における最小圧力は、0バール以上で0.5バール以下であり、及び/又は最大圧力は、2.5バール以上で3バール以下である。これは、バックフラッシング液体に対して圧力変動の振幅を確立する。最小圧力が、0.01バール以上で0.4バール以下、及び/又は最大圧力が、2.6バール以上で2.9バール以下、より好ましくは、最小圧力に対して0.1バール以上で0.3バール以下、及び/又は最大圧力に対して2.7バール以上で2.8バール以下であることが好ましい。
本発明による方法の別の実施形態において、段階B)におけるバックフラッシング液体ストリームの圧力は、0.5Hz以上で1Hz以下の周波数で最小圧力と最大圧力の間で切り換わる。これは、パルス式バックフラッシングの周波数範囲を決定する。この周波数が、0.55Hz以上で0.95Hz以下、より好ましくは0.6Hz以上で0.9Hz以下であることが好ましい。この周波数は、技術的に可能な範囲でフラッシング工程中に一定に留まることも可能である。
本発明による方法の別の実施形態において、以下の段階、すなわち、C)フィルタ膜の第2の側を気泡が分配された液体と接触させる段階であって、気泡の内側の圧力が一度よりも多く最小圧力と最大圧力の間で切り換わる上記接触させる段階が、段階B)の後に実施される。この液体は、バックフラッシング液体とすることができ、特に、以前に除去された浸透物液体とすることもできる。この最小圧力が、0バール以上で0.5バール以下であり、及び/又はこの最大圧力が、2.5バール以上で3バール以下であり、より好ましくはこの最小圧力に対して0.01バール以上で0.4バール以下、及び/又はこの最大圧力に対して2.6バール以上で2.9バール以下であることが好ましい。最小と最大の圧力の間で切り換わる周波数に関して、0.5Hz以上で1Hz以下、より好ましくは0.55Hz以上で0.95Hz以下であることが好ましい。この周波数は、技術的に可能な範囲で一定に留まることも可能である。
気体−液体混合物を使用してフィルタの内側(保持側)をフラッシングすることは特に有効である。堆積物の厚い層に起因して、フィルタの下端では、まさに気体−液体混合物がこのような狭窄部を通って流れる時により大きい速度が見出される。圧力変動に起因して、急速な容積変動(爆裂及び内破)が気泡内に発生する。これらの変動は、堆積物に対して大きい除去効果を有する。除去された堆積物は、液体で洗い流すことができる。
本発明による方法の別の実施形態において、本方法は、フィルタ膜を有する交差流フィルタと、濾過される材料混合物のためのフィードラインと、交差流フィルタを出る保持物のための排出ラインと、交差流フィルタを出る浸透物のための液体抽出ラインと、バックフラッシュラインとを含むシステムにおいて実施され、排出ラインは、第1の制御可能弁が配置された気体印加ラインに接続され、気体印加ライン及び液体抽出ラインは、第2の制御可能弁が配置された接続ラインによって互いに接続され、第1の制御可能弁は、接続ラインと排出ラインの間で気体印加ラインに配置され、第3の制御可能弁が、液体抽出ラインに配置され、液体抽出ラインと接続ラインの間の接続は、交差流フィルタと第3の制御可能弁の間に行われ、第4の制御可能弁が、バックフラッシュラインに配置され、フィードラインは、第5の制御可能弁が配置された廃水ラインに接続される。
制御可能弁は、例えば、ソレノイド弁とすることができ、かつ本発明による方法が適正に実行されることを保証するように弁の開閉を用いる中央制御ユニットに接続することができる。
第1から第5の制御可能弁は、以下のように、段階B)の前、中、及び後に連続して作動させることが好ましい。
Figure 2015506826
エントリ「パルス駆動」は、それぞれの制御可能弁が一度よりも多く開閉することを意味するように理解される。閉じる頻度は、互いに独立した個々の弁に関して、例えば、0.5Hz以上で1Hz以下の範囲とすることができる。
第1から第5の制御可能弁は、以下のように連続して作動させることが更に好ましい。
Figure 2015506826
これらの段階番号1から6のより詳細な説明は、以下の図2から図7の説明に与えられている。
本発明の別の目的は、フィルタ膜を有する交差流フィルタと、濾過される材料混合物のためのフィードラインと、交差流フィルタを出る保持物のための排出ラインと、交差流フィルタを出る浸透物のための液体抽出ラインと、バックフラッシュラインとを含むシステムを含むフィルタシステムであり、排出ラインは、第1の制御可能弁が配置された気体印加ラインに接続され、気体印加ライン及び液体抽出ラインは、第2の制御可能弁が配置された接続ラインを通して互いに接続され、第1の制御可能弁は、接続ラインと排出ラインの間で気体印加ラインに配置され、第3の制御可能弁が、液体抽出ラインに配置され、液体抽出ラインと接続ラインの間の接続は、交差流フィルタと第3の制御可能弁の間に行われ、第4の制御可能弁が、バックフラッシュラインに配置され、フィードラインは、第5の制御可能弁が配置された廃水ラインに接続される。
本発明によるフィルタシステムの好ましい実施形態において、交差流フィルタは、限外濾過ユニットである。例えば、それは、中空繊維フィルタとして又は中空繊維フィルタの束として設計することができる。
本発明による方法及び本発明によるフィルタシステムは、スラリ廃水、特にCMP工程のような半導体処理工程からのスラリ廃水の再利用に使用されることが好ましい。従って、本発明の別の目的は、本発明によるフィルタシステムと、スラリを含む廃水を保持するための循環タンクと、循環タンクに接続された廃水フィードラインと、濾過される材料混合物のためのフィードラインによって循環タンクに接続され、本発明によるフィルタシステムの一部であり、循環タンクから除去された混合廃水を液体抽出によって連続的に濃縮するための交差流フィルタと、濃縮廃水を循環タンクに経路指定するための廃水戻りラインと、循環タンクからの混合廃水の連続的な除去及び限外濾過ユニットによる廃水の濃縮が行われている間の循環タンクへの新しい廃水の連続的な供給を含む濾過段階と、次に、循環タンクからの混合廃水の連続的な除去及び限外濾過デバイスによる廃水の濃縮が行われている間に循環タンクへの新しい廃水の供給が低減されるか又は実質的に遮断される濃縮段階とを時間的に連続して実施し、更に、本発明による方法を実施させるように構成されたコントローラとを含む半導体処理工程からのスラリ廃水を再利用するための再利用装置である。
本発明を以下の図に関連して更に説明するが、その説明は、それに限定されない。
本発明による洗浄可能フィルタシステムの図である。 本発明による方法の段階を示す図である。 本発明による方法の段階を示す図である。 本発明による方法の段階を示す図である。 本発明による方法の段階を示す図である。 本発明による方法の段階を示す図である。 本発明による方法の段階を示す図である。 スラリ廃水を再利用するための再利用システムを示す図である。
図1は、本発明による洗浄可能フィルタシステムを示し、それを使用して本発明による方法を実施することができる。好ましくは限外濾過ユニットとして設計される交差流フィルタ20は、フィルタ膜21を含み、かつフィルタ膜21を通過するフィードストリームから液体浸透物ストリームを除去するように構成される。そうするために、濾過される材料混合物フィードストリームのためのフィードライン201は、交差流フィルタ20に入り、フィードストリームは、一部の場合には、例えば、CMP工程からのスラリ廃水であり、交差流フィルタから延びているのは、交差流フィルタ20を出る濃縮廃水保持液のための排出ライン103である。
フィルタシステムの洗浄中のバックフラッシング液体に及ぼす重力の効果を利用するために、交差流フィルタ20は、濾過される材料混合物が垂直方向に下から上にフィルタ膜21を通過して流れるように設定されることが好ましい。
交差流フィルタ20は、更に、交差流フィルタ20を出る浸透物のための液体抽出ライン203、並びにバックフラッシュライン205を含む。液体抽出ライン203は、濾過される材料混合物の流れの方向に見た時にバックフラッシュライン205の下流に位置付けられる。
幾何学的にいうと、フィルタ膜21は、浸透物ストリームに面する第1の側(浸透側)と、第1の側の反対側であり、かつフィードストリームに面する第2の側(保持液側)とを有する。図1では、第1の側は、フィルタ膜21の左寄りであり、第2の側は、右寄りである。
図1は、除去される堆積物1010、例えば、CMP工程からの摩耗した又は集塊したスラリ粒子が、フィルタ膜21の第2の側に少なくとも部分的に位置付けられたことを更に示している。堆積物1010の層は、ライン201を通る入口レベルで最も厚く、かつ同じくフィルタ膜21にも付着して最も強固である。堆積物1010の層の厚みは、フィードストリームの流れの方向に見た時に下流で連続的に減少する。
強固に付着した堆積物1010のこのような層が形成され、それによってフィルタ膜21が塞がれた時に、かつこの場合にフィルタ膜21の簡単なバックフラッシングが用いられた時に、バックフラッシング液体は、それが、抵抗が最も少ない経路である堆積物1010に覆われていないフィルタ膜21の部分を通過するまで、膜21の第1の(左)側を単に登ることは容易に見ることができる。
本発明によるフィルタシステムでは、排出ライン103は、第1の制御可能弁1001が配置された気体印加ライン1008に接続される。気体、好ましくは窒素のような不活性気体は、気体入口ポート1006によってこのライン1008を通してシステムに導入することができる。気体印加ライン1008及び液体抽出ライン203は、更に、第2の制御可能弁1002が配置された接続ライン1009によって互いに接続される。第1の制御可能弁1001は、接続ライン1009と排出ライン103の間で気体印加ライン1008に配置される。このようにして、第1の制御可能弁1001及び第2の制御可能弁1002を使用して、フィルタ膜21のいずれの側に気体入口ポート1006からの気体が当たっているかを決定することができる。
第3の制御可能弁1003は、液体抽出ライン203に配置され、液体抽出ライン203と接続ライン1009の間の接続は、交差流フィルタ20と第3の制御可能弁1003の間に行われる。従って、第3の制御可能弁1003は、現れる浸透物の流れの方向に見た時に、第2の制御可能弁1002と接続ライン1009の接続部の下流に配置される。
最後に、バックフラッシュライン205に配置された第4の制御可能弁1004があり、フィードライン201は、第5の制御可能弁1005が配置された廃水ライン1007に接続される。
図2は、本発明による方法における第1の段階を示している。図1に示すフィルタシステムから始めると、フィルタ膜21の第1の側に位置付けられた浸透物は、気体によりフィルタ膜の第1の側から少なくとも部分的に置換される。流体、気体、又は液体が流れるラインは、より太い線で概略的に描かれている。浸透物を置換するために、第2の制御可能弁1002及び第5の制御可能弁1005を開き、第1、第3、及び第4の制御可能弁1001、1003、1004を閉じる。気体入口点1006を通して印加された気体は、浸透物を押し進めてシステムからフィルタ膜21に通して廃水ライン1007に通す。これは、更に、フィルタ膜21の第1の側の概略的に描かれた低い液体レベルによって示されている。
図3は、フィルタ膜21がパルス式バックフラッシングを受ける本発明による方法における別の段階を示している。これを生成するために、気体クッションが、交差流フィルタ20に形成され、これは、バックフラッシングに向けて必要な背圧を生成する。第1、第2、及び第3の制御可能弁1001、1002、1003を閉じ、第5の制御可能弁を開く。バックフラッシュライン205に位置付けられた第4の制御可能弁をパルス式に作動させ、換言すると、それは、繰返し開閉される。フィルタ膜上の堆積物1010は、ほぐされるか又はパルス式バックフラッシングにより直接に除去することさえ可能である。
図4は、本発明による方法における別の段階、すなわち、バックフラッシング液体による気体クッションのパルス駆動置換を説明するものである。そうするために、バックフラッシング液体が交差流フィルタ20に流れ込むことができるように第4の制御可能弁を開く。パルス態様の第3の制御可能弁1003の作動により、バックフラッシング液体は、フィルタ膜21の左側を更に登り、気体が液体抽出ライン203及び第3の制御可能弁1003を通して押し出される。この工程では、フィルタ膜21の上側区域内の堆積物1010も同様にほぐされる。第1及び第2の制御可能弁1001、1002を閉じ、第5の制御可能弁を開く。その後に、フィルタ膜21を通過する液体は、交差流フィルタ20から除去することができる。
図5は、印加された気体が加湿される本発明による方法における別の段階を示している。それは、フィルタ膜21が、乾燥固体に起因して、例えば、乾燥スラリ残留物に起因して塞がれることを防止する。第1、第2、及び第4の制御可能弁1001、1002、1004を開き、第5の制御可能弁1005をパルス態様で作動させる。第3の制御可能弁1003を閉じる。ライン205を通して流入する液体の圧力により、液体は、ライン203及び1009を通ってライン1008に至り、液体は、気体と接触し、加湿された気体は、フィルタ膜21の第2の(右)側の交差流フィルタ20まで進む。
図6は、交差流フィルタ20の内側及びフィルタ膜の第2の側がパルス態様で気体−液体混合物で洗浄される本発明による方法における別の段階を示している。そうするために、第1及び第4の制御可能弁1001、1004を開き、第5の制御可能弁1005をパルス態様で作動させる。第2及び第3の制御可能弁1002、1003を閉じる。粒子が、ライン1007を通して交差流フィルタ20内の液体から除去される。
図7は、本発明による方法における最終段階を示している。ここでは、残りの液体は、気体過圧を用いて交差流フィルタ20の内側から交差流フィルタ20を出てフラッシングされる。第1の制御可能弁1001を開き、第5の制御可能弁1005は、開くか又はパルス態様で作動される。第2、第3、及び第4の制御可能弁1002、1003、1004を閉じる。
図8は、スラリ廃水のための再利用装置の概略的な設定に関する図を示している。再利用装置の中心構成要素は、循環タンク10及び限外濾過ユニット20を含む。循環タンク10及び限外濾過ユニット20は、混合廃水除去ライン105、限外濾過フィードライン201、及び廃水戻りライン103と共に、循環タンク10に以前に送られた廃水を濃縮する回路を構成する。循環タンク10は、ここでは約500リットルの容量を有する。
この再利用装置は、更に、図1から図7に関連して説明したものと同様に本発明により洗浄可能であるフィルタシステムを含む。
混合廃水が限外濾過ユニット20を通過する時に、液体が抽出され、液体は、液体タンク30と、液体抽出ライン203と、バックフラッシュライン205とを含む液体の回路に存在し、バックフラッシュラインは、時折使用されるに過ぎない。この実施形態の限外濾過ユニット20は、好ましくはポリマー膜、例えば、低コストで耐久性があるポリアクリロニトリルから作られる膜21を有する膜フィルタである。従って、混合廃水から抽出される液体は、浸透物である。従って、液体容器30を以下では浸透物タンク30とも呼ぶ。浸透物タンク30は、この実施例では約200リットルの容量を有する。
同じく図8に示すのは、スラリを含む廃水が、それが廃水フィードライン101に沿って前置フィルタ42を通って循環タンク10に通される前に保たれる供給タンク40である。
再利用装置には、N2フィード603を通して窒素が供給される。窒素は、N2加湿機60を通して加湿され、N2ライン501を通して供給タンク40、循環タンク10、及びNH3容器50、503に供給される。供給タンク40及び循環タンク10では、このように生成された湿潤N2ブランケットにより、タンク又は容器壁での乾燥したスラリの外皮の形成が防止される。スラリの外皮の形成が防止されない場合には、乾燥したスラリ粒子が再利用スラリに戻り、後で半導体処理工程において処理中の半導体基板に実質的なスクラッチを引き起こす危険性がある場合がある。乾燥した状態で、スラリは、再安定化することができない。
最初に、濾過段階を以下に説明する。供給タンク40のうちの1つに貯蔵された新しい廃水が、新しい廃水のためのポンプ73によって廃水フィードライン101を通して循環タンク10に導入される。混合廃水引き出しライン105を通して循環ポンプ70を使用して混合廃水が循環タンク10から排水される間に、新しい廃水が、連続的に供給され、限外濾過フィードライン201を通して限外濾過ユニット20に通される。限外濾過ユニット20を出る濃縮廃水は、廃水戻りライン103を通して循環タンク10に戻される。廃水が限外濾過ユニット20を通過する時に、液体又は浸透物は、ユニットから除去され、液体抽出ライン203を通して浸透物タンク30に送られる。その後に、液体容器出口301を通してポンプ71を使用して浸透物を浸透物タンク30から除去することができ、液体利用ライン303を通じてユーザに利用可能にすることができる。例えば、浸透物は、半導体処理ユニットに戻すことができる。この場合に、最初に浸透物に更に別の処理段階を受けさせることが必要である場合がある。しかし、浸透物は、液体利用ライン303から除去され、かついかなる追加の処理もなく、特にいかなる更に別の濾過もなく新しい廃水が出てくる半導体処理工程、例えば、CMP工程に供給されることが好ましい。
限外濾過ユニット20における濾過活動は、浸透物が21を通過することができる膜によって担われる。フィルタケーキがフィルタ堆積物から膜21上に形成されるのを防止するために、本発明による上述の方法を用いて膜21を洗浄する必要がある場合がある。
循環タンク10と限外濾過ユニット20の間の上述の廃水回路はまた、更に、濃縮段階中に実質的に定位置に保たれる。これは、混合廃水引き出しライン105によって混合廃水を循環タンク10から連続的に除去させ、かつ限外濾過ユニット20に通して限外濾過フィードライン201を通るように経路指定させる。そこから、濃縮廃水は、廃水戻りライン103を通して循環タンク10に経路指定される。限外濾過ユニット20において混合廃水から除去された浸透物は、液体抽出ライン203を通して浸透物タンク30に経路指定され、そこから、液体容器出口301及び液体利用ライン303を通して更に別の使用に向けて準備される。
しかし、濾過段階とは対照的に、どの新しい廃水も循環タンク10に経路指定されない。従って、再利用工程のこの段では、淡水ポンプ73は、未使用のままである。これに代えて、NH3タンク50からのアンモニア(NH3)が、NH3ライン601のうちの1つを通して混合廃水引き出しライン105内の混合廃水に追加される。NH3タンク50が使い果たされた時に、NH3供給タンク503は、それにNH3を再供給する。アンモニアは、集塊抑制剤として作用し、かつ新しいスラリ廃水が残るという事実に起因して固形物濃度が濃度段階においてすぐに増加する混合廃水中の固形物の凝集を防止する。
循環タンク10内の混合廃水が、その固形物濃度が予め決定された高濃度閾値を超える時点まで濃度段階を用いて濃縮された後に、分注段階を導入することができる。再利用装置は、流量センサ、温度センサ、濃度センサ、及び湿度センサなどを含むことができる複数の測定デバイス72によってモニタされる。固形物濃度は、濃度メーターを使用して決定され、かつコントローラ(図示せず)において高濃度閾値と比較される。
20 交差流フィルタ
21 フィルタ膜
205 バックフラッシュライン
1008 気体印加ライン
1010 除去される堆積物

Claims (14)

  1. A)交差流フィルタ(20)を与える段階であって、該交差流フィルタ(20)が、フィルタ膜(21)を含み、かつ該フィルタ膜(21)を通過して流れるフィードストリームから液体浸透物ストリームを除去するように構成され、該フィルタ膜(21)が、該浸透物ストリームに面する第1の側と、該第1の側と反対側で該フィードストリームに面する第2の側とを含み、除去される堆積物(1010)の少なくとも一部が、該フィルタ膜(21)の該第2の側に位置付けられる、前記与える段階と、
    B)前記フィルタ膜(21)を通してバックフラッシング液体ストリームを印加する段階と、
    を含むフィルタを洗浄する方法であって、
    段階B)で前記バックフラッシング液体ストリームを印加する前に、前記フィルタ膜(21)の前記第1の側に位置付けられた浸透物が、気体によって該フィルタ膜(21)の該第1の側から少なくとも部分的に置換され、
    前記バックフラッシング液体ストリームと接触する前記気体は、少なくとも段階B)中に1バールよりも大きい圧力を有し、
    段階B)で前記バックフラッシング液体ストリームを印加する前記段階は、該バックフラッシング液体ストリームの圧力が最小圧力と最大圧力の間で繰り返し切り換わるように行われる、
    ことを特徴とする方法。
  2. 段階B)における前記バックフラッシング液体ストリームは、以前に除去された浸透物を含むことを特徴とする請求項1に記載の方法。
  3. 前記交差流フィルタは、前記フィードストリームが垂直方向に流れるように配置されることを特徴とする請求項1又は請求項2に記載の方法。
  4. 前記交差流フィルタは、限外濾過ユニットであり、前記フィードストリームは、半導体処理工程からのスラリ廃水を含むことを特徴とする請求項1から請求項3のいずれか1項に記載の方法。
  5. 前記バックフラッシング液体ストリームと接触する前記気体は、段階B)中に1.5バール以上で2.5バール以下の圧力を有することを特徴とする請求項1から請求項4のいずれか1項に記載の方法。
  6. 段階B)における前記最小圧力は、0バール以上で0.5バール以下であり、及び/又は、前記最大圧力は、2.5バール以上で3バール以下であることを特徴とする請求項1から請求項5のいずれか1項に記載の方法。
  7. 段階B)における前記バックフラッシング液体ストリームの圧力が、0.5Hz以上で1Hz以下の周波数で、前記最小圧力と前記最大圧力の間で切り換わることを特徴とする請求項1から請求項6のいずれか1項に記載の方法。
  8. 段階B)後に、C)前記フィルタ膜の前記第2の側を、分散された気泡を含む液体と接触させる段階であって、該気泡内の圧力が最小圧力と最大圧力の間で繰り返し切り換わる前記接触させる段階が、実施されることを特徴とする請求項1から請求項7のいずれか1項に記載の方法。
  9. 前記方法が、フィルタ膜(21)を有する交差流フィルタ(20)と、濾過される材料混合物のためのフィードライン(201)と、該交差流フィルタ(20)を出る保持物のための排出ライン(103)と、該交差流フィルタ(20)を出る前記浸透物のための液体抽出ライン(203)と、バックフラッシュライン(205)とを含むシステムにおいて実施され、
    前記排出ライン(103)は、第1の制御可能弁(1001)が配置された気体印加ライン(1008)に接続され、
    前記気体印加ライン(1008)及び前記液体抽出ライン(203)は、第2の制御可能な弁(1002)が配置された接続ライン(1009)によって互いに接続され、前記第1の制御可能な弁(1001)は、該接続ライン(1009)と前記排出ライン(103)の間で該気体印加ライン(1008)に配置され、
    第3の制御可能弁(1003)が、前記液体抽出ライン(203)に配置され、該液体抽出ライン(203)と前記接続ライン(1009)の間の接続が、前記交差流フィルタ(20)と該第3の制御可能弁(1003)の間でなされ、
    第4の制御可能弁(1004)が、前記バックフラッシュライン(205)に配置され、
    前記フィードライン(201)は、第5の制御可能弁(1005)が配置された廃水ライン(1007)に接続される、
    ことを特徴とする請求項1から請求項8のいずれか1項に記載の方法。
  10. 前記第1から前記第5の制御可能弁は、以下のように、段階B)の前、中、及び後に連続して作動されることを特徴とする請求項9に記載の方法。
    Figure 2015506826
  11. 前記第1から前記第5の制御可能弁(1001−1005)は、以下のように連続して作動されることを特徴とする請求項10に記載の方法。
    Figure 2015506826
  12. フィルタシステムであって、
    フィルタ膜(21)を有する交差流フィルタ(20)、濾過される材料混合物のためのフィードライン(201)、該交差流フィルタ(20)を出る保持物のための排出ライン(103)、該交差流フィルタ(20)を出る浸透物のための液体抽出ライン(203)、及びバックフラッシュライン(205)、
    を含み、
    前記排出ライン(103)は、第1の制御可能弁(1001)が配置された気体印加ライン(1008)に接続され、
    前記気体印加ライン(1008)及び前記液体抽出ライン(203)は、第2の制御可能な弁(1002)が配置された接続ライン(1009)によって互いに接続され、前記第1の制御可能な弁(1001)は、該接続ライン(1009)と前記排出ライン(103)の間で該気体印加ライン(1008)に配置され、
    第3の制御可能弁(1003)が、前記液体抽出ライン(203)に配置され、該液体抽出ライン(203)と前記接続ライン(1009)の間の接続が、前記交差流フィルタ(20)と該第3の制御可能弁(1003)の間でなされ、
    第4の制御可能弁(1004)が、前記バックフラッシュライン(205)に配置され、
    前記フィードライン(201)は、第5の制御可能弁(1005)が配置された廃水ライン(1007)に接続される、
    ことを特徴とするフィルタシステム。
  13. 前記交差流フィルタ(20)は、限外濾過ユニットであることを特徴とする請求項12に記載のフィルタシステム。
  14. 半導体処理工程からのスラリ廃水の再処理のための再処理ユニットであって、
    請求項12又は請求項13に記載のフィルタシステムと、
    スラリを含む廃水を保持するための循環タンク(10)と、
    前記循環タンク(10)に接続された廃水フィードライン(101)と、
    濾過される材料混合物(201)のためのフィードライン(201)によって前記循環タンク(10)に接続され、請求項11から請求項14のうちの1つ又はそれよりも多くの項に記載のフィルタシステムの一部であり、液体抽出によって該循環タンク(10)から除去された混合廃水を連続的に濃縮するための交差流フィルタ(20)と、
    前記濃縮された廃水を前記循環タンク(10)に経路指定するための廃水戻りライン(105)と、
    前記循環タンク(10)からの混合廃水の連続的な除去及び前記限外濾過ユニットによる該廃水の濃縮が行われている間の該循環タンク(10)への新しい廃水の連続的な供給を含む濾過段階と、次に、該循環タンク(10)からの混合廃水の該連続的な除去及び該限外濾過デバイスによる該廃水の濃縮が行われている間に該循環タンク(10)への該新しい廃水の供給が低減されるか又は実質的に遮断される濃縮段階と、を時間的に連続して実施するように構成され、かつ更に、請求項1から請求項11のうちの1つ又はそれよりも多くの項に記載の方法を実行させるように構成された、コントローラと、
    を含むことを特徴とする再処理ユニット。
JP2014547932A 2011-12-19 2012-12-18 フィルタを洗浄する方法 Active JP6050831B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011056633.3 2011-12-19
DE102011056633.3A DE102011056633B4 (de) 2011-12-19 2011-12-19 Verfahren zum Reinigen eines Filters
PCT/EP2012/075983 WO2013092606A1 (de) 2011-12-19 2012-12-18 Verfahren zum reinigen eines filters

Publications (2)

Publication Number Publication Date
JP2015506826A true JP2015506826A (ja) 2015-03-05
JP6050831B2 JP6050831B2 (ja) 2016-12-21

Family

ID=47552978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014547932A Active JP6050831B2 (ja) 2011-12-19 2012-12-18 フィルタを洗浄する方法

Country Status (10)

Country Link
US (1) US9855529B2 (ja)
EP (1) EP2794073B1 (ja)
JP (1) JP6050831B2 (ja)
KR (1) KR101622133B1 (ja)
CN (1) CN103998114B (ja)
DE (1) DE102011056633B4 (ja)
IL (1) IL232831B (ja)
MY (1) MY168853A (ja)
SG (1) SG11201402207UA (ja)
WO (1) WO2013092606A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10646828B2 (en) 2014-05-08 2020-05-12 Georgia Tech Research Corporation Cyclic filtration system
WO2016187263A1 (en) * 2015-05-18 2016-11-24 Massachusetts Institute Of Technology Maintenance of gas layers for fouling prevention on submerged surfaces
KR200485467Y1 (ko) 2017-07-19 2018-01-11 카리페어퓨처 주식회사 이동식 차량정비장치 및 이를 구비하는 이동식 정비차량
FI127838B (en) * 2018-03-08 2019-03-29 Sofi Filtration Oy A method of cleaning a filter element and a filtering device
CN110354686B (zh) * 2018-03-26 2022-07-08 东莞新科技术研究开发有限公司 一种过滤膜的清洗方法
DE102020131637A1 (de) * 2020-05-22 2021-11-25 Taiwan Semiconductor Manufacturing Co., Ltd. Filtervorrichtung für prozess zur herstellung von halbleitervorrichtungen
KR102503150B1 (ko) * 2020-11-30 2023-02-23 롯데케미칼 주식회사 기체 분리막 운전 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679146A (ja) * 1992-09-04 1994-03-22 Fuji Photo Film Co Ltd ろ過方法
JP2002079061A (ja) * 2000-07-06 2002-03-19 Nitto Denko Corp スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法ならびに処理システム
US6929532B1 (en) * 2003-05-08 2005-08-16 Lsi Logic Corporation Method and apparatus for filtering a chemical polishing slurry of a wafer fabrication process
JP2007528290A (ja) * 2004-03-10 2007-10-11 デグレマン 膜フィルタ洗浄方法および同方法を実施するための装置
WO2011042017A1 (de) * 2009-10-08 2011-04-14 Fab Service Gmbh Wiederaufbereitungsverfahren und wiederaufbereitungsvorrichtung zur wiederaufbereitung von slurry-abwasser aus einem halbleiterbearbeitungsprozess, insbesondere aus einem chemisch-mechanischen polierprozess

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3828236C1 (ja) * 1988-08-19 1990-01-04 Ag Fuer Industrielle Elektronik Agie Losone Bei Locarno, Losone, Ch
DE4037329A1 (de) * 1990-11-23 1992-05-27 Linde Ag Verfahren zur aufbereitung von abwaessern aus glasschleifereien
JP3426149B2 (ja) 1998-12-25 2003-07-14 富士通株式会社 半導体製造における研磨廃液再利用方法及び再利用装置
JP3708748B2 (ja) 1999-04-23 2005-10-19 松下電器産業株式会社 研磨剤の再生装置および研磨剤の再生方法
EP1055446B1 (en) 1999-05-27 2007-08-15 Sanyo Electric Co., Ltd. Method of fabricating a semiconductor device with process liquid recycling
BR0012993A (pt) * 1999-08-05 2002-06-18 Microfiltration Technology Aps Método de filtragem de fluxo cruzado e uma instalação de filtragem de fluxo cruzado
WO2001051186A1 (de) 2000-01-13 2001-07-19 Bucher-Guyer Ag Verfahren und vorrichtung zum freimachen von durchflusswegen in filtrationsmodulen
DE10120608B4 (de) * 2000-05-03 2007-10-04 Karl-Heinz Pfaff Verfahren zur Filtration einer Flüssigkeit und Filtereinrichtung dafür
US6878294B2 (en) 2000-07-06 2005-04-12 Nitto Denko Corporation Running method and treatment system for spiral wound membrane element and spiral wound membrane module
ATE490018T1 (de) * 2002-12-19 2010-12-15 Hydranautics Verfahren zum reinigen und reinhalten einer membranfläche bei filtration
DE102005015421B4 (de) * 2005-04-04 2012-08-30 Wehrle Umwelt Gmbh Verfahren zur Abtrennung von Inhaltsstoffen aus einem fließfähigen Stoffgemisch und Anlage zur Durchführung derartiger Verfahren
JP4709095B2 (ja) * 2006-08-04 2011-06-22 水道機工株式会社 スラリー固液分離膜ろ過装置の運転方法およびスラリー固液分離膜ろ過装置
DE102006040451A1 (de) * 2006-08-24 2008-02-28 Institut für Bioprozess- und Analysenmesstechnik e.V. Membranmodulanordnung und Membranverfahren
NZ591259A (en) * 2008-08-20 2013-02-22 Siemens Industry Inc A hollow membrane filter backwash system using gas pressurised at at least two pressures feed from the down stream side to push water through the filter to clean it
JP2012521896A (ja) 2009-03-25 2012-09-20 アプライド マテリアルズ インコーポレイテッド Cmpスラリの使用時点リサイクルシステム
DE102009044294A1 (de) 2009-10-20 2011-05-05 Kla-Tencor Mie Gmbh Koordinatenmessmaschine zur Bestimmung der Lage von Strukturen auf einer Maske

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679146A (ja) * 1992-09-04 1994-03-22 Fuji Photo Film Co Ltd ろ過方法
JP2002079061A (ja) * 2000-07-06 2002-03-19 Nitto Denko Corp スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法ならびに処理システム
US6929532B1 (en) * 2003-05-08 2005-08-16 Lsi Logic Corporation Method and apparatus for filtering a chemical polishing slurry of a wafer fabrication process
JP2007528290A (ja) * 2004-03-10 2007-10-11 デグレマン 膜フィルタ洗浄方法および同方法を実施するための装置
WO2011042017A1 (de) * 2009-10-08 2011-04-14 Fab Service Gmbh Wiederaufbereitungsverfahren und wiederaufbereitungsvorrichtung zur wiederaufbereitung von slurry-abwasser aus einem halbleiterbearbeitungsprozess, insbesondere aus einem chemisch-mechanischen polierprozess

Also Published As

Publication number Publication date
CN103998114A (zh) 2014-08-20
IL232831B (en) 2018-03-29
US20140332467A1 (en) 2014-11-13
EP2794073A1 (de) 2014-10-29
WO2013092606A1 (de) 2013-06-27
CN103998114B (zh) 2017-02-22
IL232831A0 (en) 2014-07-31
DE102011056633A1 (de) 2013-06-20
SG11201402207UA (en) 2014-09-26
KR20140123477A (ko) 2014-10-22
KR101622133B1 (ko) 2016-05-18
US9855529B2 (en) 2018-01-02
JP6050831B2 (ja) 2016-12-21
EP2794073B1 (de) 2019-02-06
DE102011056633B4 (de) 2014-02-13
MY168853A (en) 2018-12-04

Similar Documents

Publication Publication Date Title
JP6050831B2 (ja) フィルタを洗浄する方法
JP5873020B2 (ja) 半導体処理プロセス、特に化学機械研磨プロセスからのスラリーを含有する廃水をリサイクルするためのリサイクル方法および装置
US9149744B2 (en) Filtration method, method for purifying polishing composition using it, method for regenerating filter to be used for filtration, and filter regenerating apparatus
JPS62502108A (ja) 懸濁液中の微細固体の濃縮方法及び装置
KR102439657B1 (ko) 스크러버 배수의 정화 장치 및 방법, 그리고 염분 농도차 발전 시스템
JP5163078B2 (ja) 研磨装置とその方法
KR101050418B1 (ko) 지능형 고효율 분리막 유지 세정장치 및 방법
JP2009113148A (ja) 研磨スラリーのろ過方法並びに研磨材の回収方法及び回収装置
JP2011104549A (ja) ろ過システムおよびろ過方法
JP3659833B2 (ja) 多段積み浸漬型膜分離装置の運転方法
JP5248209B2 (ja) 薬液回収装置及び薬液回収方法
JP3616503B2 (ja) 膜濾過装置
EP3725393A1 (en) Filtering membrane cleaning method
JP2010115719A (ja) 振動濾過方法及び装置
JP3359448B2 (ja) 油水分離装置
JP2023002895A (ja) クロスフローろ過に用いられる分離膜を用いたスラリー濃縮装置の洗浄方法
JP4089229B2 (ja) 油水分離装置
JP2016064341A (ja) 限外ろ過膜の調製方法、水処理方法及び限外ろ過膜装置
JPH0380921A (ja) 膜濾過装置の運転方法
JPH10249339A (ja) 浸漬型膜濾過方法およびその装置
JP2006314918A (ja) 膜濾過設備及びその運転管理方法
JP2018202419A (ja) 限外ろ過膜の調製方法、限外ろ過膜装置、超純水製造装置及び超純水製造方法
JP2008246425A (ja) 膜モジュールの洗浄方法および膜ろ過装置
JP2002370019A (ja) 濾過装置及び濾過方法
WO2016103397A1 (ja) Cmpスラリー再生方法および再生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161125

R150 Certificate of patent or registration of utility model

Ref document number: 6050831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250